
REGULARITY AND SOLVABILITY OF LINEAR DIFFERENTIAL OPERATORS IN

GEVREY SPACES: OMITTED PROOFS

GABRIEL ARAÚJO

This is an addendum to [1] which aims to provide the proofs of some results in that paper (Theorem 7.5
and Proposition 9.15) which were removed from its final version. The reason for such omission is that
these proofs follow quite closely others already present in the literature, with minor modifications. I make
them publicly available for the sake of completeness.

1. Proof of Theorem 7.5

Our main reference here is Hörmander [4]. We will start by proving analogous versions of several
auxiliary lemmas used in his book, which we did not find in the literature (especially the ones not
covered by Björck [2]). Although the proofs of these lemmas are very much like their counterparts in [4],
we chose to present them here for the sake of completeness. We will, however, make free use of the results
already proven in [2].

For the first result in this section (which is an adaptation of [4, Theorem 10.1.5]) we recall that for
each k ∈ Kω one defines, in accordance with [2] and [4],

Mk(ξ) =̇ sup
η

k(ξ + η)

k(η)

Also, for λ > 0 let K λ
ω stand for the set of functions k ∈ Kω such that

k(ξ + η) ≤ eλ|ξ|
1
σ k(η), ∀ξ, η ∈ Rn,(1.1)

so Kω is exactly the union of all K λ
ω .

Lemma 1.1. For each λ > 0, each k ∈ K λ
ω and each δ > 0 there exist kδ ∈ K λ

ω and Cδ > 0 such that,
for every ξ ∈ Rn one has

(1) 1 ≤ kδ(ξ)/k(ξ) ≤ Cδ and
(2) 1 ≤Mkδ(ξ) ≤ eδ|ξ|.

Proof. For δ > 0 let

kδ(ξ) =̇ sup
η
e−δ|η|k(ξ − η), ξ ∈ Rn,

which defines and element of K λ
ω . Indeed, for ξ, ξ′ ∈ Rn we have

kδ(ξ + ξ′) = sup
η
e−δ|η|k(ξ + ξ′ − η) ≤ sup

η
e−δ|η|eλ|ξ

′|
1
σ k(ξ − η) = eλ|ξ

′|
1
σ kδ(ξ).

Notice that

k(ξ) ≤ kδ(ξ) = sup
η
e−δ|η|k(ξ − η) ≤ sup

η
e−δ|η|eλ|η|

1
σ k(ξ) = k(ξ) sup

η
eλ|η|

1
σ −δ|η|

where the constant on the far right (call it Cδ) is finite, proving the first statement. A change of variables
allows us to write, for ξ ∈ Rn,

kδ(ξ) = sup
η
e−δ|ξ−η|k(η)

and so we have

kδ(ξ + ξ′) = sup
η
e−δ|ξ+ξ

′−η|k(η) ≤ eδ|ξ
′| sup

η
e−δ|ξ−η|k(η) = eδ|ξ

′|kδ(ξ)
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2 GABRIEL ARAÚJO

thus implying that Mkδ(ξ
′) ≤ eδ|ξ′|. �

Now we present a version of [4, Lemma 13.3.1].

Lemma 1.2. Let k ∈ Kω and, for each δ > 0, let kδ ∈ Kω be as in Lemma 1.1. Then for each
φ ∈ Dω(Rn) there exists δ0 > 0 such that

‖φu‖p,kδ ≤ 2‖φ‖1,1‖u‖p,kδ
for every 0 < δ < δ0 and every u ∈ Bp,kδ = Bp,k.

Proof. From [2, Theorem 2.2.7] we have, for every δ > 0,

‖φu‖p,kδ ≤ ‖φ‖1,Mkδ
‖u‖p,kδ

so it is enough to prove the existence of a δ0 > 0 such that

‖φ‖1,Mkδ
≤ 2‖φ‖1,1

for every 0 < δ < δ0. But from the definition of the norms we have

‖φ‖1,Mkδ
=

1

(2π)n

∫
Mkδ(ξ) |φ̂(ξ)| dξ → 1

(2π)n

∫
|φ̂(ξ)| dξ = ‖φ‖1,1

because Mkδ → 1 uniformly on compact set as δ → 0+: this follows immediately from Lemma 1.1,
which also implies that Bp,kδ and Bp,k are the same as topological vector spaces, since their norms are
equivalent. �

Now we proceed with the proof of Theorem 7.5 from [1]. We shall not reproduce its statement here.
Due to [4, Lemma 13.1.2] there exist operators with constant coefficients P1(D), . . . , Pr(D) and functions
c0, c1, . . . , cr ∈ C∞(Ω), that are uniquely determined by the following properties:

• Pj ≺ P0 for every j ∈ {1, . . . , r};
• cj(x0) = 0 for every j ∈ {0, . . . , r};
• and, in Ω,

P (x,D) = P0(D) +

r∑
j=1

cj(x)Pj(D).

Since we are also assuming that the coefficients of P (x,D) belong to Gσ0(Ω) one can actually show that
c0, c1, . . . , cr ∈ Gσ0(Ω). For every ε > 0, define

Xε =̇ {x ∈ Rn ; |x− x0| < ε}

and select ε0 > 0 such that Xε0 ⊂ Ω. Let χ ∈ Gσ0
c (Rn) be equal to 1 in a neighborhood of {x ∈ Rn ; |x| ≤

2ε0} and

E0 ∈ Bloc
∞,P̃0

(Rn)

be a fundamental solution of P0(D), and define

F0 =̇ χE0 ∈ B∞,P̃0
.

If g ∈ E ′ω(Rn) has its support in Xε0 then F0 ∗ g = E0 ∗ g in Xε0 , hence

P0(D)(F0 ∗ g) = F0 ∗ P0(D)g = g in Xε0 .

Now let ψ ∈ Gσ0
c (Rn) be such that

ψ = 1 in {x ∈ Rn ; |x| ≤ 1}
ψ = 0 in {x ∈ Rn ; |x| > 2}

and define ψε(x) =̇ ψ((x− x0)/ε). We claim the existence of 0 < ε1 < ε0/2 such that for each 0 < ε < ε1
and each f ∈ E ′ω(Rn) the equation

g +

r∑
j=0

ψεcjPj(D)(F0 ∗ g) = ψεf(1.2)
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has a unique solution g ∈ E ′ω(Rn). Proceeding as in [4], we provisionally assume this claim and define the
operator E as

Ef =̇ F0 ∗ g

where g ∈ E ′ω(Rn) is the unique solution of (1.2), which yields a linear map E : E ′ω(Rn) → E ′ω(Rn): we
will prove that if ε > 0 is small enough then this operator has the properties described in the statement
above.

First, since suppψε ⊂ Xε0 equation (1.2) implies that supp g ⊂ Xε0 , so in Xε

P (x,D)Ef = P (x,D)(F0 ∗ g)

= P0(D)(F0 ∗ g) +

r∑
j=0

cjPj(D)(F0 ∗ g)

= g +

r∑
j=0

ψεcjPj(D)(F0 ∗ g)

= ψεf

= f

thus proving the first property claimed. Second, let u ∈ E ′ω(Rn) be such that suppu ⊂ Xε and f =̇
P (x,D)u: putting g =̇ P0(D)u in the left-hand side of (1.2) we get

g +

r∑
j=0

ψεcjPj(D)(F0 ∗ g) = P0(D)u+

r∑
j=0

ψεcjPj(D)(F0 ∗ P0(D)u)

= P0(D)u+

r∑
j=0

ψεcjPj(D)u

= P (x,D)u

= f

= ψεf

that is, g solves equation (1.2), and by uniqueness we have

Ef = F0 ∗ g = F0 ∗ P0(D)u = u.

This proves the second property of E.
The last property of E – the estimate between norms – will follow from the proof of our claim about

existence and uniqueness of solutions of equation (1.2), so now we proceed in that direction. For every
ε > 0 we define a linear map Aε : D′ω(Rn)→ D′ω(Rn) by the expression

Aεg =̇

r∑
j=0

ψεcjPj(D)(F0 ∗ g)

which is well-defined for every g ∈ D′ω(Rn), for F0 is compactly supported. Let k ∈ Kω and, for δ > 0,
let kδ ∈ Kω as in Lemma 1.2 (in which case Bp,kδ = Bp,k, with equivalent defining norms): according to
it, there exists δ0 > 0 such that if 0 < δ < δ0 one has

‖Aεg‖p,kδ ≤
r∑
j=0

‖ψεcjPj(D)(F0 ∗ g)‖p,kδ

≤ 2

r∑
j=0

‖ψεcj‖1,1‖Pj(D)(F0 ∗ g)‖p,kδ

as long as Pj(D)(F0 ∗ g) ∈ Bp,k (recall that ψεcj ∈ Dω(Rn) for every j ∈ {0, . . . , r} according to [1,
Lemma 7.4]. Now, since Pj ≺ P0 and F0 ∈ B∞,P̃0

there are constants C1, C2 > 0 such that

|Pj(ξ)||F̂0(ξ)| ≤ |P̃j(ξ)||F̂0(ξ)| ≤ C1|P̃0(ξ)||F̂0(ξ)| ≤ C1C2
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for every ξ ∈ Rn, so if we define C =̇ C1C2 > 0 we have that

‖Pj(D)(F0 ∗ g)‖p,kδ = ‖kδ Pj F̂0 ĝ‖Lp ≤ C‖kδ ĝ‖Lp = C‖g‖p,kδ

for every g ∈ Bp,k: therefore

‖Aεg‖p,kδ ≤ 2C

r∑
j=0

‖ψεcj‖1,1‖g‖p,kδ

and thus Aε : Bp,k → Bp,k continuously. Now [4, Lemma 13.3.2] allows us to choose 0 < ε1 < ε0/2 such
that

r∑
j=0

‖ψεcj‖1,1 ≤
1

4C

for every 0 < ε < ε1. We stress that such a choice is independent of k, and hence

‖Aεg‖p,kδ ≤
1

2
‖g‖p,kδ(1.3)

for every g ∈ Bp,k. We conclude that I +Aε : Bp,k → Bp,k is invertible, which means that equation (1.2)
has a unique solution g ∈ Bp,k whenever f ∈ Bp,k, which must have compact support for reasons already
mentioned. We need one more lemma to finish this argument.

Lemma 1.3. Let 1 ≤ p ≤ ∞. Every u ∈ E ′ω(Rn) belongs to Bp,k for some k ∈ Kω.

Proof of Lemma 1.3. For u ∈ E ′ω(Rn), [2, Theorem 1.8.14] ensures, among other things, the existence of
constants λ ∈ R and C > 0 such that

|û(ξ)| ≤ Ceλ|ξ|
1
σ , ∀ξ ∈ Rn.

Of course we can assume λ > 0, so k(ξ) =̇ e−2λ|ξ|
1
σ defines an element of Kω and

k(ξ)|û(ξ)| ≤ Ce−λ|ξ|
1
σ , ∀ξ ∈ Rn,

so kû ∈ Lp(Rn) (i.e. u ∈ Bp,k) no matter what p is. �

Now we turn back to the deduction of estimate (7.2) in the statement of the theorem (see [1]). Let
f ∈ E ′ω(Rn) ∩ Bp,k and take g ∈ E ′ω(Rn) ∩ Bp,k the unique solution of (1.2): by (1.3) we have

‖g‖p,kδ ≤ 2‖ψεf‖p,kδ

thus

‖Ef‖p,P̃0kδ
= ‖F0 ∗ g‖p,P̃0kδ

≤ ‖F0‖∞,P̃0
‖g‖p,kδ ≤ 2‖F0‖∞,P̃0

‖ψεf‖p,kδ ≤ 4‖F0‖∞,P̃0
‖ψε‖1,1‖f‖p,kδ

where we used Lemma 1.2 again. On the other hand, Lemma 1.1 ensures that the norms ‖ · ‖p,kδ and
‖ · ‖p,k are equivalent: an explicit calculation actually shows that

‖u‖p,k ≤ ‖u‖p,kδ ≤ Cδ‖u‖p,k, ∀u ∈ Bp,k.

In the same manner one obtains

‖u‖p,P̃0k
≤ ‖u‖p,P̃0kδ

≤ Cδ‖u‖p,P̃0k
, ∀u ∈ Bp,k

so now we have

‖Ef‖p,P̃0k
≤ ‖Ef‖p,P̃0kδ

≤ 4‖F0‖∞,P̃0
‖ψε‖1,1‖f‖p,kδ ≤ 4Cδ‖F0‖∞,P̃0

‖ψε‖1,1‖f‖p,k.

�
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2. Proof of Proposition 9.15

In this section we follow very closely the arguments in [3, pp. 53–56]; this is indeed the “Gevrey
version” of them. Again, the reader is referred to our main article for the statement of Proposition 9.15,
which we shall not recall here.

We assume that g and u are such that supp dg ⊂ U−0 and supp du ⊂ U+
0 ∩ V0: the other case (i.e. the

opposite choice of signs) can be treated analogously. First of all, compactness of U ensures the existence
of a constant A > 0 (which does not depend on x0) such that

|Φ(x, t)− Φ(x0, t)| ≤ A|x− x0|, ∀(x, t) ∈ U.

Fix some φ ∈ Gσ(C) and define

φ] =̇ Z∗φ = φ ◦ Z(2.1)

which belongs, for instance, to Gσ(U) since Z is a real-analytic map. Denoting by

π : R× Rn −→ Rn
(x, t) 7−→ t

the projection onto the t-variable, we have U0 = π(U) since U is cylindrical, and so

π∗g ∈ Gσ(U ;∧q−1CT ∗Rn+1).

This observation allows us to define

F =̇ φ] ∧ dZ̄ ∧ π∗g(2.2)

which belongs to Gσ(U ;∧qCT ∗Rn+1) and, recalling that over Ω we have an identification ∧qCT ∗Rn+1 ∼=
Λ0,q ⊕ T′1,q−1 we can define f ∈ Gσ(U ; Λ0,q) as the (unique) component of F in that direct sum. We
claim that if the support of φ is conveniently chosen we can achieve d′f = 0 i.e. dF will be a section of
T′1,q. Indeed, without extra assumptions we have

dF = d
(
φ] ∧ dZ̄

)
∧ π∗g − φ] ∧ dZ̄ ∧ d (π∗g)

= dφ] ∧ dZ̄ ∧ π∗g − φ] ∧ dZ̄ ∧ π∗(dg).

However

dφ] = d(Z∗φ) = Z∗(dφ) = Z∗
(
∂φ

∂z
∧ dz +

∂φ

∂z̄
∧ dz̄

)
=

(
∂φ

∂z
◦ Z
)
∧ dZ +

(
∂φ

∂z̄
◦ Z
)
∧ dZ̄

hence

dφ] ∧ dZ̄ ∧ π∗g =

(
∂φ

∂z
◦ Z
)
∧ dZ ∧ dZ̄ ∧ π∗g

is a section of T′1,q over U : if we can prove that φ] ∧ dZ̄ ∧ π∗(dg) is also a section of T′1,q then our claim
will follow. This is where the choice of φ (or, rather, its support) kicks in: we can choose it so that this
summand is actually zero.

Indeed, let a > 0 and b ∈ R and define the strip

E(a, b) =̇ {x+ iy ∈ C ; |x− x0| ≤ a, y ≥ b}.

From the definition of U−0 we have

π−1(U−0 ) = {(x, t) ∈ U ; Φ(x0, t) < y0}
Z−1(E(a, b)) = {(x, t) ∈ U ; |x− x0| ≤ a, Φ(x, t) ≥ b}

and if (x, t) ∈ Z−1(E(a, b)) ∩ π−1(U−0 ) then

b ≤ Φ(x, t) ≤ |Φ(x, t)− Φ(x0, t)|+ Φ(x0, t) < A|x− x0|+ y0 ≤ Aa+ y0.

So if we choose a, b such that y0 + Aa ≤ b then Z−1(E(a, b)) ∩ π−1(U−0 ) = ∅. In particular, choosing
suppφ ⊂ E(a, b) yields

suppφ] = suppZ∗φ = Z−1(suppφ) ⊂ Z−1(E(a, b)).
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Since we already had

suppπ∗(dg) = π−1(supp dg) ⊂ π−1(U−0 )

for supp dg ⊂ U−0 by hypothesis, we must have suppφ] and suppπ∗(dg) disjoint, hence φ] ∧ dZ̄ ∧ π∗(dg)
vanishes in U . We conclude that d′f = 0.

We introduce a new parameter r > 0 (to be specified later) and let χ ∈ Gσc (R) be such that 0 ≤ χ ≤ 1
and

χ(x) = 1 if |x− x0| < r/2,

χ(x) = 0 if |x− x0| > r.

Let also χ̃ ∈ Gσ(R× Rn) be defined as

χ̃(x, t) =̇ χ(x), (x, t) ∈ R× Rn,

hence

v =̇ χ̃ ∧ dZ ∧ π∗u

is a section of Λ1,n−q with Gσ coefficients. Since suppu ⊂ V0 we have that

supp v ⊂ supp χ̃ ∩ π−1(suppu) ⊂ {(x, t) ∈ V ; |x− x0| ≤ r, t ∈ suppu}

the latter being a compact subset of V if we choose r > 0 sufficiently small: in that case v ∈ Gσc (V ; Λ1,n−q).
It follows from all the definitions that

f ∧ v = F ∧ v = φ] ∧ dZ̄ ∧ π∗g ∧ χ̃ ∧ dZ ∧ π∗u = ±
(
χ̃ φ]

)
∧ dZ ∧ dZ̄ ∧ π∗(g ∧ u).

We remark that the first identity follows from the fact that f − F is a section of T′1,q−1 (so its wedge
with v is zero) and that the correct sign in the last identity is irrelevant for our purposes: we are only
interested in studying the vanishing of their integrals. Also, recalling that suppφ] ⊂ Z−1(E(a, b)) and
that χ̃(x, t) = 1 if |x−x0| < r/2, it is clear that if we further impose that a < r/2 then χ̃ = 1 on suppφ],
and hence

f ∧ v = ± φ] ∧ dZ ∧ dZ̄ ∧ π∗(g ∧ u).

Now notice that

φ] ∧ dZ ∧ dZ̄ = (Z∗φ) ∧ dZ ∧ dZ̄ = Z∗ (φ ∧ dz ∧ dz̄) = 2i Z∗ (φ ∧ dy ∧ dx) .

We will now assume that φ is non-negative, and define ψ0 ∈ Gσ(C;R) as

ψ0(x+ iy) =̇

∫ y

−∞
φ(x+ is) ds

which clearly satisfies

∂ψ0

∂y
= φ.

A simple calculation also shows that since E(a, b) contains suppφ then it also contains suppψ0. Letting
ψ =̇ ψ0 ∧ dx ∈ Gσ(C;∧1T ∗C) we conclude that

dψ = dψ0 ∧ dx =
∂ψ0

∂y
∧ dy ∧ dx = φ ∧ dy ∧ dx

hence

f ∧ v = ± 2i Z∗ (φ ∧ dy ∧ dx) ∧ π∗(g ∧ u)

= ± 2i Z∗ (dψ) ∧ π∗(g ∧ u)

= ± 2i d(Z∗ψ) ∧ π∗(g ∧ u).

We claim that, for the choices above, Z∗ψ ∧ π∗(g ∧ u) is compactly supported in U . Indeed, since
suppψ = suppψ0 ⊂ E(a, b) we have suppZ∗ψ ⊂ Z−1(E(a, b)) and thus

(suppZ∗ψ) ∩ (suppπ∗u) ⊂ {(x, t) ∈ U ; |x− x0| ≤ a, t ∈ suppu}
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the latter a compact subset of U , while the former clearly contains the support of Z∗ψ∧π∗(g∧u), hence
our claim. It then follows from Stokes’s Theorem that

0 =

∫
d (Z∗ψ ∧ π∗(g ∧ u)) =

∫
d(Z∗ψ) ∧ π∗(g ∧ u)±

∫
Z∗ψ ∧ dπ∗(g ∧ u)

which in turn implies ∫
f ∧ v = ± 2i

∫
Z∗ψ ∧ dπ∗(g ∧ u).

But notice that

Z∗ψ ∧ dπ∗(g ∧ u) = Z∗ψ ∧ π∗(dg ∧ u)± Z∗ψ ∧ π∗(g ∧ du)

where the first summand is zero since supp(Z∗ψ) ∩ suppπ∗(dg) = ∅: this follows from the fact that
suppψ ⊂ E(a, b) and supp dg ⊂ U−0 , and thus implies that∫

f ∧ v = ± 2i

∫
Z∗ψ ∧ π∗(g ∧ du).

Now we are going to impose further restrictions on φ. Recall that supp du ⊂ U+
0 ∩ V0, meaning that

Φ(x0, t) > y0 for all t ∈ supp du: by compactness, there exists ρ > 0 such that

Φ(x0, t) > y0 + ρ, ∀t ∈ supp du.

Once again we shrink r > 0 so that 2Ar < ρ, and thus y0 +Ar < −Ar+y0 +ρ, which allows us to choose
b, b′, b′′ ∈ R such that

y0 +Ar ≤ b < b′ < b′′ < −Ar + y0 + ρ.

If we further assume that

suppφ ⊂ {x+ iy ; |x− x0| ≤ a, b ≤ y ≤ b′}
then it follows from the definition of ψ0 that

y > b′ ⇒ ψ0(x+ iy) = ψ0(x+ ib′), ∀x ∈ R.

For |x− x0| ≤ a and t ∈ supp du we then have

Φ(x, t) = (Φ(x, t)− Φ(x0, t)) + Φ(x0, t)

≥ −A|x− x0|+ Φ(x0, t)

≥ −Aa+ y0 + ρ

> −Ar + y0 + ρ

> b′

which implies that

ψ0(Z(x, t)) = ψ0(x+ iΦ(x, t)) = ψ0(x+ ib′)

holds whenever |x− x0| ≤ a and t ∈ supp du.
Now recall that U is a cylindrical open set centered at the origin, hence there exists an open interval

I ⊂ R centered at 0 such that U = I × U0. Hence

C(x) =̇ ψ0(x+ ib′) =

∫ b′

−∞
φ(x+ is)ds

defines a function C : I → R which allows us to write

Z∗ψ = Z∗(ψ0 ∧ dx) = (ψ0 ◦ Z) ∧ d(x ◦ Z) = C(x) ∧ dx

for (x, t) ∈ U such that |x− x0| ≤ a and t ∈ supp du. It is also clear that

supp (Z∗ψ ∧ π∗(g ∧ du)) ⊂ {(x, t) ∈ U ; |x− x0| ≤ a, t ∈ supp du}
and therefore∫

f ∧ v = ± 2i

∫
Z∗ψ ∧ π∗(g ∧ du) = ± 2i

∫
C(x) ∧ dx ∧ π∗(g ∧ du) = ± 2i

(∫
C(x) dx

)∫
g ∧ du
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where ∫
C(x) dx =

∫ ∫ b′

−∞
φ(x+ is) ds dx =

∫
C
φ 6= 0

if we assume φ nonzero: equivalence (9.5) from [1] is proven.
We now turn to the second part of the statement: we will prove that if we shrink a > 0 as well as the

difference b′ − b > 0 (but keeping b fixed) then there exists H ∈ O(C) such that

<H ≤ 0 in Z(supp f), <H > 0 in Z(supp d′v).

Recall that supp f ⊂ suppF , and from (2.2) and (2.1) we have

suppF ⊂ suppφ] ∩ suppπ∗g = Z−1(suppφ) ∩ π−1(supp g)

and thus

Z(suppF ) ⊂ suppφ ∩ Z(π−1(supp g)) ⊂ suppφ ⊂ {x+ iy ∈ C ; |x− x0| ≤ a, b ≤ y ≤ b′}.

We denote by R the latter set above, and also define the quantities

M =̇ max {Φ(x, t) ; |x− x0| ≤ r, t ∈ supp du}

M+ =̇ max
{

Φ(x, t) ;
r

2
≤ |x− x0| ≤ r, t ∈ suppu

}
M− =̇ min

{
Φ(x, t) ;

r

2
≤ |x− x0| ≤ r, t ∈ suppu

}
as well as the following subsets of the complex plane

A =̇ {x+ iy ∈ C ; |x− x0| ≤ r, b′′ ≤ y ≤M}

B =̇
{
x+ iy ∈ C ;

r

2
≤ |x− x0| ≤ r, M− ≤ y ≤M+

}
.

We claim that Z(supp d′v) ⊂ A∪B. In order to check this, notice first that since v is a section of Λ1,n−q

we have

d′v = dvd (χ̃ ∧ dZ ∧ π∗u) = dχ̃ ∧ dZ ∧ π∗u− χ̃ ∧ dZ ∧ π∗(du)

hence, clearly,

supp d′v ⊂ (supp dχ̃ ∩ suppπ∗u) ∪ (supp χ̃ ∩ suppπ∗(du)) .

On the other hand

supp χ̃ ⊂ {(x, t) ∈ R× Rn ; |x− x0| ≤ r}

supp dχ̃ ⊂
{

(x, t) ∈ R× Rn ;
r

2
≤ |x− x0| ≤ r

}
suppπ∗u ⊂ {(x, t) ∈ U ; t ∈ suppu}

suppπ∗(du) ⊂ {(x, t) ∈ U ; t ∈ supp du}

which, together, ensure that supp d′v is contained in the union of the sets below:

S1 =̇
{

(x, t) ∈ U ;
r

2
≤ |x− x0| ≤ r, t ∈ suppu

}
S2 =̇ {(x, t) ∈ U ; |x− x0| ≤ r, t ∈ supp du}.

Clearly, Z maps S1 into B. Also, if (x, t) ∈ S2 we have

Φ(x, t) = (Φ(x, t)− Φ(x0, t)) + Φ(x0, t)

≥ −A|x− x0|+ Φ(x0, t)

> −Ar + y0 + ρ

> b′′

and from the definitions of Z, M , S2 and A we have Z(x, t) ∈ A, proving our claim.
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Figure 1. The compact sets H = A ∪ B′ and R, which are disjoint; and the open set
ω, which contains both of them.

Figure 2. The scheme presented in Figure 1, now deformed by the homeomorphism H0.

For a better visualization of the argument, we define the sets

B′ =̇
{
x+ iy ∈ C ;

r

2
≤ |x− x0| ≤ r, min{M−, b} ≤ y ≤ max{M+,M}

}
(which contains B) and H =̇ A ∪ B′ which, on the one hand, contains A ∪ B, and, on the other hand,
does not intercept R (see Figure 1). It is clear that there exists a bounded open set ω ⊂ C, which is
connected and simply connected, such that:

(1) it contains A ∪ B and R, except for the point x0 + ib ∈ ∂R;
(2) its boundary is a Jordan curve that contains the point x0 + ib; and
(3) C \ ω is connected.

Let ∆ ⊂ C stand for the unit open disc centered at 1: a result due to Carathéodory ensures the existence
of a homeomorphism H0 : ω → ∆ which is a biholomorphism between interiors, and we can assume
without loss of generality that H0(x0 + ib) = 0 (see Figure 2). In particular, <H0(z) > 0 for every z ∈ ω
except for z = x0 + ib. Since H ⊂ ω is a compact set, there exists c > 0 such that

<H0 > 2c in H.

Also, if we further shrink a and choose b′ sufficiently close to b (so that R is “thin” in the y-direction)
then

<H0 <
c

4
in R.
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Finally, Mergelyan’s Theorem allows us to approximate H0 by an entire function H1 such that

<H1 >
3c

2
in H

<H1 <
c

2
in R

thus setting H =̇ H1 − c finishes the proof. �
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