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THE EISENBUD-GREEN-HARRIS CONJECTURE FOR

DEFECT TWO QUADRATIC IDEALS

SEMA GÜNTÜRKÜN AND MELVIN HOCHSTER

Abstract. The Eisenbud-Green-Harris (EGH) conjecture states that a homogeneous ideal in a
polynomial ring K[x1, . . . , xn] over a field K that contains a regular sequence f1, . . . , fn with
degrees ai, i = 1, . . . , n has the same Hilbert function as a lex-plus-powers ideal containing
the powers x

ai

i , i = 1, . . . , n. In this paper, we discuss a case of the EGH conjecture for
homogeneous ideals generated by n + 2 quadrics containing a regular sequence f1, . . . , fn and
give a complete proof for EGH when n = 5 and a1 = · · · = a5 = 2.

1. Introduction

Let R = K[x1, . . . , xn] be the polynomial ring in n variables over a field K with the homo-
geneous lexicographic order in which x1 > · · · > xn and with the standard grading R =

⊕
i≥0

Ri.

We denote the Hilbert function of a Z-graded R-module M by HilbM (i) := dimK Mi, where Mi

is the homogeneous component of M in degree i. When I is a homogeneous ideal of R and M
is R, or I, or R/I, the Hilbert function has value 0 when i < 0. When the Hilbert function of
M is 0 in negative degree, we may discuss the Hilbert function of M by giving the sequence of
its values, and we refer to this sequence of integers as the O-sequence of M .

In 1927, Macaulay [13] showed that the Hilbert function of any homogeneous ideal of R is at-
tained by a lexicographic ideal in R. Later, in Kruskal-Katona’s theorem [11, 12], it is shown that
the polynomial ring R in Macaulay’s result can be replaced with the quotient R/(x21, . . . , x

2
n).

After this result, Clement and Lindström, in [5], generalized the result to R/(xa11 , . . . , xann ) if
a1 ≤ · · · ≤ an < ∞.

In [7] Eisenbud, Green and Harris conjectured a generalization of the Clement-Lindström
result. Let a = (a1, . . . , an) ∈ N

n, where 2 ≤ a1 ≤ . . . ≤ an.

Conjecture 1.1 (Eisenbud-Green-Harris (EGHa,n) Conjecture [7]). If I is a homogeneous ideal
in R = K[x1, . . . , xn] containing a regular sequence f1, f2, . . . , fn with degrees deg fi = ai, then
there is a monomial ideal L = (xa11 , . . . , xann ) + J , where J is a lexicographic ideal in R, such
that R/L and R/I have the same Hilbert function.

Although there has been some progress on the conjecture, it remains open. The conjecture
is shown to be true for n = 2 by Richert in [14]. Francisco [8] shows the conjecture for almost

complete intersections. Caviglia and Maclagan in [2] prove the result if ai >
i−1∑
j=1

(aj − 1) for

2 ≤ i ≤ n. The rapid growth required for the degrees does not yield much insight into cases
like the one in which the regular sequence consists of quadratic forms. When n = 3, Cooper
in [6] proves the EGH conjecture for the cases where (a1, a2, a3) = (2, a2, a3) and (a1, a2, a3) =
(3, a2, a3) with a2 ≤ a3 ≤ a2 + 1.

One of the most intriguing cases is when a1 = · · · = an = 2 for any n ≥ 2, which is the
case for which Eisenbud, Green and Harris originally stated their conjecture. It is known that
the conjecture holds for homogeneous ideals minimally generated by generic quadrics: the case
where charK = 0 was proved by Herzog and Popescu [10] and the case of arbitrary characteristic
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was proved by Gasharov [9] around the same time. There have been several other results on the
EGH conjecture. More recently, the case when every fi, i = 1, . . . , n, in the regular sequence
is a product of linear forms is settled by Abedelfatah in [1], and results on the EGH conjecture
using linkage theory are given by Chong [4].

In this paper we focus on the case when the degrees of the elements of the regular sequence are
a1 = · · · = an = 2. In [14], Richert claimed that the conjecture for quadratic regular sequences
is true for 2 ≤ n ≤ 5, but this work has not been published, and other researchers have been
unable to verify this for n = 5 thus far. Chen, in [3], has given a proof for the case where n ≤ 4
when a1 = · · · = an = 2.

In §2 we recall some definitions and results from the papers of Francisco [8], Caviglia-Maclagan
[2] and Chen [3]. In §3 we study homogeneous ideals I generated by n + 2 quadratic forms in
n variables containing a regular sequence of length n, and Theorem 3.17 shows that there is
a monomial ideal L = (x21, . . . , x

2
n) + J , where J is a lexicographic ideal in R, such that R/I

and R/L have the same Hilbert function in degree 2 and 3 (i.e., EGH(2, ..., 2),n(2) holds: see
Definition 2.5). In §4 we give a proof to the claim of Richert for the quadratic regular sequence
case when n = 5.

2. Background and Preliminaries

In this section we recall some definitions and state some known results that are used through-
out the paper.

Definition 2.1. Let u = xa11 · · · xann and v = xb11 · · · xbnn be monomials in R of the same degree.
We say that u is greater than v with respect to the lexicographic (or lex) order if there exists an
i such that ai > bi and aj = bj for all j < i.

A monomial ideal J ⊆ R is called a lexicographic ideal (or lex ideal) if, for all degrees d,
the d-th degree component of J , denoted by Jd, is spanned over the base field K by an initial
segment of the degree d monomials in the lexicographic order.

Definition 2.2. Given 2 ≤ a1 ≤ · · · ≤ an, a lex-plus-powers ideal (LPP ideal) L is a monomial
ideal in R that can be written as L = (xa11 , . . . , xann ) + J where J is a lex ideal in R.

This definition agrees with the one in [2]. Some authors require that the xaii be minimal
generators of L, which we do not. However, since we consider only nondegenerate homogeneous
ideals in this paper, i.e., ideals contained in (x1, . . . , xn)

2, in the case where a1 = · · · = an = 2
it is automatic that the x2i are minimal generators of the ideal under consideration.

In [8] Francisco showed the following for almost complete intersections.

Theorem 2.3 (Francisco [8]). Let integers 2 ≤ a1 ≤ a2 ≤ · · · ≤ an and d ≥ a1 be given.
Let the ideal I have minimal generators f1, . . . , fn, g where f1, . . . , fn form a regular sequence
with deg fi = ai and g has degree d. Let L = (xa11 , . . . , xann ,m) be the lex-plus-powers ideal
where m is the greatest monomial in lex order in degree d that is not in (xa11 , . . . , xann ). Then
HilbR/I(d+ 1) ≤ HilbR/L(d+ 1).

Note that, necessarily, d ≤
∑n

i=1(ai−1), since (f1, . . . , fn) contains all forms of degree larger
than that. If a1 = · · · = an = 2, then d ≤ n.

The following corollary is an immediate consequence of Theorem 2.3 above. If g ∈ R is a
nonzero form of degree i we write gRj for the vector space {gh : h ∈ Rj} ⊆ Ri+j .

Corollary 2.4. Let I = (f1, . . . , fn, g) be an almost complete intersection as in Theorem 2.3
above such that a1 = · · · = an = 2. Then

dimK

(
(f1, . . . , fn)d+1 ∩ gR1

)
≤ d.

Proof. We can write

dimK Id+1 = dimK(f1, . . . , fn)d+1 + dimK gR1 − dimK

(
(f1, . . . , fn)d+1 ∩ gR1

)
,
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where dimK gR1 = n. Then by Theorem 2.3, we have

dimK Id+1 ≥ dimK(x21, . . . , x
2
n, x1 · · · xd)d+1 = dimK(x21, . . . , x

2
n)d+1 + n− d

Since HilbR/(f1, ..., fn)(i) = HilbR/(x2

1
, ..., x2

n)
(i) for all i ≥ 0, we can conclude that

dimK

(
(f1, . . . , fn)d+1 ∩ gR1

)
≤ d.

�

The next statement is a weaker version of the EGHa,n conjecture. It focuses on the Hilbert
function of the given homogeneous ideal only at the two consecutive degrees d and d + 1 for
some non-negative integer d.

Definition 2.5 (EGHa,n(d)). Following Caviglia-Maclagan [2], we say that “EGHa,n(d) holds”
if for any homogeneous ideal I ∈ K[x1, . . . , xn] containing a regular sequence of degrees a =
(a1, . . . , an), where 2 ≤ a1 ≤ · · · ≤ an, there exists a lex-plus-powers ideal L containing {xaii :
1 ≤ i ≤ n} such that

dimK Id = dimK Ld and dimK Id+1 = dimK Ld+1 .

Lemma 2.6. The condition EGH(d, ..., d),n(d) on a polynomial ring R = K[x1, . . . , xn] is equiv-
alent to the statement that for the ideal I generated by n + δ K-linearly independent forms of
degree d containing a regular sequence of quadrics, one has that dimK Id+1 ≥ dimK Ld+1, where
L = (xd1, . . . , x

d
n) + J ′ and J ′ is minimally generated by the greatest in lex order δ forms of

degree d not already in (xd1, . . . , x
d
n).

Proof. If there is an LPP ideal (xd1, . . . , x
d
n) + J , where J is a lex ideal, with the same Hilbert

function as I in degrees d and d+1, it is clear that Jd must be spanned over K by the specified
generators of J ′, so that (xd1, . . . , x

d
n) + J ′ ⊆ (xd1, . . . , x

d
n) + J , which implies the specified

inequality on the Hilbert functions. Moreover, when that inequality holds we may increase
L := (xd1, . . . , x

d
n) + J ′ to an LPP ideal with the same Hilbert function as I in degrees d and

d+ 1: if ∆ = HilbI(d+ 1)− HilbL(d+ 1), we may simply include the greatest (in lex order) ∆
forms of degree d+ 1 not already in L. �

Remark 2.7. We shall eventually be focused on EGHa,n(d) in the case where a1 = · · · = an =
d = 2, simply referred as EGH(2, ..., 2),n(2) or EGH2,n(2). We shall routinely make use of this
lemma in this case of quadratic regular sequence and d = 2.

Lemma 2.8 (Caviglia-Maclagan [2]). Fix a = (a1, . . . , an) ∈ N
n where 2 ≤ a1 ≤ a2 ≤ · · · ≤ an

and set s =
n∑

i=1
(ai−1). Then for any 0 ≤ d ≤ s−1, EGHa,n(d) holds if and only if EGHa,n(s-1-d)

holds.
Furthermore, the EGHa,n conjecture holds if and only if EGHa,n(d) holds for all degrees d ≥ 0.

From now on, we always assume a = 2 = (2, . . . , 2) for n ≥ 2, unless it is stated otherwise.

Remark 2.9. For any n ≥ 2, EGH2,n(0) holds trivially. In [3, Proposition 2.1], Chen showed
that EGH2,n(1) is true for any n ≥ 2.

Chen proved the following.

Theorem 2.10 (Chen [3]). The EGH2,n conjecture holds when 2 ≤ n ≤ 4.

Chen’s proof of this uses Lemma 2.8 above, and the observation that, when n = 4, to demon-
strate that the EGH2,4 conjecture is true, it suffices to show that EGH2,4(0) and EGH2,4(1) are
true.
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3. EGH2,n(2) for defect two ideals

In this section, we focus on the homogeneous ideals in K[x1, . . . , xn] for n ≥ 5 that are
generated by n+2 quadratic forms containing a regular sequence. In particular, we study their
Hilbert functions in degree 3.

Definition 3.1. If I is a homogeneous ideal minimally generated by n + δ forms that contain
a regular sequence of length n, then I is said to be a defect δ ideal.

Clearly, when δ = 0 then I is generated by a regular sequence, it is a complete intersection,
and we understand the Hilbert function completely. If δ = 1, then I is an almost complete
intersection.

Definition 3.2. We call a homogeneous ideal a quadratic ideal if it is generated by quadratic
forms.

Let I = (f1, . . . , fn, g, h) be a homogeneous ideal minimally generated by n + 2 quadrics
where f1, . . . , fn form a regular sequence. We call such an ideal a defect two ideal generated by
quadrics or simply a defect two quadratic ideal. More generally, if a quadratic ideal is a defect
δ ideal, then we call it defect δ quadratic ideal.

Example 3.3. The lex-plus-powers ideal L = (x21, . . . , x
2
n, x1x2, x1x3) in R is also a defect two

quadratic ideal.
Further, for any homogeneous defect two quadratic ideal I, we have the equality

dimK I2 = n+ 2 = dimK L2 .

Main Question 3.4 (EGH2,n(2) for defect two quadratic ideals). For any n ≥ 5, is it true that

dimK I3 ≥ n2 + 2n− 5 = dimK L3?

An affirmative answer for this question is proved completely in Theorem 3.17 below.

Notation 3.5. Throughout the rest of this paper we write f for the ideal (f1, . . . , fn)R when
f1, . . . , fn is a regular sequence of quadratic forms, and in the defect δ quadratic ideal case we
write g for the additional generators g1, . . . , gδ of the quadratic ideal. Here, f1, . . . , fn, g1, . . . , gδ
are assumed to be linearly independent over K. Moreover, henceforth, we write J for the ideal
f + (g1, . . . , gδ−1). However, when δ = 1 or 2 we may write g, h for g1, g2, so that whenever
δ = 2 we henceforth write J for the ideal f + (g1) = f + (g). We denote the graded Gorenstein
Artin K-algebra R/f by A.

We know that, if a1 = · · · = an = deg g = 2, Theorem 2.3 shows that

dimK J3 ≥ n2 + n− 2

and then Corollary 2.4 gives dimK

(
f3 ∩ gR1

)
≤ 2.

Remark 3.6. In [3, Proposition 3.7] Chen gave a positive answer to the Question 3.4 for defect
two quadratic ideals I = f + (g, h) if dimK

(
f3 ∩ gR1

)
= 2. We shall make repeated use of this

fact in the sequel.

In this section we show EGH2,n(2) for a defect two quadratic ideal I = f + (g, h) under the

condition that dimK

(
f3 ∩ g′R1

)
≤ 1 for all g′ ∈ Kg + Kh − {0}: this covers all the cases for

which Chen’s result in Proposition 3.6 is not applicable.

Lemma 3.7. As in Notation 3.5, J is the defect 1 quadratic ideal f+ gR. Then:

dimK I3 = n2 + 2n− dimK

(
f3 ∩ gR1

)
− dimK

(
J3 ∩ hR1

)
.

Consequently, for the cases that are not covered by the Proposition 3.6 we have:
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(i) If dimK

(
f3 ∩ gR1

)
= 1 then dimK I3 = n2 + 2n − 1 − dimK

(
J3 ∩ hR1

)
, and EGH2,n(2)

holds for a defect two quadratic ideal I if and only if dimK

(
J3 ∩ hR1

)
≤ 4.

(ii) If dimK

(
f3 ∩ gR1

)
= 0 then dimK I3 = n2 +2n− dimK

(
J3 ∩ hR1

)
, and EGH2,n(2) holds

for I if and only if dimK

(
J3 ∩ hR1

)
≤ 5.

Proof. We have:

dimK I3 = dimK J3 + dimK(hR1)− dimK

(
J3 ∩ hR1

)

= dimK f3 + dimK(gR1)− dimK

(
f3 ∩ gR1

)
+ dimK(hR1)− dimK

(
J3 ∩ hR1

)

= n2 + 2n− dimK

(
f3 ∩ gR1

)
− dimK

(
J3 ∩ hR1

)
,

and then (i) and (ii) are immediate. �

Remark 3.8. Let n = 5, so that f = (f1, . . . , f5). For a defect two quadratic ideal I = (f, g, h) ⊆
K[x1, . . . , x5], if dimK

(
f3 ∩ gR1

)
= 0 then clearly dimK

(
(f, g)3 ∩ hR1

)
≤ dimK(hR1) ≤ 5,

therefore EGH2,5(2) holds for such an ideal I. However, we must give an argument to cover all

possible cases, that is, when dimK

(
f3 ∩ gR1

)
= 1, to be able to confirm EGH2,5(2) for every

defect two quadratic ideal. In the last section, we discuss the EGH conjecture for n = 5 and
a1 = · · · = a5 = 2 in detail.

Next, we proceed with two useful lemmas.

Lemma 3.9. Let A be the graded Gorenstein Artin K-algebra R/f with dimK A1 = n. Let g, h
be two quadratic forms such that gA1 = hA1. Then AnnA1

g = AnnA1
h.

Moreover, AnnAi
(g) = AnnAi

(h) if i 6= n− 2.

Proof. Suppose that the linear annihilator space of g, AnnA1
g, has dimension a and gA1 = hA1.

Thus gA1 has dimension n − a and clearly hA1 and AnnA1
h have dimensions n − a and a,

respectively.
Notice that gA(−2) ∼= A/AnnA(g), hence it is Gorenstein and it has a symmetric O-sequence

(0, 0, 1, n − a, e4, e5, . . . , e5, e4, n− a, 1),

where ei denotes the dimension of [gA]i and ei = en−i+2 for 2 ≤ i ≤ n. Then the Hilbert
function of A/gA is

(1, n,

(
n

2

)
− 1,

(
n

3

)
− n+ a,

(
n

4

)
− e4, . . . ,

(
n

3

)
− e5,

(
n

2

)
− e4, a, 0).

Since AnnA(g) ∼= HomK(A/gA,A) ∼= (A/gA)∨, the Hilbert function of AnnA(g) is

(0, a,

(
n

2

)
− e4, . . . ,

(
n

4

)
− e4,

(
n

3

)
− n+ a,

(
n

2

)
− 1, n, 1).

Recall that gA1 = hA1, gAi = hAi for all i ≥ 2, so (g, h)A has the Hilbert function

(0, 0, 2, n − a, e4, . . . , e4, n− a, 1︸ ︷︷ ︸
the same as for gA

).

Then the O-sequence of A/(g, h) becomes

(1, n,

(
n

2

)
− 2,

(
n

3

)
− n+ a,

(
n

4

)
− e4, . . . ,

(
n

3

)
− e5,

(
n

2

)
− e4, a, 0),

and it follows that AnnA(g, h) has the Hilbert function

(0, a,

(
n

2

)
− e4, . . . ,

(
n

4

)
− e4,

(
n

3

)
− n+ a,

(
n

2

)
− 2, n, 1).

We know that AnnA(g, h) = AnnA(g) ∩AnnA(h), and in degree 1, AnnA(g, h) has dimension a,
so AnnA(g, h) = AnnA1

(g) = AnnA1
(h). Further, AnnA(g) and AnnA(h) are the same in every

degrees except in degree n− 2. �
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Lemma 3.10. Let g, h be two quadratic forms in a graded Gorenstein Artin K-algebra A such
that gAi = hAi and g, h have the same annihilator space V in Ai for some i ≥ 1. Then there
exists g′ ∈ Kg +Kh− {0} such that

dimK AnnAi
(g′) ≥ dimK V + 1.

Proof. Consider the multiplication maps by g and h,

φg : Ai/V → gAi and φh : Ai/V → hAi

whose images gAi, hAi are subspaces in Ai+2 and gAi = hAi by assumption. Then there is a
automorphism

T : Ai/V → Ai/V

such that gℓ = hT (ℓ) for any ℓ ∈ Ai/V . However, T has at least one nonzero eigenvector u
with T (u) = cu for some c ∈ K. Say ℓu be a form in degree i represented by this eigenvector
u in Ai and not in the annihilator space V , thus gℓu = hcℓu. Then there is a quadratic form
g′ := g − ch ∈ Kg +Kh− {0} such that g′ annihilated by the space V and also by ℓu ∈ Ai \ V .
Hence dimK AnnAi

(g′) ≥ dimK V + 1. �

From now on, I = (f1, . . . , fn, g, h) = f + (g, h) is a homogeneous ideal where dimK

(
f3 ∩

g′R1

)
6= 2 for a quadratic form g′ ∈ Kg + Kh − {0}, which means that dimK g′A1 6= n − 2.

Therefore dimK g′A1 is either n or n− 1.

Proposition 3.11. For the graded Gorenstein Artin K-algebra A, if gA1 = hA1 with dimK gA1 =
n− 1 = dimK hA1, that is dimK(f3 ∩ gR1) = dimK(f3 ∩ hR1) = 1, then EGH2,n(2) holds for the
homogeneous defect two quadratic ideal I = f+ (g, h).

Proof. Since dimK AnnA1
(g) = dimK AnnA1

(h) = 1 there is some g′ ∈ Kg + Kh − {0} with
dimK AnnAi

(g′) = 2 by Lemma 3.10. In consequence, dimK

(
f3 ∩ g′R1

)
= 2, and so we are done

by Proposition 3.6. �

Proposition 3.12. For the graded Gorenstein Artin K-algebra A, if dimK gA1 = dimK hA1 =
n, then there exists a quadratic form g′ in Kg +Kh with a nonzero linear annihilator in A.

Proof. By assumption dimK A1 = dimK gA1 = dimK hA1 = n, and so we may consider again
the multiplication maps φg : A1 → gA1 and φh : A1 → hA1. Then we obtain a automorphism
T : A1 → A1 and there exists an nonzero linear form ℓ ∈ A1 such that T (ℓ) = cℓ for some c ∈ K,
that is gℓ = chℓ. Consider g′ = g − ch ∈ Kg +Kh. Clearly, ℓ ∈ AnnA1

(g′). �

Next we assume that there is a linear annihilator L ∈ A1 of g where Lh 6= 0 over the Gorenstein
ring A = R/f. This case may come up either when dimK gA1 = dimK hA1 = n − 1 and the
linear annihilator spaces AnnA1

(g) and AnnA1
(h) are distinct, or when dimK gA1 = n − 1 and

dimK hA1 = n.
We shall make repeated use of the following result, which is Lemma 3.3 of Chen’s paper [3].

Lemma 3.13 (Chen [3]). If f1, . . . , fn is a regular sequence of 2-forms in R and we have a rela-
tion u1f1+u2f2+ · · ·+unfn = 0 for some t-forms u1, . . . , un, then u1, . . . , un ∈ (f1, . . . , fn)t.
More precisely, we have that t ≥ 2 and there exists a skew-symmetric n×n matrix B of (t− 2)-
forms such that (u1 u2 · · · un) = (f1 f2 · · · fn)B. �

Proposition 3.14. Let I = f+ g be a defect δ, where 2 ≤ δ ≤ n− 1, quadratic ideal of R as in
Notation 3.5. If there is a linear form L in AnnA(g1, . . . , gδ−1) such that Lgδ 6= 0 in A, then

dimK

(
(f1, . . . , fn, g1, . . . , gδ−1)3 ∩ gδR1

)
≤ 3

Chen [3] used an argument involving the Koszul relations on (x1, . . . , xr) for r ≤ n while
introducing another proof for Theorem 2.3. In the proof of this proposition we use a very
similar argument.
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Proof. As in Notation 3.5, let J = f + (g1, . . . , gδ−1), and denote the row vector of the regular

sequence f1, . . . , fn by ~f and the row vector of quadratic forms g1, . . . , gδ−1 by ~g.

Suppose dimK(J3 ∩ gδR1) ≥ 4, and without loss of generality we may assume that

x1gδ = ~g · ~ℓ1 +~f · ~p1

x2gδ = ~g · ~ℓ2 +~f · ~p2

x3gδ = ~g · ~ℓ3 +~f · ~p3

x4gδ = ~g · ~ℓ4 +~f · ~p4

where ~ℓi and ~pi are column vectors of linear forms of lengths δ − 1 and n, respectively.
We assume that there is a linear form L such that Lgi = 0 for each i = 1, . . . , δ − 1 but

Lgδ 6= 0 in A. Then we get am n × (δ − 1) matrix (qi,j) =
(
~q1 ~q2 · · · ~qδ−1

)
of linear forms

such that

L~g = ~f · (qi,j).

We observe that each xiLgδ is in f, and write xiLgδ = ~f · ~Qi where ~Qi is a column of quadratic
forms for i = 1, 2, 3, 4. Therefore:

Lgδ
(
x1 x2 x3 x4

)
= ~f ·

(
~Q1

~Q2
~Q2

~Q4

)
.(1)

Let M1 =




x2 x3 x4 0 0 0
−x1 0 0 x3 x4 0
0 −x1 0 −x2 0 x4
0 0 −x1 0 −x2 −x3


. Note that

(
x1 x2 · · · x4

)
· M1 = 0.

Multiplying the equation (1) by M1 from right gives that ~f · ( ~Q1
~Q2 vecQ3

~Q4) = 0, and so all
entries are 0 in

~f
(
x2 ~Q1 − x1 ~Q2 x3 ~Q1 − x1 ~Q3 x4 ~Q1 − x1 ~Q4 x3 ~Q2 − x2 ~Q3 x4 ~Q2 − x2 ~Q4 x4 ~Q3 − x3 ~Q4

)

By Lemma 3.13, there are alternating n × n matrices B12, B13, B14, B23, B24, B34 of linear
forms such that

(
x2 ~Q1 − x1 ~Q2︸ ︷︷ ︸
a column vector

of cubic forms

· · · x4 ~Q3 − x3 ~Q4

)
=

(
B12

~fT · · · B34
~fT

)
(2)

Similarly, consider the matrix M2 =




x3 x4 0 0
−x2 0 x4 0
0 −x2 −x3 0
x1 0 0 x4
0 x1 0 −x3
0 0 x1 x2




such that M1 · M2 = 0 and

multiply equation (2) by M2 from right to obtain:
(
(x3B12 − x2B13 + x1B23)︸ ︷︷ ︸

n × nmatrix of

quadratic forms

~fT · · · (x4B23 − x3B24 + x2B34)~f
T
)
= 0.

Then again by Lemma 3.13, there are alternating n× n matrices

C123
1 , . . . , C123

n , C124
1 , . . . , C124

n , . . . , C234
1 , . . . , C234

n

of scalars such that
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x3B12 − x2B13 + x1B23 =



~fC123

1
...

~fC123
n




x4B12 − x2B14 + x1B24 =



~fC124

1
...

~fC124
n




x4B13 − x3B14 + x1B34 =



~fC134

1
...

~fC134
n




x4B23 − x3B24 + x2B34 =



~fC234

1
...

~fC234
n




(3)

Repeating the previous steps with M3 =




x4
−x3
x2
−x1


, so that M2 ·M3 = 0, we get

0 =
(
B12 B13 B14 B23 B24 B34

)
M2M3 =



~fC123

1
~fC124

1
~fC134

1
~fC234

1
...

...
...

...
~fC123

n
~fC124

n
~fC134

n
~fC234

n


M3

and then for all i = 1, 2, . . . , n we obtain

~f(x4C
123
i − x3C

124
i + x2C

134
i − x1C

234
i ) = 0.

Then, finally, x4C
123
i − x3C

124
i + x2C

134
i − x1C

234
i = 0 for all i = 1, 2, ..., n. Hence,

C123
i = C124

i = C134
i = C234

i = 0 for all i = 1, 2, ..., n.

Thus, in (3) we get x3B12 − x2B13 + x1B23 = 0. This shows that x3 divides every entry in

x2B13 − x1B23. Therefore we may rewrite B13 = x3B̃13 +D13 and B23 = x3B̃23 +D23, where

B̃13 and B̃23 are alternating matrices of scalars, D13 and D23 are alternating matrices of linear
forms that do not contain x3, and x2D13 − x1D23 = 0. We obtain the following

B12 =
1

x3
(x2B13 − x1B23) = x2B̃13 − x1B̃23

Returning to equation (2), we obtain x2 ~Q1−x1 ~Q2 = B12
~fT = (x2B̃13−x1B̃23)~f

T . Consequently,

x1
(
~Q2 − B̃23

~fT
)
= x2

(
~Q1 − B̃13

~fT
)

which tells us that x1 divides every entry of ~Q1 − B̃13
~fT . It follows that

~f
(
~Q1 − B̃13

~fT
)
= ~f ~Q1 as B̃13 is alternating and ~fB̃13

~fT = 0

= x1Lgδ by equation (1).

This shows that Lgδ = ~f 1
x1

(
~Q1 − B̃13

~fT
)

∈ (f1, . . . , fn)3, which contradicts our assumption

L /∈ AnnA(gδ). �
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Corollary 3.15. Let I = f + g ⊆ R be a defect δ quadratic ideal with 2 ≤ δ ≤ n − 1. Suppose
that

(†) AnnA1
(g1, . . . , gδ−1, gδ) \ AnnA1

(gδ) 6= ∅.

Then

dimK I3 ≥ dimK L3

where L = (x21, . . . , x
2
n) + (x1x2, x1x3, . . . , x1xδ+1) is the defect δ lex-plus-powers ideal of R.

That is, EGH2,n(2) holds for any defect δ quadratic ideal with property (†).

Proof. Notice that dimK L3 = n2+nδ− δ(δ+3)
2 . We use induction on δ. Let J = f+(g1, . . . , gδ−1)

be the defect δ − 1 quadratic ideal.

dimK I3 = dimK J3 + n− dimK

(
J3 ∩ gδR1

)

≥
(
n2 + (δ − 1)n−

(δ − 1)(δ + 2)

2

)
+ n− 3 = n2 + nδ −

δ(δ + 3)

2
+ δ − 3

≥ n2 + nδ −
(δ)(δ + 3)

2
.

�

We notice that a special case of Corollary 3.15 when δ = 2 shows that the inequality is strict.

Corollary 3.16. Let I = f + (g, h) be a defect two ideal generated by quadrics in R. If
AnnA1

(g) = Span{L} for some L ∈ R1 and L does not annihilate h in A = R/f, then

dimK I3 ≥ n2 + 2n− 4 > dimK(x21, . . . , x
2
n, x1x2, x1x3)3

Proof. The result follows from Proposition 3.14 as

dimK I3 = n2 + 2n− dimK(f3 ∩ gR1)︸ ︷︷ ︸
=dimK AnnA1

(g)=1

− dimK(J3 ∩ hR1)︸ ︷︷ ︸
≤3

which is ≥ n2 + 2n− 4.
�

Finally, we give an affirmative answer to the Main Question 3.4.

Theorem 3.17. Let I = f+(g, h) ⊆ R = K[x1, . . . , xn] for n ≥ 5 be a defect two ideal quadratic
ideal. Then

dimK I3 ≥ n2 + 2n− 5.

More precisely, EGH2,n(2) holds for homogeneous defect two quadratic ideals in R for any
n ≥ 5.

Proof. If the given defect two ideal satisfies Proposition 3.6 , then, by Chen’s result, the theorem
is proved.

Assume that dimK

(
f3 ∩ g′R1

)
6= 2 for any g′ ∈ Kg + Kh \ {0}. If dimK

(
f3 ∩ gR1

)
=

dimK

(
f3 ∩ hR1

)
= 0, by Proposition 3.12, we can always find another quadratic form g′ ∈

Kg +Kh \ {0} so that g′ has a linear annihilator in A. Then we can apply Corollary 3.16. If
dimK

(
f3 ∩ gR1

)
= dimK

(
f3 ∩ hR1

)
= 1 and the same linear form annihilates both g and h in

A, by Proposition 3.11. we have a situation contradicts our assumption. �

Corollary 3.18. EGH2,n(2) holds for every defect two ideal containing a regular sequence of
quadratic forms.

Proof. This result follows from Lemma 2.6 and Theorem 3.17. �
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4. The EGH conjecture when n = 5 and a1 = · · · = a5 = 2

In this section R = K[x1, . . . , x5] and I = (f1, . . . , f5)+(g1, . . . , gδ) = f+g is a homogeneous
defect δ ideal in R, where f1, . . . , f5 is a regular sequence of quadrics and deg gj ≥ 2 for
j = 1, . . . , δ. Throughout, we shall write A := R/f, which is a graded Gorenstein local Artin
ring. We will show the existence of a lex-plus-powers ideal L ⊆ R containing x2i for i = 1, . . . , 5
with the same Hilbert function as I by proving the following main theorem.

Theorem 4.1. The EGH conjecture holds for all homogeneous ideals containing a regular se-
quence of quadrics in K[x1, . . . , x5].

Lemma 2.8 of Caviglia-Maclagan tells us that EGH2,5(d) holds if and only if EGH2,5(5−d−1)
holds. Thus it will be enough to show EGH2,5(d) when d = 0, 1, 2. By Remark 2.9 we know
that EGH2,5(d) is true when d = 0, 1, therefore EGH2,5(3) and EGH2,5(4) both hold as well.

Our goal in this section is to prove EGH2,5(2) for any homogeneous ideal containing a regular
sequence of quadrics: this will complete the proof of EGH2,5. To achieve this, it suffices to
understand EGH2,5(2) for quadratic ideals with arbitrary defect δ (but, of course, δ ≤ 10, since
dimK R2 = 15), by Lemma 2.6.

Remark 4.2. As a result of Corollary 3.18, we see that EGH2,n holds for any defect δ = 2
quadratic ideal in K[x1, . . . , xn] for n = 5.

To accomplish our goal we will prove EGH2,5(2) for defect δ ≥ 3 quadratic ideals. In the next
subsection, we prove that if one knows the case where δ = 3, on obtains all the cases for δ ≥ 4.
In the final subsection we finish the proof by establishing EGH2,5(2) for δ = 3.

Quadratic ideals with defect δ ≥ 4.

Lemma 4.3. If EGH2,5(2) holds for all defect three quadratic ideals, then it holds for all qua-
dratic ideals with defect δ ≥ 4.

Proof. Let I = (f1, . . . , f5, g1, g2, g3, g4) = f+ g ⊆ R be a defect 4 homogeneous ideal generated
by quadrics, where f1, . . . , f5 form a regular sequence. By assumption the defect three quadratic
ideal J = f+ (g1, g2, g3) ⊆ I satisfies EGH2,5(2), that is, dimK J3 ≥ 31.

Let L = (x21, . . . , x
2
5, x1x2, x1x3, x1x4, x1x5) be the LPP ideal with dimK L2 = dimK I2 = 9.

Then we get dimK I3 ≥ dimK J3 ≥ 31 = dimK L3, as we need for the case of defect δ = 4.
Now assume 5 ≤ δ ≤ 10. Let δI denote an arbitrary defect δ quadratic ideal, and let δL denote

the lex-plus-power ideal with defect δ ≥ 5. More precisely, δL := (x21, . . . , x
2
5) + (m1, . . . , mδ)

where mi are the next greatest quadratic square-free monomials with respect to lexicographic
order. We need to show that HilbR/δI(3) ≤ HilbR/δL(3).

We assume that HilbR/δI(3) ≥ HilbR/δL(3) + 1, and we shall obtain a contradiction.
Using duality for Gorenstein rings, we know that for 0 ≤ d ≤ 5 we have that

HilbR/δI(d) = HilbR/f(d)−HilbR/(f:δI)(5− d).

Then, for d = 3, using the assumption we get

HilbR/(f:δI)(2) = HilbR/f(3)−HilbR/δI(3)

≤ 9−HilbR/δL(3) =





7 if δ = 5,

8 if δ = 6, 7,

9 if δ = 8, 9, 10.

We next show that dimK(f : δI)1 = 0. If there is a nonzero linear form ℓ ∈ f : δI then
dimK AnnA2

ℓA ≥ δ ≥ 5, so we get that dimK A3/ℓA2 ≥ 5. On the other hand, we see that
A3/ℓA2

∼= [R/(f̄1, . . . , f̄4, f̄5, l)]3 where the f̄i are the images of the fi, and the dimension of
[R/(f̄1, . . . , f̄4, f̄5, l)]3 as a K-vector space is at most 4.
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Then we can find a defect γ quadratic ideal γJ ⊆ f : δI for γ = 3, 2, 1 if the defect of δI is
δ = 5 or δ = 6, 7 or δ = 8, 9, 10, respectively. We then have the inequalities shown below, where
the first is obvious and the second follows by comparison with Hilbert functions of quotients by
LPP ideals in degree 3 and the fact that, by assumption, EGH2,5(2) holds for quadratic ideals
with defect less than or equal to three.

HilbR/(f:δI)(3) ≤ HilbR/γJ(3) ≤





4 if γJ is a defect γ = 3 quadratic ideal when δ = 5,

5 if γJ is a defect γ = 2 quadratic ideal when 6 ≤ δ ≤ 7,

7 if γJ is a defect γ = 1 quadratic ideal when 8 ≤ δ ≤ 10.

However, each of the cases above contradicts the following equality:

HilbR/(f:δI)(3) = HilbR/f(2) −HilbR/δI(2) = δ.

Thus, we get HilbR/δI(3) ≤ HilbR/δL(3) for any defect δ ≥ 5 quadratic ideal δI in R. �

Defect three quadratic ideals.

Lemma 4.4. Let I = f+ (g1, g2, g3) be a defect three quadratic ideal in the polynomial ring R.
Then, for any 1 ≤ i1 < i2 ≤ 3,

dimK(f : (gi1 , gi2))1 ≤ 1,

and, furthermore, dimK(f : (g1, g2, g3))1 ≤ 1.

Proof. Suppose that dimK(f : (g1, g2))1 ≥ 2, and assume there are ℓ1, ℓ2 ∈ R1 such that
ℓig1, ℓig2 ∈ f for both i = 1, 2. Without loss of generality we assume that ℓ1 = x1 and ℓ2 = x2.

Therefore, we can write (x1, x2, f1, . . . , f5) ⊆ f : I. Then

2 = Hilb(f1, ..., f5,g1,g2)/f(2) = Hilb
R
/(

f:(f1, ..., f5,g1,g2)
)(5− 2), (by duality)

≤ HilbR/(x1,x2,f1, ..., f5)(3)

= HilbK[x3,x4,x5]/(f̄1, ..., f̄5)(3), (where f̄i is the image of fi in K[x3, x4, x5],)

≤

(
5− 2

3

)
= 1,

which is a contradiction. �

Hence, working in the graded Gorenstein Artin K-algebra A = R/f, we have from the lemma
just above that AnnA1

(g1, g2) is a K-vector space of dimension at most one, and, therefore

dimK AnnA1
(g1, g2, g3) ≤ 1

since AnnA1
(g1, g2, g3) ⊆ AnnA1

(g1, g2).

Remark 4.5. By Remark 4.2 we know that for any defect two quadratic ideal J in R, dimK J3
is at least 30. Then EGH2,5(2) holds for the defect three quadratic ideals I containing a defect
two quadratic ideal J with dimK J3 ≥ 31, as HilbR/I(3) ≤ HilbR/J ≤ 4.

We henceforth focus on defect three quadratic ideals I = f+ (g1, g2, g3) in R such that every
defect two quadratic ideal J ⊆ I containing f has dimK J3 = 30.

For such defect three quadratic ideals, we observe the following.

Remark 4.6. Consider the ideal I = (g1, g2, g3)A in the Gorenstein ring A such that any
ideal (gi1 , gi2)A contained in I has degree three component of dimension dimK(gi1 , gi2)A1 = 5.
Assuming that dimK AnnA1

(g1) = 1, we have that AnnA1
(g1, g2, g3) = AnnA1

(g1).
Furthermore, if g1A1 is 5-dimensional, that is, there is no linear form that annihilates g1 in

A, then for any quadric g in Kg1 + Kg2 + Kg3 the vector space gA1 ⊆ A3 is either 3 or 5
dimensional.
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Proof. Let dimK AnnA1
(g1) = 1, and let the linear form L annihilate g1 but not some form

g′ ∈ Kg2 +Kg3 in A. We define a defect two quadratic ideal

J = (f1, . . . , f5, g1, g
′) ⊆ f+ (g1, g2, g3)

in R. Hence, by Corollary 3.16, we know already that dimK J3 ≥ 31, which means that
dimK(g1, g

′)A1 = 6. This contradicts our assumption. Thus, L must be in AnnA1
(g1, g2, g3). �

Recall that the following holds, by Proposition 3.14, when δ = 3.

Proposition 4.7. Let I = f+ (g1, g2, g3) ⊆ K[x1, ..., x5] be a defect 3 quadratic ideal.
As usual, let A = R/f. If there is a linear form L ∈ AnnA(g1, g2) such that L /∈ AnnA(g3),

then
dimK

(
(f + (g1, g2))3 ∩ g3R1

)
≤ 3.

�

When a defect three quadratic ideal I satisfies the condition of the above proposition, we
notice a sharp bound for HilbR/I(3).

Corollary 4.8. Given a defect three quadratic ideal I = f + (g1, g2, g3) in R = K[x1, . . . , x5],
and, as usual, let A = R/f, which is a graded Gorenstein Artin ring. If dimK AnnA1

(g1, g2) = 1
and AnnA1

(g1, g2, g3) = 0 then

dimK I3 ≥ 32 > dimK L3,

where L = (x21, . . . , x
2
5, x1x2, x1x3, x1x4).

Proof. By assumption there is a linear form in AnnA(g1, g2), say L, such that L does not anni-
hilate g3. Hence, Proposition 4.7 gives us dimK

(
(f + (g1, g2))3 ∩ g3R1

)
≤ 3. Then we get

dimK(f + (g1, g2, g3))3 = dimK(f+ (g1, g2))3 + dimK g3R1

− dimK

(
(f+ (g1, g2))3 ∩ g3R1

)

≥ 30 + 5− 3 = 32 > 31 = dimK L3 .

�

Proposition 4.9. Suppose that for all quadratic forms g in Kg1+Kg2, the subspace gA1 of A3

is a 3-dimensional. If dimK(g1, g2)A1 = 5, then dimK AnnA1
(g1, g2) = 1.

We first state the following observation in a linear algebra setting, which will be useful for
the proof Proposition 4.9.

Lemma 4.10. Let S, T be linear transformations from V to W , both n-dimensional vector
spaces over K, such that rank(S) = rank(T ) = rank(S − T ) = r, and the kernels of S, T are
disjoint. Then the images of S and T are contained in the same (3r − n)-dimensional subspace
of W .

Proof. V0 = ker(S − T ) is (n − r)-dimensional. S and T are injective on V0, since for v ∈ V0,
S(v) = 0 iff T (v) = 0, and Ker(S)∩Ker(T ) = 0. Thus, S(V0) = T (V0) is an (n− r)-dimensional
space in S(V )∩ T (V ). Since S(V ), T (V ) are r-dimensional and overlap in a space of dimension
at least n− r, S(V ) + T (V ) has dimension at most r + r − (n− r) = 3r − n. �

Proof of Proposition 4.9. Assume that dimK AnnA1
(g1, g2) = 0. Since all quadratic forms g in

Kg1 + Kg2 are such that gA1 ⊆ A3 has vector space dimension 3, we have from Lemma 4.10
with n = 5, r = 3, that (Kg1 +Kg2)A1 ⊆ A3 is at most 4-dimensional. Consequently,

dimK [A/(g1, g2)A]3 = dimK [R/f + (g1, g2)]3 ≥ 6,

contradicting EGH2,5(2) for defect 2 quadratic ideals. Hence, dimK AnnA1
(g1, g2) = 1. �

Proposition 4.11. Let I = f+(g1, g2, g3) be a defect three quadratic ideal in R = K[x1, . . . , x5].
If dimK AnnA1

(g1, g2, g3) = 0 then HilbR/I(3) ≤ 4.
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Proof. First, by Remark 4.5 we note that it suffices to consider any defect two quadratic ideal
J ⊆ I with HilbR/J (3) = 5.

Suppose that dimK AnnA1
(g1, g2, g3) = 0. Then, clearly, no gi, for i = 1, 2, 3 has a 1-

dimensional linear annihilator space in A, since, otherwise, by Remark 4.6, we obtain that
dimK AnnA1

(g1, g2, g3) = 1, which contradicts our assumption. Thus, for the rest of the proof
we may assume that each giA1, i = 1, 2, 3, is either 3 or 5 dimensional.

If all forms g inKg1+Kg2+Kg3 are such that dimK gA1 = 3 then we can find two independent
quadratic forms whose linear annihilator spaces intersect in 1-dimensional space, and the result
follows from Corollary 4.8.

Let g1A1 be a 5-dimensional subspace of A3 and for every g ∈ Kg2+Kg3, gA1 has dimension
either 3 or 5.

We complete the proof by obtaining a contradiction. We assume that HilbR/I(3) = 5. In
other words, the space W = (Kg1 + Kg2 + Kg3)A1 ⊆ A3 is 5-dimensional. Then we get
W = g1A1 = (Kg2 +Kg3)A1.

Consider the multiplication maps by g1, g2 and g3 from A1 to the subspace W of A3. By
adjusting the bases of A1 and W we can assume the matrix of g1 is the identity matrix I5 of
size 5. Denote the matrices of g2 and g3 by α and β, respectively. We can assume that α and β
are both singular, and so have rank 3, by subtracting the suitable multiples of I5 from them if
they are not singular.

We see that all matrices zI5 + xα+ yβ must have at most two eigenvalues, otherwise we can
form a linear combination whose kernel is 1-dimensional, which corresponds to a quadratic form
with 1-dimensional linear annihilator space. Then there are two main cases: one is that every
matrix in the space spanned by I5, α and β has one eigenvalue. The other is that almost all
matrices in the form zI5 + xα + yβ have two eigenvalues, since the subset with at most one
eigenvalue is Zariski closed.

Define D(x, y, z) = det(zI5 − xα− yβ), a homogeneous polynomial in x, y, z of degree 5 that
is monic in z. Note that D is also the characteristic polynomial, in z, of xα + yβ. Notice that
the singular matrices in the subspace of 5× 5 matrices spanned by I, α and β are defined by the
vanishing of D.

If the determinant D is square-free (as the characteristic polynomial in z), then the ideal
(D) is a radical ideal and it cannot contain a nonzero polynomial of degree less than 5, which
contradicts the fact that all size 4 minors of a singular matrix must vanish, since in our situation
these singular matrices have rank 3. Therefore the size 4 minors, whose degrees are at most 4,
are in the radical (D).

If the determinant D is not square-free, then its squared factor must be linear or quadratic:
in the latter case the other factor is linear, so that in either case D has a linear factor, say
z − ax− by.

Consider the independent matrices α′ = aI5 − α, β′ = bI5 − β. Then we think of any linear
combination of them, say rα′ + sβ′ = r(aI5 − α) + s(bI5 − β) = (ar + bs)I5 − rα − sβ. As
z − ax − by is a factor of D(x, y, z), and hence, D vanishes for x = r, y = s, z = ar + bs. This
means that every linear combination of α′ and β′ is singular. Therefore, we can replace α, β by
α′ and β′ and so we can assume that we are in the case where every linear combination of the
two non-identity matrices is singular, and, if not 0, of rank 3. By Lemma 4.10, this implies that
the kernels of α′ and β′ cannot be disjoint, so we are done by Proposition 4.9 and Corollary 4.8.

�

In order to prove EGH2,5(2) for every defect three quadratic ideal I = f + (g1, g2, g3) in
R = K[x1, . . . , x5] we must also discuss the cases when there is a nonzero linear form L ∈
AnnA(g1, g2, g3).

Proposition 4.12. Let I = f+(g1, g2, g3) be a defect three quadratic ideal in R. If AnnA1
(g1, g2, g3)

is a 1-dimensional K-subspace of A1, say KL, then

HilbR/I(3) = 4.
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Claim 4.13. One of the quadratic forms fi in the regular sequence has the linear factor L.

Proof of claim. As g1, g2, g3 ∈ AnnA2
(L) ⊆ A2 for L ∈ AnnA1

(g1, g2, g3) we know that

dimK AnnA2
(L) ≥ 3.

This tells us that dimK LA2 ≤ 7, which implies

dimK(A3/LA2) = dimK [A/LA]3 ≥ 3(4)

as dimK A3 = 10.
Assume that L = x5 and let f̄i be the image of fi modulo x5 .
Suppose that f̄ = (f̄1, f̄2, f̄3, f̄4, f̄5) is an almost complete intersection in K[x1, x2, x3, x4].

Thus,

A/LA ∼=
K[x1, . . . , x5]

f+ (x5)
∼=

K[x1, x2, x3, x4]

f̄
.

However, using the Francisco’s result for almost complete intersections [8], we know that

dimK

[K[x1, x2, x3, x4]

f̄

]
3
≤ 2 = dimK

[ K[x1, x2, x3, x4]

(x21, x
2
2, x

2
3, x

2
4, x1x2)

]
3
.

This contradicts (4).
Hence the images of fi modulo L form a regular sequence in K[x1, . . . , x4], that is, one of

them has a linear factor x5. �

As a result of the claim, after a suitable change of variables, we may assume that the linear
annihilator is L = x5 and may consider I in two possible forms: either I is in the form of (5)
in Case 1 below, where f1, f2, f3, f4, x1x5 is the regular sequence, or I is as in (6) in Case 2
below, where f1, f2, f3, f4, x

2
5 form a quadratic regular sequence in I.

Case 1. Suppose that f5 = x1x5. Then we can assume that g1 = x1x2, g2 = x1x3, g3 = x1x4.
Furthermore, after we alter the fi by getting rid of all the terms containing x1 except x21, we
may assume that the defect three quadratic ideal I looks like

(5) I = (f1, f2, f3, f4 + cx21, x1x5, x1x2, x1x3, x1x4),

where f1, f2, f3, f4 form a regular sequence in K[x2, x3, x4, x5] and c ∈ K.

Proposition 4.14. Let I = (f1, f2, f3, f4 + cx21, x1x5, x1x2, x1x3, x1x4) be a defect three qua-
dratic ideal in R where f1, f2, f3, f4 is an K[x2, x3, x4, x5]-sequence. Then

HilbR/I(3) = 4 = HilbR/L(3)

where L = (x21, . . . , x
2
5, x1x2, x1x3, x1x4).

Proof. One can easily see that I contains all cubic monomials divisible by x1 since x1xi ∈ I for
all i = 2, 3, 4, 5 and f4 is a quadratic form in K[x2, x3, x4, x5], therefore x1f4 ∈ I and so is x31.
Thus, the Hilbert functions of R/I and k[x2, x3, x4, x5]

/
I ∩K[x2, x3, x4, x5] agrees in degree 3.

So HilbR/I(3) = Hilb
K[x2,x3,x4,x5]

/
I∩K[x2,x3,x4,x5]

(3) = Hilb
K[x2,x3,x4,x5]

/
(f1, f2, f3, f4)

(3) = 4 �

Case 2. Suppose that f5 = x25 by altering the variables and generators, and then we can assume
that g1 = x1x5, g2 = x2x5, g3 = x3x5. As we did in the case above, we get rid of all the terms
containing x5 except x4x5 in the fi, and so the defect three quadratic ideal can be written as
follows:

(6) I = (f1, f2, f3, f4 + cx4x5, x
2
5, x1x5, x2x5, x3x5),

where f1, f2, f3, f4 form a regular sequence in K[x1, x2, x3, x4] and c ∈ K.

Lemma 4.15. Let a = (f1, f2, f3, f4 + x4x5, x
2
5) : (x1x5, x2x5, x3x5) be the colon ideal in R.

Then we have HilbR/a(2) = 6.
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Proof. It suffices to show dimK a2 = 9.
We know that x1x5, x2x5, x3x5, x4x5, x

2
5 are all in a2, and f1, f2, f3, f4 ∈ a2 as well. Thus

we see that dimK a2 ≥ 9.
If there is another independent quadratic form in a, it must be in R[x̌5], as we have all

quadratic monomials containing x5, so call it Q in R[x̌5]. Then we consider the cubic form
H = x5Q. Clearly H is not in the R1-span of f1, f2, f3, f4, x

2
5, therefore we can define the

ideal J = (f1, f2, f3, f4, x
2
5, H), which is an almost complete intersection in R. Then we get

dimK

(
(f1, f2, f3, f4, x

2
5)4 ∩ HR1

)
≥ 4 as x1H,x2H,x3H and x5H are in (f1, f2, f3, f4, x

2
5)4,

but by Corollary 2.4 this dimension must be at most 3. This proves that there cannot be such
a quadratic form Q in a. �

Proposition 4.16. Let I = (f1, f2, f3, f4 + x4x5, x
2
5, x1x5, x2x5, x3x5) be a defect three qua-

dratic ideal in R where f1, f2, f3, f4 is an R[x̌5]-sequence. Then

HilbR/I(3) = 4 = HilbR/L(3)

where L = (x21, . . . , x
2
5, x1x2, x1x3, x1x4).

Proof. Using the duality of Gorenstein algebras, again we can obtain

HilbR/I(3) = HilbR/(f1, f2, f3, f4+x4x5, x2

5
)(3) −HilbR/a(5− 3),

where a is the colon ideal (f1, f2, f3, f4 + x4x5, x
2
5) : I.

Then proof is done, since HilbR/(f1, f2, f3, f4+x4x5, x2

5
)(3) = 10 and HilbR/a(2) = 6 by the above

lemma. �
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