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Gradual and fuzzy subsets

Josefa M. García

Pascual Jara

Abstract

In the fuzzy theory of sets and groups, the use ofα–levels is a standard to translate

problems from the fuzzy to the crisp framework. Using strong α–levels, it is possible

to establish a one to one correspondence which makes possible doubly, a gradual and

a functorial treatment of the fuzzy theory. The main result of this paper is to identify

the class of fuzzy sets, respectively fuzzy groups, with subcategories of the functorial

categories S et(0,1], resp. G r(0,1]. In this line, the algebraic potential of this theory

will be reached, in forthcoming papers, in the study of fuzzy modules, since, in that

case, the functorial category is a well founded subcategory of a Grothendieck abelian

category.

Introduction

Let X be a set, every subset S ⊆ X is defined by its characteristic function χS : X −→

{0, 1}, which is defined by χS(x) =

§
1 if x ∈ S,

0 if x /∈ S.
Thus, the concept of membership

is exclusive. However, we can consider, in a wider environment, different degrees of

membership: 1 means that the element belongs to the subset; 0 that it does not belong

and any other real number 0< α < 1, would mean a different degree of membership.

The theory, in these terms, is due to Zadeh, see [14], who introduces a fuzzy subset of

a given set X as a map µ : X −→ [0, 1]. From this primitive concept we can develop a

whole theory of sets, relations, maps, numbers, etc.

In this approach to the fuzzy theory, we are begin by relating various mathematical the-

ories; this relationship is evident in the crisp framework, but which in the fuzzy theory

presents, so far, some difficulties.
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Our approach to the fuzzy concept starts from the definition of a fuzzy element: we adopt

the definition given by Duboi and Prade of a gradual element, see [1]. So that a gradual

element of a set X is given by a collection of elements, each with a degree of membership,

ranging in (0, 1]: there is always an element of the set X that has a degree of membership

1, and, possibly, other elements with other membership values, but never 0, that is, we

do not determine any element of X that has zero degree of membership. This notion

of gradual element has been extended to study several problems, see [12], [6] and [7].

Nevertheless, we have preferred to maintain the former one as when applying to sets,

groups, and other structures, it defines canonically a ground set, group, etc, which is an

ambient object suitable for working.

For a greater flexibility in the definition we assume that not all possible degrees are

reached, so a gradual element is given by a partial mapping from (0, 1] to X : we will

call it a partial gradual element. If ǫ is a partial gradual element with definition domain

dom(ǫ) ⊆ (0, 1], for its study we need to relate partial gradual elements to each other.

The problem that arises is: when two gradual elements ǫ1 and ǫ2 are equal? It is clear

that we can only compare ǫ1 and ǫ2 where they are defined, that is, in dom(ǫ1)∩dom(ǫ2).

This definition of equality is too weak. In fact we are more interested in knowing if ǫ1

and ǫ2 take equal values in a range [α, 1], for some α ∈ (0, 1]. Taking into account that,

whenever β ∈ (0, 1] is very small, it is not relevant at all if that ǫ1(β) and ǫ2(β) are the

same or different; we are more interested in knowing whenever ǫ1 and ǫ2 coincide for

values of β close to 1.

Thus, we extend the equality relation to the case, previously indicated, of values in an

interval [α, 1]. In this way a relationship is obtained: ǫ1Rαǫ2 if

ǫ1|[α,1]∩dom(ǫ1)∩dom(ǫ2)
= ǫ2|[α,1]∩dom(ǫ1)∩dom(ǫ2)

.

But this relation is not necessarily an equivalence relation, because it depends heavily

on dom(ǫ1) ∩ dom(ǫ2). So, if we want to compare partial gradual elements, we must

standardize the definition domain. In other words, we must, for instance, extend dom(ǫ)

to the whole (0, 1].

There is a standard method of doing this, consisting of, given α ∈ dom(ǫ) such that ǫ

is not defined in (β ,α), defining ǫ(γ) = ǫ(α) for all γ ∈ (β ,α). The condition, that

has seemed most efficient forces to restrict the partial gradual elements to those whose

definition domain verifies that for everyα ∈ (0, 1] there is a minimum ζ of [α, 1]∩dom(ǫ),

to, in this way, extend ǫ to all (0, 1], defining ǫ(α) = ǫ(ζ). We have called inf–compact

the subsets of (0, 1] containing 1, and verifying this property. In this way, every partial

gradual element ǫ, with inf–compact definition domain, can be extended, in a unique

way, to a gradual element ǫ with definition domain (0, 1]. We call ǫ the extended gradual

element of ǫ.

We define a total gradual element as a map ǫ : (0, 1] −→ X , among which we have the

extended of the partial gradual elements; and denote by X the set of all total gradual

elements of X . Observe that, when working with total gradual elements the relation Rα
is an equivalence relation.
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The next step of complexity is to consider a binary operation ∗ in the set X , and extend

it to gradual elements. The standard method is to define (ǫ1 ∗ ǫ2)(α) = ǫ1(α) ∗ ǫ2(α) for

any α ∈ (0, 1].

We have that if (X ,∗) has a more complex algebraic structure, for example, if it is a group,

a semilattice, etc, the setX of all gradual elements can have the same property. However,

this has not been the line we followed for the study of fuzzy structures in a set X , the

reason is that when considering, for example, a ring structure in X , although X has a

ring structure, this is of little interest, since it has too many zero–divisor elements.

We have chosen, therefore to consider a greater degree of abstraction, and consider, given

a group (G,∗), not the set of elements of G, but the set S (G) of all the subgroups of G.

We have an inclusion S (G) ⊆ P (G), in the powerset of G, and the elements of S (G)
are the non-empty subsets S ∈ P (G) verifying: S ∗S ⊆ S and S−1 ⊆ S. When considering

gradual elements σ,σ1,σ2 of P (G) \ {∅}, we have new gradual elements: σ1 ∗σ2 and

σ−1, and naturally the notions of gradual subgroup and gradual subset appear.

A gradual subset of a set X is a gradual element σ of P (X ), and a gradual subgroup

of a group G is a gradual element σ of P (X ) \ {∅} which is a subgroup, i.e, it will be a

gradual element ofS (G). Observe that in these situations we have solved the problem of

extending partial gradual subsets or subgroups, because we can define the image of any

element in (0, 1]\dom(σ) equals either ∅, for subsets, or {e}, for subgroups. Therefore,

in section 2 and 3 we shall consider only total gradual subsets and subgroups.

This study will lead us to relate gradual subgroups with fuzzy subgroups, gradual groups

with fuzzy groups, and the same process will allow to relate other structures: rings,

modules, etc.

Before carrying out this work we have considered necessary to implement an in-depth

study that relates gradual and fuzzy sets and subsets.

In the setX of the gradual subsets of X we define a closure operator σ 7→ σc = ∪{σ(β) |
β ≥ α}. A gradual subset σ will be a decreasing gradual subset if σ = σc. And in the set

J (X ) of all decreasing gradual subsets of X we define an interior operator σ 7→ σd =

∪{σ(β) | β > α}, a decreasing gradual subsetσwill be a strict decreasing gradual subset

whenever σ = σd .

Associated to any fuzzy subset µ of X we have a decreasing gradual subset σ(µ), defined

σ(µ)(α) = µα, the α–level of µ, for any α ∈ (0, 1], and a strict decreasing gradual subset

eσ(µ) = σ(µ)d, which is the strong α–level, or strong α-cut, of µ. The map µ 7→ σ(µ) does

not preserve unions of infinite families, and the map µ 7→ eσ(µ) does not preserve infinite

intersections; hence after modifying the intersection, we establish an injective correspon-

dence, preserving union and intersection, from fuzzy subsets to strict decreasing gradual

subsets, and find conditions on strict decreasing gradual subsets to be in the image of

this map; that condition is property (inf–F). Which is important, in this situation, is that

we have an isomorphism, for intersections and unions, between fuzzy subsets and strict

decreasing gradual subsets satisfying property (inf–F). As a consequence properties on

fuzzy subsets can be studied via strict decreasing gradual subsets.

In addition, we consider a generalization of the theory of gradual subsets through the

use of contravariant functors from the category (0, 1] to the category S et of sets which
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allow a functorial framework of both theories of gradual and fuzzy subsets.

This theory, first developed in a context of sets, can be carried out to the more algebraic

framework of groups, in which we may establish also a bijection between fuzzy subgroups

and a specific class of gradual subgroups and contravariant functors. In particular, this

bijection will allow a functorial treatment of fuzzy groups.

This paper is organized in three sections. In the first one we study and establish the gen-

eral theory of gradual elements and introduce binary operations in the set of all gradual

elements defined from binary operation in the ground set X . In particular, if we start

from a group G, we get a structure of group in the set of gradual elements. Not in all

cases this structure reflects the properties of G and its elements.

For this reason, to make an algebraic development later, in the second section we study

gradual subsets and operators in the set of gradual subsets that will allow to establish a

close relationship, an isomorphism, between the set of fuzzy subsets and a set of gradual

subsets. This study ends in Theorem (2.18.) in which an isomorphism is established; ob-

serve that to obtain the isomorphism we had to make use of the strict decreasing gradual

subsets. To do that, first we consider binary operations in P (X ), the power set of X : the

standard ones are the meet (intersection) and the join (union), and translate them to

gradual subsets, which are noting more than gradual elements of P (X ). In this section

we also identify a new type of objects through the use of contravariant functors from the

category (0, 1] to the category of sets. These contravariant functors, which are identified

with directed systems, generalize gradual subsets and fuzzy subsets, and allow a functo-

rial framework of these two examples, which will provide a tool capable of dealing with

other types of gradual and fuzzy objects such as groups, rings, etc., and that will allow

to work, by using direct limits, with gradual and fuzzy sets, instead of with gradual and

fuzzy subsets.

The third section is devoted to study the more complex example of gradual groups. After

studying the different concepts related to group theory, we establish the most important

result, Theorem (3.17.), showing a bijection between equivalence classes of fuzzy sub-

groups and some specific strict gradual subgroups. This gradual subgroups appear in a

natural way after studying two operator on gradual subgroups, one a closure operator

and another one an interior operator in the class of all decreasing gradual groups. The

formulation of the theory in terms of operators allows to develop a more abstract frame-

work, in this case a functorial one, and hence, obtain new properties and relationships

between known objects.

1 Gradual elements

1.1 Gradual elements

Definition 1.1. Let X be a set, a total gradual element of X , is a map ǫ : (0, 1] −→ X ,

and a partial gradual element of X is a map ǫ : L ⊆ (0, 1] −→ C , defined on a subset

L ⊆ (0, 1] such that 1 ∈ L. For simplicity, depending of the context, we use gradual
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element to refer either to a total gradual element or to a partial gradual element.

For any partial gradual element ǫ : L ⊆ (0, 1] −→ X we call L the definition domain of

ǫ, and represent it by dom(ǫ). We represent byX the set of all total gradual elements of

X , and by X the set of all partial gradual elements.

A gradual element ǫ′ is an extension of the gradual element ǫ if ǫ′
|dom(ǫ)

= ǫ.

There is a particularly useful method of extending a partial gradual element ǫ to a total

gradual one, this is the case in which for any α ∈ (0, 1] there exists Min([α, 1]∩dom(ǫ));

then we define a new gradual element ǫ as follows:

ǫ(α) = ǫ(ζ), being ζ =Min([α, 1]∩ dom(ǫ)).

See Example (1.5.) in which examples of extensions of partial gradual elements ap-

pear. Another example is provided whenever we consider the partial gradual element

ǫ : {1} −→ {a, b}, defined by ǫ(1) = a. In this case an extension ǫ : (0, 1] −→ {a, b} is

defined by ǫ(α) = a for any α ∈ (0, 1], the constant map equals to a.

A subset L ⊆ (0, 1], containing 1, such that there exists Min([α, 1]∩ L), for any α ∈ (0, 1],

is named an inf–compact subset of (0, 1].

The following are examples of inf–compact subsets of (0, 1]:

(1) Any compact subset C ⊆ (0, 1], containing 1, is inf–compact. In particular, any finite

subset and any closed subset of (0, 1], containing 1, are inf–compact.
(2) Any ascending sequence in (0, 1], union with {1}, is inf–compact.
(3) Any interval [a, b) ⊆ (0, 1], union with {1}, is inf–compact.
(4) Any union of finitely many inf–compact subsets is inf–compact.

In the following, the domain of any partial gradual element will be an inf–compact subset

of (0, 1], containing 1; whence, any partial gradual element can be extended to a total

gradual element.

Lemma 1.2. If {Ci | i ∈ I} is a family of inf–compact subsets, containing 1, then ∩iCi is

inf–compact.

PROOF For any α ∈ (0, 1] let ξ = Inf([α, 1] ∩ (∩iCi)), and define ξi = Min([ξ, 1] ∩
Ci), hence ξ ≤ ξi, for any i ∈ I . On the other hand, since [α, 1] ∩ (∩iCi) = [ξ, 1] ∩
(∩iCi) ⊆ [ξ, 1]∩ Ci, then Min([ξ, 1]∩ Ci) = Inf([ξ, 1]∩ Ci) ≤ Inf([ξ, 1]∩ (∩iCi)) = ξ. In

consequence, ξ = ξi for any i ∈ I . �

For any element a ∈ X there exists a partial gradual element, which we represent by ǫa,

with dom(ǫa) = {1}, and defined by ǫa(1) = a. We denote also by ǫa the extension ǫa.

Without lost of generality we may identify the element a ∈ X and the gradual element

ǫa ∈X , and denote them simply by a.

In this way, a gradual element is nothing more than a collection of elements of X , each

one with a degree of membership; thus if ǫ is a gradual element then ǫ(α) is an element

of X with membership degree α. Since ǫ(1) is always defined, we have it is an element

of X with the highest membership degree; since ǫ(0) is not defined, then there is not any

element with zero membership degree.
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1.2 Relations between gradual elements

For any α ∈ [0, 1], in the set of all partial gradual elements we define a relation Rα as:

for partial gradual elements ǫ1 and ǫ2 of X we say ǫ1Rαǫ2 if

ǫ1|[α,1]∩dom(ǫ1)∩dom(ǫ2)
= ǫ2|[α,1]∩dom(ǫ1)∩dom(ǫ2)

.

Observe that if α ∈ (0, 1], and ǫ1,ǫ2 are total gradual elements then ǫ1Rαǫ2, whenever

ǫ1|[α,1] = ǫ2|[α,1].

Lemma 1.3. For any α,β ∈ [0, 1] we have:

(1) If α,β ∈ [0, 1] satisfy α ≤ β , then Rα ⊆ Rβ .
(2) The relation Rα is an equivalence relation in the set of all total gradual elements.

The equivalence relation Rα indicates us when two gradual elements are equal at a certain

level. For instance,

(1) if α = 1, then we only have an equivalence class for each element of X ;
(2) if α = 0, then two gradual elements belong to the same equivalence class if, and only

if, they coincide in their definition domains.

It is necessary to remark that these equivalence relations Rα are not compatible with the

extension process. Indeed, if ǫ1Rαǫ2, not necessarily ǫ1Rαǫ2 as the following example

shows.

Example 1.4. Let X = {a, b}, and define

ǫ1(δ) =

§
b, if δ = 1,

a, if 1

2
≤ δ < 1,

ǫ2(δ) =

§
b, if δ = 1,

a, if 0< δ ≤ 1

2
.

Then ǫ1Rαǫ2, for any α ∈ (0, 1], but ǫ1Rαǫ2 if, and only if, α = 1.

Let f : X −→ Y be a map between two sets;

(1) for any total gradual (resp. partial gradual) element ǫ of X we have a total gradual

(resp. partial gradual) element of Y defined by the composition f ǫ : dom(ǫ) −→
X −→ Y ; we call f ǫ the image of ǫ by f ;

(2) for any gradual element ǫ′ of Y a gradual element ǫ of X is an inverse image of ǫ′

if ǫ′ = f ǫ.

1.3 Binary operations and gradual elements

There is another method to relate gradual elements of a set X , this is the case in which

there exists a binary operation in X .

Let G be a set together a binary operation, say ∗, and ǫ1,ǫ2 gradual elements of G, we

define a new gradual element ǫ1 ∗ ǫ2 as:

(ǫ1 ∗ ǫ2)(α) = ǫ1(α) ∗ ǫ2(α), for any α ∈ dom(ǫ1)∩ dom(ǫ2).

6



In the case of partial gradual elements ǫ1,ǫ2 we have that dom(ǫ1 ∗ ǫ2) = dom(ǫ1) ∩
dom(ǫ2).

This operation non necessarily is compatible with the extension construction.

The following example shows that if we start from two partial gradual elements ǫ1 and

ǫ2, then not necessarily we have the equality: ǫ1 ∗ ǫ2 = ǫ1 ∗ ǫ2, i.e., then extension map

is not necessarily a homomorphism with respect to the binary operation ∗.

Example 1.5. Let ǫ1,ǫ2 be partial gradual elements defined on Z, defined as:

ǫ1(α) =

�
2, if 1

2
≤ α ≤ 1,

1, if 1

10
≤ α ≤ 1

3
,

ǫ2(α) = 2, if 2
3
≤ α≤ 1.

In this case we have

(ǫ1 + ǫ2)(α) = 4, if 2
3
≤ α ≤ 1,

and the extended gradual elements are

ǫ1(α) =

�
2, if 1

3
< α ≤ 1,

1, if α ≤ 1

3
,

ǫ2(α) = 2, if α≤ 1, (ǫ1+ ǫ2)(α) = 4, if α ≤ 1.

On the other hand, we have

(ǫ1+ ǫ2)(α) =

�
4, if 1

3
< α ≤ 1,

3, if α ≤ 1
3
.

ǫ1 2
1

11
2

1
3

1
10

ǫ1
2

1

11
3

ǫ2 2
12

3

ǫ2 2
1

ǫ1 + ǫ2 4
12

3

ǫ1 + ǫ2
43

11
3

ǫ1 + ǫ2 4
1

On the other hand, this operation is compatible with the equivalence relations Rα.

Lemma 1.6. Let G be a set together a binary operation ∗, for any α ∈ [0, 1] the relations

Rα in the set of all total gradual elements (resp. in the set of all partial gradual elements)

are compatible with the binary operation, i.e., for gradual elements ǫ,ǫ1,ǫ2 of G, if

ǫ1Rαǫ2 then (ǫ ∗ ǫ1)Rα(ǫ ∗ ǫ2) and (ǫ1 ∗ ǫ)Rα(ǫ2 ∗ ǫ).

7



PROOF Let ǫ1,ǫ2,ǫ be gradual elements such that ǫ1Rαǫ2, for any β ∈ [α, 1]∩dom(ǫ1)∩
dom(ǫ2)∩ dom(ǫ) we have:

(ǫ1 ∗ ǫ)(β) = ǫ1(β) ∗ ǫ(β) = ǫ2(β) ∗ ǫ(β) = (ǫ2 ∗ ǫ)(β).

�

In some cases, in which G has a richer structure, this structure could be inherited by the

sets of gradual elements. Let us show an example.

Lemma 1.7. Let G be a group, with binary operation ∗ and neutral element e, the fol-

lowing statements hold:

(1) The set G of all total gradual elements is a group with neutral element e, i.e., the

total gradual element ǫe.
(2) For any α ∈ [0, 1] we have that G/Rα is a group.

PROOF For any ǫ,ǫ1,ǫ2 ∈ G we define, for any α ∈ (0, 1]:

(ǫ1 ∗ ǫ2)(α) = ǫ1(α) ∗ ǫ2(α), and (ǫ−1)(α) = ǫ(α)−1.

(1). In G the operation is associative and e is the neutral element. For any ǫ ∈ G we

have ǫ−1 is the inverse of ǫ. Therefore G is a group, and it is abelian whenever G is.

(2). It is a direct consequence of being Rα a compatible equivalence relation. �

Remark 1.8. (The particular case of partial gradual elements) Let G be a group, in

the set G of all partial gradual elements we have an associative binary operation, (ǫ1 ∗
ǫ2)(α) = ǫ1(α) ∗ ǫ2(α) for any α ∈ dom(ǫ1) ∩ dom(ǫ2), but we have “many” possible

neutral elements. Thus, to get a useful structure we must define before an equivalence

relation to put together all of them. For instance, given two partial gradual elements

ǫ1,ǫ2, since ǫ1 ∗ ǫ2 is defined on dom(ǫ1) ∩ dom(ǫ2), there are three possible neutral

elements: e|dom(ǫ1)
, e|dom(ǫ2)

and finally e|dom(ǫ1)∩dom(ǫ2)
, which are different two to two.

We can try to fix this problem in defining an equivalence relation R in G generated by:

ǫ1Rǫ2, if there is an inf–compact subset C ⊆ (0, 1] containing 1, such that ǫ1|C = ǫ2|C .

With the relation R, the problem is that we may have dom(ǫ1)∩dom(ǫ2) = {1}, and this

trivialize this relation.

Hence, to obtain a well defined structure on partial gradual elements we may consider

only special types of partial gradual elements, for instance, the subset of G constituted

by those partial gradual elements who have the same (inf–compact) domain containing

1.

Thus we can extend the above Lemma (1.7.) to consider gradual elements defined on an

inf–compact subset containing 1.

Proposition 1.9. Let G be a group, and let C ⊆ (0, 1] be a inf–compact subset containing

1. If G be the set of all partial gradual elements whose domain is C , the following

statements hold:
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(1) For any α ∈ C the relation Rα is an equivalente relation in G .
(2) In G we have an associative operation.
(3) The extending map from G to G is a group monomorphism.
(4) For any α ∈ C the equivalence relation Rα in G is compatible.
(5) The groups G and G/Rα are abelian whenever G is.

PROOF (1). It is reflexive and symmetric, and obviously it is transitive as the domain is

the whole set C .

(2). It is evident as the product is defined componentwise.

(3). Let ǫ1,ǫ2 ∈ G , and ξ =Min([α, 1]∩ C), then

(ǫ1 ∗ ǫ2)(α) = (ǫ ∗ ǫ2)(ξ) = ǫ1(ξ) ∗ ǫ2(ξ) = ǫ1(α) ∗ ǫ2(α).

(4). It is similar to the proof on Lemma (1.6.).

(5). It is evident as the product is defined componentwise. �

It is clear that it is better to consider total gradual elements instead of partial gradual

elements, and therefore work in G .

If the group G has e as neutral element, and for any α in [0, 1] we consider the equiva-

lence relation Rα, we may rewriting Lemma (1.6.) obtaining a filtration of subgroups of

G .

Proposition 1.10. Let G be a group with neutral element e, if for any α ∈ [0, 1] we

define

Gα = {ǫ ∈ G | ǫRαe},

then we have:

(1) For each α ∈ (0, 1] the subgroup Gα ⊆ G is a normal.
(2) There is a filtration {Gα | α ∈ [0, 1]} where Gα ⊆ Gβ is α ≤ β .
(3) We have inclusions: G0 ⊆ Gα ⊆ G1 ⊆ G , and surjective group homomorphisms:

G/G0 −→ G/Gα −→ G/G1
∼= G.

Observe that in all these examples it seems that the way to define an operation on gradual

elements is to define it componentwise.

If the base set X has a more richer structure; for instance, if it is a ring R, then the

corresponding setsR andR are rings, but there are in these rings many elements which

are zero–divisor. So, in this case, the use of gradual elements is not a good option.

For that, in this and forthcoming papers, we shall develop a different approach to study

algebraic structures. Before doing that, let us study the simplest notion of gradual subset,

and after doing this we shall return to consider a set endowed with one or several binary

operations, for instance a group.
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2 Gradual subsets

Once we have established the notion of gradual element of a set X , we shall apply it to

define new objects. If we consider a set X and the power setP (X ), we can study gradual

elements of P (X ), thereby the concept of gradual subset appears.

2.1 Gradual subsets

Definition 2.1. Let X be a set, and let P (X ) be the power set of X , i.e., P (X ) = {S |
S is a subset of X}. We define a gradual subset of X as a gradual element of P (X ). We

represent by σ : (0, 1] −→P (X ) a gradual subset of X .

Throughout this section we follow the same assumptions used for gradual elements in

the previous section. In this way, we have defined partial gradual subsets and total

gradual subsets.

In some sense gradual subsets are a generalization of gradual elements. Thus, for any

gradual element ǫ and any gradual subsetσwe say ǫ belongs toσ if for any α ∈ dom(ǫ)∩
dom(σ) ⊆ [0, 1] we have ǫ(α) ∈ σ(α), and write ǫ ∈ σ. In the same way, given two

gradual subsets σ1,σ2, we say that σ1 is a subset of σ2 if σ1(α) ⊆ σ2(α) for any α ∈
dom(σ1)∩ dom(σ2), and write σ1 ⊆ σ2.

In general, for any gradual subset σ, and elements α,β ∈ dom(σ) such that α ≤ β , we

have no information about the relationship of σ(α) and σ(β). In some cases, as in the

classical one of α–levels in fuzzy set theory, there is an evident relationship, as we shall

see later. To work with them, first we introduce the following definitions, that reflect toe

order existing in (0, 1].

Let σ be a gradual subset of X we say σ is

(1) increasing if for any α,β ∈ dom(σ) such that α ≤ β , we have σ(α) ⊆ σ(β). For any

increasing gradual subset σ de X , if ζ = Min(dom(σ)), then σ(ζ) ⊆ σ(α) ⊆ σ(1)
for any α ∈ dom(σ).

(2) decreasing if for any α,β ∈ dom(σ) such that α ≤ β , we have σ(α) ⊇ σ(β). For

any decreasing gradual subset σ de X , we have σ(1) ⊆ σ(α) for any α ∈ dom(σ).

Let us show some examples of decreasing gradual subsets.

Example 2.2. Let µ be a fuzzy subset of X , i.e., a map µ : X −→ [0, 1] that we assume it

is not constant equal to 0. For any α ∈ (0, 1] we define the

(1) α–level of µ as µα = {x ∈ X | µ(x) ≥ α}.
In this case we have a decreasing gradual subset σ(µ), defined σ(µ)(α) = µα for

any α ∈ (0, 1].

(2) strict α–level (or strong α-level) of µ as eµα = {x ∈ X | µ(x)> α}.
In this case we have a decreasing gradual subset eσ(µ), defined

eσ(µ)(α) =
§ eµα, for any α ∈ (0, 1), and

µ1, if α = 1.

10



(3) Let µ the fuzzy subset defined by µ(x) = 1− µ(x), for any x ∈ X ; the α–levels of µ

define a decreasing gradual subset σ(µ)(α) = {x ∈ X | µ(x)≤ 1−α}.

(4) inverse α–level of µ as µα = {x ∈ X | µ(x)≤ α}.
In this case we have a increasing gradual subset τ(µ), defined τ(µ)(α) = µα for any

α ∈ (0, 1]

2.2 Operators on gradual subsets

The following are examples of constructions that can be carried out for any gradual sub-

set, and which will be useful in their study.

Let σ be a gradual subset of X , associated to σ we define two new gradual subsets:

(1) The accumulation σc of σ.

σc(α) = ∪{σ(β) | α ≤ β ∈ dom(σ)}, for any α ∈ dom(σ).

It is clear that for any gradual subset σ the accumulation σc is a decreasing gradual

subset, and a gradual subset σ is decreasing if, and only if, σ = σc.

For any gradual subset σ we have σ ⊆ σc = σcc.

(2) The strict accumulation σd of σ.

σd(α) =

§
σ(1), if α = 1.

∪{σ(β) | α < β ∈ dom(σ)}, if α ∈ dom(σ) \ {1}.

It is clear that for any gradual subset σ the strict accumulation σd is a decreasing

gradual subset, and σd ⊆ σc. In general, σ * σd .

Thus, we have an operator, c, on gradual subsets: σ 7→ σc. The behaviour of c is reflected

in the following lemma.

Lemma 2.3. Let X be a set, for any gradual subsets σ1,σ2,σ of X the following state-

ments hold:

(1) σ ⊆ σc.
(2) σc = σcc.
(3) If σ1 ⊆ σ2, then σc

1
⊆ σc

2
.

(4) σc is the smallest decreasing gradual subset containing σ.

PROOF (1), (2) and (3) are easy.

(4). Let τ be a decreasing gradual subset such that σ ⊆ τ, then σc ⊆ τc = τ. �

This means that the operator c is a closure operator in the set X of all gradual subsets

of X .

Remember that a closure operator in a poset (partial ordered set) P is a map c : P −→ P

satisfying:

11



(1) p ≤ c(p) for any p ∈ P.
(2) For any p1, p2 ∈ P such that p1 ≤ p2 we have c(p1) ≤ c(p2).
(3) c(p) = cc(p) for any p ∈ P.

The elements p ∈ P such that c(p) = p are named the c–closed elements. Thus, the

gradual subsets which are closed for the operator c, are the decreasing gradual subsets.

Let us denote by J (X ) the set of all decreasing gradual subsets of X .

In the same way, we may consider the operator d, defined: σ 7→ σd ; its behaviour is

reflected in the following lemma.

Lemma 2.4. Let X be a set, for any gradual subsets σ1,σ2,σ of X the following state-

ments hold:

(1) σd ⊆ σc.
(2) If σ1 ⊆ σ2, then σd

1
⊆ σd

2
.

(3) σd = σdd = σcd = σdc.

PROOF (1) and (2) are easy. (3). Indeed, for any α ∈ (0, 1] we have:

σdd(α) = ∪{σd(β) | β > α}= ∪{∪{σ(γ) | γ > β} | β > α}

= ∪{σ(β) | β > α}= σd(α).

In the same way, for any α ∈ (0, 1] we have:

σcd(α) = ∪{σc(β) | β > α}= ∪{∪{σ(γ) | γ≤ β} | β > α}

= ∪{σ(β) | β > α}= σd(α).

�

A gradual subset σ is an strict decreasing gradual subset if σ = σd . We have:

Lemma 2.5. For any gradual subset σ the following statements hold.

(1) σd is the smallest strict decreasing gradual subset contained in σc.
(2) σ is a decreasing gradual subset non strict decreasing if, and only if, σd $ σc.

PROOF Let τ be a strict decreasing gradual subset such that τ ⊆ σc, then τ= τd ⊆ σcd =

σd . �

This means that the operator d is an interior operator in the set of all decreasing gradual

subsets of X .

Remember that an interior operator in a poset P is a map d : P −→ P satisfying:

(1) d(p) ≤ p for any p ∈ P.
(2) For any p1, p2 ∈ P such that p1 ≤ p2 we have d(p1) ≤ d(p2).
(3) d(p) = dd(p) for any p ∈ P

The elements p ∈ P such that d(p) = p are named the d–open elements. Thus, the de-

creasing gradual subsets open for the operator d are the strict decreasing gradual subsets.

Let us denote by J d(X ) the set of all d–open (strict) decreasing gradual subsets.
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Remark 2.6. Inspired in these constructions we consider a new construction of a gradual

subset from a partial gradual subset that allows us to avoid the initial restriction of inf–

compact in the domain of definition of partial gradual elements.

Let σ : (0, 1] −→ P(X ) be a partial map defined at 1, i.e., 1 ∈ dom(σ) ⊆ (0, 1], and

such that dom(σ) is not necessarily inf–compact, we may extend σ to all (0, 1] simply

defining σ(β) = ∅ if β /∈ dom(σ). The decreasing gradual subset associated to σ is

σc : (0, 1] −→ P(X ) defined as:

σc(α) = ∪{σ(β) | β ≥ α, β ∈ dom(σ)}, for any α ∈ (0, 1].

The use of decreasing gradual subsets is due to the fact that gradual subsets are wild

structures that one can not be managed, and in which there is no relationship between

its components. On the other hand, when studying subsets of a given set, it seems natural

to impose some inclusion relationships and that these inclusions should be parameterized

by the order relation in (0, 1].

Remark 2.7. Observe that we may extend any gradual subset σ on X to σ on the whole

interval [0, 1], in defining σ(α) =

§
∪{σ(β) | α ≤ β ∈ (0, 1]}, if α ∈ (0, 1]

∪{σ(β) | β ∈ (0, 1]}, if α = 0
for any

α ∈ [0, 1]. In consequence, we may consider also decreasing gradual subsets as maps

from [0, 1] to X .

2.3 The algebra of gradual subsets

There is a natural relationship between gradual elements and gradual subsets of a given

set X . Thus, for any partial gradual element ǫ we may define a unitary partial gradual

subset σ(ǫ) as σ(ǫ)(α) = {ǫ(α)}, for any α ∈ dom(ǫ). As we point out before, we have

ǫ ∈ σ if, and only if, σ(ǫ) ⊆ σ, for any gradual subset σ.

In the set P (X ) there are two operations: the intersection and the union; thus, we can

translate these two operations to gradual subsets, as did in the first section. Following

this line we define, for any gradual subsets, σ1 and σ2:
(1) the intersection, σ1 ∩σ2, as (σ1 ∩σ2)(α) = σ1(α)∩σ2(α), for any α ∈ dom(σ1)∩

dom(σ2),
(2) the union, σ1∪σ2, as (σ1∪σ2)(α) = σ1(α)∪σ2(α), for any α ∈ dom(σ1)∩dom(σ2).

In this way we may consider the algebra of gradual subsets of a given set X with respect

to intersection and union.

The definition of intersection and union can also be extended to arbitrary families of

gradual subsets. Let {σi | i ∈ I} be a family of gradual subsets,
(1) the intersection ∩iσi, defined as: (∩iσi)(α) = ∩iσi(α), for any α ∈ (0, 1].
(2) the union ∪iσi, defined as: (∪iσi)(α) = ∪iσi(α), for any α ∈ (0, 1].

Let {µi | i ∈ I} be a family of fuzzy subsets of a set X , the union, ∨iµi, and the intersec-

tion, ∧iµi, are the fuzzy subsets defined by:

(∨iµi)(a) = ∨iµi(a) = Sup{µi(a) | i ∈ I}, for any a ∈ X ,

(∧iµi)(a) = ∧iµi(a) = Inf{µi(a) | i ∈ I}, for any a ∈ X .
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Example 2.8. Let X = {a, b} be a set, for any n ∈ N\{0, 1}we defineµn : {a, b} −→ [0, 1]

by µn(a) = 1, and µn(b) =
1

2
− 1

2n . We have:

(1) (∨nµn)(a) = 1 and (∨nµn)(b) =
1
2
,

(2) σ(∨nµn)(δ) =

�
X , if δ > 1

2
,

{a}, if δ ≤ 1

2
,

(3) (∪nσ(µn))(δ) =

�
X , if δ ≥ 1

2
,

{a}, if δ < 1
2
,

Which shows that the inclusion σ(∨nµn) ⊇ ∪nσ(µn) is proper.

In the same line we have a similar situation for eσ and the intersection.

Example 2.9. Let X = {a, b} be a set, for any n ∈ N\{0, 1}we defineµn : {a, b} −→ [0, 1]

by µn(a) = 1, and µn(b) =
1

2
+ 1

2n . We have:

(1) (∧nµn)(a) = 1 and (∨nµn)(b) =
1
2
,

(2) eσ(∧nµn)(δ) =

�
X , if δ ≥ 1

2
,

{a}, if δ < 1

2
,

(3) (∩neσ(µn))(δ) =

�
X , if δ > 1

2
,

{a}, if δ ≤ 1
2
,

Which shows that the inclusion eσ(∧nµn) ⊆ ∩neσ(µn) is proper.

In the set J d(X ) of all strict decreasing gradual subsets of X we define two new opera-

tions: intersection: ∧
i
σi = (∩iσi)

d, and maintain the old union: ∨
i
σi = ∩iσi, for every

family {σi | i ∈ I} of strict decreasing gradual subsets of X . With these definition we

have:

Proposition 2.10. The union and intersection of strict decreasing gradual subsets are

compatible with the union and intersection of fuzzy subsets via the gradual subset eσ(µ),
i.e., for any family of fuzzy subsets {µi | i ∈ I} we have:

(1) ∨
i
eσ(µi) = eσ(∨iµi).

(2) ∧
i
eσ(µi) = eσ(∧iµi).

PROOF For any α ∈ (0, 1] we have:

eσ(∨iµi)(α) = {a ∈ X | (∨iµi)(a)> α}
= {a ∈ X | ∨iµi(a) > α}
= ∪{a ∈ X | there exists i such that µi(a) > α}
= (∪ieσ(µi))(α) = (∨1

eσ(µi))(α).

In the same way we can prove the case of eσ(∧iµi)(α). �

From this point of view strict α–levels should be a suitable tool for studying the algebra

of fuzzy subsets via decreasing gradual subsets.
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2.4 Maps

In order to relate two gradual subsets, a standard method consists in defining a map

from one to the other. In this context first we consider a map between the underlying

sets containing each gradual subset; the following result show how to associate gradual

subsets to gradual subsets via a map.

Lemma 2.11. (Direct image) Let f : X −→ Y be a map, and denote by f the induced

map from P (X ) to P (Y ), the following statements hold:

(1) For every gradual element ǫ of X we have that f ǫ : dom(ǫ) −→ Y is a gradual

element of Y .
(2) Let σ be a gradual subset of X , then f σ : dom(σ) −→ P (Y ) is a gradual subset of

Y . And we have a map f∗ :X −→Y defined f∗(σ) = f σ for any σ ∈ X .
(3) Let σ be a gradual subset of X , then f∗(σ

c) = ( f∗(σ))
c.

In addition, if ǫ ∈ σ, then f ǫ ∈ f σ.

Lemma 2.12. (Inverse image) Let f : X −→ Y be a map, and denote by f −1 :P (Y ) −→
P (X ) the induced map. For any gradual subset τ of Y we have that f ∗τ : dom(τ) −→
P (X ), defined as f ∗τ(α) = f −1(τ(α)), for any α ∈ dom(τ), is a partial gradual subset of

X . Thus, we have a map f ∗ :Y −→X , defined f ∗(τ) = f ∗τ, for any τ ∈ Y .

In particular, for any gradual subset τ of Y , we have: f ∗(τc) = ( f ∗(τ))c.

Since every element of X and every element of Y are gradual elements, and the same

for gradual subsets, the notions of injective map and surjective map, applied either to

gradual elements or gradual subsets are equivalent. In the case of gradual subsets we

have:

Lemma 2.13. Let f : X −→ Y be a map, then:

(1) f is injective if, and only if, f ∗ ◦ f∗ = idX .
(2) f is surjective if, and only if, f∗ ◦ f ∗ = idY .

Our aim will be to establish maps between gradual sets instead of between gradual sub-

sets, i.e., leave out the ground set X and use only the subsets {σ(α) | α ∈ (0, 1]}. But we

postpone it until the point in which we change the paradigm introducing these gradual

sets.

Remark 2.14. A gradual subset σ of a set X is just a family {σ(α) | α ∈ (0, 1]} of

subsets, indexed in (0, 1]. There are particular types of gradual subsets, as decreasing

gradual subsets, in which, for any α,β ∈ (0, 1], α ≤ β , there exists a map jα,β : σ(β) −→
σ(α): the inclusion, satisfying jα,β jβ ,γ = jα,γ whenever α ≤ β ≤ γ. In some sense,

decreasing gradual subsets are gradual subsets enriched with a family of maps { jα,β |
α,β ∈ (0, 1],α ≤ β} satisfying the above conditions and compatible with the inclusions

in X . Thus, we may work with these enriched gradual subsets of X .

An enriched gradual subsets of X is a gradual subset σ together with a family of maps

{ fα,β | α,β ∈ (0, 1],α ≤ β} satisfying:
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(1) fα,β : σ(β) −→ σ(α),
(2) fα,β fβ ,γ = fα,γ whenever α≤ β ≤ γ,
(3) if jα : σ(α) −→ X is the inclusion, for any α ∈ (0, 1], then jα fα,β = jβ , whenever

α ≤ β .

Observe that, as a consequence of (3), each fα,β is an injective map. In particular, en-

riched gradual subsets are just the decreasing gradual subsets. See also Remark (2.23.).

2.5 Gradual quotient sets

The same technique we used to introduce gradual subsets can be applied to define quo-

tient gradual sets of a given set X .

Remember that if X is a set, a subset S ⊆ X is an equivalence class in the class of all

injective maps {(i, Y ) | i : Y −→ X injective}, whenever we consider the equivalence

relation: (i1, Y1) ∼ (i2, Y2) if there exists a bijective map b : Y1 −→ Y2 such that i1 = i2 b.

Y1

i1

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲

b

��
Y2 i2

// X

Dually, a quotient set of X is an equivalence class in the class of all surjective maps

{(Z , p) | p : X −→ Z surjective} when we consider the equivalence relation: (Z1, p1) ∼
(Z2, p2) if there exists a bijective map b : Z1 −→ Z2 such that p2 = bp1.

X
p1 //

p2
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

Z1

b

��
Z2

The set of all subsets of X is represented by P (X ), and there exists a bijective corre-

spondence between P (X ) and 2X . The set of all quotient set of X will be represented by

Q(X ), and for any element Z ∈ Q(X ) we have:

(1) a surjective map p : X −→ Z ,
(2) an equivalence relation Rp in X defined as xRp y if p(x) = p(y), and
(3) a partition of X into the equivalence classes defined by a relation R.

Each equivalence relation R in X is a subset of X × X satisfying the properties reflexive,

symmetric and transitive. Hence Q(X ) is in bijection with a subset of P (X × X ). If we

call Q(X × X ) this subset, it is constituted by all the equivalence relations in X .

A gradual quotient set of X is a gradual element ofQ(X ), or equivalently, ofQ(X × X ).

We represent by ρ a gradual quotient set of X .
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2.6 Gradual subsets and fuzzy subsets

As an example of application of the gradual subset theory let us to establish a correspon-

dence between fuzzy subsets and enriched gradual subsets. As we had shown before,

see Proposition (2.10.), if we consider the strict decreasing gradual subset eσ(µ), the

correspondence µ 7→ eσ(µ) is a homomorphism with respect to arbitrary union and inter-

section.

In addition, the gradual subsets σ(µ) and eσ(µ) are related in a strong way: eσ(µ) =
σ(µ)d ⊆ σ(µ)c = σ(µ), using the interior and closure operator. Also, these gradual

subsets satisfy the following properties:

(1) µ(x) =Max{α | x ∈ σ(µ)(α)}, for any x ∈ X , and
(2) µ(x) = Inf{α | x /∈ eσ(µ)(α)}, for any x ∈ X .

We say

(1) a decreasing gradual subset σ satisfies property (F) if there exists Max{α | x ∈
σ(α)} for every x ∈ ∪{α | α ∈ (0, 1]}, and

(2) a strict decreasing gradual subset σ satisfies satisfies property (inf–F) if Inf{α | x /∈
σd(α)}= β satisfies x ∈ σ(β), for every x ∈ ∪{α | α ∈ (0, 1]}.

As a consequence we have the following result:

Lemma 2.15. Letσ be a decreasing gradual subset, not strict decreasing gradual subset,

the following statements are equivalent:

(a) σ satisfies property (F).
(b) σd satisfies property (inf–F).

(c) ∪α∈(0,1]σ(α) =
•
∪α∈(0,1] (σ

c(α) \σd(α)) (the disjoint union).

PROOF By the hypothesis we have σd $ σc = σ.

(a) ⇒ (b). Let β = Max{α | x ∈ σ(α)} and γ = Inf{α | x /∈ σd(α)}, then x /∈ σ(δ) for

every δ > γ. Since σ is decreasing, β ≤ γ. If β < γ, for any ω such that β < ω < γ we

have x /∈ σ(ω), hence γ 6= Inf{α | x /∈ σd(α)}, which is a contradiction.

(b) ⇒ (a). Let β = Sup{α | x ∈ σ(α)} and γ = Inf{α | x /∈ σd(α)}. Since σ is

decreasing, β ≤ γ. If β < γ, for any ω such that β < ω < γ we have x ∈ σ(ω), and

β 6= Sup{α | x ∈ σ(α)}, which is a contradiction.

(a)⇒ (c). One inclusion is obvious. Otherwise, if x ∈ ∪α∈(0,1)σ(α), let β =Max{α | x ∈

σ(α)}, then x /∈ σ(γ) for any γ > β , hence x /∈ σd(β), and x ∈
•
∪α∈(0,1] (σ

c(α) \σd(α)).

(c)⇒ (a). Let x ∈ X , if x /∈ ∪α∈(0,1)σ(α), then either x ∈ σ(1), and there exists Max{α |
x ∈ σ(α)} = 1, or x /∈ ∪α∈(0,1]σ(α), and Max{α | x ∈ σ(α)} = 0. Otherwise, if x ∈

∪α∈(0,1)σ(α) =
•
∪α∈(0,1] (σ

c(α) \σd(α)), there exists α such that x ∈ σ(α) \σd(α), hence

Max{α | x ∈ σ(α)}= α. �

Remark 2.16. (1) As a consequence of this result, for any decreasing non strict decreas-

ing gradual subset, satisfying property (F), we have Max{α | x ∈ σ(α)} = Inf{α |
x /∈ σd(α)} for any x ∈ X .
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(2) In the case of a strict decreasing gradual subset satisfying property (inf–F) we have

that it also satisfies property (F), hence the following equalities hold: Max{α | x ∈
σ(α)}= Inf{α | x /∈ σd(α)} for any x ∈ X .

Now we are going to establish correspondences between fuzzy subsets and strict de-

creasing gradual subsets, which preserves union and intersection. The following result,

for finite unions, is well known.

Theorem 2.17. Let X be a set, the following statements hold:

(1) The map ν : µ 7→ σ(µ) associates to any fuzzy subset µ of X a decreasing gradual

subset satisfying property (F), σ(µ) of X , defined σ(µ)(α) = {x | µ(x) ≥ α}, and it

preserves intersections and finite unions.
(2) The mapυ : σ 7→ µ(σ) associates to any decreasing gradual subsetσ = σc, satisfying

property (F), a fuzzy subset µ(σ) defined:

µ(σ)(x) =Max{α | x ∈ σ(α)}.

In addition, we have ν ◦ υ = id and υ ◦ ν = id, and they preserve finite unions and

intersections.

The behaviour with respect to infinite unions can be solved using only strict decreasing

gradual subsets instead of decreasing gradual subsets.

Theorem 2.18. Let X be a set, the following statements hold:

(1) The map ν : µ 7→ eσ(µ) associates to any fuzzy subset µ of X a strict decreasing

gradual subset eσ(µ) of X , defined eσ(µ)(α) = {x | µ(x) > α}, and it preserves

arbitrary unions and intersections.
(2) The map υ : σ 7→ eµ(σ) associates to any strict decreasing gradual subset σ = σd ,

satisfying property (inf–F), a fuzzy subset eµ(σ) defined:

eµ(σ)(x) = Inf{α | x /∈ σ(α)}.

In addition, we have νυ = id, and υν= id.

PROOF We had already studied the map ν in Proposition (2.10.) in page 17.

The map υ is well defined due to Theorem (2.18.). Now, we check that the compositions

are the identity.

Let µ be a fuzzy subset of X , for any x ∈ X , we have:

υ ◦ ν(µ)(x) = eµ(eσ(µ))x) = Inf{α | x /∈ eσ(µ)(α)}= Inf{α | µ(x)≤ α}= µ(x).

On the other hand, let σ be a strict decreasing gradual subset, and α ∈ (0, 1], we have:

ν ◦υ(σ)(α) = eσ(eµ(σ))(α) = {x | eµ(σ)(x)> α}= {x | Inf{β | x /∈ σ(β)}> α}.

If Inf{β | x /∈ σ(β)} = δx , then δx > α, since σ satisfies property (inf–F), then x ∈
σ(δx) ⊆ σ(α). Otherwise, if x ∈ σ(α) = σd(α) = ∪{σ(β) | β > α}, there exists γ > α
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such that x ∈ σ(γ), hence Inf{β | x /∈ σ(β)}> γ > α, and we have the other inclusion.

�

As a consequence, we have the final result that establishes an isomorphism between the

two lattices. See Proposition (2.10.).

Corollary 2.19. Let X be a set, there is an isomorphism between the lattice of all fuzzy

subset of X and the lattice of all strict decreasing gradual subset of X , satisfying property

(F), and they preserves arbitrary unions and intersections.

2.7 A functorial interpretation

Let us consider (0, 1] as a category whose objects are the elements of (0, 1], and homo-

morphisms: only one, fα,β , from α to β whenever α ≤ β , and the obvious composition.

Let F : (0, 1] −→ S et a contravariant functor from the category (0, 1] to the category of

sets. Indeed, {F(α) | α ∈ (0, 1]} is a directed system with maps F( fα,β) : F(β) −→ F(α),

if α ≤ β . Let D = lim
−→

F be the direct limit of this system.

Let us remember the definition of the direct limit, D = lim
−→

F . First we consider the

disjoint union,
•
∪ F(α), of the family of sets {F(α) | α ∈ (0, 1]}, and in it, the equiva-

lence relation R generated by: a ∈ F(α) is related with b ∈ F(β) if either α ≤ β and

F( fα,β)(b) = a or β ≤ α and F( fβ ,α)(a) = b. Let p :
•
∪ F(α)−→ (

•
∪ F(α))/R be the canon-

ical projection, iβ : F(β) −→
•
∪ F(α) be the inclusion, for any β ∈ (0, 1], and qβ = p iβ the

composition.

F(β)

iβ ##❍
❍❍

❍❍
❍❍

❍
qβ

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯

F( fα,β )

��

•
∪ F(α) p

// D

F(α)

iα

;;✈✈✈✈✈✈✈✈✈
qα

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

The pair (D, {pα | α ∈ (0, 1]}) satisfies the corresponding universal property of the direct

limit.

In the particular case in which every map F( fα,β) is injective, then every qα is also injec-

tive; this means that we can consider every F(α) as a subset of D. Therefore, we have

that F defines a decreasing gradual subset of D = lim
−→

F ; or more generally, a decreasing

gradual subset of any overset of D, and represent it by (F, lim
−→

F).

This allows to give an interpretation of decreasing gradual subsets in terms of contravari-

ant functors. If we start from a decreasing gradual subset of a set X , then {σ(α) | α ∈
(0, 1]}, together with the family of inclusions, is a directed system, and if jα : σ(α) −→ X ,
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for every α ∈ (0, 1], is the inclusion, then we have a commutative diagram

σ(β)

iβ $$❍
❍❍

❍❍
❍❍

❍

qβ

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯

σ( fα,β )

��

jβ

,,❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳

•
∪ σ(α) p

// D
h //❴❴❴❴❴❴ X

σ(α)

iα

::✈✈✈✈✈✈✈✈✈✈

qα

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
jα

22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

and an inclusion h : D −→ X , from the direct limit D to X , beings h(D) = Im(h) the union

of the family of the subsets {σ(α) | α ∈ (0, 1]}.
Taking into account this construction, we may show that a decreasing gradual subset σ

of a set X is nothing more than a contravariant functor F : (0, 1] −→ S et of this shape,

together with an injective map D = lim
−→

F −→ X . As a consequence, we may consider

contravariant functors as the central element in the study of decreasing gradual subsets.

Hence, we may define a gradual set as a contravariant functor F : (0, 1] −→S et, and a

decreasing gradual set as a gradual set such that each map F( fα,β), whenever α ≤ β , is

injective.

Given two gradual sets F1 and F2, a map from F1 to F2 is just a natural transformation

θ : F1 −→ F2, i.e., a set of maps {θα | α ∈ (0, 1]} such that each diagram commutes,

whenever α ≤ β .

F1(β)
F1( fα,β )

//

θβ
��

F1(α)

θα
��

F2(β)
F2( fα,β )

// F2(α)

The contravariant functors from (0, 1] to S et, i.e., the gradual sets, constitute a category

that we shall denote byS et(0,1]. The class of all decreasing gradual sets defines a full sub-

category of S et(0,1], and it is closed under (finite and infinite) unions and intersections.

Let us call J this subcategory.

In the subcategory J we define an interior operator, d : F 7→ F d , as follows:

F d(α) = ∪{F(γ) | γ > α}= lim
−→
(α,1]

F(γ),

and if α≤ β , then there is an inclusion functor (β , 1] −→ (α, 1], and a natural map from

F d(β) = lim
−→(β ,1]

F(γ) to F d(α) = lim
−→(α,1]

F(γ).

Proposition 2.20. Let F be a decreasing gradual set, and θ : F1 −→ F2 be a decreasing

gradual set map. The following statements hold.

(1) F d is a contravariant functor from (0, 1] to S et, hence it is a gradual set.
(2) If α ≤ β , the natural map F d(β) −→ F d(α) is injective, hence F d is a decreasing

gradual set.
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(3) There exists a natural map θ d : F d
1
−→ F d

2
, defined, for every β ∈ (0, 1], as the only

map making commutative the following diagram

F1(γ)
//

θβ

��

lim
−→(β ,1]

F1(γ) = F d
1
(β) //

θ d (β)

��
✤

✤

✤

lim
−→(0,1]

F1(γ)

��
F2(γ)

// lim
−→(β ,1]

F2(γ) = F d
1
(β) // lim

−→(0,1]
F2(γ)

(4) d defines an endofunctor of J , which is an interior operator in J .

A decreasing gradual set F is an strict decreasing gradual set whenever F = F d , and

satisfies property (F) if D = lim
−→

F =
•
∪ {F(α) \ F d(α)}, where the union is taken in D.

By the relationship between (inf–F) and (F) properties, we may define a fuzzy set as a

strict decreasing gradual set satisfying property (inf–F). In particular, strict decreasing

gradual sets satisfying property (inf–F) constitute a full subcategory of J .

As a consequence, we have the following result.

Theorem 2.21. Let F be a gradual set,

(1) The following statements are equivalent:

(a) F is a strict decreasing gradual set.

(b) The pair (F, lim
−→

F) is a strict decreasing gradual subset of D = lim
−→

F .

(2) The following statements are equivalent:

(a) F is a strict decreasing gradual set satisfying property (inf–F), i.e., F is a fuzzy

set.

(b) The pair (F, lim
−→

F) is a strict decreasing gradual subset of D = lim
−→

F satisfying

property (inf–F).

Remark 2.22. The use of decreasing gradual sets allows to avoid the use of decreasing

gradual subsets. Indeed, a decreasing gradual subset is, in some sense, more natural: we

can build the category of decreasing gradual sets as a subcategory of the functor category

S et(0,1]. Otherwise, decreasing gradual subsets are referenced to a set, the same does

not happen with decreasing gradual sets; although, as we have the direct limit, the direct

system itself acts as a real set. With fuzzy subsets we have the same situation. Observe

that in the fuzzy situation, when we consider the directed systems and the direct limit,

we are considering only those elements with a positive, non–zero, membership degree,

i.e., we do not consider those with zero membership degree. See also Remark (2.14.).

Remark 2.23. In looking for an abstract model for gradual subsets of a set X , our first

candidate was the functor category S et(0,1]. But unfortunately, with this category we do

not obtain faithful representation of all gradual subsets. One may consider the gradual
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subsetσ of a non–empty set X defined byσ(δ) =

�
X , if δ = 1

2
,

∅, if δ 6= 1
2
.

Obviously, we can not

obtain σ using contravariant functors from the category (0, 1]: the reason is that there

are no maps from X to∅ (it is not an enriched gradual subset). This have been overcome

when we consider enriched gradual sets. This model works perfectly and meets all our

expectations whenever we consider decreasing gradual subsets.

Remark 2.24. Observe that in our construction we have fixed the categories S et and

(0, 1], and considered contravariant functor. If we change contravariant for covariant, we

get increasing gradual sets. On the other hand, the category S et has some peculiarities:

one is that there ∅, which is an initial and not a final object; the other is that there

are objects A and B such that HomS et(A, B) = ∅; these forces the use of increasing or

decreasing gradual sets to assure of writing the theory in a functor language using the

usual order relation in (0, 1]. Some of these restriction will be removed once we change

the category S et for another category as G r (the category of groups) or Mod − A (the

category of right A–modules).

3 Gradual subgroups

In section (2.3) we have studied gradual subsets of P (X ) for any set X , and considered

in P (X ) the operations: intersections and union. We can repeat the same procedure

whenever we have a binary operation in X , and translate it into P (X ), or a subset of

P (X ), in the natural way. Thus, our aim in this section is to study gradual subsets of

a given set X , together with an additional algebraic structure in X ; to do that we shall

consider the simplest example of groups.

3.1 Gradual subgroups

Let X be a non–empty set with a binary operation ∗, we define in P (X )\{∅} new binary

and unary operations by:

S1 ∗ S2 = {s1 ∗ s2 | si ∈ Si}, for every S1, S2 ∈ P (X ) \ {∅} and

S−1 = {s−1 | s ∈ S}, for every S ∈ P (X ) \ {∅}.

Thus, we may define an operation on gradual subsets of X (for simplicity, in this section,

for a set X a gradual subset of X is a gradual element of P (X ) \ {∅}) by:

(σ1 ∗σ2)(α) = σ1(α) ∗σ2(α), for every σ1,σ2 and α ∈ (0, 1].

σ−1(α) = σ(α)−1, for every σ and α ∈ (0, 1].

Definition 3.1. Let G be a group (we eliminate the symbol ∗, and represent the product

just as juxtaposition), a gradual subgroup of G is a gradual subset σ of G, satisfying:

(1) σ ∗σ ⊆ σ,
(2) σ−1 ⊆ σ.
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Proposition 3.2. Let e be the neutral element of a group G, and σ a gradual subgroup,

the following statements hold:

(1) e ∈ σ(α) for any α ∈ (0, 1].
(2) σ(α) is a subgroup of G for any α ∈ (0, 1].

Therefore, if S(G) is the set of all subgroups of G, a gradual subgroup of G is just a

gradual element of S(G).

PROOF (1). Let a ∈ σ(α) then a−1 ∈ σ(α), hence e = a ∗ a−1 ∈ σ(α).
(2). Let a, b ∈ σ(α) then b−1 ∈ σ(α), hence a ∗ b−1 ∈ σ(α). �

If ǫ is a gradual element of a group G, for any α ∈ (0, 1] we define 〈ǫ〉(α) = 〈ǫ(α)〉, the

gradual subgroup of G generated by ǫ. A gradual subgroup σ of G is cyclic if there exists

a gradual element ǫ such that σ = 〈ǫ〉.
We may also define finitely generated gradual subgroups: a gradual subgroupσ is finitely

generated if there are gradual elements ǫ1, . . . ,ǫt such that for any α ∈ L we haveσ(α) =

〈ǫ1(α), . . . ,ǫt(α)〉. We represent this σ simply as 〈ǫ1, . . . ,ǫt〉.

Proposition 3.3. Let σ be a gradual subgroup of a group G. The following statements

are equivalent:

(a) σ is finitely generated.
(b) There exist gradual elements ǫ1, . . . ,ǫt such that σ = 〈ǫ1, . . . ,ǫt〉.
(c) There exists a positive integer t such that each subgroup σ(α) can be generated by

t elements.

Observe that due to Proposition (3.2.), gradual subgroups of G can be identify with sub-

groups of the direct product, indexed in (0, 1], of copies of G.

3.2 Normal gradual subgroups

By the afore mentioned identification the study of gradual subgroups is very simple. Thus,

a gradual subgroup of a group G is normal if for any α ∈ (0, 1] we have that σ(α) ⊆ G

is a normal subgroup of G. If σ is a normal gradual subgroup of G, for every α ∈ (0, 1]

we have a quotient group G/σ(α).

Let σ be a normal gradual subgroup of G, for every α ∈ (0, 1]we have a gradual quotient

group G/σ(α), hence a gradual quotient set ρ of G, defined as ρ(α) = G/σ(α), for

every α ∈ (0, 1]. We may represent it also by G/σ. For every α ∈ (0, 1] there is a group

homomorphism G −→ G/σ(α) = (G/σ)(α).

We define a gradual quotient group of G a gradual quotient set η of G such that for

every α ∈ (0, 1] the projection p(α) : G −→ η(α) is a group homomorphism.

Proposition 3.4. Let G be a group, then

(1) For every normal gradual subgroup σ of G we have G/σ is a gradual quotient group

of G.
(2) For every gradual quotient group η of G there is a normal gradual subgroup κ of G,

defined κ(α) = Ker(G −→ η(α)), for any α ∈ (0, 1].
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Lemma 3.5. Let f : G −→ G′ be a group homomorphism,

(1) For any gradual subgroupσ of G we have that f∗σ : (0, 1] −→ G′, defined f∗(σ)(α) =

f (σ(α)) is a gradual subgroup of G′.
(2) For any gradual subgroup τ of G′ we have that f ∗τ : (0, 1] −→ G, defined f ∗τ(α) =

f ∗(τ(α)) is a gradual subgroup of G.
(3) If τ is normal, then f ∗τ is normal.

Let σ1,σ2 be gradual subgroups of G, we define σ1 ⊆ σ2, and say σ1 is a subgroup of

σ2, if σ1(α) ⊆ σ2(α) for any α ∈ (0, 1].

Lemma 3.6. Let σ1,σ2 be normal gradual subgroups of G, the following statements are

equivalent:

(a) σ1 ⊆ σ2,
(b) For any α ∈ (0, 1] there exist group homomorphisms hα such that the following

diagrams commute:

1 // σ1(α)
//

� _

��

G //// G/σ1(α)

hα
��
✤

✤

✤

// 0

1 // σ2(α)
// G // G/σ2(α)

// 0

Remark 3.7. In consequence, to include G/σ2 inside this theory we could introduce the

notion of gradual quotient group of a gradual quotient group G/σ1, hence study gradual

objects which are not related to an ambient group. The same can be done in considering

gradual subgroups. Thus, we could introduce the notion of gradual group or enriched

gradual group, in a similar way as we did for gradual subsets and sets.

If σ1 and σ2 are gradual subgroups of G, we have a gradual subset σ1σ2 of G, and not

necessarily a gradual subgroup; we get a gradual subgroup whenever one of them is

normal and, in this case, we have:

Lemma 3.8. Let σ1,σ2 be gradual subgroups of G such that σ1 is normal, then

(1) σ1σ2 is a gradual subgroup of G.

(2)
σ1σ2

σ1
, defined

σ1σ2

σ1
(α) =

σ1(α)σ2(α)

σ1(α)
is a gradual subgroup of G

σ1
.

This theory can be enriched whenever we consider maps between the different σ(α)’s,

i.e., enriched gradual subgroups. For instance, when there is an inclusion σ(β) ⊆ σ(α)
whenever α ≤ β .

3.3 Decreasing gradual subgroups

A gradual subgroup σ of G is decreasing if for any α,β ∈ (0, 1] such that α ≤ β , we

have σ(β) ⊆ σ(α). For any decreasing gradual subgroup σ of G, for every α ∈ (0, 1], we

have that σ(1) ⊆ σ(α).
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Let σ be a gradual subgroup, we define the accumulation σc of σ as

σc(α) = 〈∪{σ(β) | β ≥ α}〉, for any α ∈ (0, 1].

It is clear that σc is a decreasing gradual subgroup, and a gradual subgroup σ is decreas-

ing if, and only if, σ = σc. In particular, we have the following properties of the operator

σ 7→ σc.

Lemma 3.9. Let G be a group, for every gradual subgroupsσ,σ1,σ2 the following state-

ments hold:

(1) σ ⊆ σc.
(2) σc = σcc.
(3) If σ1 ⊆ σ2, then σc

1
⊆ σc

2
.

(4) σc is the smallest decreasing gradual subgroup containing σ.
(5) If σ is a normal gradual subgroup, then σc is a normal subgroup, and σc(α) is the

set of all products of elements in ∪{σ(β) | β ≥ α} for any α ∈ (0, 1].

PROOF (5). Each element of 〈{∪σ(β) | β ≥ α}〉 is a product a1 ∗ · · · ∗ at , for some

ai ∈ σ(βi), and βi ≥ α. For any b ∈ G we have g ∗ a1 ∗ · · · ∗ at ∗ g−1 = (g ∗ a1 ∗ g−1) ∗ · · · ∗
(g ∗ at ∗ g−1) ∈ 〈{∪σ(β) | β ≥ α}〉. �

This means that the mapσ 7→ σc is a closure operator in the setG of all gradual subgroups

of G which is compatible with the product in G. The set of all c–closed gradual subgroups

of G is denoted by J (G).

Proposition 3.10. Let σ1,σ2 be gradual subgroups of G, then 〈σ1σ2〉
c = 〈σc

1
σc

2
〉. In

addition, if either σ1 or σ2 is normal, then (σ1σ2)
c = σc

1
σc

2
.

PROOF In fact, we have that both, 〈σ1σ2〉
c(α) and 〈σc

1
σc

2
〉(α), are the subgroup gener-

ated by the subset ∪{σ1(β)∪σ2(β) | β ≥ α}.
Since σ1 is normal each element of (σ1 ∗σ2)

c(α) is a product a ∗ b, for a ∈ σc
1
(β) and

b ∈ σc
2
(γ), form some β ,γ≥ α, then a∗ b ∈ σc

1
(α)∗σc

2
(γ). The converse is similar. �

In the same way, we may define the strict accumulation σd of σ as

σd(α) =

§
σ(1), if α = 1,

〈∪{σ(β) | β > α}〉, for any α ∈ (0, 1).

We have thatσd is a decreasing gradual subgroup and σd is normal wheneverσ is. Some

properties of the operator σ 7→ σd are the following, whose proof is similar to the proof

of Lemma (3.9.), and Proposition (3.10.).

Lemma 3.11. Let G be a group, for any gradual subgroups σ,σ1,σ2 the following state-

ments hold:

(1) σd ⊆ σc.
(2) If σ1 ⊆ σ2, then σd

1
⊆ σd

2
.

(3) σd = σdd = σcd = (σc)d.
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(4) If σ is a normal gradual subgroup, then σd is a normal subgroup, and σc(α) is the

set of all products of elements in ∪{σ(β) | β > α} for any α ∈ (0, 1].
(5) (σ1σ2)

d = 〈σd
1
σd

2
〉. In addition, if either σ1 or σ2 is normal, then (σ1σ)

d = σd
1
σd

2
.

A gradual subgroup σ is an strict decreasing gradual subgroup whenever σ = σd , and

we have:

Lemma 3.12. For any gradual subgroup σ we have that σd is the biggest strict decreas-

ing gradual subgroup contained in σc.

These results mean that the map σ 7→ σd is an interior operator in the set J d(X ) of all

decreasing gradual subgroups of G.

3.4 Gradual subgroups and fuzzy subgroups

We shall show that there exists a strong relationship between gradual subgroups of a

group G and fuzzy subgroups of G. Remember that if G is a group, a fuzzy subgroup µ

of G is a nonconstant, equal to 0, map µ : G −→ [0, 1] satisfying µ(x y−1) ≥ µ(x)∧µ(y),
for any x , y ∈ G. In particular, if e is the neutral element of G, then µ(e) ≥ µ(x) and

µ(x) = µ(x−1) for any x ∈ G. Our aim is to identify fuzzy subgroups with some particular

decreasing gradual subgroups.

First, we need to realize some modifications to have well defined gradual groups starting

from a fuzzy group.

In the set of all fuzzy subgroups µ of G, we define a equivalence relation: µ1 ∼ µ2 if

µ1(x) = µ2(x) for any x 6= e. In order to choose a canonical element in each equivalence

class, following an idea in [4], for any fuzzy subgroup µwe define µ1 as follows: µ1(x) =§
µ(x) if x 6= e,

1 if x = e.
Observe that each equivalence class [µ] has a unique element of the

shape µ1, whenever µ1 is a fuzzy subgroup.

Lemma 3.13. Let µ be a fuzzy subgroup of a group G, then µ1 is a fuzzy subgroup, and

µ1 is normal whenever µ is.

PROOF Let x , y ∈ G, then µ1(x y−1) = µ(x y−1) ≥ µ(x)∧µ(y) = µ1(x)∧µ1(y)whenever

x , y, x y−1 6= e. On the other hand, if x y−1 = e, then µ1(x y−1) = 1 ≥ µ1(x) ∧ µ1(y); if

x 6= e, y = e, then µ1(y) = 1≥ µ1(x), and we have µ1(x y−1) = µ1(x) = µ1(x)∧µ1(y).

�

A decreasing gradual subgroupσ satisfies property (F) if there exists Max{α | x ∈ σ(α)}
for every x ∈ ∪ασ(α). An strict decreasing gradual subgroup σ satisfies property (inf–F)

if γ= Inf{β | x /∈ σd(β)} satisfies x ∈ σ(γ) for any x ∈ G.

Let σ be a decreasing gradual subgroup, let as denote σ∗(α) = σc(α) \σd(α), the differ-

ence set, for every α ∈ (0, 1].

Lemma 3.14. Let σ be a decreasing gradual subgroup such that σc 6= σd , the following

statements are equivalent:
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(a) σc satisfies property (F).
(b) σd satisfies property (inf-F).

(c)
•
∪α∈(0,1] σ

∗(α) = ∪{σ(α) | α ∈ (0, 1]}.

Let [µ] be the equivalence class of the fuzzy subgroup µ; we define a gradual subsetσ(µ)

of G by:

σ(µ)(α) = {x ∈ G | µ1(x)≥ α}.

Lemma 3.15. The map ν : [µ] 7→ σ(µ) is well defined, and σ(µ) is a decreasing gradual

subgroup satisfying property (F).

PROOF Observe that for any class [µ] there exists only one fuzzy subgroup µ such that

µ= µ1. �

Let σ be a decreasing gradual subgroup satisfying property (F); we define a fuzzy subset

µ(σ) by,

µ(σ)(x) =

§
Max{γ | x ∈ σ(γ)}, if x 6= e,

1, if x = e.

Lemma 3.16. With the above notation µ(σ) is a fuzzy subgroup, and we have a map

υ : σ 7→ [µ(σ)] from the set of all decreasing gradual subsets satisfying property (F) to

the set of all classes of fuzzy subgroups.

Now we have the announced relationship of gradual subgroups and fuzzy subgroups.

Theorem 3.17. Let G be a group, the maps ν : [µ] 7→ σ(µ) and υ : σ 7→ [µ(σ)] defines

a bijective correspondence between:

(1) equivalence classes of fuzzy subgroups [µ] of G and
(2) descending gradual subgroups σ of G satisfying property (F).

PROOF Let µ= µ1 be a fuzzy group, for any x ∈ G we have:

µ(σ(µ))(x) =Max{α | x ∈ σ(µ)(α)}=Max{α | α ≤ µ(x)}= µ(x).

On the other hand, let σ be a decreasing gradual subgroup satisfying property (F), for

any α ∈ (0, 1] we have:

σ(µ(σ))(α) = {x | µ(σ)(x)≥ α}= {x | Max{β | x ∈ σ(β)} ≥ α}= σ(α).

�

Lemma 3.18. Let µ1,µ2 fuzzy subgroups, let us define [µ1] [µ2] as [µ1µ2].

PROOF The product [µ1] [µ2] is well defined. Let [µ] = [µ′], for any µ2 se have:

µµ2(x) = Sup{µ(y)∧µ2(z) | yz = x}= Sup{µ′(y)∧µ2(z) | yz = x}= µ′µ2(x).

�
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Remark 3.19. Unfortunately, in Theorem (3.17.) the map ν is not a homomorphism with

respect to the product of classes of fuzzy subgroups. Indeed, for any µ1,µ2 we have:

(σ(µ1)σ(µ2))(α) = σ(µ1)(x)σ(µ2)(α) = {x | µ1(x)≥ α} {x | µ2(x)≥ α}
⊆ {x | Sup{µ1(y)∧ µ2(z) | y z = x} ≥ α}= {x | (µ1µ2)(x)≥ α}
= σ(µ1µ2)(x).

This inclusion could be strict as the following example shows.

Example 3.20. We define fuzzy subgroups µ1 and µ2 of Z as follows:

µ1(x) =






0, if x ∈ Z \ 2Z,

1− 2t

3t , if x ∈ 2t
Z \ 2t+1

Z,

1, if x = 0.

µ2(x) =






0, if x ∈ Z \ 3Z,
1
2
− 1

3t , if x ∈ 3t
Z \ 3t+1

Z,

1, if x = 0.

We claim (µ1 + µ2)(2) = Sup{µ1(y) ∧ µ2(2 − y) | y ∈ Z} ≤ 1
2
. Indeed, we have two

possibilities:

(1) µ1(y) >
1
2
, then y ∈ 4Z, i.e., there exists k ∈ Z such that y = 4k. Hence, µ2(2− y) =

µ2(2− 4k) = µ2(2(1− 2k)) < 1
2

as 2− y 6= 0.
(2) µ1(y) <

1
2
.

In both cases we have µ1(y) ∧ µ2(2 − y) < 1
2
. In addition, we can choose y such that

µ1(y)∧ µ2(2− y) is as closed to 1

2
as we desire. For any 2 ≤ t , s ∈ N there exist k, h ∈ Z

such that 2t−1k − 3sh = 1, hence 2− 2tk = 2(1− 2t−1k) = 3sh; now, if we take y = 2tk,

then µ1(y) ≥ 1− 1
3t and µ2(2− y) ≥ 1

2
− 1

3t . In consequence, 1
2
> µ1(y)∧µ2(2− y) ≥ 1

2
− 1

3t ,

which implies that (µ1 + µ2)(2) =
1
2
, and 2 ∈ (µ1 + µ2) 1

2
. On the other hand, we have

(µ1) 1
2
+ (µ2) 1

2
= 4Z, and 2 /∈ (µ1) 1

2
+ (µ2) 1

2
.

We shall change the assignation defined by ν to consider eν : [µ] 7→ eσ(µ), in which eσ(µ)
is a strict decreasing gradual subgroup satisfying property (inf-F), and is defined by:

eσ(µ)(α) =
§
{x ∈ G | µ1(x)> α}, if α 6= 1,

{x ∈ G | µ1(x) = 1}, if α = 1,

whose inverse is eυ : σ 7→ [eµ(σ)], defined

eµ(σ)(x) =
§

Inf{γ | x /∈ σ(γ)}, if x 6= e,

1, if x = e.

Thus we have the following theorem

Theorem 3.21. With the above notation we have:

(1) eσ(µ) is a strict decreasing gradual subgroup satisfying property (inf-F), and eν is well

defined.

(2) eµ(σ) is a fuzzy subgroup.
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(3) the maps eν and eυ define a bijective correspondence between equivalence classes of

fuzzy subgroups [µ] of G and strict descending gradual subgroups σ of G satisfying

property (inf-F).

(4) eν is a homomorphism with respect to the product of classes of fuzzy subgroups.

PROOF (1). First we observe that eσ(µ) = σ(µ)d , hence it is a strict gradual subgroup,

and by Lemma (3.14.) it satisfies property (inf-F). It is well defined as σ(µ) is uniquely

defined, hence it is eσ(µ).
(2). It is a direct consequence of Lemma (3.11.).

(3). We can mimic the proof of Theorem (3.17.).

(4). For any µ1,µ2 we have:

(σ(µ1)σ(µ2))(α) = σ(µ1)(x)σ(µ2)(α) = {x | µ1(x)> α} {x | µ2(x)> α}
= {x | Sup{µ1(y)∧µ2(z) | y z = x}> α}= {x | (µ1µ2)(x)> α}
= σ(µ1µ2)(x).

�

3.5 Normal fuzzy subgroups

A fuzzy subgroup µ of a group G is normal if µη = ηµ for any fuzzy subset η, or equiv-

alently if µ(x y) = µ(y x) for any x , y ∈ G, see [9]. We are interesting in relating normal

fuzzy subgroups and normal gradual subgroups. We have defined a gradual subgroup σ

to be normal if σ(α) ⊆ G is a normal subgroup for any α ∈ (0, 1].

Lemma 3.22. Let µ1,µ2 be a fuzzy subgroup such that µ1 ∼ µ2 and µ1 is normal, then

µ2 is normal.

PROOF By hypothesis µ1(x y) = µ1(y x) for every x , y ∈ G, if x y, y x 6= e, then

µ2(x y) = µ2(y x). If x y = e, then x = y−1, hence y x = e, and we have µ2(x y) =

µ2(y x) �

As a consequence, if µ is a normal fuzzy subgroup, then every fuzzy subgroup in [µ] is

normal; in particular µ1 is normal.

Theorem 3.23. Let µ be a fuzzy subgroup, the following statements are equivalent:
(a) µ is normal.
(b) eσ(µ) is normal.

PROOF We may assume, without loss of generality, that µ = µ1. Let g ∈ G and let us

consider the fuzzy subset η(g) defined as the characteristic function of {g}, then

(η(g)µ)(x) = Sup{η(g)(x1)∧ µ(x2) | x = x1 x2}= η(g)(g)∧ µ(g
−1 x) = µ(g−1 x),

and in the same way (µη(g))(x) = µ(x g−1). Then

eσ(µ) = eσ(η(g−1)µη(g)) = eσ(η(g−1)) eσ(µ) eσ(η(g)) = g−1 eσ(µ) g.

Therefore, eσ(µ) is normal. Conversely, if eσ(µ) is normal, for any element g ∈ G we have

g−1 eσ(µ) g = eσ(µ), hence η(g−1)µη(g) = µ, and µ is a normal fuzzy subgroup. �
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3.6 Gradual groups

From any decreasing gradual subgroup σ of a group G we have two families: one {σ(α) |
α ∈ (0, 1]} is a family of groups and the other {iα,β : σ(β) ,→ σ(α) | α ≤ β} is the family

of the inclusions. To include these objects inside a more general theory, we shall consider

contravariant functors from (0, 1] to G r, the category of groups.

For any contravariant functor F : (0, 1] −→ G r and every α ≤ β we have now a group

homomorphism from F(β) to F(α), and the pair ({F(α) | α ∈ (0, 1]}, {F( fα,β) | α ≤ β})
is a direct systems of groups and group homomorphisms, hence there exists its direct

limit, say lim
−→

F .

We define a gradual group as a contravariant functor F : (0, 1] −→ G r, and a grad-

ual group homomorphisms from F1 to F2 is just a natural transformation from F1 to F2.

Therefore, we can consider the category of gradual groups and gradual group homomor-

phisms, which we denote by G .

An example of such a gradual group is provided by any decreasing gradual subgroup σ

of a group G. In this case, the direct limit lim
−→
σ is isomorphic to a subgroup of G; indeed,

it is the union ∪{σ(α) | α ∈ (0, 1]}.
Following this example, for any arbitrary gradual group F , we say F is a decreasing

gradual group whenever each F( fα,β), for α ≤ β . The class of all decreasing gradual

groups is denoted by J . To well understand the structure of decreasing gradual groups,

we build an operator (an endofunctor) d in J ; defined on objects as follows: for any

F ∈ J we define F d(α) = lim
−→(α,1]

F(γ), for every α ∈ (0, 1]. We collect these results

in the following proposition, whose proof, after the theory developed in section (2), is

straightforward.

Proposition 3.24. Let F be a decreasing gradual group, and θ : F1 −→ F2 be a decreasing

gradual map. The following statements hold.

(1) F d is a decreasing gradual group.
(2) d is an endfunctor of the full subcategory J of G .
(3) d is an interior operator in J .

A strict decreasing gradual group is a decreasing gradual group F such that F = F d .

At this point it is convenient to remark that we have gradual groups and gradual sub-

groups. Contrary to decreasing gradual subgroups, that need of an ambient or a ground

group, decreasing gradual groups have it included: it is the direct limit of the direct

system that the gradual group defines. This situation allows us to formulate a more at-

tractive category theory of gradual objects which includes the usual constructions of the

category of groups. In this context, decreasing gradual groups, strict decreasing gradual

groups and fuzzy groups can be identified with adequate subcategories, see the forth-

coming paper [3].
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Conclusion

Our aim in this paper has been to introduce more general notions that fuzzy subset in

order to find a framework in which develop an easier theory that allows new techniques

to prove and establish new results in fuzzy theory. In this sense we start from the concept

of gradual element with the goal of introducing gradual subsets. At this point we establish

a bijective correspondence between fuzzy subsets and a particular kind of gradual subsets

(strictly decreasing gradual subsets), that satisfies property (inf–F). The more interesting

property of this correspondence is that it preserves arbitrary unions and intersections of

fuzzy subsets.

In a second degree of abstraction we consider a gradual subset as a contravariant functor

from the category (0, 1] to the category of sets, which allows us to define the notion of

fuzzy and gradual sets without the use of an ambient set. Thus we have three degrees

of abstraction, the first one corresponds to fuzzy subset; the second one to gradual sub-

sets, identifying fuzzy subsets as some particular gradual subsets; and the third one to

contravariant functors from (0, 1] to the category of sets, or directed systems of sets, iden-

tifying decreasing gradual subsets as those systems with injective maps. Observe that in

each abstraction level we have the objects studied in the previous one. We also establish

the corresponding theory for groups in two different but compatible ways; (1) defining

contravariant functors to the category of groups; G r(0,1], and (2) defining groups in the

functor category S et (0,1].

One of the goals of this paper was to find a framework in which to study together the two

crisp sets associated with each fuzzy set, and we have proven that groups and gradual

groups allow it to do so. On the other hand, the use of category theory tools will allow

to extend this working method to other structures, of which the sets and groups studied

are only an example.
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