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Abstract

We look into the minimax results for the anisotropic two-dimensional functional deconvo-

lution model with the two-parameter fractional Gaussian noise. We derive the lower bounds

for the Lp-risk, 1 ≤ p < ∞, and taking advantage of the Riesz poly-potential, we apply a

wavelet-vaguelette expansion to de-correlate the anisotropic fractional Gaussian noise. We

construct an adaptive wavelet hard-thresholding estimator that attains asymptotically quasi-

optimal convergence rates in a wide range of Besov balls. Such convergence rates depend on

a delicate balance between the parameters of the Besov balls, the degree of ill-posedness of

the convolution operator and the parameters of the fractional Gaussian noise. A limited sim-

ulations study confirms theoretical claims of the paper. The proposed approach is extended

to the general r-dimensional case, with r > 2, and the corresponding convergence rates do

not suffer from the curse of dimensionality.
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1 Introduction.

Consider the problem of estimating a periodic two-dimensional function, f(·, ·) ∈ L2(U), based

on noisy convolutions that are described by the equations

dY (t, x) = q(t, x)dtdx+ εαdBα(t, x), q(t, x) =

∫ 1

0
f(s, x)g(t− s, x)ds. (1)

Here, U = [0, 1]2, g(·, ·) is the convolution kernel and it is assumed to be known, Bα(t, x) is

an anisotropic two-dimensional fractional Brownian sheet (fBs), α = (α1 + α2)/2, and αi =

2 − 2Hi ∈ (0, 1], i = 1, 2, are the parameters of the long-memory in the direction of t and x,

respectively. A two-dimensional fractional Brownian sheet is defined by the formula

Bα(t, x) =
1

CH

∫ t

0

∫ x

0
Q(s, y)dW (s, y), (2)

where W = {W (t, x), (t, x) ∈ U} is a two-dimensional standard Brownian sheet, CH is some

explicit constant and

Q(s, y) = [(t− s)+]H1−1/2 [(x− y)+]H2−1/2 , (3)

with Y+ = max(0, Y ). In addition, the two-parameter fBs is characterized by a covariance

function of the form

Cov (Bα(t1, s1), Bα(t2, s2)) = c
[
|t1|2H1 + |t2|2H1 − |t1 − t2|2H1

] [
|s1|2H2 + |s2|2H2 − |s1 − s2|2H2

]
,

(4)

for some c ∈ R, (ti, si) ∈ U , i = 1, 2, where Hi = 1− αi
2 are the Hurst parameters in the direction

of t and s, respectively (see Kamont (1996)).

The discrete, and the more realistic, version of model (1) is given by

Y (ti, xl) = q(ti, xl) + σξil, (i, l) = 1, 2, · · · , N, (5)
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where ti = i
N , xl = l

N , σ is a positive variance constant, and ξil are zero-mean second-order

stationary Gaussian random variables satisfying the auto-covariance structure

γ(h1, 0) � h−α1
1 , γ(0, h2) � h−α2

2 and γ(h1, h2) � h−α1
1 h−α2

2 . (6)

Assumption A.1. The error structure {ξil : i, l ∈ Z} in model (5) is a zero-mean second-order

stationary process satisfying

XN
D−→ Bα, (7)

where

XN (t, x) =
1

N2−α1/2−α2/2

dNte∑
i=1

dNxe∑
l=1

ξil, (t, x) ∈ U2, (8)

and Bα is a two-parameter fractional Brownian sheet.

Assumption A.1 is valid under auto-covariance structure (6) and it appeared in Adu and

Richardson (2018). It guarantees that, with the calibration εα1+α2 � nα1/2+α2/2, models (1) and

(5) are asymptotically equivalent. Therefore, for sufficiently large sample size n = N2, model

(1) can be used to approximate model (5).

Deconvolution model has been the subject of a great deal of papers since late 1980s, but

the most significant contribution was that of Donoho (1995) who was the first to devise a wavelet

solution to the problem. Other attempts include, Abramovich and Silverman (1998), Walter and

Shen (1999), Johnstone et al. (2004), Donoho and Raimondo (2004), among others. In the case

of functional deconvolution model with f(t, x) ≡ f(t), Pensky and sapatinas (2009, 2010, 2011)

pioneered into the formulation and further development of the problem.

Functional deconvolution problem of type (1) with α1 = α2 = 1 corresponds to the white

noise case and it was investigated under the L2-risk in Benhaddou et al. (2013), and under Lp-

risk, 1 ≤ p < ∞, in Benhaddou (2017), where they constructed an adaptive hard-thresholding

wavelet estimator, and showed that it is asymptotically quasi-optimal within a logarithmic

factor of ε over a wide range of Besov balls of mixed regularity. This model is motivated by

experiments in which one needs to recover a two-dimensional function using observations of its

convolutions along profiles x = xl. This situation occurs, for example, in seismic inversions (see
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Robinson (1999)). In these articles, it is assumed that the error terms are white noise processes

or i.i.d noise. However, empirical evidence has shown that, even at large lags, the correlation

structure in the errors takes the power-like form (6). This phenomenon is referred to as long-

memory (LM) or long-range dependence (LRD). The presence of long memory in oceanic seismic

data was pointed out in Wood et al. (2014) for instance, and it may be due for example to sea

floor temperature variations.

Long-memory has been investigated quite considerably in the standard deconvolution

model. One can list; Wang (1996, 1997), Wishart (2013), Benhaddou et al. (2014) and Kulik et

al. (2015). In a few other relevant contexts, LM was also investigated in density deconvolution in

Comte et al. (2008), and in the Laplace deconvolution in Benhaddou (2018) where the unknown

response function f(·) is non-periodic and defined on the entire positive real half-line.

The objective of the paper is to extend the work of Benhaddou et al. (2013) to the

case when the noise is an anisotropic multi-parameter fractional Brownian sheet. Following

a standard procedure, we derive minimax lower bounds for the Lp-risk, with 1 ≤ p <∞, when

f(t, x) belongs to an anisotropic Besov ball and the blurring function g(t, x) is regular smooth.

Taking advantage of the Riesz poly-potential operator, and inspired by the work of Wang (1996,

1997), we apply the wavelet-vaguelette expansion (WVD) to de-correlate the anisotropic fBs

in two directions. In addition, we take advantage of the flexibility of the Meyer wavelet basis

in the Fourier domain to construct a wavelet hard-thresholding estimator that is adaptive and

asymptotically quasi-optimal within a logarithmic factor of ε over a large array of Besov balls.

Furthermore, the proposed estimator attains convergence rates that depend on a delicate balance

between the parameters of the Besov ball, the degree of ill-posedness of the convolution, and

the parameters α1 and α2 associated with the fBs. Similar to the white noise case studied in

Benhaddou et al. (2013), the proposed approach is easily extended to recovering an r-dimensional

function, r > 2, and the corresponding convergence rates turn out to be dimension-free. Finally,

a simulation study is carried out to further confirm the results of our theoretical findings.

The rest of the paper is organized as follows. Section 2 introduces some notation as well as

the estimation algorithm. Section 3 describes the derivation of the lower bounds for the Lp-risk

4



of estimators of f as well as the upper bounds and establishes the asymptotic optimality of the

estimator. Section 4 presents a limited simulations study to complement the theoretical results

from Section 3. Section 5 extends the results in Sections 2 and 3 to the general r-dimensional

case. Finally, Section 6 contains the proofs of the theoretical results.

2 Estimation Algorithm.

In what follows, denote the complex conjugate of a by ā. Let Ỹ (m1,m2), B̃α(m1,m2), g̃(m1,m2)

and f̃(m1,m2) be the two-dimensional Fourier coefficients of functions dY (t, x), dBα(t, x),

g(t, x), and f(t, x), respectively.

Consider a bandlimited wavelet basis ψj,k(y) (e.g., Meyer-type) on [0, 1], and form the product

wavelet basis

Ψω(t, x) = ψj1,k1(t)ψj2,k2(x), (t, x) ∈ U, (9)

where ω ∈ Ω, and

Ω =
{
ω = (j1, k1; j2, k2) : ji = m0 − 1, · · · ,∞; ki = 0, 1, · · · , 2ji − 1, i = 1, 2

}
. (10)

Let m0 be the lowest resolution level for the Meyer basis and denote the scaling function for

the wavelet by ψm0−1,ki , i = 1, 2. Since the functions (9) form an orthonormal basis of the

L2(U)-space, the function f(t, x) can be expanded over these bases with coefficients βω into a

wavelet series

f(t, x) =
∑
ω∈Ω

βωΨω(t, x), (11)

where βω =
∫ 1

0

∫ 1
0 f(t, x)Ψω(t, x)dtdx. Denote the two-dimensional Fourier transform of Ψω(t, x)

by Ψ̃ω(m1,m2) = ψ̃j1,k1(m1)ψ̃j2,k2(m2). It is well-known (see, e.g, Johnstone et al (2004), section

3.1) that under the Fourier domain and for any ji ≥ m0, i = 1, 2, one has

Wji =
{
mi : ψ̃ji,ki(mi) 6= 0

}
⊆ 2π/3

[
−2ji+2,−2ji

]
∪
[
2ji , 2ji+2

]
. (12)
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Apply the two-dimensional Fourier transform to equation (1) to obtain

Ỹ (m1,m2) = f̃(m1,m2)g̃(m1,m2) + εαB̃α(m1,m2). (13)

Now, applying Plancherel formula in both directions, the wavelet coefficients βω in (11) can be

rewritten as

βω =
∑

m1∈Wj1

∑
m2∈Wj2

ψ̃j1,k1(m1)ψ̃j2,k2(m2)f̃(m1,m2). (14)

Therefore, an unbiased estimator for βω is given by

β̃ω =
∑

m1∈Wj1

∑
m2∈Wj2

ψ̃j1,k1(m1)ψ̃j2,k2(m2)
Ỹ (m1,m2)

g̃(m1,m2)
. (15)

Finally, consider the hard thresholding estimator for f(t, x)

f̂ε(t, x) =
∑

ω∈Ω(J1,J2)

β̃ωI
(
|β̃ω| > λαj;ε

)
Ψω(t, x), (16)

where

Ω(J1, J2) =
{
ω = (j1, k1; j2, k2) : ji = m0 − 1, · · · , Ji; ki = 0, 1, · · · , 2ji − 1, i = 1, 2

}
, (17)

and the quantities J1, J2 and λαj;ε are to be specified.

Assumption A.2. In the Fourier domain, the convolution kernel g(t, x), for some positive

constants ν, and C1 and C2, independent of m1 and m2, is such that

C1|m1|−2ν ≤ |g̃(m1,m2)|2 ≤ C2|m1|−2ν . (18)

Let us now evaluate the variance of (15).

Lemma 1 Let β̃ω be defined in (15). Then, under the condition (18), for 1 ≤ p <∞, one has

E
∣∣∣β̃ω − βω∣∣∣2p ≤ K1ε

2pα2j1p(2ν+α1−1)+j2p(α2−1). (19)
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In addition,

E
∣∣∣β̃ω − βω∣∣∣p ≤ K2ε

pα2j1
p
2

(2ν+α1−1)+j2
p
2

(α2−1). (20)

where K1 and K2 are some positive constants independent of ε.

According to Lemma 1, choose the thresholds λαj;ε of the form

λαj;ε = γεα
√
| ln(ε)|2

j1
2

(2ν+α1−1)2
j2
2

(α2−1), (21)

where γ is some positive constant independent of ε. Furthermore, the finest resolution levels J1

and J2 are such that

2J2 =

[
ε2α

A2

]− 1
α2

, 2J1 =

[
ε2α

A2

]− 1
2ν+α1

. (22)

3 Convergence rates and asymptotic optimality.

Denote

s∗i = si + 1/2− 1/π, (23)

s′i = si + 1/2− 1/π′, (24)

s′′i = si + 1/p− 1/p′, (25)

where π′ = min{2, π} and p′ = min{p, π}.

Assumption A.3. The function f(t, x) belongs to an anisotropic two-dimensional Besov space.

In particular, its wavelet coefficients βj1,k1,j2,k2 satisfy

Bs1,s2
π,q (A) =

f ∈ L2(U) :

∑
j1,j2

2(j1s∗1+j2s∗2)q

∑
k1,k2

|βj1,k1,j2,k2 |π
q/π


1/q

≤ A

 (26)

To construct minimax lower bounds for the Lp-risk, we define the Lp-risk over the set V as

R(V ) = inf
f̃

sup
f∈V

E‖f̃ε − f‖pp, (27)
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where ‖g‖p is the Lp-norm of a function g and the infimum is taken over all possible estimators

f̃ of f .

Theorem 1 Let min{s1, s2} ≥ max{ 1
π ,

1
2} with 1 ≤ π, q ≤ ∞, and A > 0. Then, under

conditions (18) and (26), for 1 ≤ p <∞, as ε→ 0,

R(Bs1,s2
π,q (A)) ≥ CAp



[
ε2α

A2

] ps2
2s2+α2 , if s1 >

s2
α2

(2ν + α1), & s2
α2
≥ p

2( 1
p′ −

1
p)[

ε2α

A2

] ps1
2s1+2ν+α1 , if p

2(2ν + α1)( 1
π −

1
p) ≤ s1 ≤ s2

α2
(2ν + α1),[

ε2α

A2

] p(s1+
1
p−

1
π )

2s∗1+2ν+α1−1
, if s1 < (2ν + α1)p2( 1

π −
1
p), & s2

α2
≥ p

2( 1
p′ −

1
p).

(28)

Proof of Theorem 1. In order to prove the theorem, first we establish the equivalence between

a process that involves the fractional Wiener sheet (eq. (1)) and another that involves the

standard Wiener sheet by applying an appropriate integral operator, taking advantage of relation

(2). Then, we consider two cases, the case when f(t, x) is dense in both dimensions (the dense-

dense case) and the case when f(t, x) is dense in x but sparse in t. Lemma A.1 of Bunea et

al. (2007) is then applied to find such lower bounds using conditions (18) and (26), combined

with some useful properties of Meyer wavelet basis. To complete the proof, we choose the highest

of the lower bounds. �

The derivation of upper bounds of the Lp-risk relies on the following two lemmas.

Lemma 2 Under condition (26), one has

2j1−1∑
k1=0

2j2−1∑
k2=0

| βj1,k1,j2,k2 |p≤ Ap2
−p[(j1s1+j2s2)+( 1

2
− 1
p′ )(j1+j2)]

, ∀j1, j2 ≥ 0. (29)

Lemma 3 Let β̃ω and λαj;ε be defined by (15) and (21), respectively. Define, for some positive

constant η, the set

Θω,η =
{

Θ : |β̃ω − βω| > ηλαj;ε

}
. (30)
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Then, under condition (18) and as ε→ 0, one has

Pr (Θω,η) = O

( [
ε2α
]τ

| ln(ε)|
1
2

)
, (31)

where τ =
η2γ2C2

1
8α

(
3

8π

)2ν+α1−1+α2−1
, C1 and γ appear in (18) and (21), respectively, and α =

α1+α2
2 .

Theorem 2 Let f̂(., .) be the wavelet estimator in (16), with J1 and J2 given by (22). Let

min{s1, s2} ≥ max{ 1
π ,

1
2} with 1 ≤ π, q ≤ ∞, and let conditions (18) and (26) hold. If γ in (21)

is large enough, then, for 1 ≤ p ≤ ∞ and as ε→ 0, one has

R(Bs1,s2
π,q (A)) ≤ CAp



[
ε2α

A2

] ps2
2s2+α2 [| ln(ε)|]ξ1+

ps2
2s2+α2 , if s1 ≥ s2

α2
(2ν + α1) & s2

α2
≥ p

2( 1
p′ −

1
p),[

ε2α

A2

] ps1
2s1+2ν+α1 [| ln(ε)|]

ps1
2s1+2ν+α1 , if p

2(2ν + α1)( 1
π −

1
p) < s1 <

s2
α2

(2ν + α1),[
ε2α

A2

] p(s1+
1
p−

1
π )

2s∗1+2ν+α1−1
[| ln(ε)|]

ξ2+
p(s1+

1
p−

1
π )

2s∗1+2ν+α1−1 , if s1 ≤ (2ν + α1)p2( 1
π −

1
p) & s2

α2
≥ p

2( 1
p′ −

1
p),

(32)

where ξ1 and ξ2 are defined as

ξ1 = I
(
s1 =

s2

α2
(2ν + α1)

)
, (33)

ξ2 = I
(
s1 = (2ν + α1)

p

2

(
1

π
− 1

p

))
+ I
(
s2

α2
=
p

2

(
1

p′
− 1

p

))
. (34)

The proof of Theorem 2. The proof is very similar to that of Theorem 2 in Benhaddou. (2017).

�

Remark 1 Notice that the finest resolution levels J1 and J2 in (22) and the thresholds λαj;ε in

(21), are independent of the unknown parameters of the Besov ball (26) and therefore estimator

(16) is adaptive with respect to those parameters.

Remark 2 Theorems 1 and 2 imply that, for the Lp-risk, the estimator in (16) is asymptotically

quasi-optimal within a logarithmic factor of ε, over a wide range of anisotropic Besov balls

Bs1,s2
π,q (A).
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Remark 3 The convergence rates depend on a delicate balance between the parameters of the

Besov ball, smoothness of the convolution kernel ν and the parameters of the anisotropic frac-

tional Brownian sheet, α1 and α2. These rates deteriorate as the values of α1 and α2 get closer

and closer to zero.

Remark 4 To de-correlate the two-dimensional fractional Gaussian noise a wavelet-vaguelette

expansion based on Meyer wavelet bases has been applied to the fractional Brownian sheet. The

validity of a wavelet-based series representation for the fractional Brownian motion has been

established in Wang (1997), Meyer, Sellan and Taqqu (1999) and Ayache and Taqqu (2002). In

particular, Ayache and Taqqu (2002) established the optimality of wavelet-based series represen-

tation of the fractional Brownian sheets.

Remark 5 For α1 = α2 = 1, the rates of convergence match exactly those in Benhaddou (2017),

and, with p = 2, those in Benhaddou et al. (2013) in their bivariate white noise case.

Remark 6 If we hold the second dimension x fixed, our rates are comparable to those in

Wang (1997) and Wishart (2013) in their standard deconvolution with the one-parameter frac-

tional Gaussian noise case.

4 Simulation Study

In order to investigate the effect of the long-memory on the performance of our estimator, we

carried out a limited simulation study. We implemented an estimation algorithm for the model

(5) using a modification of WaveD method of Raimondo and Stewart (2007). We evaluated

mean integrated square error (MISE) E‖f̂ − f‖2 of the functional deconvolution estimator.

1. We generated the data using equation (5) with convolution kernel g(t, x) = 0.5 exp(−|t|(1+

(x−0.5)2)), and f(t, x) = f(t)f(x). In particular, we chose f(t) to be a LIDAR or Doppler

signal over the grid ti = i
N with i = 1, 2, ..., N , and we chose f(x) = exp(−|x−0.5|x3) over

the grid xi = i
N with i = 1, 2, ..., N , and N = 210 = 1024. The LIDAR and Doppler signals

were generated from the waved package. All test functions were scaled to have a unit norm.
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Bear in mind that, though f(t, x) is a product of two univariate functions, the method

does not “recognize” this and, therefore, cannot take advantage of this information. Also,

notice that with our choice of g(t, x), the degree of ill-posedness (DIP) of the convolution

is DIP=0.5.

2. We simulated the LM error in the direction of both t and x using the fracdiff package

of R available from CRAN. In particular, the fracdiff.sim command was used to simulate

two one-dimensional fractionally differenced ARIMA(0, d, 0) (fARIMA) sequences which

behave similar to a fractional Gaussian noise, and then multiply them together to generate

a two-dimensional error structure. For the LM parameters α = (α1, α2), we used different

combinations of the levels 0.8, 0.6, 0.4 and 0.2. To create a dependence structure that

is anisotropic, we only used combinations such that α1 6= α2. Note that the fractional

differencing parameter d is obtained from α by the relation d = 1−α
2 .

3. The choice of σ in (5) was determined by the blurred signal-to-noise ratio (SNR), where

SNR = 10 log10

(
‖q(t,x)‖2

σ2

)
. We considered three choices, SNR=10dB (high noise), 20dB

(medium noise) and 30dB (low noise).

4. To compute the estimator, we used the function FWaveD and IWaveD from the waved

package. First, we applied the Meyer wavelet transform to the data in t-direction by

FWaveD, with no thresholding by setting thr to be a zero vector. Then, we applied the

second thresholded Meyer wavelet transform in x-direction by FWaveD, however, the level

dependent threshold were modified according to (21). For the tuning parameter γ, we tried

different values ranging from γ =
√

2 to γ =
√

6, but the performance of the estimator

reached its best at the latter value. Therefore, our default choice of γ was
√

6. The finest

resolution level J1 was estimated using the default method in the waved package, together

with the choice J2 = 5.

Table 1 reports the averages of the errors over 2000 simulation runs using a sample size of

n = N2 = (210)2. Figure (1) illustrates the function f(t.x) and its estimator f̂(t, x) and shows

a relatively good precision that deteriorates as the anisotropic pair of LM parameters (α1, α2)
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decreases from 0.8 to 0.2. Notice here that according to Table 1, the influence of LM is a little

more pronounced in the direction of the dimension x than it is in the direction of t. Table 1

complements Figure (1) and confirms our theoretical results in the sense that as the level of

LM increases (α gets smaller), the mean integrated squared error increases (the performance

deteriorates).

Figure 1: The function f(t, x) (top) and its estimate f̂(t, x) (bottom) at different combinations
of (α1, α2).

Table 1:
Finest resolution level J1 are listed in the parentheses.

DIP=0.5 (α1,α2)
signal σ (0.8,0.6) (0.8,0.4) (0.8,0.2) (0.6,0.4) (0.6,0.2) (0.4,0.2)

Lidar (10dB) 0.20 0.0779 (3) 0.0948 (3) 0.1296 (3) 0.1134 (3) 0.2097 (3) 0.3232 (3)
Lidar (20dB) 0.06 0.0434 (4) 0.0498 (4) 0.0641 (4) 0.0572 (4) 0.0796 (4) 0.0948 (4)
Lidar (30dB) 0.02 0.0132 (5) 0.0183 (5) 0.0292 (5) 0.0219 (5) 0.0358 (5) 0.0444 (5)

Doppler (10dB) 0.15 0.2613 (3) 0.2724 (3) 0.3160 (3) 0.2935 (3) 0.3828 (3) 0.4823 (3)
Doppler (20dB) 0.05 0.1254 (4) 0.1298 (4) 0.1437 (4) 0.1371 (4) 0.1584 (4) 0.1867 (4)
Doppler (30dB) 0.015 0.0516 (5) 0.0530 (5) 0.0568 (5) 0.0544 (5) 0.0610 (5) 0.0667 (5)
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DIP=0.5 (α1,α2)
signal σ (0.6,0.8) (0.4,0.8) (0.2,0.8) (0.4,0.6) (0.2,0.6) (0.2,0.4)

Lidar (10dB) 0.20 0.0760 (3) 0.0851 (3) 0.0956 (3) 0.1038 (3) 0.1293 (3) 0.2251 (3)
Lidar (20dB) 0.06 0.0423 (4) 0.0453 (4) 0.0486 (4) 0.0536 (4) 0.0612 (4) 0.0791 (4)
Lidar (30dB) 0.02 0.0120 (5) 0.0132 (5) 0.0149 (5) 0.0180 (5) 0.0210 (5) 0.0331 (5)

Doppler (10dB) 0.15 0.2601 (3) 0.2640 (3) 0.2749 (3) 0.2836 (3) 0.3090 (3) 0.3922 (3)
Doppler (20dB) 0.05 0.1247 (4) 0.1264 (4) 0.1292 (4) 0.1331 (4) 0.1376 (4) 0.1578 (4)
Doppler (30dB) 0.015 0.0513 (5) 0.0510 (5) 0.0522 (5) 0.0527 (5) 0.0541 (5) 0.0591 (5)

5 The r-dimensional case: estimation, convergence rates and

asymptotic optimality.

Consider the r-dimensional case of model (1)

dY (t,x) = q(t,x)dtdx + εαdBα(t,x), q(t,x) =

∫ 1

0
f(s,x)g(t− s,x)ds. (35)

Here, U = [0, 1]r, x = (x1, x2, · · · , xr−1), g(t,x) is the convolution kernel, Bα(t,x) is an

anisotropic r-dimensional fBs, α =
∑r

k=1 αk/r, and αk = 2 − 2Hk ∈ (0, 1], k = 1, 2, · · · , r,

is the parameter of the long-memory in the direction of the kth variable. An r-parameter fBs

is defined as a zero-mean Gaussian process {Bα(t) : t ∈ [0, 1]r} whose covariance function is of

the form

Cov (Bα(t1), Bα(t2)) = cΠr
k=1

[
|tk1|2Hk + |tk2|2Hk − |tk1 − tk2|2Hk

]
, (36)

for some c ∈ R, (tk1, tk2) ∈ [0, 1]2, k = 1, 2, · · · , r, where Hk = 1− αk/2 is the Hurst parameter

in the direction of the kth dimension.

Consider a bandlimited wavelet basis ψj,k(y) (e.g., Meyer-type) on [0, 1], and form the product

wavelet basis

Ψωr(t,x) = ψj1,k1(t)Πr
i=2ψji,ki(xi−1), (t,x) ∈ U, (37)

where ωr ∈ Ωr, and

Ωr =
{
ωr = (j1, k1; j2, k2; · · · ; jr, kr) : ji = m0 − 1, · · · ,∞; ki = 0, 1, · · · , 2ji − 1, i = 1, 2, · · · , r

}
.

(38)
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Then, the function f(t,x) can be expanded over these bases with coefficients βωr into a wavelet

series

f(t,x) =
∑
ωr∈Ωr

βωrΨωr(t,x), (39)

where βωr =
∫
U f(t,x)Ψωr(t,x)dtdx. Apply the r-dimensional Fourier transform to equation

(35) to obtain

Ỹ (mr) = f̃(mr)g̃(mr) + εαB̃α(mr), (40)

where mr = (m1,m2, · · · ,mr). Then, applying Plancherel formula in all directions, the wavelet

coefficients βωr in (39) can be rewritten as

βωr =
∑

m1∈Wj1

∑
m2∈Wj2

· · ·
∑

mr∈Wjr

Ψ̃ωr(mr)f̃(mr). (41)

Therefore, an unbiased estimator for βωr is given by

β̃ωr =
∑

m1∈Wj1

∑
m2∈Wj2

· · ·
∑

mr∈Wjr

Ψ̃ωr(mr)
Ỹ (mr)

g̃(mr)
. (42)

Finally, consider the hard thresholding estimator for f(t,x)

f̂ε(t,x) =
∑

ωr∈Ωr(J)

β̃ωrI
(
|β̃ωr | > λαj;ε

)
Ψωr(t,x), (43)

where

Ωr(J) =
{
ωr = (j1, k1; j2, k2; · · · ; jr, kr) : ji = m0 − 1, · · · , Ji; ki = 0, 1, · · · , 2ji − 1, i = 1, 2, · · · , r

}
,

(44)

with j = (j1, j2, · · · , jr)T , and the quantities J1, J2, · · · , Jr and λαj;ε are to be determined.

Assumption A.4. In the Fourier domain, the convolution kernel g(t,x), for some positive

constants ν, and Cr1 and Cr2, independent of mr = (m1,m2, · · · ,mr), is such that

Cr1|m1|−2ν ≤ |g̃(mr)|2 ≤ Cr2|m1|−2ν . (45)

14



Lemma 4 Let β̃ωr be defined in (42). Then, under the condition (45), for 1 ≤ p <∞, one has

E
∣∣∣β̃ωr − βωr ∣∣∣2p ≤ K3ε

p2α2j1p(2ν+α1−1)+j2p(α2−1)+···+jrp(αr−1). (46)

In addition,

E
∣∣∣β̃ωr − βωr ∣∣∣p ≤ K4ε

pα2j1
p
2

(2ν+α1−1)+j2
p
2

(α2−1)+···+jr p2 (αr−1). (47)

where K3 and K4 are some positive constants independent of ε.

Consequently, choose the thresholds λαj;ε of the from

λαj;ε = ρεα
√
| ln(ε)|2j1νΠr

i=12
ji
2

(αi−1), (48)

where ρ is some positive constant that is independent of ε, α = 1
r

∑r
k=1 αk and J1 and Ji,

i = 2, 3, · · · , r, are such that

2J1 =

[
ε2α

A2

]− 1
2ν+α1

, 2Ji =

[
ε2α

A2

]− 1
αi

. (49)

Lemma 5 Let β̃ωr and λαj;ε be defined by (42) and (48), respectively. Define, for some positive

constant η, the set

Θr
ωr,η =

{
Θ : |β̃ωr − βωr | > ηλαj;ε

}
. (50)

Then, under condition (45), as ε→ 0, one has

Pr
(
Θr
ωr,η

)
= O

( [
ε2α
]τr

| ln(ε)|
1
2

)
, (51)

where τr =
η2ρ2C2

r1
8α

(
3

8π

)2ν+
∑r
i=1(αi−1)

, and Cr1 and ρ appear in (45) and (48), respectively.
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Assumption A.5. The r-dimensional function f(t,x) belongs to an anisotropic Besov space.

In particular, its wavelet coefficients βj1,k1;j2,k2;··· ;jr,kr satisfy

Bs1,s2,··· ,sr
π,q (A) =

f ∈ L2(U) :

 ∑
j1,j2,··· ,jr

2j
T s∗q

 ∑
k1,k2,··· ,kr

|βj1,k1;j2,k2;··· ;jr,kr |π
q/π


1/q

≤ A


(52)

where j = (j1, j2, · · · , jr)T , s∗ = (s∗1, s
∗
2, · · · , s∗r)T and s∗i are defined in (23).

Define the quantity

s2o

α2o
= min

{
s2

α2
,
s3

α3
, · · · , sr

αr

}
, (53)

and denote the dimension of f that corresponds to (53) by io.

Theorem 3 Let min{s1, s2} ≥ max{ 1
π ,

1
2} with 1 ≤ π, q ≤ ∞, and A > 0. Then, under

conditions (45) and (52), for 1 ≤ p <∞, as ε→ 0,

R(Bs1,s2,··· ,sr
π,q (A)) ≥ CAp



[
ε2α

A2

] ps2o
2s2o+α2o , if s1 >

s2o
α2o

(2ν + α1), s2o
α2o
≥ p

2( 1
p′ −

1
p)[

ε2α

A2

] ps1
2s1+2ν+α1 , if p

2(2ν + α1)( 1
π −

1
p) ≤ s1 ≤ s2o

α2o
(2ν + α1),[

ε2α

A2

] p(s1+
1
p−

1
π )

2s∗1+2ν+α1−1
, if s1 < (2ν + α1)p2( 1

π −
1
p), s2o

α2o
≥ p

2( 1
p′ −

1
p).

(54)

Theorem 4 Let f̂(., .) be the wavelet estimator in (43), with J1 and Ji with i = 2, · · · , r given

by (49). Let min{s1, s2, · · · , sr} ≥ max{ 1
π ,

1
2} with 1 ≤ π, q ≤ ∞, and let conditions (45) and

(52) hold. If ρ in (48) is large enough, then, for 1 ≤ p ≤ ∞, as ε→ 0,

R(Bs1,.,sr
π,q (A)) ≤ CAp



[
ε2α

A2

] ps2o
2s2o+α2o [| ln(ε)|]ξ1+

ps2o
2s2+α2o , if s1 ≥ s2o

α2o
(2ν + α1), s2o

α2o
≥ p

2( 1
p′ −

1
p),[

ε2α

A2

] ps1
2s1+2ν+α1 [| ln(ε)|]

ps1
2s1+2ν+α1 , if p

2(2ν + α1)( 1
π −

1
p) < s1 <

s2o
α2o

(2ν + α1),[
ε2α

A2

] p(s1+
1
p−

1
π )

2s∗1+2ν+α1−1
[| ln(ε)|]

ξ2+
p(s1+

1
p−

1
π )

2s∗1+2ν+α1−1 , if s1 ≤ (2ν + α1)p2( 1
π −

1
p), s2o

α2o
≥ p

2( 1
p′ −

1
p),

(55)
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where ξ1 and ξ2 are defined as

ξ1 = I
(
s1 =

s2o

α2o
(2ν + α1)

)
+

r∑
i=2,i 6=io

I
(
s2o

α2o
=
si
αi

)
, (56)

ξ2 = I
(
s1 = (2ν + α1)

p

2

(
1

π
− 1

p

))
+

r∑
i=2,i 6=io

I
(
p

2

(
1

p′
− 1

p

)
=
si
αi

)
. (57)

Proof of Theorem 4. The proof is very similar to that of Theorem 5 in Benhaddou et al. (2013)

so we skip it. �

Remark 7 Notice that the convergence rates in Theorems 3 and 4 depend on a delicate bal-

ance between s1, π, ν, α1, min
{
si
αi
, i = 2, 3, · · · , r

}
and the average of the parameters of the

anisotropic fractional Brownian sheet, αi, i = 1, 2, · · · , r. Such rates are comparable to those in

Benhaddou et al. (2013) in their white noise case when α1 = α2 = · · · = αr = 1. In addition,

the rates are independent of the dimension r as expected.

6 Proofs.

In the proofs of Theorems 1 and 2 we will use the properties described in Petsa and Sap-

atinas (2009) associated with Meyer wavelet basis. Namely, the properties of concentration,

unconditionality and Temlyakov.

6.1 Proof of the lower bounds.

In order to prove Theorem 1, we use Lemma A.1 of [Bunea, Tsybakov & Wegkamp (2007)].

Lemma 6 Let Θ be a set of functions of cardinality card(Θ) ≥ 2 such that

(i) ‖f − g‖pp ≥ 4δp, for f, g ∈ Θ, f 6= g,

(ii) the Kullback divergences K(Pf , Pg) between the measures Pf and Pg satisfy the inequality

K(Pf , Pg) ≤ log(card(Θ))/16, for f, g ∈ Θ.

Then, for some absolute positive constant C1, one has

inf
fn

sup
f∈Θ

Ef‖fn − f‖pp ≥ C1δ
p,
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where inffn denotes the infimum over all estimators.

Proof of Theorem 1. Let Pf be the probability law of the process {q(t, x)+εαdBα(t, x), (t, x) ∈

U} when f is true. Let us first transform this process into a process that involves the standard

Brownian sheet, taking into account relation (2). This can be accomplished using the following

functions

Γα(t, u) =
CH

Γ(H + 1/2)Γ(3/2−H)
[(t− u)+]1/2−H , for t ∈ [0, 1], (58)

where CH is some explicit constant, Γ(·) is the Gamma function. Consider 0 < u < t < 1, then

(58) reduces to

Γα(t, u) = C(t− u)1/2−H . (59)

Now define the operator KΓ such that

KΓf(t, x) =

∫
R

∫
R

Γα1(t, u)Γα2(x, v)f(u, v)dudv. (60)

Taking into account relation (2), it is well known that operator (60) converts an anisotropic two-

dimensional fractional Brownian sheet with Hurst parameters (H1, H2) = (1 − α1/2, 1 − α2/2)

into a standard Brownian sheet. Let us then apply operator (60) to equation (1) to obtain,

Ŷ (t, x) = KΓdY (t, x) = KΓq(t, x) + εαB(t, x), (61)

where B(t, x) are standard Brownian sheet. Finally, differentiating both sides of (61) with

respect to t and x, yields

dŶ (t, x) = K ′Γq(t, x)dtdx+ εαdB(t, x), (62)

where K ′Γq(t, x) is

K ′Γq(t, x) =
d2

dtdx
KΓq(t, x) = c

∫ x

0
(x−v)−1/2−H2

∫ t

0
f(s, v)

∫ t−s

0
(t−s−r)−1/2−H1g(r, v)drdsdv.

(63)
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Notice that in the Fourier domain, by the convolution theorem and condition (18), (63) has the

form

K̃ ′Γq(m1,m2) � f̃(m1,m2)|m1|−ν |m1|(1−α1)/2|m2|(1−α2)/2. (64)

The dense-dense case. Let η be the matrix with components ηk1k2 = {0, 1}, ki = 0, 1, · · · , 2ji−

1, i = 1, 2, and denote the set of all possible values η by H. Define the functions

fj1j2(t, x) = γj1j2

2j1−1∑
k1=0

2j2−1∑
k2=0

ηk1k2ψj1k1(t)ψj2k2(x). (65)

Note that the matrix η has N = 2j1+j2 components and therefore, card(H) = 2N . To guarantee

that functions (65) satisfy (26), choose γj1j2 = A2−j1(s1+1/2)2−j2(s2+1/2). Now, take another

function of the form (65), f̃j1j2 , with η̃k1k2 ∈ H instead of ηk1k2 and compute the Lp-norm of

the difference between fj1j2 and f̃j1j2 , with the application of the Varshamov-Gilbert Lemma

([Tsybakov (2008)], p 104), to obtain

‖f̃j1j2 − fj1j2‖pp ≥ γ
p
j1j2

2j1p/22j2p/2/8. (66)

In addition, define P̂f , the probability law of the process
{
K ′Γq(t, x) + εαdW (t, x), (t, x) ∈ U

}
when f is true, where W (t, x) is a two-parameter standard Wiener sheet. Note that the proba-

bility measures P̂f and Pf are stochastically equivalent (see, e.g., Huang et al. (2006), Theorem

3.1). Hence, by the multi-parameter Girsanov formula (see, e.g., Dozzi (1989), p.89), the Kull-

back divergence takes the form

K(Pf , Pf̃ ) = K(P̂f , P̂f̃ ) = E
[
log
(
P̂f/P̂f̃

)]
P̂f

=
(
2ε2α

)−1
∣∣∣∣∣∣K ′Γg ∗ (f̃ − f)(t, x)

∣∣∣∣∣∣2 . (67)

Since |η̃k1k2 − ηk1k2 | ≤ 1, plugging fj1j2 and f̃j1j2 into (67), applying Plancherel’s formula,

|ψj,k,m| ≤ 2−j/2 and (64), it can be shown that

K(P̂f , P̂f̃ ) ≤ C
(
2ε2α

)−1
γ2
j1j22−j1(2ν+α1−1)2−j2(α2−1)2j1+j2 . (68)
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Part (ii) of Lemma 6 gives the constraint

2−j1(2s1+2ν+α1)2−j2(2s2+α2) ≤ Cεα1+α2

A2
. (69)

Now, define

τε = log2

(
CA2

εα1+α2

)
. (70)

Therefore, we need to find combination {j1, j2} which is the solution to the following optimization

problem

2j1s1 + 2j2s2
min−−→ j1(2s1 + 2ν + α1) + j2(2s2 + α2) ≥ τε, j1, j2 ≥ 0. (71)

It is easy to check that the solution is {j1, j2} = { τε
2s1+2ν+α1

, 0}, if α2s1 < s2(2ν + α1), and

{j1, j2} = {0, τε
2s2+α2

}, if α2s1 ≥ s2(2ν + α1). Hence, the lower bounds are

δp = CAp


[
ε2α

A2

] ps1
2s1+2ν+α1 , if α2s1 ≤ s2(2ν + α1),[

ε2α

A2

] ps2
2s2+α2 , if α2s1 > s2(2ν + α1).

(72)

The sparse-dense case. Using the same test functions f̃j1j2 and fj1j2 , as in Benhaddou et

al. (2013), with a finitely supported basis ηj2k2 replaced by a band-limited basis ψj2k2 , and

following the same procedure as in the dense-dense case, it can be shown that the lower bounds

are

δp = CAp


[
ε2α

A2

] ps2
2s2+α2 , if α2s

∗
1 ≥ s2(2ν + α1 − 1),[

ε2α

A2

] p(s1+1/p−1/π)

2s∗1+2ν+α1−1
, if α2s

∗
1 < s2(2ν + α1 − 1).

(73)

To complete the proof, notice that the highest of the lower bounds corresponds to

d = min

{
ps1

2s1 + 2ν + α1
,

ps2

2s2 + α2
,

p(s1 + 1
p −

1
π )

2s∗1 + 2ν + α1 − 1

}
. (74)

�

Proof of Theorem 3.

The dense-dense case. Let η be the matrix with components ηk = {0, 1}, k = (k1, k2, · · · , kr),

ki = 0, 1, · · · , 2ji − 1, i = 1, 2, · · · , r, and denote the set of all possible values η by H. Define
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the functions

fj(t, x) = γj

2j1−1∑
k1=0

2j2−1∑
k2=0

· · ·
2jr−1∑
kr=1

ηkψj1,k1(t)Πr−1
i=1ψji,ki(xi). (75)

Note that here card(H) = 2N , with N = 2j1+j2+···+jr . Hence, following the same steps as in the

proof of Theorem 1, it can be shown that Note that the lower bounds are

δp = CAp


[
ε2α

A2

] ps1
2s1+2ν+α1 , if α2os1 ≤ s2o(2ν + α1),[

ε2α

A2

] psi
2si+αi , if αis1 > si(2ν + α1), si

αi
< mini 6=k{ skαk , k = 2, 3, · · · , r},

(76)

and i = 2, 3, · · · , r.

The sparse-dense case. We apply similar approach to test functions

fj(t, x) = γj

2j2−1∑
k2=0

· · ·
2jr−1∑
kr=1

ηkψj1,k1(t)Πr−1
i=1ψji,ki(xi). (77)

Here N = 2j2+···+jr and card(H) = 2N and it can be shown that the lower bounds are

δp = CAp


[
ε2α

A2

] psi
2si+αi , if αis

∗
1 ≥ si(2ν + α1 − 1), si

αi
< mini 6=k{ skαk , k = 2, 3, · · · , r}[

ε2α

A2

] p(s1+1/p−1/π)

2s∗1+2ν+α1−1
, if αis

∗
1 < si(2ν + α1 − 1),

(78)

and i = 2, 3, · · · , r. Hence, the lower bounds of the Lp-risk correspond to

d′ = min

{
ps1

2s1 + 2ν + α1
,

p(s1 + 1
p −

1
π )

2s∗1 + 2ν + α1 − 1
,

ps2o

2s2o + α2o

}
, (79)

and the pair (s2o, α2o) is defined in (53). �

6.2 Proof of the upper bounds.

Proof of Lemma 1. Define the quantities

β̃ω − βω = εα
∑

m1∈Wj1

∑
m2∈Wj2

ψ̃j1k1(m1)ψ̃j2k2(m2)
Z̃α(m1,m2)

g̃(m1,m2)
. (80)
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Consider the Riesz poly-potential operator

Iαf(t, x) =
1

γ2(α)

∫
R2

f(t2, x2)

|t1 − t2|1/2+α1/2|x1 − x2|1/2+α2/2
dt2dx2, (81)

where γ2(α) = 4Γ
(

1
2 −

α1
2

)
Γ
(

1
2 −

α2
2

)
cos((1 − α1)π4 )cos((1 − α2)π4 ). Then, the anisotropic

two-dimensional fractional Brownian sheet Zα(t, x) = dWα(t, x) allows the wavelet-vaguelette

representation

dWα(t, x) =
∑
j1,k1

∑
j2,k2

ζj1k1;j2k2I
α {ψj1k1(t)ψj2k2(x)} , (82)

where ζj1k1;j2k2 are white noise processes, and ψjk is a Meyer-type wavelet basis. Then applying

the two dimensional Fourier transform to (82) yields

W̃α(m) = |m1|
α1−1

2 |m2|
α2−1

2

∑
j1,k1

∑
j2,k2

ζj1k1;j2k2ψ̃j1k1(m1)ψ̃j2k2(m2), (83)

where m = (m1,m2). Let us evaluate the covariance of (83). Indeed,

Cov [Z̃α(m), Z̃α(l)] = |m1l1|
α1−1

2 |m2l2|
α2−1

2

∑
ω∈Ω

ψ̃j1k1(m1)ψ̃j2k2(m2)ψ̃j1k1(l1)ψ̃j2k2(l2). (84)

Consequently,

Cov [Z̃α(m), Z̃α(l)] = |m1l1|
α1−1

2 |m2l2|
α2−1

2

∑
j1;k1

ψ̃j1k1(m1)ψ̃j1k1(l1)

∑
j2;k2

ψ̃j2k2(m2)ψ̃j2k2(l2)

 .

(85)

Now, evaluating the magnitude of (85), and using Hölder’s Inequality along with the fact that

|ψ̃jk(m)| ≤ 2−j/2, yields

|Cov [Z̃α(m), Z̃α(l)]|2 ≤ |m1l1|α1−1|m2l2|α2−1

∑
j1;k1

|ψ̃j1k1(m1)|2|ψ̃j1k1(l1)|2
∑

j2;k2

|ψ̃j2k2(m2)|2|ψ̃j2k2(l2)|2


≤ 4|m1l1|α1−1|m2l2|α2−1.
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Hence,

|Cov [Z̃α(m), Z̃α(l)]| ≤ 2|m1l1|
α1−1

2 |m2l2|
α2−1

2 . (86)

Finally, let us evaluate the variance of β̃ω. Indeed, using (80) and (86), the variance has the

form

E
∣∣∣β̃ω − βω∣∣∣2 = εα1+α2

∑
m1,m2

∑
l1,l2

ψ̃j1k1(m1)ψ̃j2k2(m2)ψ̃j1k1(l1)ψ̃j2k2(l2)
E[Z̃α(m1,m2)Z̃α(l1, l2)]

g̃(m1,m2)g̃(l1, l2)

≤ 2εα1+α2

( ∑
m1,m2

Ψ̃ω(m1,m2)
|m1|α1−1|m2|α2−1

g̃(m1,m2)

)∑
l1,l2

Ψ̃ω(l1, l2)
|l1|α1−1|l2|α2−1

g̃(l1, l2)


= 2εα1+α2

( ∑
m1,m2

ψ̃j1k1(m1)ψ̃j2k2(m2)
|m1|α1−1|m2|α2−1

g̃(m1,m2)

)2

≤ 2εα1+α2C−2
1

(
8π

3

)2ν+α1+α2−2

2j1(2ν+α1−1)+j2(α2−1). (87)

Results (19) and (20) follow from properties of Gaussian random variables. �

Proof of Lemma 2. First, note that under Assumption A.3., one has

∑
k1,k2

| βj1,k1,j2,k2 |π≤ Aπ2−π[(j1s1+j2s2)+( 1
2
− 1
π

)(j1+j2)], ∀j1, j2 ≥ 0. (88)

If p ≥ π, one has

∑
k1,k2

| βj1,k1,j2,k2 |p ≤
∑
k1,k2

(
| βj1,k1,j2,k2 |π {max |βj1,k1,j2,k2 |π}

p−π
π

)
= {max |βj1,k1,j2,k2 |π}

p−π
π

∑
k1,k2

| βj1,k1,j2,k2 |π

≤ Ap2−p[(j1s1+j2s2)+( 1
2
− 1
π

)(j1+j2)].
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If p < π, then by Hölder’s Inequality, one has

∑
k1,k2

| βj1,k1,j2,k2 |p ≤

∑
k1,k2

| βj1,k1,j2,k2 |π


p
π
∑
k1,k2

1

1− p
π

≤ Ap2−p[(j1s1+j2s2)+( 1
2
− 1
π

)(j1+j2)]2(j1+j2)(1− p
π

)

≤ Ap2
−p[(j1s1+j2s2)+( 1

2
− 1
p

)(j1+j2)]
.

Combining the above results completes the proof. �

Proof of Lemma 3. Since the quantities (80) are zero mean Gaussian random variables having

variance of form (87), by the Gaussian tail probability inequality, one has

Pr(Θω,η) ≤ 2 Pr

(
Z > ηγ

√
| ln(ε)|

(
C2

1

2

)1/2(
3

8π

)ν+α1/2+α2/2−1
)

=
C√
| ln(ε)|

exp {−2α| ln(ε)|τ} , (89)

where Z is a standard normal, C is some explicit positive constant and τ appears in Lemma 2.

�

Proof of Theorem 2. The proof follows a procedure which is similar to that in Benhaddou et

al. (2013) with the adaptation to the Lp-norm case. Denote

χε =
[
A−2ε2α| ln(ε)|

]
, 2ji0 = [χε]

− d
ps”i , i = 1, 2, (90)

and observe that with the choice of J1 and J2 given by (22), the Lp-risk allows the decomposition

E‖f̂ε − f‖pp ≤ R1 +R2 +R3 +R4, (91)
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where

R1 = 22(p−1)E

∥∥∥∥∥∥
2m0−1∑
k1=0

2m0−1∑
k2=0

(β̃m0,k1,m0,k2 − βm0,k1,m0,k2)ψm0,k1(t)ψm0,k2(x)

∥∥∥∥∥∥
p

p

,

R2 = 23(p−1)E
∫ ∫  ∑

ω∈Ω(J1,J2)

∣∣∣β̃ω − βω∣∣∣2 I(∣∣∣β̃ω∣∣∣ > λαj;ε

)
ψ2
j1,k1(t)ψ2

j2,k2(x)

p/2

dtdx,

R3 = 23(p−1)E
∫ ∫  ∑

ω∈Ω(J1,J2)

|βω|2 I
(∣∣∣β̃ω∣∣∣ < λαj;ε

)
ψ2
j1,k1(t)ψ2

j2,k2(x)

p/2

dtdx,

R4 = 2(p−1)

∫ ∫  ∞∑
j1=J1

∞∑
j2=m0+1

+
∞∑

j1=m0+1

∞∑
j2=J2

 2j1−1∑
k1=0

2j2−1∑
k2=0

|βω|2 ψ2
j1,k1(t)ψ2

j2,k2(x)

p/2

dtdx.

For R1 and R4, using (19) in R1 and (26) in R4, as ε→ 0, yields

R1 +R4 = O

ε2α +

∞∑
j1=J1

Ap2−pj1s
′′
1 +

∞∑
j2=J2

Ap2−pj2s
′′
2

 = O
(
Ap [χε]

d
)
. (92)

Using Minkowski’s Inequality for p ≥ 2 and Jensen’s Inequality for p < 2, and Temlyakov

property, R2 and R3 can be partitioned as R2 ≤ R21 +R22 and R3 ≤ R31 +R32, where

R21 = O

 ∑
ω∈Ω(J1,J2)

2(j1+j2)( p
2
−1)E

∣∣∣β̃ω − βω∣∣∣p [Pr

(∣∣∣β̃ω − βω∣∣∣ > 1

2
λαj;ε

)]1/2
 , (93)

R22 = O

 ∑
ω∈Ω(J1,J2)

2(j1+j2)( p
2
−1)E

∣∣∣β̃ω − βω∣∣∣p I(|βω| > 1

2
λαj;ε

) , (94)

R31 = O

 ∑
ω∈Ω(J1,J2)

2(j1+j2)( p
2
−1) |βω|p Pr

(∣∣∣β̃ω − βω∣∣∣ > 1

2
λαj;ε

) , (95)

R32 = O

 ∑
ω∈Ω(J1,J2)

2(j1+j2)( p
2
−1) |βω|p I

(
|βω| <

3

2
λαj;ε

) . (96)

Combining (93) and (95), similar calculations as in Benhaddou et al. (2013), yield

R21 +R31 = O
(
Ap
(
ε2α
) τ

2
− p

2

)
= O

(
Ap [χε]

d
)
. (97)
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Now, combining (94) and (96), and using (19) and (21), gives

∆ = R22+R32 = O

 ∑
ω∈Ω(J1,J2)

2(j1+j2)( p
2
−1) min

{
|βω|p , 2

p
2

[j1(2ν+α1−1)+j2(α2−1)]
[
A−2ε2α| ln(ε)|

] p
2

} .

(98)

Finally, ∆ can be decomposed into the following components

∆1 = O


J1−1∑

j1=j10+1

J2−1∑
j2=m0

+

J1−1∑
j1=m0

J2−1∑
j2=j20+1

Ap2−j1ps
′′
1 2−j2ps

′′
2

 , (99)

∆2 = O

 j10∑
j1=m0

j20∑
j2=m0

Ap2
p
2

(j1(2ν+α1)+α2j2)
[
A−2ε2| ln(ε)|

] p
2 I (Ξ)

 , (100)

∆3 = O

 j10∑
j1=m0

j20∑
j2=m0

Ap
′
2−p

′(j1s′′1+j2s′′2 )
[
Ap[χε]

p
2 2j1( p

2
(2ν+α1)−1)+j2(α2

p
2
−1)
]1− p

′
p I (Ξc)

(101)

where Ξ =
{
j1, j2 : 2

p
2

(j1(2ν+α1)+α2j2) ≤ [χε]
d− p

2

}
.

Case 1: s1 ≥ s2
α2

(2ν + α1) and s2
α2
> p

2( 1
p′ −

1
p). In this case, d = ps2

2s2+α2
, and

∆3 = O

Ap[χε] p2 (1− p
′
p

)
j10∑

j1=m0

2
−p′j1[s1− p2 ( 1

p′−
1
p

)(2ν+α1)]
j20∑

j2=m0

2
−j2p′[s2− p2α2( 1

p′−
1
p

)]I (Ξc)


= O

Ap[χε] ps2
2s2+α2

j10∑
j1=m0

2
−p′j1[s1− s2

α2
(2ν+α1)]


= O

(
Ap[χε]

ps2
2s2+α2 [|ln(ε)|]I(s1=

s2
α2

(2ν+α1))
)
. (102)

Case 2: (2ν + α1)p2( 1
π −

1
p) < s1 <

s2
α2

(2ν + α1). In this case, d = ps1
2s1+2ν+α1

, and

∆3 = O

Ap[χε] p2 (1− p
′
p

)
j10∑

j1=m0

2
−p′j1[s1−(2ν+α1) p

2
( 1
p′−

1
p

)]
j20∑

j2=m0

2
−j2p′[s2− p2α2( 1

p′−
1
p

)]I (Ξc)


= O

Ap[χε] ps1
2s1+2ν+α1

j20∑
j2=m0

2
−j2p′

(
s2− α2s1

2ν+α1

)
= O

(
Ap[χε]

d
)
. (103)
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Case 3: s1 ≤ (2ν + α1)p2( 1
π −

1
p) and s2

α2
> p

2( 1
p′ −

1
p). In this case, d =

p(s1+ 1
p
− 1
π

)

2s∗1+2ν+α1−1 , and

∆3 = O

Ap[χε] p2 (1− p
′
p

)
j10∑

j1=m0

2
−p′j1[s1− p2 ( 1

p′−
1
p

)(2ν+α1)]
j20∑

j2=m0

2
−p′j2[s2− p2 ( 1

p′−
1
p

)α2]


= O

(
Ap[χε]

p(s1+
1
p−

1
π )

2s∗1+2ν+α1−1 [|ln(ε)|]I
(
s1=(2ν+α1) p

2
( 1
p′−

1
p

)
)

+I
(
s2=α2

p
2

( 1
p′−

1
p

)
))

. (104)

Combining the results from (92) to (104) completes the proof. �

Proof of Lemma 4. The proof will be similar to the proof of Lemma 1. Define the quantities

β̃ωr − βωr = εα
∑

m1∈Wj1

· · ·
∑

mr∈Wjr

Ψ̃ωr(mr)
Z̃α(mr)

g̃(mr)
. (105)

Consider the Riesz poly-potential operator

Iαf(t, x1, . . . , xr−1) =
1

γr(α)

∫
Rr

f(t′, x′1, . . . , x
′
r−1)

|t− t′|1/2+α1/2Πr
i=2|xi−1 − x′i−1|1/2+αi/2

dt′dx′1 · · · dx′r−1,

(106)

where γr(α) = 2rΠr
i=1

[
Γ
(

1
2 −

αi
2

)
cos((1− αi)π4 )

]
. Then, the anisotropic r-dimensional frac-

tional Brownian sheet Zα(t, x1, . . . , xr−1) = dWα(t, x1, . . . , xr−1) allows the wavelet-vaguelette

representation

dWα(t, x1, . . . , xr−1) =
∑
ωr∈Ωr

ζωrI
α {Ψωr(t,x)} , (107)

Applying the two dimensional Fourier transform to (107), yields

W̃α(mr) = Πr
i=1|mi|

αi−1

2

∑
ωr∈Ωr

ζωrΨ̃ωr(mr), (108)

The covariance of (108) is given by

Cov [Z̃α(mr), Z̃α(lr)] = Πr
i=1

|mili|
αi−1

2

∑
ji;ki

ψ̃jiki(mi)ψ̃jiki(li)

 . (109)
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Evaluating the magnitude of (109), yields

|Cov [Z̃α(mr), Z̃α(lr)]| ≤ 2
r
2 Πr

i=1|mili|
αi−1

2 . (110)

Using (105) and (110), similar to (87), the variance has the form

E
∣∣∣β̃ωr − βωr ∣∣∣2 = ε2α

∑
m1,...,mr

∑
l1,...,lr

Ψ̃ωr(mr)Ψ̃ωr(lr)
E[Z̃α(mr)Z̃α(lr)]

g̃(mr)g̃(lr)

≤ Kε2α2j1(2ν+α1−1)+j2(α2−1)+···+jr(αr−1). (111)

Finally, results (46) and (47) follow from properties of Gaussian random variables. �

Proof of Lemma 5. The proof is very similar to that of Lemma 3, so we skip it. �
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