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Abstract. An S-hypersimplex for S ⊆ {0, 1, . . . , d} is the convex hull of all 0/1-vectors of length d with
coordinate sum in S. These polytopes generalize the classical hypersimplices as well as cubes, crosspoly-
topes, and halfcubes. In this paper we study faces and dissections of S-hypersimplices. Moreover, we show
that monotone path polytopes of S-hypersimplices yield all types of multipermutahedra. In analogy to
cubes, we also show that the number of simplices in a pulling triangulation of a halfcube is independent of
the pulling order.

1. Introduction

The cube �d = [0, 1]d together with the simplex ∆d = conv(0, e1, . . . , ed) and the cross-polytope
♦d = conv(±e1, . . . ,±ed) constitute the Big Three, three infinite families of convex polytopes whose
geometric and combinatorial features make them ubiquitous throughout mathematics. A close cousin to
the cube is the (even) halfcube

Hd := conv
(
p ∈ {0, 1}d : p1 + · · ·+ pd even

)
.

The halfcubes H1 and H2 are a point and a segment, respectively, but for d ≥ 3, Hd ⊂ Rd is a full-
dimensional polytope. The 5-dimensional halfcube was already described by Thomas Gosset [11] in his
classification of semi-regular polytopes. In contemporary mathematics, halfcubes appear under the name
of demi(hyper)cubes [7] or parity polytopes [26]. In particular the name ‘parity polytope’ suggests a
connection to combinatorial optimization and polyhedral combinatorics; see [6, 10] for more. However,
halfcubes also occur in algebraic/topological combinatorics [13, 14], convex algebraic geometry [22], and
in many more areas.

In this paper, we investigate basic properties of the following class of polytopes that contains cubes,
simplices, cross-polytopes, and halfcubes. For a nonempty subset S of [0, d] := {0, 1, . . . , d}, we define the
S-hypersimplex

∆(d, S) := conv
(
v ∈ {0, 1}d : v1 + v2 + · · ·+ vd ∈ S

)
.

In the context of combinatorial optimization these polytopes were studied by Grötschel [15] associated to
cardinality homogeneous set systems. Our name and notation derive from the fact that if S = {k} is a
singleton, then ∆(d, S) =: ∆(d, k) is the well-known (d, k)-hypersimplex, the convex hull of all vectors
v ∈ {0, 1}d with exactly k entries equal to 1. This is a (d − 1)-dimensional polytope for 0 < k < d that
makes prominent appearances in combinatorial optimization as well as in algebraic geometry [19]. We call
S proper, if ∆(d, S) is a d-dimensional polytope, which, for d > 1, is precisely the case if |S| 6= 1 and
S 6= {0, d}. For appropriate choices of S ⊆ [0, d], we get

– the cube �d = ∆(d, [0, d]),
– the even halfcube Hd = ∆(d, [0, d] ∩ 2Z),
– the simplex ∆d = ∆(d, {0, 1}), and
– the cross-polytope ∆(d, {1, d− 1}) (up to linear isomorphism).
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In Section 2, we study the vertices, edges, and facets of S-hypersimplices.

Our study is guided by a nice decomposition of S-hypersimplices into Cayley polytopes of hypersimplices.

In Section 3 we return to the halfcube. A combinatorial d-cube has the interesting property that all
pulling triangulations have the same number of d-dimensional simplices. The Freudenthal or staircase
triangulation is a pulling triangulation and shows that the number of simplices is exactly d!. We show
that the number of simplices in any pulling triangulation of Hd is independent of the order in which the
vertices are pulled. Moreover, we relate the full-dimensional simplices in any pulling triangulation of Hd

to partial permutations and show that their number is given by

t(d) =

d∑
l=3

d!

l!

(
2l−1 − l

)
.

For a polytope P ⊂ Rd and a linear function ` : Rd → R, Billera and Sturmfels [4] associate themonotone
path polytope Σ`(P ).This is a (dimP −1)-dimensional polytope whose vertices parametrize all coherent
`-monotone paths of P . As a particularly nice example, they show in [4, Example 5.4] that the monotone
path polytope Σc(�d), where c is the linear function c(x) = x1 + x2 + · · · + xd, is, up to homothety, the
polytope

Πd−1 = conv((σ(1), . . . , σ(d)) : σ permutation of [d]) .

For a point p ∈ Rd, the convex hull of all permutations of p is called the permutahedron Π(p) and we
refer to Πd−1 = Π(1, 2, . . . , d) as the standard permutahedron. If p has d distinct coordinates, then Π(p)
is combinatorially (even normally) equivalent to Πd−1. For the case that p has repeated entries, these
polytopes were studied by Billera-Sarangarajan [3] under the name of multipermutahedra. In Section 4,
we study maximal c-monotone paths in the vertex-edge-graph of ∆(d, S). We show that all c-monotone
paths of ∆(d, S) are coherent and that essentially all multipermutahedra Π(p) for p ∈ [0, d− 1]d occur as
monotone path polytopes of S-hypersimplices.

We close with some questions and ideas regarding S-hypersimplices in Section 5.

Acknowledgements. This paper grew out of a project that was part of the course Polytopes, Triangula-
tions, and Applications at Goethe University Frankfurt in spring 2018. We thank Anastasia Karathanasis
for her support in the early stages of this project. We also thank Jesús de Loera, Georg Loho, and the
anonymous referee for many helpful remarks.

2. S-hypersimplices

The vertices of the d-cube can be identified with sets A ⊆ [d] and we write eA ∈ {0, 1}d for the point with
(eA)i = 1 if and only if i ∈ A. Let S ⊆ [0, d]. Since ∆(d, S) is a vertex-induced subpolytope of the cube,
it is immediate that the vertices of ∆(d, S) are in bijection to(

[d]

S

)
:= {A ⊆ [d] : |A| ∈ S} .

This gives the number of vertices as |V (∆(d, S))| =
∑

s∈S
(
d
s

)
.

For a polytope P ⊂ Rd and a vector c ∈ Rd, let

P c := {x ∈ P : 〈c,x〉 ≥ 〈c,y〉 for all y ∈ P}

be the face in direction c. For example, unless S = {0}, ∆(d, S)ei is the convex hull of all eA with
A ∈

([d]
S

)
with i ∈ A. Likewise, unless S = {d}, ∆(d, S)−ei = conv(eA : A ∈ A ∈

([d]
S

)
, i 6∈ A). Under the

identification {x : xi = 1} ∼= Rd−1, this gives for |S| > 1

(1)
∆(d, S)ei ∼= ∆(d− 1, S+) where S+ := {s− 1 : s ∈ S, s > 0} ,

∆(d, S)−ei ∼= ∆(d− 1, S−) where S− := {s : s ∈ S, s < d− 1} .
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These faces will be helpful in determining the edges of ∆(d, S). For two sets A,B ⊆ [d], we denote the
symmetric difference of A and B by A4B := (A ∪ B) \ (A ∩ B). For two points p,q ∈ Rd, we write
[p,q] for the segment joining p to q.

Theorem 2.1. Let S = {0 ≤ s1 < · · · < sk ≤ d} and A,B ∈
([d]
S

)
with |A| = si ≤ sj = |B|. Then [eA, eB]

is an edge of ∆(d, S) if and only if

(i) A ⊂ B and j = i+ 1, or
(ii) i = j, |A4B| = 2, and {si − 1, si + 1} 6⊂ S.

Proof. Let A,B ∈
([d]
S

)
. If i ∈ A ∩ B, then [eA, eB] is an edge of ∆(d, S) if and only if [eA, eB] is an

edge of ∆(d, S)ei . By (1), ∆(d, S)ei ∼= ∆(d − 1, S+) and [eA, eB] ∼= [eA\i, eB\i]. Hence we can assume
A ∩B = ∅. For i ∈ [d] \ (A ∪B), we consider ∆(d, S)−ei and by the same argument we may also assume
that A ∪B = [d].

If A = ∅, then B = [d] and [eA, eB] meets every ∆(d, k) in the relative interior for 0 < k < d. Hence
[eA, eB] is an edge if and only if S = {0, d}, which gives us (i).

If 0 < si = |A|, then let i ∈ A and j ∈ B. Then [eA, eB] and [eA′ , eB′ ] have the same midpoint for
A′ = (A \ i) ∪ j and B′ = (B \ j) ∪ i. Thus [eA, eB] is an edge of ∆(d, S) if and only if (A′, B′) = (B,A).
This is the case precisely when |A4B| = 2 and A ∩B,A ∪B 6∈

([d]
S

)
. �

Theorem 2.1 makes the number of edges readily available.

Corollary 2.2. The number of edges of ∆(d, S) is

k∑
i=1

(
d− si
si+1 − si

)(
d

si

)
+
∑
j

sj(d− sj)
2

(
d

sj

)
,

where we set sk+1 = 0 and the second sum is over all 1 ≤ j ≤ k, such that {sj − 1, sj + 1} 6⊂ S.

Let us illustrate Theorem 2.1 for the classical examples of S-hypersimplices. For �d = ∆(d, [0, d]) it states,
that the edges are of the form [eA, eB] for any A ⊂ B ⊆ [d] such that |A| + 1 = |B|. For the halfcube
Hd = ∆(d, [0, d]∩2Z) we infer that there are d(d−1)2d−3 many edges for d ≥ 3. As for the cross-polytope
∆(d, {1, d− 1}), every two vertices are connected by an edge, except for e{i} and e[d]\{i} for all i ∈ [d].

Theorem 2.1 states that there are no long edges of ∆(d, S). We can make use of this fact to get a canonical
decomposition of ∆(d, S). For λ ∈ R, define the hyperplane

H(λ) := {x ∈ Rd : x1 + · · ·+ xd = λ} .

We note the following consequence of Theorem 2.1.

Corollary 2.3. Let S ⊆ [0, d] and s ∈ S. Then ∆(d, S) ∩H(s) = ∆(d, s).

Proof. Every vertex v of ∆(d, S) ∩ H(s) is of the form F ∩ H(s) for a unique inclusion-minimal face
F ⊆ ∆(d, S) of dimension ≤ 1. If F is an edge, then its endpoints eA, eB satisfy |A| < s < |B| which
contradicts Theorem 2.1. Hence F = eC for some C ⊆ [d] with |C| = s. �

If S = {s1 < · · · < sk} with k ≥ 2, then we can decompose

(2) ∆(d, S) = ∆(d, s1, s2) ∪ ∆(d, s2, s3) ∪ · · · ∪ ∆(d, sk−1, sk) ,

where we set ∆(d, k, l) := ∆(d, {k, l}) = conv(∆(d, k) ∪ ∆(d, l)) for 0 ≤ k < l ≤ d. The polytope
∆(d, k, l) is the Cayley polytope of ∆(d, k) and ∆(d, l). Moreover, for i < j, we see that ∆(d, si, si+1)∩
∆(d, sj , sj+1) = ∆(d, sj) if j = i+ 1 and = ∅ otherwise.
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Before we determine the facets of ∆(d, S), we recall some properties of permutahedra from [3] that we
will also need in Section 4. A point p ∈ Rd is decreasing if p1 ≥ p2 ≥ · · · ≥ pd. The permutahedron
associated to p is the polytope

Π(p) := conv
(
σp := (pσ(1), pσ(2), . . . , pσ(d)) : σ permutation of [d]

)
.

Unless pi = pj for all i 6= j, Π(p) is a polytope of dimension d−1 with affine hull given by H(p1+ · · ·+pd).

Notice that Π(p)σu = σ−1Π(p)u. Thus, if we want to determine the face Π(p)u up to permutation of
coordinates, we can assume that u is decreasing. The Minkowski sum of two polytopes P,Q ⊂ Rd is
the polytope P +Q = {p + q : p ∈ P, q ∈ Q}.

Proposition 2.4. Let p,q ∈ Rd be decreasing. Then

Π(p) + Π(q) = Π(p + q) .

Proof. Set P := Π(p)+Π(q). Clearly σ(p+q) = σp+σq for all permutations σ and therefore every vertex
of Π(p+q) is a vertex of P . For the converse, let c be such that P c = {v} is a vertex. Since P is invariant
under coordinate permutations, we can assume that c is decreasing. Furthermore (Π(p) + Π(q))c =
Π(p)c + Π(q)c and it follows that v = p + q. Hence, every vertex of P is of the form σ(p + q) for some
permutation σ, which completes the proof. �

For ν1 > ν2 > · · · > νr and k1, k2, . . . , kr ∈ Z>0 such that k1 + · · ·+ kr = d, we set

(νk11 , ν
k2
2 , . . . , ν

kr
r ) := (ν1, . . . , ν1︸ ︷︷ ︸

k1

, ν2, . . . , ν2︸ ︷︷ ︸
k2

, . . . , νr, . . . , νr︸ ︷︷ ︸
kr

) .

For example, the (d, k)-hypersimplex is the permutahedron ∆(d, k) = Π(1k, 0d−k).

The facets of permutahedra were described by Billera-Sarangarajan [3]. We recall their characterization.
We write Ic := [d] \ I for the complement of I ⊆ [d].

Theorem 2.5 ([3, Theorem 3.2]). Let P = Π(νk11 , . . . , ν
kr
r ) and c ∈ Rd. Then P c is a facet if and only if

c = αeI + βeIc for some α > β and ∅ 6= I ⊂ [d] and h = |I| satisfies
(a) k1 + 1 ≤ h ≤ d− kr − 1, or
(b) h = 1 if k1 < d− 1, or
(c) h = d− 1 if kr < d− 1.

The theorem shows, for example, that ∆(d, k) for 1 < k < d − 1 has 2d facets with normals given by
±e1, . . . ,±ed.
In order to determine the facets of ∆(d, S), we appeal to the decomposition (2). Let S = {0 ≤ s1 < s2 <
· · · < sk ≤ d} be proper so that ∆(d, S) ⊂ Rd is full-dimensional. We write 1 := e[d] for the all-ones
vector. If s1 > 0, then ∆(d, s1) = ∆(d, S)−1 is a facet. Likewise, if sd < d, then ∆(d, sk) = ∆(d, S)1 is a
facet. If F ⊂ ∆(d, S) is any other facet, then its vertices cannot have all the same cardinality. If si ∈ S
is the minimal cardinality of a vertex in F , then F ∩∆(d, si, si+1) is a facet of ∆(d, si, si+1). Hence, as a
first step, we determine the facets of ∆(d, si, si+1) that are not equal to ∆(d, si) and ∆(d, si+1).

Let S = {k < l} be proper. An easy calculation shows that

∆(d, k, l) ∩H(k+l2 ) = 1
2(∆(d, k) + ∆(d, l)) .

Moreover, if F ⊂ ∆(d, k, l) is a facet, then F ∩ H(k+l2 ) is a facet of the right-hand side and every facet
arises that way. Hence it suffices to determine the facets of ∆(d, k, l) := ∆(d, k)+∆(d, l). We will need the
notion of a join of two polytopes: If P,Q ⊂ Rd are polytopes such that their affine hulls are skew, i.e., non-
parallel and disjoint, then P ∗Q := conv(P ∪Q) is called the join of P and Q. Every k-dimensional face of
P ∗Q is of the form F ∗G where F ⊆ P and G ⊆ G are (possibly empty) faces with dimF +dimG = k−1.
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Proposition 2.6. Let 1 ≤ k < l < d. In addition to the facets ∆(d, k, l)1 = ∆(d, l) and ∆(d, k, l)−1 =
∆(d, k), there are

∆(d, k, l)ei ∼= ∆(d− 1, k − 1, l − 1) and ∆(d, k, l)−ei ∼= ∆(d− 1, k, l)

for i = 1, . . . , d. Every other facet is of the form

∆(d, k, l)c ∼= ∆(h, k) ∗∆(d− h, l − h)

where c = (l − h)eI − (h− k)eIc for any ∅ 6= I ⊂ [d] with k < h := |I| < l.

Proof. We first determine the facets of ∆(d, k, l). Using Proposition 2.4, we see that ∆(d, k, l) is the
permutahedron Π(2k, 1l−k, 0d−l). Theorem 2.5 yields that the facet directions of ∆(d, k, l) are given c =
αeI + βeIc for ∅ 6= I ⊂ [d] with |I| = 1, |I| = d− 1, or k < |I| < l and α > β. In particular, for every I
there is, up to scaling, a unique choice for α and β so that ∆(d, k, l)c is a facet.

For I = {i} we already observed that c = eI = ei yields a facet linearly isomorphic to ∆(d−1, k−1, l−1).
Likewise, for [d]\I = {j}, we obtain for c = eI−1 = −ej a facet that is linearly isomorphic to ∆(d−1, k, l).

For I ⊆ [d] with k < |I| < l, we observe that eA ∈ ∆(d, k)eI if and only if A ⊂ I and eA ∈ ∆(d, l)eI if and
only if I ⊂ A. Set h := |I| and c = (l − h)eI − (h− k)eIc . For A ∈

([d]
k

)
we compute

〈c, eA〉 = (l − h)|A ∩ I| − (h− k)|A ∩ Ic| ≤ (l − h)k

with equality if and only if A ⊂ I. For A ∈
([d]
l

)
, we compute

〈c, eA〉 = (l − h)|A ∩ I| − (h− k)|A ∩ Ic| ≤ (l − h)h− (h− k)(l − h) = (l − h)k

with equality if and only if I ⊂ A. Hence the hyperplane H = {x : 〈c,x〉 = (l − h)k} supports ∆(d, k, l)
in a facet, since H also supports a facet of ∆(d, k, l). In particular, ∆(d, k) ∩ H ∼= ∆(h, k) under the
identification {x : xi = 0 for i 6∈ I} ∼= Rh. Likewise ∆(d, l) ∩H ∼= ∆(d− h, l − h) under the identification
{x : xi = 1 for i ∈ I} ∼= Rd−h. This also shows that the given subspaces are skew and, since they lie in
H(k) and H(l) respectively, are disjoint. This shows that ∆(d, l, k) ∼= ∆(h, k) ∗∆(d− h, l − h). �

It follows from Proposition 2.6 that ∆(d, k, l) and ∆(d, l,m) for 0 < k < l < m < d never have facet
normals of type (v) in common. This gives us the following description of facets of S-hypersimplices; see
also [15].

Theorem 2.7. Let S = {0 ≤ s1 < · · · < sk ≤ d} be proper. Then ∆(d, S) has the following facets

(i) ∆(d, S)1 = ∆(d, sk) provided sk < d;
(ii) ∆(d, S)−1 = ∆(d, s1) provided 0 < s1;
(iii) ∆(d, S)ei ∼= ∆(d− 1, S+) for i = 1, . . . , d provided S+ is proper;
(iv) ∆(d, S)−ei ∼= ∆(d− 1, S−) for i = 1, . . . , d provided S− is proper;
(v) ∆(d, S)uI ∼= ∆(h, h − si) ∗ ∆(d − h, si+1 − h) where I ⊂ [d] with si < |I| =: h < si+1 for some

0 < i < k and uI := (si+1 − h)eI − (h− si)eIc.

Proof. By decomposition (2), every facet F of ∆(d, S) determines a facet of ∆(d, si, si+1) for some 1 ≤ i < k
and F is decomposed by this collection of facets. By examining the possible facet normals of ∆(d, si, si+1),
the statement readily follows. �

If S = [0, d], then Theorem 2.7 gives us that �d has exactly 2d facets in the coordinate directions ±ei
for i = 1, . . . , d. The facets are again cubes as [0, d]± = [0, d − 1]. The d-dimensional crosspolytope
♦d ∼= ∆(d, {1, d − 1}) has 2d facets. The two facets of type (i), (ii), and those of type (iii) and (iv) are
simplices. As for type (v) this is a join of two simplices and thus also a simplex.

The description of combinatorial type of each facet also leads to the number of k-dimensional faces for
0 ≤ k < d; cf. [21].
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3. Pulling triangulations

A subdivision S of a d-dimensional polytope P ⊂ Rd is a collection S = {P1, . . . , Pm} of d-polytopes
such that P = P1∪· · ·∪Pm and Pi∩Pj is a face of Pi and Pj for all 1 ≤ i < j ≤ m. If all polytopes Pi are
simplices, then S is called a triangulation. Triangulations are the method-of-choice for various compu-
tations on polytopes including volume, lattice point counting, or, more generally, computing valuations;
see [8].

A powerful method for computing a triangulation is the so-called pulling triangulation. Let P be a
d-polytope and v ∈ V (P ) a vertex. Let F1, . . . , Fm be the facets of P not containing v. A key insight is
that the collection of polytopes

Pi := v ∗ Fi := conv(Fi ∪ {v}) for i = 1, . . . ,m

constitutes a subdivision of P . This idea can be extended to obtain triangulations. Let � be a partial
order on the vertex set V (P ) such that every nonempty face F ⊆ P has a unique minimal element with
respect to �. We denote the minimal vertex of F by vF . The pulling triangulation Pull�(P ) of P is
recursively defined as follows. If P is a simplex, then Pull�(P ) = {P}. Otherwise, we define

(3) Pull�(P ) =
⋃
F

vP ∗ Pull�(F ) ,

where the union is over all facets F ⊂ P that do not contain vP and where vP ∗ Pull�(F ) := {vP ∗ Q :
Q ∈ Pull�(F )}.
For the cube �d, or more generally the class of compressed polytopes [25], it can be shown that every
simplex S in a pulling triangulation of �d has the same volume 1

d! . Thus, every pulling triangulation has
exactly d! many simplices, independent of the chosen order �.
Recall that the halfcube is the S-hypersimplex Hd = ∆(d, [0, d] ∩ 2Z). For d ≥ 5 it is not true that the
simplices in a pulling triangulation of Hd all have the same volume. The main result of this section is that
still the number of simplices in a pulling triangulation is independent of the choice of �.

Theorem 3.1. Every pulling triangulation of Hd has the same number of simplices. The number of
simplices t(d) := |Pull�(Hd)| is given by

t(d) =

d∑
l=3

d!

l!

(
2l−1 − l

)
.

The proof of Theorem 3.1 is in two parts. We first show that the number of simplices of Pull�(Hd) is
independent of �. This yields a recurrence relation on t(d). In the second part we review the construction
of Pull�(Hd) from the perspective of choosing facets, which yields a combinatorial interpretation for t(d)
and which then verifies the stated expression.

From Theorem 2.7 we infer the following description of facets of Hd for d ≥ 3: For every i = 1, . . . , d we
have

H−eid = Hd ∩ {x : xi = 0} ∼= Hd−1 ,

Hei
d = Hd ∩ {x : xi = 1} ∼= Hd−1 ,

where the last isomorphism is realized by reflection in a hyperplane {x : xj = 1
2} for j 6= i. The remaining

facets of Hd are provided by Theorem 2.7(v) and, in case d is odd, by (i): For B ⊆ [d] with |B| odd and
uB = eB − eBc , we have

HuB
d = Hd ∩ {x : 〈eB,x〉 − 〈eBc ,x〉 = |B| − 1} ∼= ∆d−1 .

Proposition 3.2. The number t(d) of simplices in a pulling triangulation of Hd satisfies

t(d) = d · t(d− 1) + 2d−1 − d
for d ≥ 4 and t(d) = 1 for d ≤ 3.
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Proof. We prove the result by induction on d. For d = 1, 2, 3, we note that Hd is itself a simplex and thus
there is nothing to prove.

For d ≥ 4, let A ⊆ [d] be an even subset such that eA ∈ {0, 1}d is the minimal vertex of P with respect to
�. By the discussion preceeding the proposition, the facets not containing eA are Hei

d
∼= Hd−1 for i 6∈ A,

H−eid
∼= Hd−1 for i ∈ A, and HuB

d
∼= ∆d−1 for

B ∈ B := {B ⊆ [d] : |B| odd, |A4B| > 1} .

Note that |B| = 2d−1 − d. Thus it follows from (3) that

t(d) = |Pull�(Hd)| =
∑
i∈A
|Pull�(H−eid )|+

∑
i 6∈A
|Pull�(Hei

d )|+
∑
B∈B
|Pull�(HuB

d )|

= d · t(d− 1) + 2d−1 − d ,

where the last equality follows by induction. �

Let P ⊂ Rd be a full-dimensional polytope with suitable partial order � on V (P ). Every simplex in
Pull�(P ) corresponds to a chain of faces

(4) P = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gk

such that dimGi = d− i and Gk is a simplex of dimension d−k. The corresponding simplex is then given
by vG0 ∗ vG1 ∗ · · · ∗Gk. If P is a simple polytope with facets F1, . . . , Fm, then any such chain of faces is
given by an ordered sequence of distinct indices h1, h2, . . . , hk such that

Gi = Fh1 ∩ Fh2 ∩ · · · ∩ Fhi
for all i = 0, . . . , k.

For the d-dimensional cube �d, the facets can be described by (i, δ) ∈ [d]× {0, 1} so that

Kδ
i := �d ∩ {xi = δ} ∼= �d−1 .

The only faces of �d that are simplices have dimensions ≤ 1 and thus simplices in Pull�(�d) correspond
to sequences (i1, δ1), . . . , (id−1, δd−1) ∈ [d]× {0, 1} with is 6= it for s 6= t. Thus, if we choose id such that
{i1, . . . , id−1, id} = [d], then every simplex of Pull�(�d) determines a permutation σ = i1i2 · · · id of [d].

Observe that for any vertex v ∈ �d and i ∈ [d], we have that v ∈ K0
i or v ∈ K1

i . This means that for any
permutation σ = i1i2 · · · id of [d] there are δ1, δ2, . . . , δd−1 ∈ {0, 1} such that (i1, δ1), . . . , (id−1, δd−1) come
from a simplex in Pull�(�d). This shows that |Pull�(�d)| = d! independent of the order �.
We call a sequence τ = i1i2 . . . ik with i1, . . . , ik ∈ [d] a partial permutation if is 6= it for s 6= t. We
simply write [d] \ τ for [d] \ {i1, . . . , ik}. The following Proposition completes the proof of Theorem 3.1.

Proposition 3.3. For any suitable partial order �, the simplices of Pull�(Hd) for d ≥ 3 are in bijection
to pairs (τ,B) where τ is a partial permutation of [d] and B ⊆ [d] \ τ is a non-singleton subset of odd
cardinality.

Proof. Since H3 is a simplex and the only admissible pair (τ,B) is given by the empty partial permutation
and B = [3], we assume d ≥ 4. For i = 1, . . . , d and δ ∈ {0, 1}, let

F δi := Hd ∩ {xi = δ} ∼= Hd−1

be the halfcube facets of Hd. The halfcube Hd for d ≥ 4 is not a simple polytope. However, it follows from
Theorem 2.7 that the faces of Hd are halfcubes or simplices. If G ⊂ Hd is a face linearly isomorphic to a
halfcube of dimension d−k ≥ 4, then G is a simple face in the sense that G is precisely the intersection of
k halfcube facets. Every chain of faces (4) corresponds to some (i1, δ1), . . . , (ik−1, δk−1) ∈ [d]×{0, 1} such
that Gk−1 = F δ1i1 ∩ · · · ∩ F

δk−1

ik−1
is isomorphic to Hd−k+1 and Gk is a simplex facet of Gk−1 not containing

vGk−1
. This gives rise to a unique partial permutation τ = i1i2 . . . ik−1. To see that any such partial

permutation can arise, we observe that again V (Hd) ⊂ F 0
i ∪ F 1

i for all i = 1, . . . , d. We can identify Gk−1
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with Hd−k+1 embedded in {x : xi1 = · · · = xik−1
= 0} and vGk−1

= 0. Now any simplex facet of Hd−k+1

corresponds to an odd-cardinality subset B ⊂ [d] \ τ with |B| 6= 1. �

4. Monotone paths

Let P ⊂ Rd be a polytope and ` : Rd → R a linear function. An `-monotone path of P is a sequence of
vertices W = v1,v2, . . . ,vk such that [vi,vi+1] is an edge of P for i = 1, . . . , k − 1 and

min `(P ) = `(v1) < `(v2) < · · · < `(vk) = max `(P ) .

More generally, a collection of faces F1, F2, . . . , Fk of P is an induced subdivision of the segment `(P )

if F−`1 and F `k is a face of P−` and P `, respectively, and

F `i = F−`i+1

for i = 1, . . . , k−1. If ` is generic, that is, if ` is not constant on edges of P , then the minimum/maximum
of ` on every nonempty face F is attained at a unique vertex. In this case F±`i is a vertex for all i and
a induced subdivision is called a cellular string. An induced subdivision F ′1, . . . , F

′
h is a refinement if

for every 1 ≤ i ≤ k, there are 1 ≤ s < t ≤ h such that F ′s, . . . , F ′t is a induced subdivision of `(Fi).
The collection of all induced subdivisions of `(P ) is partially ordered by refinement and is called the
Baues poset of (P, `). The minimal elements in the Baues poset are exactly the `-monotone paths.
Monotone paths are quintessential in the study of simplex-type algorithms in linear programming but
they are also studied in topology in connection with iterated loop spaces; see [2, 20]. For the linear
function c(x) = x1 + · · ·+ xd, Corollary 2.2 readily yields the c-monotone paths of ∆(d, S).

Corollary 4.1. Let S = {s1 < s2 < · · · < sk} be proper. The c-monotone paths correspond to sequences
A1 ⊂ A2 ⊂ · · · ⊂ Ak with |Ai| = si for all i = 1, . . . , k.

A `-monotone path W is coherent if W is a monotone path with respect to the shadow-vertex algorithm;
see [5, 17]. That is, if there is linear function hW : Rd → R such that under the projection π : Rd → R2

given by π(x) = (`(x), hW (x)), the path W is mapped to one of the two paths in the boundary of the
polygon π(P ). Figure 1 shows that in general coherent paths constitute a proper subset of all `-monotone
paths and it is interesting to determine for which pairs (P, `) all `-monotone paths are coherent; see, for
example, the recent paper [9]. The S-hypersimplices with the linear function c(x) are examples of this.

`
t0 t1 t2 t3

∑
`(P )P

W1

W2
W1

W2

Figure 1. Left: Top view of triangular prism P and linear function `. Three `-monotone
paths (in red, green, and blue) but the red path is not coherent. Right: Monotone path
polytope Σ`(P ).

Proposition 4.2. Let S ⊆ [0, d] be proper. Then all c-monotone path of ∆(d, S) are coherent.

Proof. Let A1 ⊂ A2 ⊂ · · · ⊂ Ak be a c-monotone path. For the linear function

h(x) := 〈1A1 + · · ·+ 1Ak
,x〉
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it is easy to see that h(1B) with B ∈
([d]
S

)
is maximal if and only if B ∈ {A1, . . . , Ak}. �

The monotone path polytope Σ`(P ) is a convex polytope of dimension dimP − 1 whose face lattice is
isomorphic to the poset of coherent subdivisions. The construction is a special case of fiber polytopes of
Billera and Sturmfels [4]. Let `(P ) = [a, b] ⊂ R. A section of (P, `) is a continuous function γ : [a, b]→ P
such that `(γ(t)) = t for all a ≤ t ≤ b. Following [4], the monotone path polytope is defined as

Σ`(P ) = conv

{
1

b− a

∫
P
γ dx : γ section

}
.

We now determine the monotone path polytopes of ∆(d, S) with respect to the natural linear function
c(x) = x1 + · · · + xd. Let us first observe that for S ⊂ [d − 1] the c-monotone paths of ∆(d, S) and
∆(d, S ∪ {0, d}) are in bijection. Clearly every c-monotone path of ∆(d, S ∪ {0, d}) restricts to a c-
monotone path of ∆(d, S). Conversely, if A1 ⊂ · · · ⊂ Ak corresponds to a c-monotone path, then ∅ =:
A0 ⊂ A1 ⊂ · · · ⊂ Ak ⊂ Ak+1 = [d] is the unique extension to a c-monotone path of ∆(d, S ∪ {0, d}).

Theorem 4.3. Let S = {0 = s0 ≤ s1 < s2 < · · · < sk−1 < sk = d} be proper. Then
1
21 + d · Σc(∆(d, S)) = Π(ks1−s0 , (k − 1)s2−s1 , . . . , 1sk−sk−1) .

Proof. Let P ⊂ Rd be a polytope with vertex set V and let ` be a linear function. Let `(V ) = {a = t0 <
t1 < · · · < tk = b}. We write Pi := P ∩ `−1(ti) for 0 ≤ i ≤ k. Theorem 1.5 of [4] together with the fact
that

P ∩ `−1
(
ti + ti+1

2

)
=

1

2
(Pi + Pi+1)

for 0 ≤ i < m yields that

(b− a)Σ`(P ) = 1
2P0 +

k−1∑
i=1

Pi + 1
2Pk .

If P = ∆(d, S) and `(x) = c(x), then Pi = ∆(d, si) for 0 ≤ i ≤ k. In particular, P0 = {0} and Pk = {1}.
Therefore

1
21 + d · Σc(∆(d, S)) =

k∑
i=0

∆(d, si) .

Since ∆(d, si) = Π(1si , 0d−si) we conclude from Proposition 2.4 that the above sum is the permutahedron
Π(p) for

p = (1s0 , 0d−s0) + · · ·+ (1sk , 0d−sk) .

This finishes the argument. �

5. Further questions

Volumes and Gröbner bases. Laplace and later Stanley [24] showed that the volume of ∆(d, i, i + 1)

is A(d,i)
d! where A(d, i) counts the number of permutations σ of [d] with i descents, that is, the number of

1 ≤ i < d such that σ(i) > σ(i + 1); see also [18, 23]. This implies that d! vol ∆(d, [k, l]) is the number
of permutations of [d] with descent number in [k, l] = {k, k + 1, . . . , l} for any k < l. It would be very
interesting to know if vol ∆(d, S) has a combinatorial interpretation for all S. In light of (2) it would be
sufficient to determine vol ∆(d, k, l) for l − k > 1.

For 0 ≤ k < d, the hypersimplices ∆(d, k, k + 1) ∼= ∆(d, k + 1) are alcoved polytopes in the sense of
Lam–Postnikov [18] and hence come with a canonical square-free and unimodular triangulation. This is
reflected by the fact that the associated toric ideals have quadratic and square-free Gröbner bases with
respect to the reverse-lexicographic term order.

For general k < l, the polytopes ∆(d, k, l) are not alcoved anymore. It would be interesting if ∆(d, k, l)
has a unimodular triangulation or square-free Gröbner basis.
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5.1. Extension complexity. An extension of a polytope P is a polytope Q together with a surjective
linear projection Q→ P . The extension complexity ext(P ) of P is the minimal number of facets of an
extension of P . This is a parameter that is of interest in combinatorial optimization [16]. It was shown
in [12] that ext(∆(d, k, k + 1)) = 2d for 1 ≤ k ≤ d− 2.

A realization of the join of two polytopes P,Q ⊂ Rd is given by P ∗Q = conv((P × 0× 0)∪ (0×Q× 1)).
If P and Q has m and n facets, respectively, then P ∗Q has m+ n facets. Balas’ union bound [1] is the
observation that P ∗ Q → P ∪ Q and hence ext(P ∪ Q) ≤ ext(P ) + ext(Q). Iterating the join over the
pieces of the decomposition 2 shows the following.

Proposition 5.1. If S ⊆ [0, d] is proper, then

ext(∆(d, S)) ≤ 2d (|S| − 1) .

This is a nontrivial bound as the number of facets of ∆(d, S) is at least 2 + 2d+
∑

r 6∈S
(
d
r

)
. To illustrate,

note that the number of facets of the halfcube Hd for d ≥ 5 is 2d + 2d−1 whereas the bounded afforded
by Proposition 5.1 is ≤ d2. Carr and Konjevod [6] gave an extension of Hd of size linear in d. It would be
interesting to know lower bounds on the extension complexity of ∆(d, S), maybe using the approach via
rectangular covering; c.f. [12].
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