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Abstract

In uncertainty quantification, a stochastic modelling is often applied,
where parameters are substituted by random variables. We investigate
linear dynamical systems of ordinary differential equations with a quan-
tity of interest as output. Our objective is to analyse the sensitivity of
the output with respect to the random variables. A variance-based ap-
proach generates partial variances and sensitivity indices. We expand the
random output using the generalised polynomial chaos. The stochastic
Galerkin method yields a larger system of ordinary differential equations.
The partial variances represent quadratic outputs of this system. We ex-
amine system norms of the stochastic Galerkin formulation to obtain
sensitivity measures. Furthermore, we apply model order reduction by
balanced truncation, which allows for an efficient computation of the sys-
tem norms with guaranteed error bounds. Numerical results are shown
for a test example.
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1 Introduction

Mathematical models of dynamical systems include physical or geometrical pa-
rameters, which are often affected by uncertainties. Thus the variability of the
parameters has to be taken into account when using such models for predictive
purposes. In parametric uncertainty quantification (UQ), the varying parameters
are often replaced by random variables, see [27, 29]. The solutions of a dynamical
system therefore become random processes, which encode the variability of the
model output.

In this paper, we consider linear dynamical systems consisting of ordinary differ-
ential equations (ODEs) that have random input parameters. A time-dependent
output is specified as a quantity of interest (QoI). Stochastic modelling via UQ
yields a random QoI, which must be examined. Our main goal is to perform a
sensitivity analysis of this random QoI with respect to the individual random
parameters. One of the most popular approaches for this strategy, Sobol indices,
is a technique for performing variance-based sensitivity analysis, see [20, 23, 24].
These sensitivity measures were employed to investigate dynamical systems in dif-
ferent applications, for example, a motor model [8], an epidemiological model [21]
and a (discretised) heat equation [25]. Analysis via Sobol indices yields compu-
tationally tractable means of determining total effect sensitivity indices, which
are defined by partial variances associated to each random parameter. Previous
related work investigates the sensitivity of the transfer function associated to
random ODEs in the frequency domain [14].

Our approach for computing sensitivities utilises polynomial chaos (PC) expan-
sions; the random QoI is expanded into a separation-of-variables series, where
each summand is the product of an orthogonal basis polynomial with a time-
dependent coefficient function, see [28]. The stochastic Galerkin method with a
PC ansatz yields a larger deterministic linear dynamical system, whose outputs
are approximations to the time-dependent coefficients. In the previous work [16],
the transfer function of the stochastic Galerkin system was examined compo-
nentwise to identify sparse approximations of the random QoI. We note that
stochastic collocation approaches are likewise popular in parametric UQ settings,
see [13], but analysis for collocation schemes is more difficult, so we restrict our
attention to Galerkin methods.

We investigate system norms of the stochastic Galerkin method as sensitivity
measures in the paper. Each partial variance can be written as a quadratic out-
put of the stochastic Galerkin system. The first step in our approach transforms
this system with a quadratic output into an equivalent linear dynamical system
with multiple (linear) outputs. The norm of the output of these linear dynamical
systems represents a single sensitivity coefficient for each random parameter. In
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particular, we investigate the Hankel norm and a Hardy norm of the systems in
our analysis. The resulting sensitivity measures quantify the impact that each
random parameter has on the random QoI, and upper bounds on this variabil-
ity are derived. Thus the sensitivity analysis allows for the so-called screening,
see [4], where random parameters with sufficiently low impact are detected and
remodelled as constants to simplify the stochastic problem.

A major challenge in the above approach for sensitivity analysis is that the
stochastic Galerkin dynamical system can be huge, and hence is computationally
onerous to simulate. Our contribution is application of model order reduction
(MOR) strategies to the high-dimensional stochastic Galerkin system, which re-
sults in a much smaller reduced-order model that is much easier to simulate.
General information on MOR can be found in [1, 22]; in [15], the stochastic
Galerkin method was reduced by a Krylov subspace method. In this paper, we
use the technique of balanced truncation, where a-priori error bounds are avail-
able for the MOR. We provide analysis that bounds the proximity of the full-order
model sensitivity measures and the reduced-order model sensitivity measures, so
that our MOR approach is accompanied by a certifiable error estimate.

2 Random linear dynamical systems

We define the investigated problem in this section.

2.1 Linear dynamical systems

Let a time-invariant linear dynamical system be given in the form

E(p)ẋ(t, p) = A(p)x(t, p) +B(p)u(t)

y(t, p) = C(p)x(t, p)
(1)

for t ≥ 0 with inputs u : [0,∞) → R

nin. The matrices A,E ∈ Rn×n, B ∈ Rn×nin,
C ∈ Rnout×n depend on parameters p ∈ Π ⊆ R

q. We assume that the mass
matrix E is non-singular for all p ∈ Π, which implies a system of ODEs. Thus
both the state variables x : [0,∞)× Π → R

n and the outputs y : [0,∞)× Π →
R

nout are also parameter-dependent. Without loss of generality, we restrict the
problem to a single output of the system (nout = 1). Initial values

x(0, p) = x0(p) (2)
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are predetermined by a function x0 : Π → R

n. The state variables solving the
initial value problem (1),(2) read as

x(t, p) = eE(p)−1A(p)t

(

x0(p) +

∫ t

0

e−E(p)−1A(p)τE(p)−1B(p)u(τ) dτ

)

(3)

for t ≥ 0 and each p ∈ Π including the matrix exponential. However, this formula
is not suitable for numerical evaluations.

Furthermore, we suppose that the system (1) is always asymptotically stable, i.e.,
all eigenvalues λ ∈ C satisfying the condition

det(λE(p)− A(p)) = 0

have a negative real part for each p ∈ Π. Often the asymptotic stability of a
model depends only on the topology of the underlying configuration and not
on the values of the physical parameters, while still requiring positivity of some
parameters. In [19, p. 124], the authors show a sufficient condition for linear
electric circuits based on the topology. In [9], the asymptotic stability of a class
of serial mass-spring-damper systems is proven.

2.2 Stochastic modelling

If the parameters are affected by uncertainties, then we use independent random
variables on a probability space to model the parameter variations. The random
variables are p : Ω → Π, ω 7→ p(ω) with an event space Ω. Let a joint probability
density function ρ : Π → R be given. If a measurable function f : Π → R

depends on the parameters, then its expected value reads as

E[f ] =

∫

Π

f(p) ρ(p) dp (4)

provided that the integral is finite. The Hilbert space

L2(Π) =
{

f : Π → R : f measurable and E[f 2] < ∞
}

(5)

is equipped with the inner product

〈f, g〉 =
∫

Π

f(p)g(p) ρ(p) dp for f, g ∈ L2(Π). (6)

The induced norm reads as ‖f‖L2(Π) =
√

〈f, f〉. We assume that the matrices of
the linear dynamical system (1) as well as the initial values (2) depend continu-
ously on the parameters. The state variables are given by the formula (3). If the
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parameter domain Π is compact, then the state variables x(t, p) are uniformly
bounded for all p and fixed time t. It follows that the state variables are located
in the Hilbert space (5) pointwise for each t. If the parameter domain Π is infi-
nite, then integrability conditions have to be satisfied to guarantee that the state
variables belong to (5) pointwise in time. The output inherits the L2(Π)-property
of the state variables if the matrix C(p) is uniformly bounded for all p ∈ Π.

Let a complete orthonormal system (Φi)i∈N ⊂ L2(Π) consisting of polynomials
be given, i.e.,

〈Φi,Φj〉 =
{

1 for i = j,
0 for i 6= j.

The theory of the generalised polynomial chaos (PC) implies a family of orthonor-
mal polynomials for each traditional random distribution, see [29]. The multivari-
ate polynomials are the products of univariate orthonormal polynomials. The to-
tal degree of a multivariate polynomial is the sum of the degrees in the univariate
polynomials. Let the polynomials be ordered such that degree(Φi) ≤ degree(Φi+1)
is satisfied. It follows that Φ1 is the unique constant polynomial.

Consequently, we expand the state variables as well as the output of the sys-
tem (1) into

x(t, p) =
∞
∑

i=1

vi(t)Φi(p) and y(t, p) =
∞
∑

i=1

wi(t)Φi(p) (7)

with coefficient functions vi : [0,∞) → R

n and wi : [0,∞) → R. The series
converge in the norm of the Hilbert space (5) and pointwise in time. The total
variance of the random QoI becomes

V (t) =

∞
∑

i=2

wi(t)
2 (8)

for each t ≥ 0.

2.3 Stochastic Galerkin method

In a numerical approximation, we include all polynomials up to a total degree d
described by the set of integers

Id = {i ∈ N : degree(Φi) ≤ d} . (9)

The cardinality is |Id| = (d+q)!
d!q!

, see [29, p. 65]. Hence the infinite summation

in (7) is restricted to

x(d)(t, p) =
∑

i∈Id

vi(t)Φi(p) and y(d)(t, p) =
∑

i∈Id

wi(t)Φi(p), (10)
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which represent truncated series. Inserting the approximations (10) into the
linear dynamical system (1) yields a residual. The Galerkin approach requires
the residual to be orthogonal to the space spanned by {Φi : i ∈ Id} with respect
to the inner product (6). We obtain the larger linear system of ODEs

Ê ˙̂v(t) = Âv̂(t) + B̂u(t)

ŵ(t) = Ĉv̂(t)
(11)

with state variables v̂ : [0,∞) → R

mn and the same inputs u as in (1). The
system produces m outputs ŵ with m = |Id|, which represent approximations of
the exact coefficient functions in (10). Let

S(p) = (Φi(p)Φj(p))i,j=1,...,m and s(p) = (Φi(p))i=1,...,m

be auxiliary arrays. The definition of the matrices Â, Ê ∈ Rmn×mn, B̂ ∈ Rmn×nin ,
Ĉ ∈ Rm×mn reads as

Â = E[S ⊗ A], B̂ = E[s⊗ B], Ĉ = E[S ⊗ C], Ê = E[S ⊗E] (12)

using Kronecker products, where the probabilistic integration (4) is applied com-
ponentwise. If the matrices A,B,C,E consist of polynomials in the random vari-
ables, then the matrices (12) can be calculated analytically for traditional prob-
ability distributions. This property is an advantage in comparison to stochastic
collocation techniques, where a quadrature error or sampling error emerges. More
details on the stochastic Galerkin method for linear dynamical systems can be
found in [15].

Initial values v̂(0) = v̂0 have to be determined from the initial values (2) of the
original system (1). If the initial values (2) are identical to zero, then the choice
v̂(0) = 0 is obvious.

The stochastic Galerkin system (11) may be unstable even if all original sys-
tems (1) are asymptotically stable, see [18]. However, this loss of stability is
rather seldom in practise. Thus we assume that the linear dynamical system (11)
is asymptotically stable.

3 Sensitivity analysis

We investigate the sensitivity of the random output from the linear dynamical
system (1) with respect to the individual random parameters. Local sensitiv-
ity measures are based on partial derivatives with respect to the parameters.
Alternatively, we are interested in global variance-based sensitivity measures.
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3.1 Partial variances and sensitivity indices

The Sobol indices provide a set of non-negative real numbers, which describe the
interaction of each subset of random variables, see [23, 24]. Thus the number of
Sobol indices is equal to the number of non-empty subsets, i.e., 2q−1. The Sobol
indices yield the total effect sensitivity coefficients, which represent a variance-
based sensitivity measure.

We consider an equivalent definition of the total effect sensitivity indices, which
applies the PC expansion of a random-dependent function, cf. [26]. The random
output of the system (1) exhibits the PC expansion (7). Let

Ij = {i ∈ N : Φi is non-constant in pj} (13)

be a set of integers for j = 1, . . . , q. Considering all polynomials up to a total
degree d, we obtain the intersection of (9) and (13)

Id
j = Ij ∩ Id (14)

for j = 1, . . . , q. The partial variance associated to the jth random variable
becomes

Vj(t) =
∑

i∈Ij

wi(t)
2 (15)

for j = 1, . . . , q and each t ≥ 0. It follows that 0 ≤ Vj(t) ≤ V (t) for all j. We
assume that the total variance (8) is positive for all t > 0. (It would be a rare
exception if the variance reduces exactly to zero at some positive time. In this
case, variations of the QoI vanish and a UQ becomes obsolete.) The total effect
sensitivity indices read as

ST
j (t) =

Vj(t)

V (t)
(16)

for j = 1, . . . , q. It holds that 0 ≤ ST
j ≤ 1 for all j and 1 ≤ ST

1 + · · · + ST
q ≤ q

pointwise in time. Often the sum of the sensitivity indices is close to one.

The stochastic Galerkin system (11) yields approximations of (16) by

ŜT
j (t) =

V̂j(t)

V̂ (t)
(17)

with
V̂j(t) =

∑

i∈Id
j

ŵi(t)
2 (18)

using the outputs ŵ1, . . . , ŵm for the approximation of partial variances and,
likewise, for the approximation V̂ of the total variance (8).
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In our context, the sensitivity indices (16) are time-dependent functions, which
makes a sensitivity analysis more complicated. The choice of the input signals
and the initial values determine these transient functions. Alternatively, we want
to obtain a single number as sensitivity measure for each random variable, i.e., a
finite set of q non-negative coefficients.

3.2 Stochastic Galerkin system with quadratic outputs

Let ŵ(j) be the vector-valued function consisting of the components of ŵ in Id
j

from (14). It follows that

V̂j(t) = ŵ(j)(t)⊤ŵ(j)(t) (19)

for j = 1, . . . , q due to (18). We arrange an own output matrix for this partial
variance now. A square diagonal matrix is defined via

Dj = diag
(

d
(j)
1 , . . . , d(j)m

)

with d
(j)
ℓ =

{

1 if ℓ ∈ Id
j

0 if ℓ /∈ Id
j

for each j = 1, . . . , q. The matrix-matrix product Ĉ ′
j = DjĈ replaces rows of Ĉ

by zeros. The rank of Ĉ ′
j is k = |Id

j |, since the rank of Ĉ ism. We remove the rows

identical to zero in Ĉ ′
j to obtain a condensed matrix Ĉj ∈ Rk×n. Observing (19),

it follows that

V̂j(t) = ŵ(j)(t)⊤ŵ(j)(t) = v̂(t)⊤Ĉ ′⊤

j Ĉ ′

j v̂(t) = v̂(t)⊤Ĉ⊤

j Ĉj v̂(t). (20)

The partial variance of the jth random variable can be obtained from a stochastic
Galerkin system

Ê ˙̂v(t) = Âv̂(t) + B̂u(t)

V̂j(t) = v̂(t)⊤Ĉ⊤

j Ĉj v̂(t),
(21)

where a single quadratic output is defined by the symmetric positive semi-definite
matrix

Mj = Ĉ⊤

j Ĉj (22)

for each j = 1, . . . , q.

Likewise, the total variance is given as the single quadratic output

V̂ (t) = v̂(t)⊤Ĉ⊤Ĉv̂(t)

from the differential equations in the stochastic Galerkin system (11).
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In [2, 3], the authors propose an approach for a general linear dynamical system
with a quadratic output specified by a symmetric positive semi-definite matrix.
A symmetric decomposition of this matrix is required like the (pivoted) Cholesky
factorisation, for example. In our application, we already possess such a decom-
position via (22). The alternative stochastic Galerkin systems

Ê ˙̂v(t) = Âv̂(t) + B̂u(t)

ẑj(t) = Ĉj v̂(t)
(23)

are arranged for j = 1, . . . , q with multiple outputs (nout = k = |Id
j |). It holds

that V̂j = ẑ⊤j ẑj for the quadratic output of (21) due to (20).

3.3 System norms

Given a vector-valued function x ∈ L2([0,∞))n with n components, its signal
norm reads as

‖x‖L2([0,∞)) =

√

∫

∞

0

x(t)⊤x(t) dt .

Several norms are defined for a general linear dynamical system. Let Σ̂ and
Σ̂1, . . . , Σ̂q represent the stochastic Galerkin systems (11) and (23), respectively.
The Hankel norm denotes a bound on the signal norm of future outputs generated
by inputs in the past (input is zero for t ≥ 0). This norm exhibits the formula,
cf. [1, p. 135],

‖Σ̂‖H = sup

{ ‖ŵ‖L2([0,∞))

‖u‖L2((−∞,0])

: u ∈ L2((−∞, 0])nin, u 6= 0

}

. (24)

In addition, the Hankel norm is equal to the maximum Hankel singular value
of the system, which will be specified in Section 4.1. The system norm directly
describes the mapping from inputs to outputs provided that the initial values are
zero, i.e.,

‖Σ̂‖L2 = sup

{‖ŵ‖L2([0,∞))

‖u‖L2([0,∞))

: u ∈ L2([0,∞))nin, u 6= 0, v̂(0) = 0

}

. (25)

Let Ĝ : C\Ξ → C

m×nin be the transfer function of the stochastic Galerkin sys-
tem (11) in the frequency domain. Therein, Ξ ⊂ C is a finite set of poles. The
magnitude of a transfer function can be characterised by the Hardy norms ‖ · ‖H2

and ‖ · ‖H∞
. The H∞-norm of a transfer function coincides with its L∞-norm,

which is a frequency domain Lebesgue norm, provided that the system is asymp-
totically stable. It follows that, see [1, p. 149],

‖Ĝ‖H∞
= sup

ω∈R

σmax(Ĝ(iω)), (26)
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where σmax is the maximum singular value of the matrix-valued transfer function
and i =

√
−1. The norms satisfy the relations

‖Σ̂‖H ≤ ‖Σ̂‖L2 = ‖Ĝ‖H∞
, (27)

which are valid for any asymptotically stable system of ODEs.

3.4 Sensitivity measures

We use the norms of the stochastic Galerkin systems (23) from Section 3.3 to
indicate the sensitivity of the random output in the original system (1). In
contrast, theH2-norms andH∞-norms of the separate components of the transfer
function Ĝ were analysed to identify a sparse representation of the random output
in [16].

The following two definitions introduce the key data in our investigations.

Definition 1 The sensitivity coefficients η̂j are the real values

η̂j = ‖Σ̂j‖H (28)

for j = 1, . . . , q using the Hankel norms (24) of the stochastic Galerkin sys-
tems (23).

Definition 2 The sensitivity coefficients θ̂j are the real values

θ̂j = ‖Σ̂j‖L2 = ‖Ĝj‖H∞
(29)

for j = 1, . . . , q using the system norms (25) of the stochastic Galerkin sys-
tems (23).

The general relation (27) shows that

η̂j ≤ θ̂j for each j = 1, . . . , q. (30)

The sensitivity measure (29) is more important than (28), because (28) does not
directly relate to the input-output mapping for t ≥ 0. However, the computation
of an H∞-norm is more costly than the calculation of a Hankel norm. We obtain
an inequality between the system norms of the Galerkin system (11) and the
modified Galerkin systems (23).
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Lemma 1 Let Σ̂ and Σ̂1, . . . , Σ̂q represent the linear dynamical systems (11)

and (23), respectively. It holds that ‖Σ̂j‖L2 ≤ ‖Σ̂‖L2 for j = 1, . . . , q in the
system norm (25).

Proof:

The outputs of the system (11) and the systems (23) are ŵ and ẑ1, . . . , ẑq, re-
spectively. We obtain the estimate

‖ŵ‖2L2([0,∞)) =

∫

∞

0

∑

i∈Id

ŵi(t)
2 dt ≥

∫

∞

0

∑

i∈Id
j

ŵi(t)
2 dt =

∫

∞

0

ẑj(t)
⊤ẑj(t) dt

= ‖ẑj‖2L2([0,∞))

for j = 1, . . . , q. It follows that ‖ẑj‖L2([0,∞)) ≤ ‖ŵ‖L2([0,∞)) if the same input is
supplied to all systems. Observing (25), we arrange the supremum and achieve
the statement. �

We show a bound on the norm of partial variances in the time domain, which
yields an interpretation of the sensitivity measure in Definition 2.

Lemma 2 The stochastic Galerkin systems (23) with initial values zero yield
approximations of the partial variances, which satisfy the bounds

‖V̂j‖L1([0,∞)) ≤ θ̂2j ‖u‖2L2([0,∞))

for j = 1, . . . , q including the sensitivity coefficients (29).

Proof:

We obtain

‖V̂j‖L1[0,∞) =

∫

∞

0

V̂j(t) dt =

∫

∞

0

ẑj(t)
⊤ẑj(t) dt = ‖ẑj‖2L2([0,∞))

≤ ‖Σ̂j‖2L2‖u‖2L2([0,∞)) = θ̂2j‖u‖2L2([0,∞))

due to (25) and (29). �

The definition of the total effect sensitivity indices (16) motivates to establish
relative sensitivity measures

η̂relj =
‖Σ̂j‖H
‖Σ̂‖H

as well as θ̂relj =
‖Σ̂j‖L2

‖Σ̂‖L2
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for j = 1, . . . , q. Lemma 1 guarantees θ̂relj ≤ 1, whereas η̂relj may be larger than
one. However, since the denominators are identical for j = 1, . . . , q, we can
investigate the normalised quantities

η̂∗j =
η̂j

η̂1 + · · ·+ η̂q
, (31)

θ̂∗j =
θ̂j

θ̂1 + · · ·+ θ̂q
(32)

as well. Now it holds that 0 ≤ η̂∗j , θ̂
∗
j ≤ 1 for all j = 1, . . . , q.

3.5 Error bound in screening

The sensitivity measures identify the random variables with high impact and low
impact. Random variables with low impact can be remodelled by constants to
decrease the dimensionality of the random parameter space. This strategy is
called screening, see [4], or freezing of unessential random variables, see [23]. We
derive a bound on the error of this screening.

Theorem 1 Let the random variables be partitioned into p = (a, b) with a ∈
Πa ⊆ Rq′, b ∈ Πb ⊆ Rq−q′. Let ȳ(t, p) = y(t, a, b̄) with a constant b̄ ∈ Πb. For
each δ ∈ (0, 1), there is a set Bδ ⊂ Πb of probability larger 1− δ such that

‖y − ȳ‖2
L2(Π×[0,∞)) <

(

1 + 1
δ

)

q
∑

j=q′+1

‖Vj‖L1([0,∞))

for all b̄ ∈ Bδ in the norm of the product space Π× [0,∞).

Proof:

The analysis in [23] shows that

∫

Π

(

y(t, a, b)− y(t, a, b̄)
)2

ρ(p) dp <
(

1 + 1
δ

)

q
∑

j=q′+1

Vj(t)

pointwise for each t ≥ 0. Time integration in [0,∞) yields

‖y − ȳ‖2
L2(Π×[0,∞)) =

∫

∞

0

∫

Π

(y(t, p)− ȳ(t, p))2 ρ(p) dp dt

<
(

1 + 1
δ

)

∫

∞

0

q
∑

j=q′+1

Vj(t) dt =
(

1 + 1
δ

)

q
∑

j=q′+1

‖Vj‖L1([0,∞)),
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because the partial variances are non-negative. �

The stochastic Galerkin systems generate approximations of the partial vari-
ances (15). Assuming that V̂j − Vj is sufficiently small for j = q′ + 1, . . . , q,
Lemma 2 and Theorem 1 imply the approximate bound

‖y − ȳ‖
L2(Π×[0,∞)) <

√

√

√

√

(

1 + 1
δ

)

q
∑

j=q′+1

θ̂2j ‖u‖L2([0,∞)).

This inequality shows that the random variables b can be replaced by constants
if the associated sensitivity measures (29) are sufficiently small.

4 Model order reduction

We examine the potential for a cheap computation of the sensitivity measures in
Definition 1 and Definition 2 using methods of MOR.

4.1 Balanced truncation

We apply an MOR to the stochastic Galerkin system (11) using the technique
of balanced truncation, see [1]. This MOR method is applicable to all asymp-
totically stable linear systems of ODEs. The controllability Gramian P and the
observability Gramian Q are given by the solutions of the Lyapunov equations

ÂP Ê⊤ + ÊP Â⊤ + B̂B̂⊤ = 0, (33)

Â⊤QÊ + Ê⊤QÂ + Ĉ⊤Ĉ = 0. (34)

We require symmetric decompositions P = LPLP
⊤ and Q = LQLQ

⊤. For exam-
ple, the Cholesky factorisation can be directly computed without solving for P
or Q first, see [7]. The singular value decomposition (SVD)

UlSUr
⊤ = LQ

⊤ÊLP (35)

is calculated with a diagonal matrix S = diag(σ1, . . . , σmn) and orthogonal ma-
trices Ul, Ur ∈ Rmn×mn. The diagonal matrix includes the Hankel singular values
in descending order (σℓ ≥ σℓ+1).

Any reduced dimension r < mn can be chosen. Let S̃ ∈ Rr×r be the diagonal
matrix including the r largest singular values. Let Ũl, Ũr ∈ Rmn×r be the matrices
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consisting of first r columns in Ul, Ur. We obtain projection matrices Tl, Tr ∈
R

mn×r of full (column) rank by

Tl = LQŨlS̃
−

1

2 and Tr = LP ŨrS̃
−

1

2 .

Alternatively, just the r dominant singular values and their singular vectors have
to be computed to obtain these projection matrices.

The reduced matrices read as

Ã = T⊤

l ÂTr, B̃ = T⊤

l B̂, C̃ = ĈTr, Ẽ = T⊤

l ÊTr. (36)

The matrices produce a linear dynamical system of the same form but smaller
dimension r. The reduced mass matrix Ẽ is non-singular. Let w̃ be its multiple
output, where the number of outputs is still m.

We use the same projection matrices for reductions of the linear dynamical sys-
tems (23). Just the matrices

C̃j = ĈjTr

are changed for j = 1, . . . , q. Moreover, the balanced truncation technique guar-
antees that each reduced-order model (ROM) inherits the asymptotic stability of
the full-order model (FOM).

Direct methods of linear algebra yield the numerical solution of the Lyapunov
equations (33),(34), see [7]. Alternatively, approximate methods or iteration
schemes are available like Krylov subspace techniques and the alternating direc-
tion implicit (ADI) method, see [6]. Such methods produce low-rank approxi-
mations of the Cholesky factors. However, the efficiency is often critical if the
matrices B̂ or Ĉ exhibit a high rank. The number of inputs typically satisfies
nin < n ≪ mn and (33) can be solved efficiently. In contrast, it holds that
rank(Ĉ) = m and thus the rank is relatively large for moderate n, where the
approximate solution of (34) becomes critical.

4.2 Error bound for sensitivity measures

We show an a-priori error bound on our sensitivity measures from Definition 1
and Definition 2.

Theorem 2 Let Σ̂j be the linear stochastic Galerkin system (23) and Σ̃j be its
ROM of dimension r obtained by balanced truncation of the complete stochastic
Galerkin system (11). The error of the sensitivity measures (28) and (29) satisfy
the bound

max
{

∣

∣η̂j − η̃j
∣

∣,
∣

∣θ̂j − θ̃j
∣

∣

}

≤ 2
mn
∑

k=r+1

σk (37)
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uniformly for all j = 1, . . . , q. The Hankel singular values σ1 ≥ σ2 ≥ · · · ≥ σmn

belong to the stochastic Galerkin system (11).

Proof:

It holds that η̂j = ‖Σ̂j‖H, θ̂j = ‖Σ̂j‖L2 and η̃j = ‖Σ̃j‖H, θ̃j = ‖Σ̃j‖L2 for the
sensitivity measures from FOM and ROM, respectively. The reverse triangle
inequality of the norms yields

∣

∣η̂j − η̃j
∣

∣ =
∣

∣

∣
‖Σ̂j‖H − ‖Σ̃j‖H

∣

∣

∣
≤

∥

∥

∥
Σ̂j − Σ̃j

∥

∥

∥

H
,

∣

∣θ̂j − θ̃j
∣

∣ =
∣

∣

∣
‖Σ̂j‖L2 − ‖Σ̃j‖L2

∣

∣

∣
≤

∥

∥

∥
Σ̂j − Σ̃j

∥

∥

∥

L2

.

Let Ĝ and G̃ denote the transfer functions of FOM and ROM, respectively.
Lemma 1 together with the general relation (27) show that

∥

∥

∥
Σ̂j − Σ̃j

∥

∥

∥

H
≤

∥

∥

∥
Σ̂j − Σ̃j

∥

∥

∥

L2

≤
∥

∥

∥
Σ̂− Σ̃

∥

∥

∥

L2

=
∥

∥

∥
Ĝ− G̃

∥

∥

∥

H∞

uniformly for j = 1, . . . , q, because the involved systems are asymptotically stable.
Using balanced truncation, the error estimate

∥

∥

∥
Ĝ− G̃

∥

∥

∥

H∞

≤ 2

mn
∑

k=r+1

σk

holds true in the H∞-norm (26), see [1, p. 212]. �

Theorem 2 demonstrates that the approximation of the sensitivity measures in-
herits the error bound of the balanced truncation MOR.

5 Illustrative example

We apply the sensitivity analysis from Section 3 to a test example now. We
computed on a FUJITSU Esprimo P920 Intel(R) Core(TM) i5-4570 CPU with
3.20 GHz (4 cores) and operation system Microsoft Windows 7. The software
package MATLAB [12] (version R2018a) was used for all computations.

5.1 Mass-spring-damper system

A general linear mass-spring-damper configuration is described by a second-order
system of ODEs

Mz̈(t) +Dż(t) +Kz(t) = f(t) (38)
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for the positions z : [0,∞) → R

ℓ with mass matrix M , damping matrix D,
stiffness matrix K and an excitation f : [0,∞) → R

ℓ.

We examine a mass-spring-damper system introduced in [11], which is depicted
in Figure 1. This mechanical configuration incorporates q = 14 positive physical
parameters: 4 masses, 6 spring constants and 4 damping constants. The single
input is an excitation at the bottom spring, whereas the single output is the
position of the top mass. The mathematical modelling yields the symmetric
matrices M = diag(m1, m2, m3, m4),

D =









d1 −d1 0 0
−d1 d1 + d2 −d2 0
0 −d2 d2 + d3 −d3
0 0 −d3 d3 + d4









,

K =









k1 + k2 + k5 −k2 0 −k5
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 −k4

−k5 0 −k4 k4 + k5 + k6









together with the excitation f(t) = (k1u(t), 0, 0, 0)
⊤. Obviously, if all parameters

are positive, then M is positive definite and D as well as K are positive semi-
definite. A symbolic Cholesky decomposition is possible for both D and K. Thus
these matrices are also positive definite. It follows that the linear dynamical
system is always asymptotically stable, see [10, p. 103].

The system (38) is transformed into an equivalent first-order system (1) with
dimension n = 8. Figure 2 shows the Bode plot of the linear dynamical system
in the case of a constant choice of the parameters from [11], i.e., m1 = 1, m2 = 5,
m3 = 25, m4 = 125, k1 = 27, k2 = 9, k3 = 3, k4 = 1, k5 = 2, k6 = 3, d1 = 0.1,
d2 = 0.4, d3 = 1.6, d4 = 1. This test example was also investigated in [16, 17].

5.2 Stochastic modelling and Galerkin method

We replace the parameters by independent random variables with uniform prob-
ability distributions, which vary 10% around the used constant choice of the
parameters. Consequently, the PC expansions (7) include the (multivariate) Leg-
endre polynomials. We arrange finite sums (10) with all polynomials up to total
degree d = 3. The stochastic Galerkin system (11) exhibits the state space
dimension mn = 5440 and the number of outputs becomes m = 680. The ma-
trices of the Galerkin system can be computed analytically, because the entries
of matrices in the underlying system (38) are linear functions of the physical pa-
rameters. Hence we calculate these matrices exactly except for round-off errors.



R. Pulch, A. Narayan: Sensitivity analysis of random dynamical systems 17

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
�������������������� y

u

Figure 1: Mass-spring-damper configuration.
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Figure 2: Bode plot of mass-spring-damper system for deterministic parameters.
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Figure 3: Hankel singular values of the stochastic Galerkin system (11) for the
mass-spring-damper example.

Furthermore, the stochastic Galerkin system is asymptotically stable, because
the maximum real part of the associated eigenvalues is computed to −0.0048 and
thus negative.

5.3 Numerical results for sensitivity measures

We computed all Hankel norms by direct methods of linear algebra. In contrast,
the H∞-norm could only be calculated by approximation. We did not determine
the H∞-norm of the system (11), because the computational effort would be too
large due to the high dimensionality.

We generate ROMs of the FOM (11) by the balanced truncation technique from
Section 4.1. A direct method of linear algebra yields the Cholesky factors of
the solutions satisfying the Lyapunov equations (33),(34). More details on the
numerical method are given in the following subsection. Figure 3 illustrates the
dominant Hankel singular values in the decomposition (35). The largest Hankel
singular value coincides with the Hankel norm ‖Σ̂‖H = 4.84.

Now we analyse the sensitivities. On the one hand, the FOMs (23) yield the
sensitivity measures (28). On the other hand, the ROMs of dimension r = 25
produce approximations of the sensitivity coefficients (28) as well as (29). Figure 4
depicts the results, which demonstrate a good agreement between the sensitivity
measures from FOM and ROM. Concerning the inequality (30), the H∞-norms
are just slightly larger than the Hankel norms. Furthermore, the system norm of
the ROM for the stochastic Galerkin method (11) is ‖Σ̃‖L2 = ‖G̃‖H∞

= 7.75.

The sensitivities indicate the impact of the random parameters on the random
QoI. The normalised sensitivity measures (32) are illustrated by Figure 5 (left).
We observe that three parameters are dominant, which are the top mass, the
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Figure 4: Sensitivity coefficients (28) from Hankel norms (left) and sensitivity
coefficients (29) from Hardy norms (right) with respect to the random parameters
(1-4: masses, 5-10: springs, 11-14: dampers).
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Figure 5: Normalised sensitivity measures (32) for the random parameters (left)
and merged normalised sensitivity measures for the three groups of physical pa-
rameters (right).

spring above the top mass and the spring connecting bottom mass and top mass,
cf. Figure 1. In contrast, five parameters exhibit a contribution less than 1%.
Thus these parameters can be remodelled by constants to reduce the dimension of
the random space. Furthermore, Figure 5 (right) shows the sum of the normalised
sensitivity measures (32) for the three different types of parameters. We recognise
that the dampers feature a relatively low impact on the random QoI.
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5.4 Comparison of MOR methods

We compare the error between FOM and ROM for the computed sensitivity
measures (28). The error indicator is defined as

max
j=1,...,q

|η̂j − η̃j | . (39)

We do not consider the errors of the sensitivity measures (29), because the com-
putation work for the system norms of the FOMs (23) is too high to be performed
on our computer.

The following three variants of MOR methods are applied in MATLAB:

i) Balanced truncation with direct solution of the Lyapunov equations using
the function lyapchol of the control system toolbox. In the direct method,
we use the matrices Â′ = Ê−1Â, B̂′ = Ê−1B̂ and Ê ′ = I (identity) to
simplify the Lyapunov equations, because the numerical solution becomes
significantly faster. These matrices can be computed with negligible effort
by a sparse LU -decomposition of Ê.

ii) Balanced truncation with iterative solution of the Lyapunov equations by
the ADI method using the function lyapchol of the sss toolbox, see [5].
The iteration performs until a default tolerance is achieved, which yields
approximate factors of rank 301.

iii) One-sided Arnoldi method, see [1, p. 334], with a single real expansion
point s0 = 0. The projection matrix Tr is determined by the matrices
Â, B̂, Ê of (11) and thus this approach is independent of the definition of
outputs. It holds that Tl = Tr used in (36).

In each technique, we calculate projection matrices Tl, Tr of rank rmax = 100.
We extract the leading columns of the projection matrices to obtain ROMs of
dimensions r = 5, 10, 15, . . . , 100. Furthermore, the method (i) yields all Hankel
singular values in the decomposition (35).

Figure 6 (left) shows the maximum error (39) for the techniques (i) and (ii).
Therein, the error bound (37) obtained by Theorem 2 is also depicted. In the
direct method (i), the true error is much below the predicted error bound. The
approximate method (ii) produces significantly higher errors in comparison to
the direct method, which indicates a critical behaviour due to the large number
of outputs in the system (11). Nevertheless, the accuracy becomes better for
increasing dimensions of the ROMs. Figure 6 (right) displays the maximum
error (39) for the technique (iii). This error is larger for reduced dimensions
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Figure 6: Errors (39) for different reduced dimensions in balanced truncation
techniques (left) and Arnoldi method (right).

Table 1: Computation times in seconds within balanced truncation MOR.

direct method ADI method
Lyapunov equation (33) 467 –
Lyapunov equation (34) 695 –
both Lyapunov equations 1162 26
singular value decomposition (35) 19 0.3

r ≥ 50 in comparison to (i) and (ii). Furthermore, the accuracy does not improve
any more for dimensions r ≥ 100 in the Arnoldi method. This is a well-known
phenomenon due to the accumulation of round-off errors in the orthogonalisation
procedure. Moreover, there is no prior or posterior error bound for the Arnoldi
method.

Table 1 provides the computation times, which represent elapsed real times in
seconds, of the balanced truncation techniques. Only the rmax dominant singular
values and their singular vectors are computed in the SVD (35) now. The Arnoldi
method requires a computation time of only 1.3 seconds for the projection matrix
of rank rmax. Furthermore, the computation times for a single Hankel norm and
a single system norm of an ROM are illustrated by Figure 7. In this case, we
use the direct method (i) to arrange ROMs up to dimension r = 200. Yet the
computational effort depends mainly on the reduced dimension and not on the
used MOR method. The work has to be done for each random variable, i.e.,
q times. We recognise that this computation time is small in comparison to the
construction of the ROMs by balanced truncation techniques.

The comparison demonstrates that there is a trade-off between accuracy and
computational effort in the MOR methods. The balanced truncation using a
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Figure 7: Computation times in seconds for a Hankel norm and a H∞-norm
depending on the dimension of a linear dynamical system with dense matrices.

direct solver is expensive, whereas an a-priori error bound is guaranteed. The
direct method is still much cheaper than a computation of the system norms for
the FOMs (23).

5.5 Transient simulation

Finally, we perform a transient simulation of the Galerkin system (11) for t ∈
[0, 1000] with initial values zero. The chirp signal

u(t) = sin
(

t2

10

)

is supplied, which runs through a continuum of frequencies. We use the trape-
zoidal rule in the time integration. Figure 8 depicts the approximations of the
expected value and the standard deviation for the random QoI. We compute the
approximations (17) of the total effect sensitivity indices (16) for each random
variable. Concerning the discrete time points, the maximum values are illustrated
by Figure 9. The relative positions of the sensitivity indices are similar to the
sensitivity measures (28),(29) shown in Figure 4.
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Figure 8: Expected value (left) and standard deviation (right) of random output
in transient simulation of mass-spring-damper system.
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Figure 9: Maximum in time of total effect sensitivity indices (17) with respect to
the random parameters (1-4: masses, 5-10: springs, 11-14: dampers).
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