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Abstract

Compositional data consists of vectors of proportions whose compo-
nents sum to 1. Such vectors lie in the standard simplex, which is a man-
ifold with boundary. One issue that has been rather controversial within
the field of compositional data analysis is the choice of metric on the sim-
plex. One popular possibility has been to use the metric implied by log-
transforming the data, as proposed by Aitchison [1, 2]; and another popu-
lar approach has been to use the standard Euclidean metric inherited from
the ambient space. Tsagris et al. [21] proposed a one-parameter family
of power transformations, the α-transformations, which include both the
metric implied by Aitchison’s transformation and the Euclidean metric as
particular cases. Our underlying philosophy is that, with many datasets,
it may make sense to use the data to help us determine a suitable metric.
A related possibility is to apply the α-transformations to a parametric fam-
ily of distributions, and then estimate α along with the other parameters.
However, as we shall see, when one follows this last approach with the
Dirichlet family, some care is needed in a certain limiting case which arises
(α → 0), as we found out when fitting this model to real and simulated
data. Specifically, when the maximum likelihood estimator of α is close
to 0, the other parameters tend to be large. The main purpose of the pa-
per is to study this limiting case both theoretically and numerically and to
provide insight into these numerical findings.

Key Words: Dirichlet distribution; log-ratio transformation; manifold; metric;
power transformation.

1

http://arxiv.org/abs/1812.07485v2
mailto:pantazis@iacm.forth.grm
mailto:mtsagris@uoc.gr
mailto:andrew.wood@nottingham.ac.uk


1 Introduction

A compositional data vector has non-negative components which sum to a con-
stant, usually taken to be 1, as we assume here. Such vectors lie in the standard
simplex, S im(d), which has the form

S im(d) = {x = (x1, . . . , xD)
⊤ ∈ R

D : xj ≥ 0, j = 1, . . . , D;
D

∑
j=1

xj = 1}, (1)

where d = D − 1. Compositional datasets appear naturally in many fields
including medicine, geology, archeology, biology and economics; see e.g. [2].

The following two approaches have been widely used in compositional data
analysis. One of these approaches, due to Aitchison [1, 2], is to apply the fol-
lowing transformation, known as the centred log-ratio transformation:

wj = log(xj)− D−1
D

∑
k=1

log(xk), j = 1, . . . , D. (2)

Also, define w = (w1, . . . , wD)
⊤. Note that, by definition, the components of w

sum to 0. Given a sample of compositional vectors x1, . . . , xn, we transform to
w1, . . . , wn using (2). Aitchison then proposed applying standard multivariate
methods, such as principal components analysis, to log-transformed composi-
tional vectors, which is tantamount to assuming the standard Euclidean metric
is appropriate for the wi.

Another popular approach is to “do nothing”; i.e. assume that the Euclidean
metric inherited from the ambient Euclidean space R

D is appropriate for the xi,
and apply standard multivariate methods directly to the xi. For advocation of
this approach see Baxter [3, 4], Baxter et al. [5] and Baxter and Freestone [6].

For some datasets, the log-ratio approach seems preferable, whereas for
other datasets, the “do nothing” approach seems superior. Nevertheless, the
choice over which method to use, if either, has occasionally become heated and
acrimonious. See the paper by Scealy and Welsh [19] for a careful and detailed
discussion of the issues and history of this debate. Our view concerning the
choice of metric is that it is not possible to come up with a compelling choice for ei-
ther method based on purely a priori or theoretical grounds, and that a more pragmatic
approach is to make a data-dependent choice of metric.

Bearing this in mind, one possibility is to consider a finite-dimensional fam-
ily of transformations, such as the one-dimensional α-transformation family
considered in this paper, where each transformation implies a choice of metric.
Then use the data to choose the optimal transformation, which in turn deter-
mines an optimal metric. It is not so clear how to do this non-parametrically, but
if a parametric family of models, such as the Dirichlet in the present context, is
assigned to the transformed compositional data, then we can estimate both the
distributional parameters and the transformation parameter simultaneously by
maximum likelihood. Using this approach we estimate the parameters of the
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α-transformed compositional data model. In effect, the optimal transforma-
tion parameter compels the data to resemble the chosen parametric family as
closely as possible. However, after carrying out this approach with a number
of real and simulated datasets we found that in cases where the maximum like-
lihood estimator of α is close to 0, there is a tendency for the other (Dirichlet)
parameters to be rather large. See Tables 1-4 in Section 5 for examples of this
phenomenon. This has motivated us to take a close look at the asymptotics as
(i) α → 0 and (ii) the Dirichlet becomes highly concentrated. This theoretical
and numerical investigation is the principal focus of our paper.

The phenomenon mentioned in the previous paragraph potentially arises
with analogous families of metrics on other manifolds should we wish to select
an optimal metric in a data-dependent way. Consequently, before focusing on
compositional data in the remainder of the paper, we briefly discuss the ques-
tion of choice of metric in the setting of general manifolds in Section 2.

The structure of this paper is as follows. In the next section we discuss
the choice of metric in the statistical analysis of manifold-valued data from a
broader perspective. Then, in Section 3, we briefly review the α-transformation
for compositional data. In Section 4 we present some asymptotics for small α

when the α-transformation is applied to the Dirichlet family, and in Section 5
we present numerical results, both from simulations and the analysis of real
datasets. These numerical results reflect the theoretical results in the previous
section. Proofs are given in Section 6.

2 Statistics on manifolds and choice of metric

Since the middle of the last century, statistical analysis of data which naturally
lies in a manifold has grown enormously in interest and relevance. An impor-
tant early example was R.A. Fisher’s paper [12] on directional statistics with
application to paleomagnetic directional data. Subsequently, the field of di-
rectional statistics, in which the sample space consists of the surface of a unit
sphere in Euclidean space (or, equivalently, the set of directions or unit vectors)
has grown into a well-developed and mature field. See, for example, the books
by Mardia [17], Mardia and Jupp [18] and Fisher et al. [13].

In a related but different direction, there has been great interest in statis-
tical shape analysis from the 1980s onwards. A popular and mathematically
deep approach to statistical shape analysis was initiated by D.G. Kendall; see
the monograph Kendall et al. [16]. Other books on this field include Small [20]
and Dryden and Mardia [10, 11]. In the Kendall approach, objects in Euclidean
space, usually in two or three dimensions, are represented by the coordinates
of a finite set of labelled landmarks. For example, a human face could be repre-
sented approximately by landmark coordinates at obvious places including the
eyes, ears, nose and mouth. Then the shape is defined as what remains when
translation, scale and orientation have been “quotiented out”. Further details
may be found in the literature mentioned above.
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Whenever analysing manifold data, one question that always needs to be
addressed is what metric to use. For example, a choice of metric is required
if we wish to define a Frechét mean on the manifold, which is a generalisa-
tion of the least-squares mean in Euclidean space. One important dichotomy is
between intrinsic and extrinsic metrics. In the former, the metric, often a Rie-
mannian metric, is defined “intrinsically”, without any reference to an ambient
space. In contrast, with extrinsic metrics, the manifold of interest is considered
to be embedded in an ambient space, typically a Euclidean space endowed with
the standard Euclidean metric, and the manifold inherits the metric from the
ambient space. From a conceptual point of view, intrinsic metrics are often to
be preferred. However, extrinsic metrics are often easier to work with, both
from a practical and theoretical point of view; from a practical point of view
because intrinsic distance may be more difficult to calculate and from a theo-
retical point of view because e.g. asymptotic theory tends to be more difficult
when intrinsic metrics are used. As an example of the difficulties which can
arise, see Hotz and Huckemann [15], who study the non-standard behaviour
which arises when the intrinsic, or arc-length, metric is used for circular data.

Even when we have made the choice to use an extrinsic metric, the choice
of metric may still not be clear. Two examples (which supplement the case of
compositional data considered here) in which a one-parameter family of met-
rics may be worth considering will now be mentioned.

In [8] a family of power metrics on the space of covariances matrices of
a given dimension is considered, with a particular focus on diffusion tensor
imaging. In this case, the relevant manifold is the space of positive-definite ma-
trices of given dimension. There is a close analogy with the α-transformation
considered here; in their setting the powered quantities are the eigenvalues of
the covariance matrices, whereas here the powered quantities are components
of compositional vectors.

The second example relates to statistical shape analysis. In [9] a family of
extrinsic metrics is considered for measuring the distance between two shapes
described by labelled landmarks. Here, the family of metrics consists of powers
of eigenvalues of certain symmetric non-negative definite matrices, but in this
case the relevant matrices do not have full rank.

In both of these examples, the question of how to choose the metric arises,
as it does in this paper, where the focus is on compositional data. It is clear
that the choice one makes is going to have an effect on the statistical analysis,
in some cases a major effect.
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3 Review of the α-transformation

For the purpose of this paper it is convenient to define the α-transformation of
a compositional vector x ∈ S im(d) by

uα(x) =

(

xα
1

∑
D
k=1 xα

k

, . . . ,
xα

D

∑
D
k=1 xα

k

)T

. (3)

This transformation, which has a slightly different but mathematically equiv-
alent form to that given in [21] and [22], is also known as the compositional
power transformation [2].

Note that the transformation uα given by (3) defines a bijection of the interior
of S im(d) with inverse

u−1
α (x) =

(

x1/α

1

∑
D
k=1 x1/α

k

, . . . ,
x1/α

D

∑
D
k=1 x1/α

k

)

. (4)

If one excludes the boundary of the simplex, which corresponds to composi-
tional vectors that have one or more components equal to zero, then the α-
transformation (3) and its inverse (4) are well defined for all α ∈ R. The moti-
vation for transformation (3) is that the case α = 0 corresponds to the log-ratio
approach, whereas α = 1 corresponds to the "do nothing" approach; see the
discussion in the Introduction. We define the case α = 0 in terms of the limit
α → 0; then, rescaling by α as follows, we obtain

lim
α→0

α
−1 (Duα(x)− 1D) = w(x),

where 1D is the D-vector of ones and w(x) is the centred log-ratio transforma-
tion (2). For the case α = 1, (3) is just the identity transformation of the simplex.

The α-transformation (3) leads naturally to a simplicial distance measure
∆α (x, y), which we call the α-metric, between observations x, y ∈ S im(d), de-
fined in terms of the Euclidean distance ‖ · ‖ between transformed observations,
i.e.,

∆α (x, y) =
D

|α|
‖uα(x)− uα(y)‖ =

D

|α|





D

∑
j=1

(

xα
j

∑
D
k=1 xα

k

−
yα

j

∑
D
k=1 yα

k

)2




1/2

.

The special case

∆0 (x, y) = lim
α→0

∆α (x, y) =





D

∑
j=1

(

log
xj

∏
D
k=1 x1/D

k

− log
yj

∏
D
k=1 y1/D

k

)2




1/2

,
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is the Euclidean distance on the log-ratio transformed data, whereas

∆1 (x, y) = D

[

D

∑
j=1

(

xj − yj

)2

]1/2

is just Euclidean distance multiplied by D.

The choice of the value of α depends upon the context of the analysis. Max-
imum likelihood estimation, assuming the transformation (3) or (4) has been
applied to a parametric family of distributions such as the Dirichlet, requires
the Jacobian determinant of (3), which is given by (see [23] for the derivation)

|Jα| = |α|d
D

∏
j=1

xα−1
j

∑
D
k=1 xα

k

. (5)

4 Gaussian asymptotic limits as α → 0

In this section, we examine the α-transformation defined in (3), applied to a
sample x1, . . . , xn of compositional data on S im(d). The α-transformation along
with the assumption of a D-dimensional Dirichlet distribution for the trans-
formed data result in a parametric family which has D + 1 parameters in total
(i.e. one additional parameter). The particular focus in this Section is to see
what happens when we apply maximum likelihood estimation to the trans-
formed D + 1 parameter family in the limit where the Dirichlet becomes highly
concentrated and Gaussian and α → 0. This question arose when fitting this
transformed model to datasets where the MLE of α turns out to be small, while
the MLE of the Dirichlet parameters tended to be large. For numerical evidence
of this phenomenon, see Tables 1-4 below.

4.1 The Dirichlet case

Recall that the Dirichlet density on the simplex at a point v = (v1, . . . , vD)
⊤ ∈

S im(d) is

fγγγ(v) =
Γ(γ+)

∏
D
j=1 Γ(γj)

D

∏
j=1

v
γj−1

j ,

where γ+ = ∑
D
j=1 γj. Suppose that

ui = (ui1, . . . , uiD)
⊤ ∼ Dirichlet(b1, . . . , bD), i = 1, . . . , n,

where

uij =
xα

ij

∑
D
k=1 xα

ik

, i = 1, . . . , n, j = 1, . . . , D.
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Then the log-likelihood which results when the α-transformation is applied to
x1, ..., xn is given by

l̄(α, b1, . . . , bD) =
n

∑
i=1

[

log fb(ui) + log |Jα,i|
]

which can be rewritten after expansion and re-organization as

l̄(α, b1, . . . , bD) = n log(Γ(b+))− n
D

∑
j=1

log(Γ(bj)) + nd log(|α|)

+
n

∑
i=1

D

∑
j=1

(αbj − 1) log(xij)− b+
n

∑
i=1

log

(

D

∑
j=1

xα
ij

)

,

(6)

where b+ = ∑
D
j=1 bj. Also, define

yij = log(xij), i = 1, . . . , n; j = 1, . . . , D. (7)

We now state our first result about the asymptotic behavior of the log-likelihood.

Proposition 1. Define yij as in (7) and

bj =
b

α2
(1 + αcj), j = 1, . . . , D, (8)

where
D

∑
j=1

cj = 0, (9)

and define

ℓ(α, b, c1, . . . , cD) = ℓ̄

(

α,
b

α2
(1 + αc1), . . . ,

b

α2
(1 + αcD)

)

.

Then as α → 0, the log-likelihood ℓ(α, b, c1, . . . , cD) for b and the cj satisfies

ℓ(α, b, c1, . . . , cD) =
nd

2
log

(

b

2π

)

−
b

2

n

∑
i=1

D

∑
j=1

(

yij − ȳi+ − cj

)2

+ nC0 + α

n

∑
i=1

C1,i + O(α2), (10)

where ȳi+ = D−1
∑

D
j=1 yij, ȳ++ = (nD)−1

∑
n
i=1 ∑

D
j=1 yij,

C0 = −
1

2
log(D)− Dȳ++, C1,i = −

b

6

(

Dκ̂3,i +
D

∑
j=1

c3
j

)

, (11)
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and

κ̂1,i ≡ ȳ1,i = D−1
D

∑
j=1

yij, κ̂2,i =

(

D−1
D

∑
j=1

y2
ij

)

− κ̂
2
1,i (12)

and

κ̂3,i =

(

D−1
D

∑
j=1

y3
ij

)

− 3κ̂1,i

(

D−1
D

∑
j=1

y2
ij

)

+ 2κ̂
3
1,i (13)

are the first three sample cumulants of the yi1, . . . , yiD.

Proposition 1 is proved in Section 6. We present several remarks below con-
cerning Proposition 1.

Remark 1. When α is small, the MLE obtained by maximising (10) is given by

ĉj = n−1
n

∑
i=1

(yij − ȳi+) + O(α) = ȳ+j − ȳ++ + O(α), 1 ≤ j ≤ D, (14)

where ȳ+j = n−1 ∑
n
i=1 yij, and

b̂ =

{

1

nd

n

∑
i=1

D

∑
j=1

(

yij − ȳ+j − ȳi+ + ȳ++
)2

}−1

+ O(α) (15)

Remark 2. The limit distribution is logistic normal with isotropic covariance
structure (see Remark 3 below for clarification). The simple covariance struc-
ture in the limit as α → 0 is a consequence of the restricted nature of the co-
variance structure of the Dirichlet distribution. Note that the limit distribution
has the same number of parameters as the D-dimensional Dirchlet distribution,
namely D.

Remark 3. Although the likelihood in (10) clearly has a Gaussian character, it
may not be immediately clear how it arises, given that when we sum yij − ȳi+

over j we get 0. To clarify, suppose we have independent Gaussian variables

Zj ∼ N(µj, σ2), j = 1, . . . , D, where it is assumed that ∑
D
j=1 µj = 0. Define Z̄ =

D−1 ∑
D
j=1 Zj to be the sample mean. The covariance matrix of (Z1 − Z̄, . . . , ZD −

Z̄)⊤ is ΣΣΣ = σ2
(

ID − D−11D1⊤D
)

, where ID is the D × D identity matrix and 1D

is the D-vector of ones. The Moore-Penrose inverse of ΣΣΣ is given by

ΣΣΣ− =
1

σ2

(

ID − D−11D1⊤D

)

8



and the relevant quadratic form is given by

(Z1 − Z̄ − µ1, . . . , ZD − Z̄ − µD)ΣΣΣ
−(Z1 − Z̄ − µ1, . . . , ZD − Z̄ − µD)

⊤

=
1

σ2

D

∑
j=1

(Zj − Z̄ − µj)
2 −

1

Dσ2

(

D

∑
j=1

(Zj − Z̄ − µj)

)2

=
1

σ2

D

∑
j=1

(Zj − Z̄ − µj)
2, (16)

because we have assumed that µ1 + · · ·+ µD = 0. Note that if we put b = 1/σ2,
cj = µj and Zj = yij, 1 ≤ j ≤ D, then (16) is equal to

b
D

∑
j=1

(

yij − ȳi+ − cj

)2
,

which agrees with the inner sum of the second term in (10).

Remark 4. The assumption (9) only plays a cosmetic role in the proof provided
that we are prepared to allow b and the cj to depend weakly on α. Specifically,

suppose that c̄+ = D−1 ∑
D
j=1 cj 6= 0. Then define

b∗ = b(1 + αc̄+) and c∗j =
cj − c̄+

1 + αc̄+
, j = 1, . . . , D.

It is easily checked that

bj ≡
b

α2
(1 + αcj) =

b∗

α2
(1 + αc∗j ) and

D

∑
j=1

c∗j = 0,

and also b∗ and the c∗j only depend weakly on α in the sense that b∗ → b and

c∗j → cj − c̄+, 1 ≤ j ≤ D, as α → 0.

Remark 5. Note that the bj defined in (8) have a rather special structure in that
they are asymptotically equal as α → 0. A natural question is: what happens to
the asymptotics in Proposition 1 if the bj do not coalesce as α → 0, specifically

if the bj are of the form bj = γj/α2. It turns out that, in contrast to Proposition
1, when the bj do not coalesce the log-likelihood does not converge to a finite
limit as α → 0, as we shall see later.

4.2 The role of asymptotic normality and the general case

The asymptotic regime considered in the previous section is quite limited be-
cause the bj in (8) satisfy

bj

∑
D
k=1 bk

→
1

D
as α → 0.
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However, it seems that we need this strong assumption to hold if we are to have
convergence to a finite log-likelihood as indicated in Proposition 1. One impor-
tant point we have not discussed yet is the fact that the Dirichlet distribution in
Proposition 1 is converging to a multivariate normal. Consider the following
elementary result.

Proposition 2. Suppose u(α) ∼ Dirchlet(γγγ/α2), where γγγ = (γ1, . . . , γD)
⊤. Then

as α → 0,
1

α
(u(α) − γ̄γγ) →d ND(0p, ΣΣΣ),

where ΣΣΣ = γ
−1
+

{

diag(γ̄γγ)− γ̄γγγ̄γγ⊤
}

, γ̄γγ = γ
−1
+ γγγ and γ+ = ∑

D
j=1 γj. Moreover,

the convergence of densities also occurs uniformly in growing balls of the form v ∈
Bα−1+ǫ(0) as α → 0 for any fixed ǫ ∈ (0, 1), in the sense that, on the set ∑

D
j=1 vj = 0,

α
d fγγγ/α2(γ̄γγ + αv) →

1

(2π)d/2

(

γd
+

∏
D
j=1 γ̄j

)1/2

exp

(

−
1

2

D

∑
j=1

γ+v2
j

γ̄j

)

uniformly for v ∈ Bα−1+ǫ(0), where in the line above, f is the Dirichlet density.

The proof of Proposition 2 is similar to that of Proposition 1 but is somewhat
simpler and so is omitted.

We now consider the asymptotic behaviour of y as α → 0 in the context of a
Dirichlet distribution with parameters which do not coalesce as in Proposition
1.

Corollary 1. Under the assumptions of Proposition 2,

y − ȳ1D −
D

α

(

γ̄γγ − D−11D

)

→d ND(0p, D2ΣΣΣ), (17)

where y = (y1, . . . , yD)
⊤, yj = log(xj) and ȳ = D−1

∑
D
j=1 yj, uj = xα

j / ∑
D
k=1 xα

k

and u = (u1, . . . , uD)
⊤ ∼ Dirichlet(γ1/α2, . . . , γD/α2).

Proof of Corollary 1. If uj = xα
j / ∑

D
k=1 xα

k , then elementary calculations show

that as α → 0,

uj =
1

D
+

α

D
(yj − ȳ) + O(α2). (18)

where yj = log(xj) and ȳ = D−1 ∑
D
j=1 yj. Consequently, from (18),

y − ȳ1D =
D

α
(u − D−11D) + O(α), (19)

and so Corollary 1 follows because, from Proposition 2, u ≈ ND(γ̄γγ, α2ΣΣΣ). �

So for u to attain a general limiting mean vector γ̄γγ in the limit as α → 0, it is
necessary for the expectation vector of y − ȳ1D to go to infinity as α → 0.
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Finally, we go to a more general case in which we do not assume that u ≡
u(α) is Dirichlet but just assume that as α → 0,

α
−1(u − ηηη) →d ND(0D , ΩΩΩ),

Since the u are defined on the simplex S im(d) the vector ηηη = (η1, . . . , ηD)
⊤ has

non-negative components which satisfy ∑
D
j=1 ηj = 1 and the covariance matrix

ΩΩΩ has an eigenvector 1D with corresponding eigenvalue 0. In this case, we
obtain the same limiting result as in (17), but with the more general covariance
matrix ΩΩΩ replacing ΣΣΣ, and with the same requirement that the mean vector of
y− ȳ1D goes to infinity if we wish for u to obtain a general limiting mean vector.

5 Numerical results

We first show the asymptotic results of the previous section on synthetic data
and then apply the α-transformation on real datasets.

5.1 Numerical Simulations

As discussed earlier, a finite log-likelihood is obtained under the assumption
in (8) for b. In contrast, when the Dirichlet’s parameters do not converge to
the same value as α → 0 the log-likelihood is expected to be infinite. Fig-
ure 1 presents this behaviour as it is encoded by the asymptotic limit for the
mean value y − ȳ. Blue lines correspond to the former case with b = 1 and
c = [0.1, 0.3,−0.4]T. As expected from Proposition 1, the mean value of y − ȳ
converges to a finite value which is however different at each coordinate due
to the different values of c’s elements. Red lines correspond to the case with
b = [1.1, 1.3, 0.6]T where the mean value diverges as implied by Corollary 1.
Evidently, the rate of divergence is inverse proportional to α.

Remark 6. The estimation of y requires the exponentiation of u with 1/α which
leads to numerical instability in the general case (i.e., the red lines) when α is
below 0.001. In order to ensure numerical stability, we calculate y with the
following equivalent formula

yj =
1

α
log

uj

uj∗
− log



1 +
D

∑
k=1,k 6=j∗

(

uk

uj∗

)
1
α





where j∗ = argmaxj bj.

5.2 Real data examples

Three real datasets are used for illustration purposes.
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Figure 1: Asymptotic comparison as α → 0 between Dirichlet
(

b
α2 (1D + αc)

)

(blue lines) and Dirichlet
(

b
α2

)

(red lines).

• Mammals. This dataset is taken from Hartigan [14] and describe the per-
centage composition of 24 mammals’ milk on the basis of 5 different con-
stituents (water, protein, fat, lactose and ash). A 4-group solution has been
considered as the optimal grouping of such data.

• East Bay Clams. From the many colonies of clams in East Bay, 20 were
selected at random and from each a sample of clams was taken [2]. Each
sample was sieved into three size ranges, large, medium, small; then each
size range was sorted by shell colour, dark, light. For each colony the
proportions of clams in each colour-size combination was estimated and
the corresponding compositions are recorded.

• OECD. The dataset contains percentages of the labour force and the per
capita income of 20 European OECD countries in 1960. The data can be
downloaded from the DASL library.

• GRTA. This dataset contains information on the number of Greek road
traffic accidents and persons injured from January 2010 up to August 2017
on a monthly basis. Three quantities of interest are measured, Killed, se-
riously injured and slightly injured.

For each of these three datasets, we apply the α-transformation (3) and max-
imise the Dirichlet log-likelihood. This is the same as maximizing the profile
log-likelihood of α presented in (6). For a range of values of α we apply the
α-transformation (3) to the compositional data and maximize the sum of the
Dirichlet log-likelihood in (6) and the logarithm of the Jacobian in (5) of the
α-transformation given in (3). Figure 2 presents these profile log-likelihoods.
Tables 1–4 show the resulting estimates of the Dirichlet parameters obtained
from the MLE applied to the α-transformed data and based on the two asymp-
totic forms. Asymptotic 1 corresponds to Dirichlet

(

b(1D + αc)/α2
)

model with
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Figure 2: Profile log-likelihood as a function of α for the (a) Mammals, (b) East

Bay Clams, (c) OECD and (d) GRTA datasets.

b and c being estimated from (15) and (14), respectively while Asymptotic 2 cor-
responds to the general case Dirichlet

(

b/α2
)

. The estimation of the parameter
vector b is based again on MLE. Therefore the results for Asymptotic 2 are ex-
pected to be similar with the results when direct MLE is applied.

Table 1: Estimates of the parameters for the Mammals dataset. The columns
of the table give estimates of parameters bj defined in (8), but labelled
by the component name rather than j. The optimal value for α is 0.06.

Method water protein fat lactose ash
Direct MLE 793.908 671.054 680.629 663.055 604.305
Asymptotic 1 782.297 668.362 677.964 660.235 597.352
Asymptotic 2 793.673 670.856 680.428 662.859 604.127

6 Proofs

Proof of Proposition 1. Let us focus on the log-likelihood for a single observa-
tion i. At the end of the proof we will sum over i to obtain the log-likelihood

13



Table 2: Estimates for the East Bay Clams dataset. The columns of the table
give estimates of parameters bj defined in (8), but labelled by compo-
nent name rather than j. The optimal value for α is 0.28.

Method dl dm ds
Direct MLE 232.218 224.377 222.197
Asymptotic 1 231.568 223.800 221.592
Asymptotic 2 231.990 224.156 221.979

Table 3: Estimates for the OECD dataset. The columns of the table give esti-
mates of the parameters bj defined in (8), but labelled by component
name rather than j. The optimal value for α is 0.14.

Method PCINC AGR IND SER
Direct MLE 212.965 129.782 143.360 136.907
Asymptotic 1 199.034 124.925 139.824 132.928
Asymptotic 2 212.669 129.601 143.161 136.716

(10).

After re-organization, the log-likelihood for observation i may be written

ℓ̄i(α, b, , c1, . . . , cD) = log

{

Γ

(

bD

α2

)}

−
D

∑
j=1

log

{

Γ

(

b

α2
(1 + αcj)

)}

+ d log(|α|) +
D

∑
j=1

{

b

α
(1 + αcj)− 1

}

log(xij)

−
D

∑
j=1

{

b

α2
(1 + αcj)

}

log

(

D

∑
k=1

xα
ik

)

. (20)

We now make use of Lemma 1 and Lemma 2 which are stated and proved
below. Noting that

D

∑
j=1

{

b

α
(1 + αcj)− 1

}

log(xij) =
bD

α
κ̂1,i + b

D

∑
j=1

cjyij − Dκ̂1,i,

14



Table 4: Estimates for the GRTA dataset. The columns of the table give esti-
mates of the parameters bj defined in (8), but labelled by component
name rather than j. The optimal value for α is −0.04.

Method Killed Seriously injured Slightly injured
Direct MLE 28366.65 28109.32 25420.99
Asymptotic 1 28305.94 28057.80 25320.62
Asymptotic 2 28366.36 28109.03 25420.73

and substituting (22) and (25) into (20), we obtain, as α → 0,

ℓi(α, b, c1, . . . , cD) = ℓ̄i

(

α,
b

α2
(1 + αc1), . . . ,

b

α2
(1 + αcD)

)

=
d

2
log(b)−

d

2
log(2π)−

b

2

D

∑
j=1

(

yij − ȳi+ − cj

)2

−
1

2
log(D)−

αb

6

(

Dκ̂3,i +
D

∑
k=1

c3
k

)

+ O(α2)

=
d

2
log

(

b

2π

)

−
b

2

D

∑
j=1

(

yij − ȳi+ − cj

)2

+ C0 + αC1,i + O(α2), (21)

where C0 and C1,i are defined in (11). Finally, sum (21) over i to obtain (10). �

Lemma 1 and Lemma 2 are now stated and proved.

Lemma 1. With the bj defined as in (8) with the cj subject to (9), the following result
holds: as α → 0,

log

{

Γ

(

D

∑
j=1

bj

)}

−
D

∑
j=1

log
{

Γ(bj)
}

=
bD log(D)

α2
− d log(|α|) +

d

2
log(b)−

1

2
log(D)−

d

2
log(2π)

−
b

2

D

∑
j=1

c2
j −

αb

6

D

∑
j=1

c3
j + O(α2) (22)

Proof of Lemma 1. This involves no more than repeated application of Stirling’s
formula

log{Γ(x)} =

(

x −
1

2

)

log(x)− x +
1

2
log(2π) + O(x−1), x → ∞.
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Making use of (9) and applying Stirling’s formula gives

log

{

Γ

(

D

∑
j=1

bj

)}

= log

{

Γ

(

bD

α2

)}

=

(

bD

α2
−

1

2

)

log

(

bD

α2

)

−
bD

α2
+

1

2
log(2π) + O(α2)

= −
2bD

α2
log(|α|) +

bD

α2
log(b) +

bD

α2
log(D)−

1

2
log(b)

−
1

2
log(D) + log(|α|)−

bD

α2
+

1

2
log(2π) + O(α2). (23)

Similarly,

log
{

Γ(bj)
}

= log

{

Γ

(

b

α2
(1 + αcj)

)}

=

{

b

α2
(1 + αcj)−

1

2

}

log

{

b

α2
(1 + αcj)

}

−
b

α2
(1 + αcj) +

1

2
log(2π) + O(α2)

=
b

α2
log(b)−

2b

α2
log(|α|) +

bcj

α
log(b)−

2bcj

α
log(|α|)

−
1

2
log(b) + log(|α|) +

bcj

α

−
bc2

j

2
+

αbc3
j

6
+ bc2

j −
αbc3

j

2
−

αcj

2

−
b

α2
(1 + αcj) +

1

2
log(2π) + O(α2). (24)

Summing (24) over j = 1, . . . , D and subtracting from (23) yields (22) after some
further calculations. �

Lemma 2. As α → 0,

D

∑
j=1

{

b

α2
(1 + αcj)

}

log

(

D

∑
k=1

xα
ik

)

=
bD

α2
log(D) +

bD

α
κ̂1,i +

bD

2
κ̂2,i

+
αbD

6
κ̂3,i + O(α2), (25)

where κ̂1,i, κ̂2,i and κ̂3,i are defined in (12) and (13).
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Proof of Lemma 2. As α → 0,

log

(

D

∑
k=1

xα
ik

)

= log

(

D

∑
k=1

exp(αyik)

)

= log

(

D

∑
k=1

1 + αyik +
1

2
α

2y2
ik +

1

6
α

3y3
ik + O(α4)

)

= log

{

D + αDȳi+ +
1

2
α

2
D

∑
k=1

y2
ik +

1

6
α

3
D

∑
k=1

y3
ik + O(α4)

}

= log(D) + log

{

1 + αȳik +
1

2
α

2D−1
D

∑
k=1

y2
ik +

1

6
α

3D−1
D

∑
k=1

y3
ik + O(α4)

}

= log(D) + ακ̂1,i +
α2

2
κ̂2,i +

α3

6
κ̂3,i + O(α4), (26)

where κ̂i,1, κ̂i,2 and κ̂i,3 are defined in (12) and (13). Since, by (9),

D

∑
j=1

bcj

α
log

(

D

∑
k=1

xα

ik

)

= 0,

(25) follows easily when we multiply (26) by (bD)/α2 and collect terms. �

7 Discussion and Conclusions

Our numerical and theoretical results show that some care is needed when ap-
plying a finite-dimensional family of transformations to a parametric model,
and then fitting the resulting larger model by maximum likelihood. The par-
ticular focus of study here is on using the α-transformed Dirichlet distribution
as the parametric model. The numerical results in Section 5 and the theoretical
results Proposition 1 and Corollary 1 in Section 4 suggest that when the max-
imum likelihood estimator of α is close to 0, there is a tendency for the other
parameter estimates to be rather large. In some of these cases with α̂ small
one may be better off using the log-ratio transformation, provided there are no
sample data components which are zero or very close to zero.
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