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Abstract

A new iterative method for solving large scale symmetric nonlinear
eigenvalue problems is presented. We firstly derive an infinite dimensional
symmetric linearization of the nonlinear eigenvalue problem, then we ap-
ply the indefinite Lanczos method to this specific linearization, resulting in
a short-term recurrence. We show how, under specific assumption on the
starting vector, this method can be carried out in finite arithmetic and how
the exploitation of the problem structure leads to improvements in terms
of computation time. The eigenpair approximations are extracted with
the nonlinear Rayleigh–Ritz procedure combined with a specific choice of
the projection space. We illustrate how this extraction technique resolves
the instability issues that may occur due to the loss of orthogonality in
many standard Lanczos-type methods.
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1 Introduction

We consider the nonlinear eigenvalue problem (NEP) which consists of comput-
ing (λ, v) ∈ D × Cn \ {0} such that

M(λ)x = 0, (1)

where

M(λ) =

p∑
m=1

fm(λ)Am, (2)

with D ⊂ C open disk, fm : D → C analytic functions, and Am ∈ Cn×n for
m = 1, . . . , p. In this work we focus on the symmetric NEP, namely we assume
that

M(λ)T = M(λ) ∀λ ∈ D. (3)
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Equivalently, M(λ) can be expressed as (2) with symmetric matrices ATm = Am
for m = 1, . . . , p. Notice that the complex matrices Am and M(λ) are as-
sumed to be symmetric but not necessarily Hermitian. The NEP arises in many
areas such as: stability analysis, control theory, wave propagation, etc, and
it has been studied in various settings. See the review papers [19, 37], the
PhD theses [14, 50], and the problem collection [6]. Specialized software for
NEPs has been recently produced: the package NEP-PACK [24], the library
SLEPc [21], and even more open-source software. An approach for solving
the NEP consists of constructing a linear eigenvalue problem (linearization)
whose eigenvalues approximate, or correspond to, the eigenvalues of the origi-
nal NEP [2, 30, 3, 33, 18, 13, 45]. When the NEP has specific structures such
as being: symmetric, Hermitian, Hamiltonian, palindromic, etc, it is preferable
to construct a linearization that preserves these structures. Theoretical and
algorithmic aspects of structured linearizations have been extensively analyzed
[35, 49, 39, 34, 10, 12, 16]. In particular, it has been shown that methods based
on structure preserving linearizations, in certain applications, are more robust
than other methods that do not take into account the structure [38, 36]. For
the polynomial eigenvalue problem (PEP), i.e., the special case where fm(λ)
in (1) are polynomials, symmetric linearizations are extensively characterized
in [22, 11]. A well established class of methods for solving symmetric eigen-
value problems are Lanczos-like methods. More precisely, the Lanczos method,
and its variants, can be applied for solving symmetric generalized eigenvalue
problems Ax = λBx where A,B ∈ Cn×n are symmetric matrices. The original
approach [29] was developed for the case B = I, a generalization for B positive
definite is presented in [42, Ch.15, Sec.11]. A further extension of this approach,
known as indefinite Lanczos method, for the case where A and B are Hermitian
or symmetric matrices is discussed in [43] and [4, Section 8.6.1]. Lanczos meth-
ods belong to the class of Krylov methods. They exploit the fact that, during the
construction of the orthogonal basis of the Krylov space, due to the symmetry
of the problem, the orthogonalization can be performed in a more efficient way
with a three-term recurrence. The main disadvantage of having a three-term
recurrence is that, in floating-point arithmetic and without further specializa-
tions, the basis vectors are often affected by loss of orthogonality, resulting in
slow convergence of the Ritz pairs and numerical instability [44, 46, 53, 1].

In this work, we present a new symmetric linearization for the symmet-
ric NEP, resulting in a symmetric, linear, and infinite dimensional eigenvalue
problem. Symmetric generalized eigenvalue problems can be solved with the
indefinite Lanczos method [4, Section 8.6.1]. We present a new method that
corresponds to adapting, in an efficient and robust way, the indefinite Lanczos
method to the derived linearization. In order to cure the slow convergence, that
is due to the loss of orthogonality, we use the nonlinear Rayleigh–Ritz procedure,
combined with a proper choice of the projection space, for extracting eigenpair
approximations by exploiting the structure of the derived linearization. The
proposed method is competitive, in terms of robustness and complexity, with
Arnoldi-like methods for NEPs that perform the full orthogonalization.

The paper is organized as follows: in Section 2 we prove that the symmetric
NEP is equivalent to a symmetric, linear, and infinite dimensional eigenvalue
problem. In Section 3 we derive a method, in finite arithmetic, which consists of
applying the indefinite Lanczos method to the derived linearization. In Section 4
we show how the computation time of the resulting method can be considerably
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reduced by exploiting additional NEP structures. In Section 5 we illustrate the
performance of this new approach with numerical simulations by solving large
and sparse NEPs. The simulations were carried out in the Julia programming
language [9] with NEP-PACK [24], which is an open source Julia package for
NEPs.

The method we derive can been seen as an Arnoldi-like method applied to
an iteratively expanding linearization, or equivalently to a infinite dimensional
linear operator. Other methods that are based on these ideas are: infinite
Arnoldi [27] and its tensor variant [26], NLEIGS [20], and CORK [51]. There
are also methods based on the bi-orthogonalization procedure, which also lead
to a three-term recurrence, presented in [31, 17]. However, these methods and
their variations, in the way they are presented and without further research, are
not capable of taking advantage of the symmetry of the NEP.

In the rest of this work, vectors and matrices are denoted as v = [vi]
n
i=1

and A = [ai,j ]
n,m
i,j=1 respectively, whereas bold letters represent block-vectors

and block-matrices with infinite size, namely v = [vi]
∞
i=1 with vi ∈ Cn and

A = [Ai,j ]
∞
i,j=1 with Ai,j ∈ Cn×n. The matrix [A]k = [Ai,j ]

k
i,j=1 ∈ Cnk×nk

consists of the main sub-matrix obtained by extracting the first k-blocks. The
Kronecker product and the Hadamard (element-wise) product are denoted by
⊗ and ◦ respectively. The vectors ej and ej have zeros as elements except one
in the j-th position whereas e and e are the vectors with all ones. Without loss
of generality, after a change of variables in (2), we assume that the region of
interest D ⊂ C is a disk centered in the origin. The derivatives of (2) will be
denoted as Mi := M (i)(0). We will denote by AT the transpose (not conjugate
transpose) of the matrix A ∈ Cn×n.

2 Indefinite Lanczos method in infinite dimen-
sional settings

In order to derive a symmetric linearization for NEPs, we first review a specific
linearization technique for PEPs. This technique consists of symmetrizing the
companion linearization and it is presented in [39, Theorem 2.1] that we recall
below. The approach is previously reported in [28, Ch.4 Sec. 2] for the scalar
case.

Theorem 2.1 (Mehrmann and Watkins [39], Lancaster [28]). Consider the

polynomial eigenvalue problem M(λ)v = 0 where M(λ) =
∑k
j=0Mjλ

j and Mk

nonsingular. Then, the pencil A− λB ∈ Cnk×nk, where

A =



−M0 0 0 0 . . . 0
0 M2 M3 M4 . . . Mk

0 M3 M4 0
0 M4 0
...

...
...

0 Mk 0 0 . . . 0


, B =



M1 M2 M3 . . . Mk−1 Mk

M2 M3 M4 Mk 0
M3 M4 0
M4 0

...
...

Mk 0 0 0 . . . 0


(4)

has the same eigenvalues of M(λ). If Mj are symmetric, i.e., M(λ) is symmet-
ric, then A and B are symmetric. If M(λ)v = 0, then [vT , λvT , . . . , λk−1vT ]T
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is an eigenvector of A− λB.

The proof is based on the following argument. A pair (λ, x) that fulfill
M(λ)x = 0 defines an eigenpair of the companion linearization [18], namely
−M0

I
I

. . .

I




x
λx
λ2x

...
λk−1x

 = λ


M1 M2 . . . Mk−1 Mk

I 0
I 0

. . .
...

I 0




x
λx
λ2x

...
λk−1x

 .

(5)

To obtain (4) we multiply (5) on the left by the matrix

S =



I 0 0 0 . . . 0
0 M2 M3 M4 . . . Mk

0 M3 M4 0
0 M4 0
...

...
...

0 Mk 0 0 . . . 0


. (6)

The main disadvantage of using this linearization in practice is that the
blocks forming the eigenvectors of the pencil, defined by (4), grow or decay
exponentially, depending on the value of |λ|. More precisely, the norm of the
j-th block is |λ|j‖x‖ and, if the PEP has high degree, this leads to overflow
or underflow when the eigenpairs of (4) are computed numerically. In order to
resolve this issue, in this section we consider the scaled companion linearization
presented [27, Section 5.1]. We extend the ideas used in Theorem 2.1 to sym-
metrize the scaled companion linearization. Moreover, we consider the NEP in
its general form (1), therefore we derive a linearization that involves vectors and
matrices with infinite size.

2.1 An infinite dimensional symmetric linearization

The NEP (1) is equivalent to a linear and infinite dimensional eigenvalue prob-
lem, see [27, Section 5.1]. More precisely, if (λ, x) is an eigenpair of (1), the
following relation between vectors and matrices of infinite size is fulfilled

−M0

I

I

I

. . .





λ0

0! x
λ1

1! x
λ2

2! x
λ3

3! x
...


= λ



M1
1
2M2

1
3M3

1
4M4 . . .

1
1I

1
2I

1
3I

. . .





λ0

0! x
λ1

1! x
λ2

2! x
λ3

3! x
...


. (7)

The equation (7) defines a linear and infinite dimensional eigenvalue problem

Ax = λBx, (8)

where A,B,x are matrices and vector of infinite size defined accordingly. Clearly,
the linearization (7) is never symmetric. However, if the NEP is symmetric, i.e.,

4



it holds (3), then it is possible to symmetrize (7) with a similar technique as in
Theorem 2.1. More precisely, since we consider a scaled and infinite companion
linearization, in the following theorem we derive a scaled and infinite version of
the matrix (6) that symmetrizes (7).

Theorem 2.2 (Symmetric linearization). Assume that the NEP (2) is symmet-
ric, i.e., it holds (3), then there exists a unique matrix C such that

S :=

[(
1

C

)
⊗ eeT

]
◦



I
M2 M3 M4 M5 . . .
M3 M4 M5

M4 M5

M5

...


(9)

is a symmetrizer for (7), namely

SAx = λSBx (10)

is a symmetric eigenvalue problem. The vector e has infinite length with ones
in all the entries. The coefficients of the matrix C fulfill the following relations

ci,1 =
1

i+ 1
i ≥ 1, (11a)

ci−1,j =
j

i
ci,j−1 i, j > 1. (11b)

Proof. We start observing that Mj , for j ≥ 0, are symmetric matrices as con-
sequence of (3). The relations (11) uniquely define a matrix C since the first
column is fixed in (11a) and the j-th column is computed by the (j − 1)-th
column in (11b). We start by showing that the matrix C is symmetric. Let
us consider i > j, namely i = j + k for some positive integer k. By iteratively
using (11b) we obtain the relations

(j + 1)cj+k,j =(j + k)cj+k−1,j+1

(j + 2)cj+k−1,j+1 =(j + k − 1)cj+k−2,j+2

· · · = · · ·
(j + s)cj+k−s+1,j+s−1 =(j + k − s+ 1)cj+k−s,j+s

· · · = · · ·
(j + k)cj+1,j+k−1 =(j + 1)cj,j+k,

that combined together give

cj+k,j =
(j + k)(j + k − 1) . . . (j + 1)

(j + 1)(j + 2) . . . (j + k)
cj,j+k,

that is, ci,j = cj,i. The case i < j is analogous and we conclude that the matrix
C is symmetric.
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By multiplying (8) on the left by the matrix (9) we get

SA =



−M0

c1,1M2 c1,2M3 c1,3M4 c1,4M5 . . .

c2,1M3 c2,2M4 c2,3M5

c3,1M4 c3,2M5

c4,1M5

...


(12)

and

SB =



1
1M1

1
2M2

1
3M3

1
4M4

1
5M5 . . .

c1,1
1 M2

c1,2
2 M3

c1,3
3 M4

c1,4
4 M5

c2,1
1 M3

c2,2
2 M4

c2,3
3 M5

c3,1
1 M4

c3,2
2 M5

c4,1
1 M5

...


. (13)

The matrix SA is symmetric because C and Mj , for j ≥ 0, are symmetric.
By using (11a) we get that the first block-row of SB is equal to its first block
column, whereas the equation (11b) and the symmetry of C gives the relation

ci−1,j
j

=
cj−1,i
i

=
ci,j−1
i

,

which directly implies that the (i, j)-th and the (j, i)-th blocks of SB are equal.
Hence the matrix SB is symmetric and (10) is a symmetric eigenvalue problem.

Remark 2.3. The eigenvalue problems (7) and (10) have the same eigenpairs
if the symmetrizer (9) is nonsingular, namely Sx = 0 only for x = 0. In the
next section we assume that [S]2N is invertible for an N large enough. This
condition can be phrases in terms of solvability of a specific matrix equation as
discussed in Observation 3.4.

The method that we refer to as infinite Lanczos consists of applying the
indefinite Lanczos method (Algorithm 1), described in the next section, to the
symmetric eigenvalue problem (10).

3 Infinite Lanczos method

3.1 Indefinite Lanczos method

Eigenpair approximations to the generalized eigenvalue problem Ax = λBx,
with A,B ∈ Cn×n symmetric matrices, not necessarily Hermitian, and A non-
singular, can be obtained by using the indefinite Lanczos method [4, Section
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8.6.1] that is summarized in Algorithm 1. The method consists of computing
an orthogonal basis of the Krylov space

Kk(A−1B, q1) := span
(
q1, A

−1Bq1, (A
−1B)2q1, . . . , (A

−1B)k−1q1
)

(14)

by using, instead of the (standard) Euclidean scalar product, the indefinite
scalar product defined by the matrix B, namely xTBy is the B-product between
x, y ∈ Cn. The fact that A−1B is self-adjoint, with respect to this indefinite
scalar product, leads to the property that the B-orthogonal basis of the Krylov
space can be computed with a three-term recurrence. In particular, at the k-th
iteration of Algorithm 1, the following relations are fulfilled

A−1BQk = Qk+1Tk+1,k, (15a)

QTk+1BQk+1 = Ωk+1, (15b)

where the diagonal matrix Ωk+1 := diag(ω1, . . . , ωk+1) and the tridiagonal ma-
trix Tk+1,k = [ti,j ]

k+1
i,j=1 contain the orthogonalization and normalization coeffi-

cients. The matrix Qk+1 is B-orthogonal in the sense of (15b) and its columns,
generated with a three-term recurrence, span the Krylov space (14). The Ritz
pairs of (15a), defined as follows,

(λ,Qkz), where Tkz = λΩkz, (16)

provide an approximation to the eigenpairs of the original problem. Since the
indefinite scalar product defined by B is in general degenerate, there may be
cases of break down in Algorithm 1. We refer to [4, Section 8.6.1] and reference
therein for a detailed discussion of this issue.

Algorithm 1: Indefinite Lanczos

input : Matrices A,B ∈ Rn×n and starting vector q1 ∈ Rn
output: Eigenpair approximations

1 Set q0 = 0, t0,1 = 0, ω1 = qT1 Bq1

for k = 1, 2, . . . do
2 w = A−1Bqk
3 z = Bw

4 [α, β, γ] = zT [qk, qk−1, w]
5 tk,k = α/ωk, tk−1,k = β/ωk−1
6 w⊥ = w − tk,kqk − tk−1,kqk−1
7 tk+1,k = ‖w⊥‖
8 qk+1 = w⊥/tk+1,k

9 ωk+1 = (γ − 2tk,kα− 2tk−1,kβ + t2k,kωk + t2k−1,kωk−1)/t2k+1,k

end
10 Extract eigenpair approximations.

3.2 Infinite Lanczos method in finite arithmetic

We now derive a method that consists of applying the indefinite Lanczos method
(Algorithm 1) to the symmetric eigenvalue problem

[SA]Nx = λ[SB]Nx (17)
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obtained by extracting the main block sub-matrices from (10), where N is a non-
fixed parameter greater than the number of iterations performed in Algorithm 1.
The method we derive is independent on N and, under the assumption that S
given in (9) is invertibile, corresponds to apply Algorithm 1 directly to the linear
infinite dimensional eigenvalue problem (10) with a specific starting vector. This
equivalence is formally presented in Theorem 3.5 at the end of this section.

Algorithm 1 can be efficiently applied to (17) by exploiting the structure of
the matrices (17). We start with Step 2 that can be performed as stated in the
following result.

Theorem 3.1 (Action of [SA]−1N [SB]N ). Assume that [S]2N is invertible,
let qk ∈ CNn be such that only its first k blocks are nonzero, correspond-
ing to the columns of Qk := [q̃1, . . . , q̃k]. Then, only the first k + 1 blocks
of w = [SA]−1N [SB]Nqk are nonzero, corresponding to the columns of W :=
[w1, . . . , wk+1] given by

W = w1e
T
1 +QkD, (18)

where D ∈ Rk×(k+1) is a diagonal matrix with coefficients dj,j+1 = 1/j and

w1 = M−10

k∑
j=1

Mj

j
q̃j . (19)

Proof. By using the specific structure of the matrices (12) and (13), the nonzero
blocks of w fulfill vec(W ) = ([SA]N )−1([SB]N ) vec([Qk, 0]). We can then
derive the following relations(

vec(W )
0

)
= ([S]2N [A]2N )−1([S]2N [B]2N )

(
vec([Qk, 0])

0

)
= ([A]2N )−1([B]2N )

(
vec([Qk, 0])

0

)
.

Hence vec(W ) = ([A]N )−1([B]N ) vec([Qk, 0]), this directly implies (18) and (19),
c.f., [27, Section 4.2].

By using the previous result, we conclude that in Algorithm 1, if q1 has only
the first block which is nonzero, then qk at the k-th iteration will have k nonzero
blocks. This is due to the fact that, none of the steps, except Step 2, introduce
fill-in in the vectors q1, q2, . . . , qk. In Step 4 of Algorithm 1 the products zT qk,
zT qk−1 and zTw are computed. Observe that the vectors multiplied by z have
at most k+1 nonzero blocks. Therefore, even if z = [SB]Nw is in general a full
vector, only the first k + 1 blocks are required. These blocks can be computed
as follows.

Theorem 3.2 (Action of [SB]N ). Let us consider z := [SB]Nw, where w is
given as in Theorem 3.1. Then the first k + 1 blocks of z, corresponding to the
columns of Z := [z1, . . . , zk+1], fulfill the relation

Z =

p∑
m=1

AmW (Gk+1 ◦ Fm), (20)
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where Gk+1 ∈ R(k+1)×(k+1) has coefficients gj,1 = g1,j = 1/j for j = 1, . . . , k+1
and gi,j = ci−1,j/j and

Fm :=


f
(1)
m (0) f

(2)
m (0) f

(3)
m (0) . . . f

(k+1)
m (0)

f
(2)
m (0) f

(3)
m (0) . . . f

(k+2)
m (0)

f
(3)
m (0) . . . f

(k+3)
m (0)

...
...

f
(k+1)
m (0) f

(k+2)
m (0) f

(k+3)
m (0) . . . f

(2k+1)
m (0)

 .

Proof. Since w has only the first k + 1 blocks that are nonzero, we can express

vecZ = [SB]k+1 vecW. (21)

By using (13) and that Mj =

p∑
m=1

f (j)m (0)Am, we can decompose

[SB]k+1 =

p∑
m=1

(Gk+1 ◦ Fm)⊗Am. (22)

Equation (20) follows by combining (22) and (21), and by using the properties
of the Kronecker product.

Observation 3.3. The scalar product between the vectorization of two matrices
can be carried out directly in matrix form by using the Hadamard product as
follows: (vecZ)T vecW = ẽT (Z ◦W )e with ẽ ∈ Rn and e ∈ Rk.

Observation 3.4. With the same reasoning as in Theorem 3.2, we can decom-
pose (9) as

[S]2N =

p∑
m=1

[(
1

[C]2N−1

)
◦ Fm

]
⊗Am.

Therefore, we can relate the invertibility of [S]2N with the solvability of the
following linear matrix equation

p∑
m=1

AmX

[(
1

[C]2N−1

)
◦ Fm

]
= B

for any B ∈ C2N×n. Linear matrix equations are extensively studied in recent
literature. See the review paper [47] and reference therein. In the numerical
examples reported in Section 5 we never encounter a case when [S]2N was sin-
gular. A case when this matrix is obviously singular is when the NEP is defined
by polynomial functions. Although the theory does not cover this case, we have
successfully applied the method we are deriving without introducing any break-
down or instability.

Figure 1 illustrates the structure of the matrices and vectors, involved in
Algorithm 1, when applied to (17) with a starting vector that has only the first
block which is nonzero. At iteration k only the vectors qk−1, qk are needed,
therefore they are the only vectors that need to be stored. Algorithm 2 is the

9



q1 q2 q3 q4

. . .

qk-2 qk-1 qk qk+1 w z w⊥

Tk ω1
.
.
.
ωk

Figure 1: Illustration of the structure of the matrices and vectors involved in
Algorithm 1, at iteration k, when applied to (17). The vectors q1, . . . , qk−2 in
transparency are produced in the previous iterations and are not used after the
(k−1)-iteration. The oblique lines pattern indicates the nonzero blocks of these
vectors. The lower part of the vector z with grid pattern is not computed.
The vector qk+1 is computed at the end of the iteration and the dotted pattern
indicates the nonzero blocks.

combination of the results presented in this section. More precisely, Algorithm 2
is the reformulation of Algorithm 1, applied to (17), where the nonzero blocks
of the vectors qk, qk−1, w, and the needed blocks of z, are stored as columns of
the matrices Qk, Qk−1,W and Z. Moreover, the size of the linearization (17) is
implicitly expanded at each iteration. Observe that at iteration k only the first

2k + 1 derivatives f
(j)
m (0) for m = 1, . . . , p and j = 1, . . . , 2k + 1 are needed.

We now conclude this section by showing the equivalence between Algorithm 1,
directly applied to the infinite dimensional problem (10), and Algorithm 2.

Theorem 3.5 (Infinite dimensional equivalence). Assume that the matrix S,
given in (9), is invertible and let q1 be an infinite length vector with only the
first block q1 nonzero. Then, Algorithm 1, with stating vector q1, is applicable
to (10) and the matrices Qk, that have as columns the first k nonzero blocks of
qk, Tk, and ωk are equal to the homonymous matrices generated by Algorithm 2
with starting matrix Q1 = [q1].

Proof. We denote by q1, q2, . . . , qk the infinite-length vectors generated by Al-
gorithm 1 and by Q1, Q2, . . . , Qk the matrices generated by Algorithm 2. The
proof is based on induction over the iteration count k. The result is trivial for
k = 1. Suppose the results holds for some k. In Step 2 of Algorithm 1, by using
that S is invertible, we have

w = (SA)−1(SB)qk = A−1Bqk.

By using the induction hypothesis, qk has k nonzero blocks, corresponding to
the column of the matrix Qk generated at the (k−1)-th iteration of Algorithm 2.

10



Algorithm 2: Infinite Lanczos

input : NEP (1) and starting vector Q1 ∈ Rn×1
output: Eigenpair approximations

1 Set Q0 = 0, t0,1 = 0, ω1 = QT1M1Q1

for k = 1, 2, . . . do
2 Compute w1 and W = w1e

T
1 +QkD as in (18) and (19)

3 Compute Z, defined in (20), as in Section 4
4 (Extend with zeros Qk := [Qk 0] and Qk−1 := [Qk−1 0 0])

Compute [α, β, γ] = vec(Z)T [vec(Qk), vec(Qk−1),W ] as in
Observation 3.3

5 tk,k = α/ωk, tk−1,k = β/ωk−1
6 W⊥ = W − tk,kQk − tk−1,kQk−1
7 tk+1,k = ‖W⊥‖F
8 Qk+1 = W⊥/tk+1,k

9 ωk+1 = (γ − 2tk,kα− 2tk−1,kβ + t2k,kωk + t2k−1,kωk−1)/t2k+1,k

end
10 extract eigenpair approximations as in Section 3.3

Because of the structure of the matrices (12) and (13), we get that w has only
the first k blocks which are nonzero, corresponding to the columns of the matrix
W that fulfills (18). Therefore this matrix corresponds to the matrix computed
in Step 2 of Algorithm 2. In the Step 3 of Algorithm 1 we compute z = SBw.
This vector is in general full. However, in the Step 4 of Algorithm 1 the products
zTqk, zTqk−1 and zTw are computed. By induction hypothesis, qk, qk−1 have
respectively k and k − 1 nonzero blocks, corresponding to the columns of the
matrices Qk and Qk−1 generated by Algorithm 2. Therefore, only the first k+1
blocks of z are required and they can be computed with the same reasoning
of Theorem 3.2. More precisely, the first k + 1 blocks of z are the columns of
the matrix Z that fulfills (20). Therefore this matrix coincides with the matrix
generated by Step 3 of Algorithm 2. In order to conclude that qk+1 has only
we first k+ 1 nonzero blocks, corresponding to the columns of the matrix Qk+1

generated by Algorithm 2, we only need to use the property ‖M‖F = ‖ vec(M)‖2
for every matrix M .

3.3 Robust extraction of eigenpair approximations

We propose to enhance Algorithm 2 as follows. We consider the projected NEP

V TM(λ)V z = 0, (23)

where V ∈ Cn×k is an orthogonal matrix. Under the assumption that V posses
good approximation properties, eigenpair approximations to the NEP (1) are
given by (λ, V z). This can be seen as the Galerkin projection method that uses
the range of V as projection space. This technique for extracting eigenpair ap-
proximations, called nonlinear Rayleigh–Ritz procedure or subspace acceleration,
is often used to improve properties of more basic algorithms, e.g., the nonlin-
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ear Arnoldi method [52], Jacobi–Davidson methods [14, 7], infinite Arnoldi [25],
block preconditioned harmonic projection methods [54], and many more.

In our framework, there is a natural choice for the projection space. The
matrix V is chosen as the orthogonal matrix whose columns span the subspace
of vectors obtained by extracting the first column from Q1, . . . , Qk generated by
Algorithm 2. The reason this matrix contains good approximation properties
is due to the following argument. In the Ritz pairs extraction described in
Section 3.1, the eigenvector approximations of (7) (or equivalently of (10)) are
given by the first block row of the Ritz vectors (16). Thus, the eigenvector
approximations to the NEP (1) are also obtained by the first block of these
Ritz vectors and thus by the first block row of the Krylov basis, namely by the
columns of the proposed matrix V .

The projected problem (23) has size k equal to the number of iterations,
which is typically, in the context of Krylov methods, a small number, i.e., k � n.
Therefore, the projected problem (23) has small size and solving (23) is not the
computationally dominating part of Algorithm 2. In the numerical experiments
we have tested, for solving (23), the following methods: Beyn’s contour integral
method [8], NLEIGS [20] and IAR [27]. The choice the method for solving (23)
depends on the features of the original problem (1) and there is not a favorite
candidate. For example, one may want to exploit that the projected prob-
lem (23) is defined by the same nonlinear functions and may inherit several
features of the original NEP 1 such as being symmetric or palindromic. There-
fore, this problem can be solved in a more robust way with structure preserving
methods.

4 Indefinite scalar product computation

Under the assumption that the linear systems with the matrix M0 can be effi-
ciently solved, e.g., exploiting the sparsity, the dominating part of Algorithm 2
is the Step 3, namely the computation of (20), which has complexity O(k2n).
In this section we derive efficient methods for computing this quantity.

4.1 Computation of Step 3: General case

The following theorem provides an effective approximation to (20) without any
specific assumption on the coefficients of (2).

Theorem 4.1. Let U, V ∈ Rn×q the factors of the best rank q approximation,
with respect to the Euclidean norm, to the matrix Gk+1. Then

Z̃ =

p∑
m=1

Am

q∑
j=1

W diag(uj)Fm diag(vj) (24)

is such that

‖Z − Z̃‖F ≤

(
p∑

m=1

‖AmW‖F ‖Fm‖F

)
k∑

j=q+1

σj(Gk). (25)

Proof. The approximation (24) is obtained by replacing Gk+1 with UV T in
(20) and using ujv

T
j ◦ Fm = diag(uj)Fm diag(vj). The equation (25) follows

12
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Figure 2: Singular values decay of the matrices Gk for k = 50, 100, 200.

by the triangular inequality and by the fact that the Frobenius norm is sub-
multiplicative with respect to the Hadamard product.

The approximation (24) is effective, with q small, since the matrix Gk, which
is problem independent, has a fast decay in the singular values. In Figure 2 the
singular values1 of this matrix are displayed for different sizes k. Moreover, the
computation of (24), requires less computation time than (20) since the products
with the Hankel matrices Fj can be efficiently computed with FFTs [32, Section
4]. The complexity for computing (24) is O(nk log k).

4.2 Computation of Step 3: delay eigenvalue problem

The stability analysis of delay systems of the form

ẋ(t) = A2x(t) +

p∑
m=3

Amx(t− τm) (26)

is related to solving NEPs, referred to as delay eigenvalue problems, see [23, Ch.
2] and [40, Ch. 1 Sect. 1.2], defined as follows:

M(λ) = −λI +A2 +

p∑
m=3

Ame
−λτm . (27)

In this case the matrices Fm have at most rank one. More precisely, a direct
computation leads to F1 = −e1eT1 , F2 = 0 and for m ≥ 3 we get Fm = −τmvvT
with vj = (−τm)j−1. Therefore, the computation time of (24) is much lower
than (20) since it involves only products with low rank matrices. The com-
plexity for computing of (24) is reduced, by exploiting the low-rank structure,
to O(npk).

4.3 Computation of Step 3: polynomial plus low-rank struc-
tured NEPs

In certain applications (2) can be written as sum of a polynomial and a low-rank
part. See, e.g., [14, Ch. 2 Sec. 4], [50, Ch. 1 Sec. 1.2], [6, gun problem] and [5,

1The singular values are computed in BigFloat arithmetic using the package GenericSVD.
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Sec. 6.2.2]. More precisely:

M(λ) =

d∑
m=1

λm−1Am +

p∑
m=d+1

fm(λ)UmU
T
m (28)

with Um, Um ∈ Cn×rm and rm � n. In this case we split (20) in the polynomial
and low-rank terms, namely Z = Zp + Zlr with

Zp :=

d∑
m=1

Am [W (Gk+1 ◦ Fm)] , (29a)

Zlr :=

p∑
m=d+1

[
Um(UTmW )

]
(Gk+1 ◦ Fm). (29b)

The term (29a) can be efficiently approximated as in (24) by exploiting the
low-rank structure of the matrices Fm. Moreover, since UmU

T
m in (29b) have

low rank, the computation of Z with (29), respecting the order given by the
parentheses in (29b), requires less computation time than (20). The complexity
of (29) is O((d+ r)n) where r = max

d+1≤t≤p
rm.

5 Numerical simulations

In the following numerical experiments2 we use, as error measure, the relative
error defined as follows

Err(λ, x) :=
‖M(λ)x‖2∑p

m=1 |fm(λ)|‖Am‖∞‖x‖2
.

An eigenpair approximation is marked as “converged” if Err(λ, x) < 10−8. The
software used in these simulations is implemented in the Julia programming
language [9], and publicly available in the Julia package NEP-PACK [24] 3.

5.1 Delay eigenvalue problem

We consider the delay eigenvalue problem arising from the spatial discretization
of the following partial delay differential equation

ut(ξ, t) = −∆u(ξ, t) + a(ξ)u(ξ, t− 1) (30)

ξ = (ξ1, ξ2) ∈ [0, π]2, t > 0

where a(ξ) = −ξ1 sin(ξ1 + ξ2), resulting in a problem of the form (26) where all
the matrices are real and symmetric. The spatial domain is partitioned with a
uniform equispaced grid with N points in each direction. The Laplace operator
is discretized by the 5-points stencil finite difference approximation, leading to
a NEP of size n = N2, cf. [5, Section 6.2.1]. More precisely, the NEP is defined

2All simulations were carried out with Intel octa core i7-4770 CPU 3.40GHz and 24 GB
RAM.

3The scripts reproducing several of the presented examples are directly available in the
web-page: https://people.kth.se/~gmele/InfLan/
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as M(λ) = −λI+A2 +e−λA3 where I ∈ Rn×n and the other matrix coefficients
are given by

D :=
1

h2


−2 1

1
. . .

. . .

. . . 1
1 −2

 ∈ RN×N ,

F := vec
(

[a(ξi, ξj)]
N
i,j=1

)
∈ RN×N ,

Ĩ ∈ RN ,

A2 := D ⊗ Ĩ + Ĩ ⊗D ∈ Rn×n, A3 := diag(F ) ∈ Rn×n

with h := π/(N−1) discretization step. We run 50 iterations of Algorithm 2. In
Figure 3 and Figure 4 we illustrate the robustness of the strategy for extracting
the eigenpair approximations presented in Section 3.3. More precisely, we com-
pare the standar approach for extracting the eigenpair approximations, which
is based on the computation of the Ritz pairs, with the more robust approach
consisting of solving the projected NEP. In Figure 3 is displayed the spectrum
and the converged eigenvalues, respectively computed with the Ritz and the
projected NEP approach. In this example we solve the projected NEP with the
Beyn contour integral method4 [8]. The error history is presented in Figure 4.
As expected, the convergence of the Algorithm 2, with the Ritz pair approxi-
mation, appear to be slower with respect to the convergence of the Algorithm 2
with the more robust eigenpair extraction based on solving the projected NEP.

The performance of Algorithm 2 is affected by the method used for solv-
ing the projected NEP. In Table 1 we compare the time, and the number of

4The disk of interest is set with center in the origin and radius 4 with N = 1000 discretiza-
tion points and tolres = tolrank = 10−8.
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Beyn IAR: 50 iter. IAR: 100 iter.
prob. size time conv. eig. time conv. eig. time conv. eig.

10000 1.997 s 11 1.500 s 9 2.570 s 13
90000 14.191 s 11 13.120 s 9 14.295 s 19
250000 36.177 s 11 35.496 s 9 36.460 s 17

Table 1: Performance of Algorithm 2 applied to the NEP in Section 5.1 of
different sizes. The NEPs are obtained by discretizing (30) respectively with
N = 100, 300, 500 nodes in each direction. The projected problems are solved
only at the last iteration with: Beyn contour integral method, IAR [27] (50
iterations) and IAR (100 iterations).

computed eigenvalues, after 50 iterations of Algorithm 2 combined with three
different NEP solves for the projected problem: Beyn contour integral method
(with the same settings as before), IAR [27] (50 iterations) 5 and IAR (100
iterations).

5.2 A benchmark problem

We now illustrate the performance of Algorithm 2 for solving a NEP that is
symmetric but not Hermitian. We consider the gun problem that belong to the
problem collection [6]. This NEP has the following form

M(λ) = A1 − λA2 + i
√
λA3 + i

√
λ− σ2

2A4 (31)

where σ2 = 108.8774. The matrices Aj ∈ R9956×9956, for j = 1, . . . , 4, are real
and symmetric. The NEP 31 can be written in the form (28) since the matrix
coefficients of the nonlinear part have low-rank, namely rank(A3) = 19 and
rank(A4) = 65. The eigenvalues of interest are located inside the the closed
disk centered in 2502 and with radius 5 · 104. Before applying Algorithm 2,
the problem is shifted and scaled. We set the parameters to λ = λ0 + αλ̂
where λ0 = 3002 and α = (300 − 200)2. This problem has been solved with
various methods [27, 20, 51, 31, 17] and, by numerical evidences, there are 21
eigenvalues in the region of interest. For this problem we use IAR for solving
the projected NEP. More precisely we test two variants: IAR (50 iterations) and
IAR (200 iterations). As showed in the numerical experiment in Section 5.1, the
robustness of the whole Algorithm 2 is effected by the choice of the method used
for solving the projected NEP. In Figure 5 we can see that more eigenvalues
converge when we solve more accurately the projected problem. The error
history is presented in Figure 6. Solving more accurately the projected NEP is
necessary to compute the outermost eigenvalues.

5.3 A random symmetrized problem

In conclusion we illustrate how Algorithm 2 can be used for solving a nonsym-
metric NEP. We introduce a symmetrization technique, consisting of doubling

5We perform 50 iteration of IAR for solving the projected NEP and return the converged
eigenvalues.
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the problem size, based in the idea presented in [41, Sect. 5]. Namely, we define
the symmetrized NEP as

M̃(λ) :=

(
0 M(λ)

M(λ)T 0

)
=

p∑
m=1

fm(λ)

(
0 Am
ATm 0

)
. (32)

Observe that if
(
λ, [yT , xT ]T

)
is an eigenpair of (32), then (λ, x) is an eigenpair

of M(λ). We now consider the symmetrization, in the sense of (32), of the
following NEP that is artificially constructed:

M(λ) = A1 − λA2 + sin(λ)A3 + e−λA4 (33)

where Aj ∈ C500×500 are defined as follows: A1 is the bidiagonal matrix with
elements equal to 500 in the upper and lower diagonal, A2 is the identity matrix,
A3 = A1/500 and A4 is a diagonal matrix with elements equal to i (complex
unit) in the lower diagonal. We perform 50 iterations of Algorithm 2 and solve
the projected NEP with NLEIGS 6 [20] by targeting the eigenvalues contained
in the rectangle with opposite vertices in −1.5−1.5i and 0.5+0.5i. In Figure 7 is
illustrated the spectrum and the converged eigenvalues, in the region of interest,
after 50 iterations of Algorithm 2. The error history is illustrated in Figure 8.

6 Conclusions and outlook

We have presented a method for solving symmetric NEPs. We have also illus-
trated how the problem structure, in particular the structure of the matrices
and functions in (2), can be exploited in order to reduce the computation time.
However, there are NEPs that cannot be written in the format (2), e.g., the

6We used the static variant with Leja-Bagby points automatically generated from the
polygonal target. The shift is in zero and it is kept constant during the iterations.
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waveguide eigevalue problem [26], the reformulation of the Dirichlet eigenvalue
problem with the boundary element method [48, 15], etc. For some of these
problems, only a routine for computing Mkx is available. We believe that fur-
ther research can potentially extend the applicability of Infinite Lanczos to such
problems.

In the numerical experiment in Section 5.3, we have successfully solved a
nonsymmetric NEP in the following way. Firstly we constructed a symmetric
NEP (32) whose eigenvalues are also eigenvalues of the original NEP. Then we
applied the infinite Lanczos to the symmetrized problem (32). The matrices (32)
have clearly a very well defined block structure. We believe that infinite Lanczos
can be further specialized for solving nonsymmetric NEPs by exploiting these
structures. In conclusion we also believe that similar ideas can be extended
to NEPs that are Hermitian, namely, M(λ)H = M(λ̄) where λ̄ represents the
complex conjugate of λ ∈ C and M(λ)H the Hermitian, or conjugate transpose,
of the matrix M(λ).
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[20] S. Güttel, R. Van Beeumen, K. Meerbergen, W. Michiels, Nleigs: A class
of fully rational Krylov methods for nonlinear eigenvalue problems, SIAM
J. Sci. Comput. 36 (6) (2014) A2842–A2864.

[21] V. Hernandez, J. E. Roman, V. Vidal, SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software
31 (3) (2005) 351–362.

[22] N. J. Higham, D. S. Mackey, N. Mackey, F. Tisseur, Symmetric lineariza-
tions for matrix polynomials, SIAM J. Matrix Anal. Appl. 29 (1) (2006)
143–159.

[23] E. Jarlebring, The spectrum of delay-differential equations: numerical
methods, stability and perturbation, Ph.D. thesis, Inst. Comp. Math, TU
Braunschweig (2008).

[24] E. Jarlebring, M. Bennedich, G. Mele, E. Ringh, P. Upadhyaya,
NEP-PACK: A Julia package for nonlinear eigenvalue problems,
https://github.com/nep-pack (2018).

[25] E. Jarlebring, K. Meerbergen, W. Michiels, An Arnoldi method with struc-
tured starting vectors for the delay eigenvalue problem, IFAC Proceedings
Volumes 43 (2) (2010) 57–62.

[26] E. Jarlebring, G. Mele, O. Runborg, The waveguide eigenvalue problem
and the tensor infinite Arnoldi method, SIAM J. Sci. Comput. 39 (3) (2017)
A1062–A1088.

[27] E. Jarlebring, W. Michiels, K. Meerbergen, A linear eigenvalue algorithm
for the nonlinear eigenvalue problem, Numer. Math. 122 (1) (2012) 169–
195.

[28] P. Lancaster, Lambda-matrices and vibrating systems, Pergamon Press,
Oxford, 1966.

[29] C. Lanczos, An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators, J. Res. Natl. Bur. Stand. B 45
(1950) 255–282.

[30] P. W. Lawrence, M. Van Barel, P. Van Dooren, Backward error analysis
of polynomial eigenvalue problems solved by linearization, SIAM J. Matrix
Anal. Appl. 37 (1) (2016) 123–144.

20



[31] P. Lietaert, K. Meerbergen, F. Tisseur, Compact two-sided Krylov methods
for nonlinear eigenvalue problems, SIAM J. Sci. Comput. 40 (5) (2018)
A2801–A2829.

[32] F. T. Luk, S. Qiao, A fast eigenvalue algorithm for Hankel matrices, Linear
Algebra Its Appl. 316 (1-3) (2000) 171–182.

[33] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Vector spaces of lin-
earizations for matrix polynomials, SIAM J. Matrix Anal. Appl. 28 (4)
(2006) 971–1004.

[34] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmann, Numerical methods
for palindromic eigenvalue problems: Computing the anti-triangular Schur
form, Numer. Linear Algebra Appl. 16 (1) (2009) 63–86.

[35] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmanns, Palindromic poly-
nomial eigenvalue problems: Good vibrations from good linearizations,
Tech. rep., DFG Research Center Matheon, “Mathematics for key tech-
nologies” in Berlin, TU Berlin, Berlin, Germany, available online at
http://www.matheon.de/ (2005).

[36] D. S. Mackey, N. Mackey, C. Mehl, V. Mehrmanns, Structured polynomial
eigenvalue problems: Good vibrations from good linearizations, SIAM J.
Matrix Anal. Appl. 28 (4) (2006) 1029–1051.

[37] V. Mehrmann, H. Voss, Nonlinear eigenvalue problems: A challenge for
modern eigenvalue methods, GAMM-Mitteilungen 27 (2) (2004) 121–152.

[38] V. Mehrmann, D. Watkins, Structure-preserving methods for computing
eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J.
Sci. Comput. 22 (6) (2001) 1905–1925.

[39] V. Mehrmann, D. Watkins, Polynomial eigenvalue problems with Hamilto-
nian structure, Electron. trans. numer. anal. 13 (2002) 106–118.

[40] W. Michiels, S.-I. Niculescu, Stability and stabilization of time-delay sys-
tems: an eigenvalue-based approach, SIAM, 2007.

[41] B. Nour-Omid, Applications of the Lanczos method, Comput. Phys. Com-
mun. 53 (1-3) (1989) 157–168.

[42] B. N. Parlett, The symmetric eigenvalue problem, vol. 20, siam, 1998.

[43] B. N. Parlett, H.-C. Chen, Use of indefinite pencils for computing damped
natural modes, Linear Algebra Its Appl. 140 (1990) 53–88.

[44] B. N. Parlett, D. S. Scott, The Lanczos algorithm with selective orthogo-
nalization, Math. Comp. 33 (145) (1979) 217–238.

[45] L. Robol, R. Vandebril, P. V. Dooren, A framework for structured lineariza-
tions of matrix polynomials in various bases, SIAM J. Matrix Anal. Appl
38 (1) (2017) 188–216.

[46] H. D. Simon, The Lanczos algorithm with partial reorthogonalization,
Math. Comp. 42 (165) (1984) 115–142.

21



[47] V. Simoncini, Computational methods for linear matrix equations, SIAM
Rev. 58 (3) (2016) 377–441.

[48] O. Steinbach, G. Unger, A boundary element method for the Dirichlet
eigenvalue problem of the Laplace operator, Numer. Math. 113 (2) (2009)
281–298.

[49] Y. Su, Z. Bai, Solving rational eigenvalue problems via linearization, SIAM
J. Matrix Anal. Appl. 32 (1) (2011) 201–216.

[50] R. Van Beeumen, Rational Krylov methods for nonlinear eigenvalue prob-
lems, Ph.D. thesis, KU Leuven (2015).

[51] R. Van Beeumen, K. Meerbergen, W. Michiels, Compact rational Krylov
methods for nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl.
36 (2) (2015) 820–838.

[52] H. Voss, An arnoldi method for nonlinear eigenvalue problems, BIT numer-
ical mathematics 44 (2) (2004) 387–401.

[53] K. Wu, H. Simon, Thick-restart Lanczos method for large symmetric eigen-
value problems, SIAM J. Matrix Anal. Appl. 22 (2) (2000) 602–616.

[54] F. Xue, A block preconditioned harmonic projection method for large-scale
nonlinear eigenvalue problems, SIAM J. Sci. Comput. 40 (3) (2018) A1809–
A1835.

22


	1 Introduction
	2 Indefinite Lanczos method in infinite dimensional settings
	2.1 An infinite dimensional symmetric linearization

	3 Infinite Lanczos method
	3.1 Indefinite Lanczos method
	3.2 Infinite Lanczos method in finite arithmetic
	3.3 Robust extraction of eigenpair approximations

	4 Indefinite scalar product computation
	4.1 Computation of Step ??: General case
	4.2 Computation of Step ??: delay eigenvalue problem
	4.3 Computation of Step ??: polynomial plus low-rank structured NEPs

	5 Numerical simulations
	5.1 Delay eigenvalue problem
	5.2 A benchmark problem
	5.3 A random symmetrized problem

	6 Conclusions and outlook
	7 Acknowledgement

