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Disturbing the q-Dyson Conjecture

Andrew V. Sills

Abstract. I discuss the computational methods behind the formulation of
some conjectures related to variants on Andrews’ q-Dyson conjecture.

1. Introduction

In 1962 [D2], Freeman Dyson made the following conjecture:

Dyson’s Conjecture. For positive integers n and a1, a2, . . . , an, the constant
term in the expansion of the Laurent polynomial

(1.1)
∏

1≦i<j≦n

(

1−
xi

xj

)aj
(

1−
xj

xi

)ai

is the multinomial coëfficient

(a1 + a2 + · · ·+ an)!

a1!a2! · · · an!
.

Dyson’s conjecture was settled independently by Gunson [Gu] and Wilson [W].
In 1970, Good [Go] supplied a particularly compact and elegant proof.

In 1975, George Andrews conjectured a q-analog of Dyson’s conjecture [A]:

Andrews’ q-Dyson Conjecture. For nonnegative integers n and a1, a2, . . . , an,
the constant term in the expansion of the Laurent polynomial

∏

1≦i<j≦n

(

1−
xi

xj

q

)(

1−
xi

xj

q2
)

· · ·

(

1−
xi

xj

qaj

)(

1−
xj

xi

)(

1−
xj

xi

q

)

· · ·

(

1−
xj

xi

qai−1

)

is the q-multinomial coëfficient

[a1 + a2 + · · ·+ an]q!

[a1]q![a2]q! · · · [an]q!
,

where

[a]q :=
1− qa

1− q
= 1 + q + q2 + · · ·+ qa−1
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is the usual q-analog of the nonnegative integer a and

[a]q! =
a
∏

j=1

[j]q

is the q-factorial. Clearly, the q = 1 case of the q-Dyson conjecture is the original
Dyson conjecture. The q-Dyson conjecture remained unsettled for a decade until
it was proved by Zeilberger and Bressoud [ZB]. Two additional decades passed
before a shorter proof was found by Gessel and Xin [GX].

In [SZ], Zeilberger and I set out to “disturb” the Dyson conjecture1 by program-
ming the computer to conjecture, and then provide proofs modeled after Good’s
proof [Go], for closed form expressions of coefficients of terms in the expansion
of (1.1) other than the constant term. Using our Maple package GoodDyson, avail-
able for free download from our home pages [SZ2], the computer can (up to the
limits imposed by time and memory) conjecture and prove a closed form expression

for the coefficient of xb2
1 xb2

2 · · ·xbn
n in the expansion of (1.1) for any fixed n and any

fixed b1, b2, . . . , bn.
At this point, we should introduce some more notation. For n a positive integer,

we define the following symbols:

a := 〈a1, a2, . . . , an〉,

(n-vector of symbolic nonnegative integers)

x := 〈x1, x2, . . . , xn〉,(n-vector of indeterminants)

σn(a) := a1 + a2 + · · ·+ an,

(first elementary symmetric polynomial in n indeterminants)

(A; q)n :=

n−1
∏

i=0

(1−Aqi),(rising q-factorial)

Fn(x; a) :=
∏

1≦i<j≦n

(

1−
xi

xj

)aj
(

1−
xj

xi

)ai

,(Dyson product)

Fn(x; a; q) :=
∏

1≦i<j≦n

(

xiq

xj

; q

)

aj

(

xj

xi

; q

)

ai

,(q-Dyson product)

and let [Y ]Z denote the coefficient of Y in the expression Z, thus the Dyson con-
jecture is

[x0
1x

0
2 · · ·x

0
n]Fn(x; a) =

σn(a)!

a1!a2! · · · an!
,

while the q-Dyson conjecture is

[x0
1x

0
2 · · ·x

0
n]Fn(x; a; q) =

[σn(a)]q !

[a1]q![a2]q! · · · [an]q!
.

Using the output from many applications of the GoodDyson program for various val-
ues of n and b1, . . . , bn, I was able to conjecture and prove the following “disturbed”
versions of the Dyson conjecture [Si1]:

1In the interest of full disclosure, it is my esteemed coauthor for [SZ] who deserves full credit
for the double pun in our title based on [D2] and [Go].
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Theorem 1.1. Let r and s be fixed integers with 1 ≦ r 6= s ≦ n and n ≧ 2.
Then

[

xr

xs

]

Fn(x; a) = −

(

as
1 + σn(a)− as

)

σn(a)!

a1!a2! · · ·an!
.

Theorem 1.2. Let r, s, and t be distinct fixed integers with 1 ≦ r, s, t ≦ n and

n ≧ 3. Then

[

x2
r

xsxt

]

Fn(x; a)

=





asat

(

(1 + σn(a)) + (1 + σn(a)− as − at)
)

(1 + σn(a) − as − at)(1 + σn(a)− as)(1 + σn(a)− at)





σn(a)!

a1!a2! · · ·an!
.

Theorem 1.3. Let r, s, t, and u be distinct fixed integers with 1 ≦ r, s, t, u ≦ n
and n ≧ 4. Then

[

xrxs

xtxu

]

Fn(x; a)

=





atau

(

(1 + σn(a)) + (1 + σn(a)− at − au)
)

(1 + σn(a)− at − au)(1 + σn(a) − at)(1 + σn(a)− au)





σn(a)!

a1!a2! · · ·an!
.

2. q-analogs of Theorems 1.1–1.3

Given that the Dyson conjecture has such a natural q-analog, it seemed rea-
sonable to look for comparable q-analogs of Theorems 1.1–1.3.

2.1. Statements of the conjectures.

Conjecture 2.1 (q-analog of Theorem 1.1). Let r and s be fixed integers with

1 ≦ r 6= s ≦ n and n ≧ 2. Then

[xr/xs]Fn(x; a; q) = −qL(r,s)

(

[as]q
[1 + σn(a) − as]q

)

[σn(a)]q !

[a1]q![a2]q! · · · [an]q!
,

where

L(r, s) =

{

1 + σn(a)−
∑s

k=r ak, if r < s
∑r−1

k=s+1 ak, if r > s.

Conjecture 2.2 (q-analog of Theorem 1.2). Let r, s, and t be distinct fixed

integers with 1 ≦ r, s, t ≦ n and n ≧ 3. Without loss of generality we may assume

that s < t. Then
[

x2
r

xsxt

]

Fn(x; a; q)

= qL(r,s,t)





[as]q[at]q

(

[1 + σn(a)]q + qM(r,s,t)[1 + σn(a)− as − at]q

)

[1 + σn(a)− as − at]q[1 + σn(a)− as]q[1 + σn(a)− at]q





×
[σn(a)]q!

[a1]q![a2]q! · · · [an]q!
,
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where

L(r, s, t) =











2 + 2σn(a)− 2
∑t

k=r ak +
∑t−1

k=s+1 ak, if r < s < t,

1 + σn(a)−
∑t

k=s ak + 2
∑r−1

k=s+1 ak, if s < r < t,

2
∑r−1

k=t+1 ak +
∑t−1

k=s+1 ak, if s < t < r,

and

M(r, s, t) =

{

at, if r < s < t or s < t < r,
as, if s < r < t.

Conjecture 2.3 (q-analog of Theorem 1.3). Let r, s, t and u be distinct fixed

integers with 1 ≦ r, s, t, u ≦ n and n ≧ 4. Without loss of generality we may assume

that r < s and t < u. Then
[

xrxs

xtxu

]

Fn(x; a; q)

= qL(r,s,t,u)





[at]q[au]q

(

[1 + σn(a)]q) + qM(r,s,t,u)[1 + σn(a)− at − au]q

)

[1 + σn(a) − at − au]q[1 + σn(a)− at]q[1 + σn(a)− au]q





×
[σn(a)]q!

[a1]q![a2]q! · · · [an]q!
,

where

L(r, s, t, u)

=











































2 + 2σn(a) − 2
∑u

k=r ak +
∑s−1

k=r ak +
∑u−1

k=t+1 ak, if r < s < t < u,

1 + σn(a)−
∑u

k=r ak +
∑s−1

k=t+1 ak, if r < t < s < u,

1 + σn(a)−
∑s−1

k=r ak + 2
∑r−1

k=t+1 ak +
∑u−1

k=t+1 ak
+2

∑s−1
k=u+1 ak, if r < t < u < s,

1 + σn(a)−
∑u

k=t ak +
∑s−1

k=r ak + 2
∑r−1

k=t+1 ak, if t < r < s < u,
∑r−1

k=t+1 ak +
∑s−1

k=u+1 ak, if t < r < u < s,
∑s−1

k=r ak +
∑u−1

k=t+1 ak + 2
∑r−1

k=u+1 ak, if t < u < r < s,

and

M(r, s, t, u) =







au, if r < s < t < u or r < t < u < s or t < u < r < s,
1 + σn(a) if r < t < s < u or t < r < u < s,
at, if t < r < s < u.

2.2. How the conjectures were formed. Conjecture 2.1 was found first
since it is the simplest. It is straightforward to program a Maple procedure which
extracts the coefficient of xr/xs of Fn(x; a; q) for specific values of n, r, s, a1, a2, . . . , an,
and to divide out the multinomial coefficient from the resulting q-expression. Fur-
thermore, the qfactor procedure in Frank Garvan’s qseries.mMaple package [Ga]
was helpful for putting the result in a tractable form. For n = 3 and 4 and various
small values of a1, . . . , an, it became clear that to move from Theorem 1.1 to its
q-analog, all that was necessary was to replace each factor z by [z]q, and multiply
the resulting expression by qL, where L was an (as yet unknown) function of the
ai’s that depended on r and s. Upon examining the data, I was led to the working
hypothesis that L was piecewise linear in the ai’s with different pieces arising from
some condition on r and s.
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At this point, I began to create the “qDysonConj” package [Si2]. I programmed
the “Conj1m1” procedure in Maple, which takes as input the ordered pair (r, s) and
n, and finds the linear function

L(r, s) = λ0 +
n
∑

i=1

λiai

which fits the internally generated data.
(The name “Conj1m1” is meant to suggest that we wish to conjecture the

missing exponent L for the coefficient of xb1
1 xb2

2 · · ·xbn
n in the q-Dyson product (for

a specific n) where one of the bi is 1, one of the bi is −1 and the rest are zero.)
The idea behind the Conj1m1 is quite simple. Based on the assumption

[

xr

xs

]

Fn(x; a; q) = −qλ0+a1λ1+a2λ2+···+anλn

(

[as]q
[1 + σn(a) − as]q

)

[σn(a)]q !

[a1]q! · · · [an]q!
,

the Conj1m1 procedure, for a given r, s, and n effectively computes

logq





[xr/xs]Fn(x; a; q)

−
(

[as]q
[1+σn(a)−as]q

)

[σn(a)]q!
[a1]q !···[an]q!





for n+ 1 linearly independent values of the vector a and solves the resulting linear
system for λ0, λ1, . . . , λn.

Let us recreate a Maple session to guess L(r, s) using the case n = 6.

> read "qDysonConj";

Generalized qDyson conjecture package

by A.V. Sills

Enter ’ez()’ for a list of procedures

> C:=combinat[permute](6,2);

C := [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 1], [2, 3], [2, 4],

[2, 5], [2, 6], [3, 1], [3, 2], [3, 4], [3, 5], [3, 6], [4, 1], [4, 2],

[4, 3], [4, 5], [4, 6], [5, 1], [5, 2], [5, 3], [5, 4], [5, 6], [6, 1],

[6, 2], [6, 3], [6, 4], [6, 5]]

In order to have Maple run the Conj1m1 procedure on all or-
dered pairs (r, s) with 1 ≦ r 6= s ≦ 6, we use the built-in
combinat[permute] procedure, and have Maple loop through
all 30 permutations of length 2 on the set {1, 2, 3, 4, 5, 6}.

> for k from 1 to nops(C) do Conj1m1( op(C[k]), 6) od;

[1, 2], 1 + a3 + a4 + a5 + a6

[1, 3], 1 + a4 + a5 + a6

[1, 4], 1 + a5 + a6

[1, 5], 1 + a6

[1, 6], 1

[2, 1], 0

[2, 3], 1 + a1 + a4 + a5 + a6

[2, 4], 1 + a1 + a5 + a6

[2, 5], 1 + a1 + a6

[2, 6], 1 + a1

[3, 1], a2

[3, 2], 0
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[3, 4], 1 + a1 + a2 + a5 + a6

[3, 5], 1 + a1 + a2 + a6

[3, 6], 1 + a1 + a2

[4, 1], a2 + a3

[4, 2], a3

[4, 3], 0

[4, 5], 1 + a1 + a2 + a3 + a6

[4, 6], 1 + a1 + a2 + a3

[5, 1], a2 + a3 + a4

[5, 2], a3 + a4

[5, 3], a4

[5, 4], 0

[5, 6], 1 + a1 + a2 + a3 + a4

[6, 1], a2 + a3 + a4 + a5

[6, 2], a3 + a4 + a5

[6, 3], a4 + a5

[6, 4], a5

[6, 5], 0

The above output shows the conjectured form of qL(r,s) for each of the thirty
possible values of (r, s) in the case n = 6. Notice that when r < s,

L(r, s) = 1 +
∑

i∈{1,2,3,4,5,6}\{r,r+1,...,s}

ai,

while if r > s,

L(r, s) =
∑

i∈{1,2,3,4,5,6}\{s,s+1,...,r}

ai.

The data above, combined with the analogous data for many different values
of n led me to conjecture L(r, s) as given in Conjecture 2.1.

Once I had Conjecture 2.1, it seemed reasonable to guess that the q-analog of
Theorem 1.2 would have an analogous form, noting that this time the expression
broke down neatly into a sum of two terms. I guessed that each of the two terms
included a factor of the form qL, where again, L is a piecewise linear function of the
ai’s that depended on r, s, and t; piecewise according to the ordering of r, s, and t
from smallest to largest. This time I programmed the Conj2m1m1 procedure which
works similarly to the Conj1m1 procedure except that now two piecewise linear
functions must be found simultaneously. By extracting the coefficient of x2

r/xsxt

from the expanded q-Dyson product for a given r, s, t, and n, and dividing through
by
(

[as]q[at]q
(1− q)[1 + σn(a) − as − at]q[1 + σn(a) − as]q[1 + σn(a) − at]q

)

[σn(a)]q!

[a1]q! · · · [an]q!
,

what remains is a four-term polynomial in q which we presume to be of the form

qL(1− q1+σn(a)) + qM (1 − q1+σn(a)−as−at).

Evaluating the above expression at n+1 linearly independent values of a allows us
to conjecture L and M . Furthermore, the data revealed that inevitably L < M ,
so qL was factored out front of the expression, and we renamed qM−L by qM .
Conjecture 2.3 was obtained similarly.



DISTURBING THE q-DYSON CONJECTURE 7

3. Status of the conjectures

As of this writing, the conjectures remain open. Some twenty years ago, J.
Stembridge [St, p. 347, Corollary 7.4], in a different context, proved that in the
special case where a = 〈a, a, a, . . . , a〉, and bρ+1 = bρ2

= · · · = bρτ
= −1, for ρ and

τ satisfying 0 ≦ ρ ≦ n and 1 ≦ τ ≦ n− ρ,
(3.1)

[xb1
1 xb2

2 · · ·xbn
n ]Fn(x; a; q) = (−1)τqb1+b2+···+bρ+am (q; q)an(q

a; qa)τ (q; q
a)ρ+τ

(q; q)na (q; q
a)n

,

where m = ρτ +
∑ρ

i=1(i − 1)bi −
∑n−ρ−τ

i=1 ibn−i+1. One can check that Conjec-
tures 2.1–2.3 do in fact agree with (3.1) in the instances where they overlap.

It would of course be natural to investigate whether either or both proofs of the
q-Dyson conjecture ([ZB] and [GX]) could be adapted to prove Conjectures 2.1–2.3.

4. Possibilities for additional results

It is likely that tractable formulas for additional coëfficients in the Dyson and
q-Dyson products exist. It seems quite plausible that the methods of this paper
would be sufficient for finding such formulas. In particular, the next simplest case
would likely be the coëfficient of xrxs/x

2
t in the q-Dyson product, where r, s, and

t are distinct integers between 1 and n, with n ≧ 3.

Note added in proof: After the submission of this paper, Lv, Xin, and Zhou
announced a proof of Conjectures 2.1–2.3 in “A family of q-Dyson style constant
term identities,” arXiv:0706.1009.
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