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LECTURE NOTES ON RECTIFIABLE REIFENBERG FOR MEASURES

AARON NABER

ABSTRACT. These series of notes serve as an introduction to some of both the classical and modern techniques

in Reifenberg theory. At its heart, Reifenberg theory is about studying general sets or measures which can be, in

one sense or another, approximated on all scales by well behaved spaces, typically just Euclidean space itself.

Such sets and measures turn out not to be arbitrary, and often times come with special structure inherited from

what they are being approximated by.

We will begin by recalling and proving the standard Reifenberg theorem [Rei60], which says that sets in

Euclidean space which are well approximated by affine subspaces on all scales must be homoemorphic to balls.

These types of results have applications to studying the regular parts of solutions of nonlinear equations. The

proof given is designed to move cleanly over to more complicated scenarios introduced later.

The rest of the lecture notes are designed to introduce and prove the Rectifiable Reifenberg Theorem

[ENVb], including an introduction to the relevant concepts. The Rectifiable Reifenberg Theorem roughly says

that if a measure µ is summably close on all scales to affine subspaces Lk, then µ = µ+ + µk may be broken

into pieces such that µk is k-rectifiable with uniform Hausdorff measure estimates, and µ+ has uniform bounds

on its mass. These types of results have applications to studying the singular parts of solutions of nonlinear

equations. The proof given is designed to give a baby introduction to ways of thinking in more modern PDE

analysis, including an introduction to Neck regions and their Structure Theory.
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1. DISCUSSION OF REIFENBERG METHODS AND OUTLINE OF NOTES

We begin these notes by listing a few types of Reifenberg results which exist, as well as the their primary

applications. We will not try and be overly precise at this point, and will return to details after. Much more

complete introductions are given to those topics discussed in these notes at the beginning of each lecture.

(1) The classical Reifenberg [Rei60].

(a) Background: Given two sets S1 and S2 we define their Hausdorff distance dH(S1, S2) ≡
inf{ǫ : S1 ⊆ Bǫ(S2) andS2 ⊆ Bǫ(S1)}, see (2.4) for more.

(b) Statement: Assume S ⊆ B2(0
n) is a set such that for each Br(x) ⊆ B2 there exists an affine

subspace Lk = Lk
x,r such that dH

(

S ∩ Br(x), L ∩ Br(x)
)

< ǫ(n)r. Then S ∩ B1 is actually

homeomorphic to a k-dimensional ball.

(c) Application: This is used to study the manifold structure of the regular sets of minimal surfaces.

(2) Reifenberg Theorem for Metric Spaces by Cheeger-Colding [CC97].
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(a) Background: Given two metric spaces X1 and X2 we say their Gromov Hausdorff1 distance

dGH(X1,X2) < ǫ if there exists ǫ-dense subsets {xi1} ⊆ X1 and {xi2} ⊆ X2 such that

|d(xi1, xj1)− d(xi2, x
j
2)| < ǫ.

(b) Statement: Assume a metric space X is such that each ball Br(x) ⊆ B2(p) is Gromov Haus-

dorff close to Euclidean space: dGH

(

X∩Br(x), Br(0
n)
)

< ǫ(n)r. Then X∩B1(p) is actually

homeomorphic to a k-dimensional ball.

(c) Application: This is used to show the manifold structure of the regular sets of limits of spaces

with lower Ricci curvature bounds. See also [DT99] for a more general study of such spaces.

(3) Uniform Rectifiability and Alhfor’s regular Measures

(a) Background: We say a measure µ ⊆ B1(0
n) is Alhfor’s regular if crk ≤ µ(Br(x)) ≤ Crk for

all x ∈ suppµ and r ≤ 2. We define the Jones β-numbers of any measure µ by

βk(x, r)
2 ≡ infLk

´

Br(x)
d(x,Lk)2 dµ[x], where the inf is taken over all affine subspaces, see

Section 7 for a much more complete introduction.

(b) Setup: For an Alhfor’s regular measure µ one sees that uniform rectifiability2 is equivalent to the

measures support being summably close on all scales to affine subspaces: i.e.
´ 2
0 βk(x, s)

2 ds
s <

δ, see Jones [Jon90], David-Semmes [DS93], and Toro [Tor95].

(c) The introduction of these ideas were used by Jones to solve the traveling salesman problem,

and more advanced refinements were used by David-Semmes to prove estimates on Calderon-

Zygmund operators constructed from µ. Local refinements were used by Tolsa [Tol15a] and

Tolsa-Azzam [AT15] to characterize when measures with upper and lower density bounds are

rectifiable.

(4) Rectifiable Reifenberg Theorem by Edelen-Naber-Valtorta [ENVb], Naber-Valtorta [NV17].

(a) Statement: If the support of a general measure µ is summably close on all scales to affine

subspaces Lk, i.e.
´ 2
0 βk(x, s)

2 ds
s < Γ where βk are the Jones β-numbers, then µ = µ+ +

µk may be broken into pieces such that µk is k-rectifiable with uniform Hausdorff measure

estimates and µ+ has uniform bounds on the measure.

(b) Application: This can be viewed as effective versions of the previous setup, as one concludes

measures bounds instead of assuming them, and is used to study the rectifiable structure and

volume bounds of singular sets of nonlinear equations.

(5) Reifenberg Theorem to Subset of Subsets.

(a) Setup: Consider a closed subset C of the space of all subsets. Assume for each ball that S ∩
Br(x) is close to some element C ∈ C. Then in many special cases, the set S will inherit

special properties itself from C. See the work of Badger-Lewis [BL15].

1The definition given here is not quite the Gromov Hausdorff distance, but it is uniformly equivalent to it.
2For the sake of the introduction view k-rectifiable as being a k-manifold away from a set of measure zero. Precise definitions

and statements are given in Section 6. Uniform rectifiablity roughly means that on all balls one can cover most of the support of µ

by a single chart, see [DS91].



4 AARON NABER

(b) Application: Take C to be the zero sets of harmonic polynomials. Such subsets enjoy a fre-

quency monotonicity, which weakly transfers to the set S itself and builds a certain stratified

structure on S, see the work of Badger-Engelstein-Toro [BET17]. See also [DDPT08] for an

application of similar ideas to minimal cones.

(6) Canonical Rectifiable Reifenberg Theorems.

(a) Setup: Most Reifenberg results rely on the same basic construction to build the Reifenberg

maps. In more complicated situations, as when the underlying space itself is twisted, this

construction leads to additional errors and does not allow for rectifiable and finite measure

control. Instead, one builds Reifenberg maps canonically by letting the maps themselves solve

an equation.

(b) Application: The main application of this is to study the singular sets of spaces with lower Ricci

curvature bounds by Cheeger-Jiang-Naber [CJN]. In that case, to approximate the singular

set by a k-dimensional Euclidean space also requires approximating the underlying manifold.

These errors are worse and fundamentally not controllable using Reifenberg constructions. One

instead solves for harmonic mappings into Rk, and proves that on the (approximate) singular

sets that these mappings are automatically Reifenberg and even rectifiable Reifenberg.

These notes will focus primarily on (1) and (4) above. The outline of these notes is as follows:

In Lecture 1 we will study and prove the classical Reifenberg Theorem. Our proof of the classical Reifen-

berg Theorem is designed with the rectifiable Reifenberg in mind, so that many of the technical complica-

tions which appeared previously in the literature, see [NV17] for instance, may be avoided.

In Lecture 2 we will give the necessary background needed so that we may end with a statement of the

rectifiable Reifenberg Theorem. This includes an introduction to the Jones β-number, which measures on

a given ball how far away the support of a measure µ is to being contained in an affine subspace. The

rectifiable Reifenberg theorem roughly states that if a measure µ has appropriate integral control on its β-

numbers, then it must be decomposable into pieces µ = µ+ + µk, where µk has k-rectifiable support with

finite Hausdorff measure and µ+ is a uniformly finite measure. The proof in these notes is different from

[ENVb] and has been designed as a baby case of how one approaches singularity analysis in general.

In Lecture 3 we will introduce the notion of Neck regions and state the Neck Structure and Neck Decom-

position Theorems. Neck regions are roughly those regions for which a weak version of a Reifenberg type

rigidity hold for µ, and which the techniques of Lecture 1 will apply. The Neck Decomposition Theorem

will tell us how to decompose B1, in a crucially effective way, into pieces which are either Neck regions

or into regions which already have mass bounds. After stating and discussing the Neck Structure and Neck

Decomposition Theorems we will use them in Lecture 3 to prove the rectifiable Reifenberg Theorem itself.

In Lecture 4 we will prove the Neck Structure and Neck Decomposition Theorems, thus completing the

proof of the rectifiable Reifenberg Theorem. The proof of the Neck Structure Theorem will follow a very

similar line of attack as our proof of the classical Reifenberg in Lecture 1, once some suitable technical com-

plications are addressed. The proof of the Neck Decomposition Theorem is an involved covering argument,

the idea of which originates in the papers [JN],[NV17].
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It is worth taking a moment to mention that the proof structure of these notes are designed to be as

widely applicable as possible. Our proof of the classical Reifenberg is not just designed to be applied to the

rectifiable Reifenberg, but in the process will build a variety of structure which is used in a lot of applications

itself.

Likewise our construction of Neck regions together with the Neck Structure and Neck Decomposition

theorem is precisely what appears in many of the recent applications of this type of analysis. Neck regions

first appeared in the proof of the n−4 finiteness conjecture for manifolds with bounded Ricci curvature [JN],

and the proof of the energy identity conjecture for Yang Mills [NV]. Neck regions in those cases are quite

a bit more subtle (as one cannot directly assume β-number control), and thus the neck structure theorems

there take a lot more work. However the neck decomposition theorems are almost verbatim. In both cases

the reifenberg context makes for an excellent test case.

2. REQUIRED TECHNICAL BACKGROUND FOR THESE NOTES

These notes are designed to be almost entirely self-contained. It goes without saying that the more

background one has in some basic geometric measure theory the more comfortable you may feel, but strictly

speaking this is not needed as we will build by hand almost all of the structure we require. The following is

meant to list some theorems and basic technical tools which will get used frequently. The reader is free, and

indeed encouraged, to skip this section for now and come back when appropriate, as many of the technical

constructions will be easier to follow when there is a context. The exercises of this section, and indeed these

notes as a whole, are meant to be clear to a reader familiar with the ideas involved. If any tricks are needed,

these are basically always stated in a hint, as the goal of the exercises is to familiarize the reader with the

basic technical building blocks.

2.1. Implicit Function Theorem. The implicit function theorem is typically stated in an ineffective man-

ner, however since we will care about the estimates let us state for convenience the effective result (whose

proof is verbatim the implicit function theorem itself):

Theorem 2.1 (Implicit Function Theorem). Let f : B2(0
n)×B2(0

m) → Rm be a C1 function and assume

f(0, 0) = 0 and |∂xf(x, y)|, |∂yf(x, y) − Id|, |∂2f | < δ. Then there exists g : B1(0
n) → Rm such that

|g|, |∂ig|, |∂i∂jg| < C(n)δ with f(x, g(x)) = 0 for all x ∈ B1(0
n).

The above not only tells us that the zero set of f is a graphical manifold near (0, 0), but also gives good

estimates on the structure of that manifold.

2.2. Elementary Measure Theory. You will need to understand the definition of a Borel measure. Some

knowledge of the Hausdorff measure is not required, as we will review this in Section 6, but it would be

very helpful.

2.3. Vitali Covering Lemma. We may not directly quote the Vitali Covering lemma, however its proof

will be implicit in a lot of constructions. Let us state the classical result:

Lemma 2.2 (Vitali Covering Lemma). Let {Brα(xα)} be any collection of balls with rα ≤ A < ∞. Then

there exists a countable disjoint subcollection {Bri(xi)} such that
⋃

Brα(xα) ⊆
⋃

B5ri(xi).



6 AARON NABER

In general, the reader (and indeed any aspiring analyst) needs to get very comfortable with ways of

covering sets by balls in controlled manners. Let us give a handful of exercises which will help in this

direction.

In practice one proves effective content estimates on a well behaved collection of balls by taking the col-

lection, identifying it with a collection of balls in Euclidean space, and then estimating there. The following

exercise teaches us the minimal structure we need on these balls in Euclidean space in order to conclude

content estimates:

Exercise 2.3. Let {Bri(xi)} ⊆ B2(0
k) be a collection of balls in Euclidean Space Rk. Show the following:

(a) If {Bri(xi)} are disjoint then
∑

rki ≤ C(k).

(b) If B1(0
k) ⊆ ⋃

Bri(xi) then C(k) ≤ ∑

rki .

We will often need to build controlled covers of regions by balls of some predetermined size. The next

exercise is a gentle introduction into how one takes a covering and refines from it a ’well behaved’ covering:

Exercise 2.4. For S ⊆ B1(0
n) let rx : S → R+ with rx > r0 > 0 be an assigned radius function. Then

(a) Show one can choose a maximal subcollection {Bri(xi)} ⊆ {Brx(x)} such that {Bri/5(xi)} are

disjoint. Maximal means if y ∈ B1 then Bry/5(y) ∩Bri/5(xi) 6= ∅ for some i.

(b) Show S ⊆ ⋃

Bri(xi).

(c) Argue as in the last Exercise to see #{Bri(xi)} ≤ N(n, r0).

Our last exercise is our most technical, however constructions of this type are used almost continuously.

The idea is similar to the last exercise, but we drop our assumed lower bound on the radius and replaced it

instead with lipschitz control on the radius function. The next exercise can be used to build well behaved

partitions of unity, and we will later use a very similar construction to do just that:

Exercise 2.5. Let rx : B1(0
n) → R be a nonnegative radius function with |∇rx| ≤ τ−1 for some τ > 0.

Let A0 ≡ {x : rx = 0} and let A+ ⊆ {rx > 0} a maximal subset such that {B10−3τrx(x)} are disjoint.

(a) Show B1 ⊆ A0 ∪
⋃

A+
B10−2τrx(x).

(b) Show if B10−1τrx(x) ∩B10−1τry(y) 6= ∅ then 10−1ry ≤ rx ≤ 10rx.

(c) Show for each y ∈ B1 that #{x ∈ A+ : B10−1τrx(x) ∩B10−1τry(y) 6= ∅} ≤ C(n).

2.4. Submanifolds of Euclidean Space. As all submanifolds will be built explicitly, one may hobble

through these notes without any real previous knowledge of submanifolds of Euclidean space, however

the reader will find the learning curve shortened somewhat is time is spent on this first. Let us very quickly

recall a few definitions, and then present some exercises which are relevant to technical constructions which

will appear:

Definition 2.6 (Submanifolds). Recall the following:

(1) We call a differentiable map f : U ⊆ Rk → Rn an immersion if for each x ∈ U we have that the

linear map dxf : Rk → Rn given by dxf [v] ≡ ∂if(x)v
i is injective.

(2) We say a subset S ⊆ Rn is a submanifold if for all y ∈ S ∃ a neighborhood y ∈ V and an immersion

f : U ⊆ Rk → Rn such that S ∩ V = f(U). We call the pair (U, f) a chart.
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In practice, the submanifolds of these notes will always come from one chart, as we will only be inter-

ested in local constructions. As defined, one might also call S above an embedded submanifold, which is

again perfectly acceptable for the constructions of these notes. We will be interested in tangent spaces of

submanifolds:

Definition 2.7 (Tangent Spaces). Let S ⊆ Rn be a submanifold and f : U ⊆ Rk → Rn a chart with f(x) =

y, then we call the tangent space to be the affine subspace TyS ≡ {w ∈ Rn : w = y + dxf [v] for v ∈ Rk}.

Let us give a few useful exercises on tangent spaces:

Exercise 2.8. Show TyS is independent of the chart. Namely, if f ′ : U ′ ⊆ Rk → Rn is another chart of S

with f ′(x′) = y, then the tangent space defined from f ′ is the same as that defined from f .

If w ∈ TyS then we define the norm of w by |w| ≡ |w − y|. That is, if we view TyS as a linear subspace

by moving y to the origin and then we define the norm there.

Exercise 2.9. Show that if yi ∈ S → y ∈ S with w = y+ lim yi−y
|yi−y| , then w ∈ TyS is a unit tangent vector.

Let us now consider a few simple examples:

Example 2.10. Let f : Rk → Rn be a linear isometric immersion, then the submanifold f(Rk) = S = L is

an affine subspace. In this case, the tangent space TxS = L is also L for each x ∈ S.

Example 2.11. Let L ⊆ Rn be an affine subspace and let L̂⊥ be the perpendicular subspace3. Let f : L →
L̂⊥ be a smooth mapping, then the graphical map g : L → Rn given by g(x) = x + f(x) is a chart and

gives rise to a graphical submanifold S = g(L) = Graph(L).

2.4.1. Regularity of Submanifolds:

Although the submanifolds of these notes will come from a single chart, it turns out that it may be much

more convenient when working locally to build a new chart tailored to the local structure of the submanifold.

This is related to considering notions of regularity for submanifolds. Locally, every submanifold looks like

the last example and can be written as a graph over an affine subspace, thus let us formalize this into a notion

of regularity:

Definition 2.12. We say S ⊆ Rn is (δ, r)-graphical if for each x ∈ S there exists an affine subspace

Lx ⊆ Rn and fx : Lx → L̂⊥
x with r−1|fx|, |∂ifx|, r|∂i∂jfx| ≤ δ such that Graph(Lx)∩Br(x) = S∩Br(x).

Remark 2.13. The factors of r are scale invariant factors. Thus if we rescale and translate Rn so that

Br(x) → B1(0) then S becomes (δ, 1)-graphical.

Remark 2.14. We can also let δx and rx be functions on S and say S is (δx, rx)-graphical.

Let us present some technical exercises which will build an intuition. If the reader is not familiar with the

notion of Hausdorff distance between sets then we refer them to the definition given in (2.4):

3As a point of notation we will use L to represent affine subspaces and we will put hat’s L̂ to represent linear subspaces, i.e. L̂

goes through the origin while L need not.
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Exercise 2.15. Let S be (δ, r)-graphical with fx : Lx → L̂⊥
x a graphing function4. Then show that dH(S ∩

Br(x), Lx ∩Br(x)) < δr.

Exercise 2.16. Let S be (δ, r)-graphical with fx : Lx → L̂⊥
x a graphing function. Assume L′

x is an

affine subspace such that dH(Lx ∩ Br(x), L
′
x ∩ Br(x)) < δr. Then show there exists a graphing function

f ′
x : L′

x → (L̂′
x)

⊥ with r−1|f ′
x|, |∂if ′

x|, r|∂i∂jf ′
x| ≤ C(n)Aδ such that Graph(L′

x) ∩Br(x) = S ∩Br(x).

Hint: Let f ′
x be the composition of the projection map from L′

x to Lx and fx.

The above exercise tells us we have some flexibility on which affine subspaces we pick. The next exercise

tells us that the tangent spaces of graphical submanifolds are well approximated:

Exercise 2.17. Let S be (δ, r)-graphical with fx : Lx → L̂⊥
x a graphing function. Show for each y ∈

S ∩Br(x) that dH(TyS ∩Br(x), Lx ∩Br(x)) < C(n)δr.

2.4.2. Projections to Submanifolds:

Finally, let us discuss a little the natural projection map associated to each submanifold. Composing these

will form a key technical tool in the construction of the Reifenberg maps later in these notes.

To begin, given an affine subspace L let πL : Rn → L be the projection map to L, and let π̂L : Rn →
L̂ be the projection map to the associated linear subspace. We wish to build projection maps to general

submanifolds:

Theorem 2.18. Let S ⊆ Rn be a (δ, r)-graphical submanifold. Then the closest point projection mapping

πS : Br(S) → S ⊆ Rn defined by πS(x) = argminy∈S 1
2 |x− y|2 is well defined and satisfies

(1) πS ∩ S = Id,

(2) |∂iπS(y)− π̂Lx| < C(n)δ where y ∈ Br(x) with x ∈ S.

(3) r|∂i∂jπS| < C(n)δ.

Proof. We at least outline the proof. There are actually several approaches to this, including more geometric

ones which I personally prefer, however we will outline a proof using the implicit function theorem so we

can stick with ideas more consistent with these notes. Thus let f : Lx → L̂⊥
x be a δ-graphing function for S

on Br(x). Let us consider on Br(x) the function G : Lx × L̂⊥
x × Lx → Lx given by 5

〈G(y, z, y′), v′〉 = 1

2
∂v′

(

|y − y′|2 + |z − f(y′)|2
)

= ∂v′
1

2
|(y, z)− (y′, f(y′))|2 , (2.1)

so that G(y, z, y′) is the horizontal derivative of the square distance from (y, z) ∈ Br(x) to (y′, f(y′)) ∈ S.

In particular, if πS(y, z) = (y′, f(y′)) then we have G(y, z, y′) = 0, and thus for each (y, z) there exists y′

such that G(y, z, y′) = 0. Using our estimates on f let us also see that:

|∂yG(y, z, y′) + Id| , |∂zG(y, z, y′)| , |∂y′G(y, z, y′)− Id| < C(n)δ . (2.2)

4As a point of notation we will use L to represent affine subspaces and we will put hat’s L̂ to represent linear subspaces, i.e. L̂

goes through the origin while L need not.
5The partial derivative uses the ′ notation in order to signify that we are taking the partial derivative in the y′ direction.
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We can now use the implicit function theorem 2.1 in order to find g : Br/2(x) → Lx such that G(y, z, g(y, z)) =

0 with

r−1|g(y, z) − y| , |∂yg − Id| , |∂zg| ≤ C(n)δ , r|∂∂g| ≤ C(n)δ . (2.3)

For each (y, z) ∈ Br/2(x) we then have, by the above estimates, that y′ = g(y, z) is the unique point such

that G(y, z, g(y, z)) = 0, and thus we must have πS(y, z) = (g(y, z), f(g(y, z))). The estimates on g and

f therefore prove the desired estimates on πS .

�

Let us end now with an intuitive exercise:

Exercise 2.19. Show using (2) that for x ∈ Br(S) we have |πr(x)− x| ≤ (1 + C(n)δ)d(x, Sr).
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Lecture 1: Classical Reifenberg

The classical Reifenberg theorem describes sets which may be approximated on all points and scales by

affine subspaces. The basic claim is that such sets must in fact be homeomorphic to Euclidean balls, and

thus are quite rigid. To describe this in more detail let us recall the Hausdorff distance between sets:

Definition 2.20. Let A,B ⊆ Rn be subsets, then we define their Hausdroff distance

dH(A,B) ≡ inf{r > 0 : A ⊆ Br(B) and B ⊆ Br(A)} . (2.4)

It is worth observing that the Hausdorff distance is a complete metric on closed subsets [Fed69a].

Exercise 2.21. Check the following:

(1) Let S ⊆ B1(0
n) be any closed subset, and let {xi} ∈ S be an δ-dense subset. Then dH(S, {xi}) ≤

δ.

(2) Let S ⊆ B1(0
n) × {0} ⊆ B1(0

n) × R2 be any closed subset, and let Sδ ≡ S × S1(δ), where

S1(δ) ⊆ R2 is the circle of radius δ. Then dH(S, Sδ) ≤ δ.

By letting δ → 0 in the above examples one sees that Hausdorff distance certainly does not preserve

either upper or lower dimensional bounds in any manner.

Let us now define carefully what it means for a set to satisfy the Reifenberg condition:

Definition 2.22. Let S ⊆ B2 ⊆ Rn be a closed set:

(1) We define the L∞ Jones β-numbers β∞
k (x, r) ≡ r−1 infLk dH(S ∩ Br(x), L ∩ Br(x)), where the

inf is taken over all k-dimensional affine subspaces Lk.

(2) S satisfies the δ-Reifenberg condition if for all x ∈ S with Br(x) ⊆ B2 we have β∞(x, r) < δ.

It turns out the Reifenberg situation can occur naturally, in one guise or another, in a variety of situations.

Reifenberg was the first to prove that this forces a very strict rigidity on S. In particular, S must be a

topological manifold:

Theorem 2.23 (Reifenberg’s Theorem). Let S ⊆ B2 ⊆ Rn satisfy the δ-Reifenberg condition. Then for

every 0 < α < 1 if δ < δ(n, α) then ∃ φ : S ∩B1(0
n) → B1(0

k) which is a Cα-bihölder map. Precisely:

1

2
|x− y|1+α < |φ(x)− φ(y)| < 2|x− y|1−α . (2.5)

The first lecture in these notes will focus on describing some basic examples of the above, in particular

to see that the result is sharp as stated, and to go through a careful proof. Our proof is maybe not quite the

standard one, and instead is designed so that it will easily generalize later to more complicated situations

with minimal additional work.

3. EXAMPLES

We begin in this section by discussing a handful of examples. We will build up the complexity of these

examples with the goal of seeing that the Reifenberg Theorem is sharp.
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Example 3.1 (Trivial Example). Let Lk be a k-dimensional subspace and S = Lk ∩ B2. Then clearly S

satisfies the δ-Reifenberg condition for every δ > 0. �

Exercise 3.2 (Graphical). Let f : L → L⊥ be compactly supported with f(0) = 0 and |∇f | < δ. If

S = Graph(f) ∩B2 = {(x, f(x)) : x ∈ L} ∩B2 then show that S satisfies the δ-Reifenberg condition. �

The next example is our main one, and the first nontrivial example. It will show the sharpness of the

biHölder condition. Additionally, the proof of the properties of the example will purposefully be done so as

to motivate how the general proof of Reifenberg should go. Roughly, the proof of the general Reifenberg

theorem is more or less just a reverse engineering of the following example:

Example 3.3 (Snowflake). The construction is in iterative steps, and we will build a sequence of piecewise

linear Si which will converge to our final example. Let us begin with the iterative construction:

Construction for Iteration: Let ℓa,b be the line segment between a, b ∈ R2 and let δ ∈ R. We will alter

ℓa,b to be the union of four line segments

ℓδa,b ≡ ℓa,c ∪ ℓc,d ∪ ℓd,e ∪ ℓe,b , (3.1)

which are well defined by the properties that

ℓa,c, ℓe,b ⊆ ℓa,b with ℓc,d ∪ ℓd,e ∪ ℓc,e forming an oriented isosoceles triangle ,

|ℓa,c| = |ℓc,d| = |ℓd,e| = |ℓe,b| with |ℓδa,b|2 = (1 + δ2)|ℓa,b|2 , (3.2)

where |ℓ| is the length of the given line segment. Let θδ be the angle between ℓc,d and ℓc,e, and let dδ ≡
|ℓa,b|−1d(d, ℓa,b). Note that both satisfy

Exercise 3.4. Show dδ, θδ = O(δ).

In particular this then gives

dH(ℓa,b, ℓ
δ
a,b) = O(δ)|ℓa,b| , |ℓδa,b|2 = (1 + δ2)|ℓa,b|2 . (3.3)

Now our iterative construction is as follow. Let a0−1 = (−2, 0), a01 = (2, 0) with S0 = ℓa0−1,a
0
1

the

associated interval. Inductively, if Si =
⋃

ℓaij ,aij+1
is piecewise linear with 4i edges then let

Si+1 =
⋃

ℓδaij ,aij+1
=

⋃

ℓai+1
j ,ai+1

j+1
(3.4)

be piecewise linear with 4i+1 edges. By (3.3) we can compute the length of any one of these edges by

|ℓi| ≡ |ℓiaij ,aij+1
| = |aij+1 − aij | = 4 · 4−i(1 + δ2)i/2 ≡ 4 · 4−αi , (3.5)

where 0 < α < 1 is given by 4−α =
√
1+δ2

4 . Note that α → 1 as δ → 0. In particular, using (3.3) we can

then compute

|Si| = 4
(

1 + δ2
)i/2

, dH(Si, Sj) ≤ O(δ)

j
∑

k=i

(

√
1 + δ2

4

)k
≤ O(δ) 4−α i = O(δ)|ℓi| . (3.6)

Thus the sequence Si is Cauchy in the Hausdorff topology and hence there exists a limit S = limSi, see

[Fed69a] and the remark after (2.4). Note that the angle between each segment in Si is given by θδ = O(δ),

from which one can conclude
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Exercise 3.5. For each x ∈ Si show that β∞
Si
(x, |ℓi|) < O(δ).

It is then immediate from the above exercise and the Hausdorff estimate in (3.6) that for i < j:

β∞
Sj
(x, |ℓi|) ≤ O(δ) + β∞

Si
(x, |ℓi|) ≤ O(δ) . (3.7)

In particular, we get that S is a O(δ)-Reifenberg space.

Now that we have built the example, let us study the structure of this example a little. In particular,

imagine what the Reifenberg map Φ : [−2, 2] → S might look like. Note already that we know from the

volume estimate of (3.6) that S cannot be uniformly bilipschitz to an interval, and thus best case scenario is

bihölder. In that sense we have already shown that the Reifenberg theorem must be sharp. However, let us

go to the trouble of building the bihölder Reifenberg map Φ : [−2, 2] → S. Our construction will mimic the

proof of Theorem 2.23 itself, however will be technically much less involved for the example, and therefore

a good place to build intuition for the general case.

Our strategy will be to build maps Φi : [−2, 2] → Si with uniform bihölder estimates, and then limit. Let

us begin by considering the projection maps πi : Si+1 → Si. Note that for δ > 0 small this map is clearly

well defined and indeed bilipschitz with the estimates:

∣

∣|dπi|(x)− 1
∣

∣ =
∣

∣

∣
lim

y∈Si+1→x

|πi(x)− πi(y)

|x− y| − 1
∣

∣

∣
≤

√

1 + δ2 − 1 = O(δ2) ,

|πi(x)− x| ≤ dδ|ℓi| = O(δ)|ℓi| . (3.8)

Observe that the first estimate has an δ2. We will actually not use this square improvement here, however

it appears again (crucially) when going from the classical Reifenberg results to the rectifiable Reifenberg

results, and thus we emphasize it.

Now we have defined a mapping from Si+1 to Si, so let us compose these mappings in order to define

Πi,j : Si → Sj and Πi = Πi,0 : Si → S0 = [−2, 2] by Πi,j = πj ◦ · · · ◦ πi−1. Note that although each map

Πi is bilipschitz, we see that the bilipschitz constants are becoming increasing large, so that we cannot hope

to preserve that estimate. If we can show the maps Πi are uniformly bihölder then Φi = Π−1
i are as well.

So let x, y ∈ Si and let j ≤ i be the largest j such that |x − y| ≤ |ℓj|. If j < i then we also have√
1 + δ2|x− y| ≥ |ℓj|. Then to estimate |Πi(x)−Πi(y)| we write Πi = Πj,0 ◦Πi,j . We will estimate each

factor separately, using different estimates from (3.8). First let us write xk = Πi,k(x) and yk = Πi,k(y)

where j < k, then using the second estimate from (3.8) we can get

|xk+1 − xk| = |πk+1(xk)− xk| ≤ δ|ℓk| = O(δ) 4−α|k−j||ℓj | ,
|yk+1 − yk| ≤ O(δ) 4−α|k−j||ℓj | , (3.9)

where recall 4−α ≡
√
1+δ2

4 . We then have

|Πi,j(x)− x| ≤
i−1
∑

j

|xk+1 − xk| ≤ O(δ)|ℓj | ≤ O(δ)|x − y| ,

|Πi,j(y)− y| ≤ O(δ)|x − y| . (3.10)
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Combining and using the triangle inequality gives
∣

∣

∣
|Πi,j(x)−Πi,j(y)| − |x− y|

∣

∣

∣
≤ |Πi,j(x)− x|+ |Πi,j(y)− y| ≤ O(δ)|x − y| . (3.11)

Note we have proved that if |x− y| ≈ |ℓj |, then Πi,j is a uniformly bilipschitz map when comparing x and

y. To move from Sj to S0 we now rely on the first estimate from (3.8) in order to estimate
∣

∣

∣
Πi(x)−Πi(y)

∣

∣

∣
=

∣

∣

∣
Πj,0(Πi,j(x))−Πj,0(Πi,j(y))

∣

∣

∣

≤ (1 + δ2)j/2|Πi,j(x)−Πi,j(y)| ≤ (1 +O(δ))(1 + δ2)j/2|x− y|
≤ (1 +O(δ))(1 + δ2)j/2|ℓj |

= 4(1 +O(δ))
(1 + δ2

4

)j ≡ 4(1 +O(δ))
(

(

√
1 + δ2

4

)β
)j

≤ (1 +O(δ))
(

4
(

√
1 + δ2

4

)j
)β

≤ (1 +O(δ))|ℓj |β

≤ (1 +O(δ))|x − y|β , (3.12)

where β < 1 was defined by
(

√
1+δ2

4

)β
= 1+δ2

4 and thus is as close to 1 as we wish as δ → 0. A verbatim

argument shows the opposite inequality, and thus this proves the uniform bihölder estimate. �

4. PROOF OF REIFENBERG THEOREM

We will now focus on giving a proof of the classical Reifenberg Theorem. Our proof is designed to

motivate how we will be approaching the more general and challenging cases. We have also gone to some

effort to make the general scheme one which applies in seemingly very different scenarios in geometric

analysis, albeit in often much more complicated ways.

It will be convenient in the construction to make the following notation. For each Br(x) ⊆ B2 with

r ≥ 10 d(x, S) 6 let us fix a choice of k-dimensional subspace Lx,r = Lx,r[S] satisfying

Lx,r ∈ argmin
L

dH(S ∩Br(x), L ∩Br(x)) ≡ β∞
k (x, r) . (4.1)

Let us discuss some notation which will be in effect throughout these lectures:

Notation: Given an affine subspace Lk ⊆ Rn let L̂ ⊆ Rn denote the linear subspace associated to L.

Notation: We let πL : Rn → L ⊆ Rn and π̂L : Rn → L̂ ⊆ Rn denote the orthogonal projection maps.

Notation: In the case of the subspaces Lx,r we will write the projection maps as πx,r and π̂x,r.

The following exercise is a key observation in the Reifenberg theorem:

Exercise 4.1. Assume S ⊆ B2 satisfies the δ-Reifenberg condition, and let Br(x), Bs(y) ⊆ B2 with

r ≥ 10d(x, S) and s ≥ 10d(y, S). For a ≥ 10 let Ba−1s(y) ⊆ Bar(x) ⊆ Ba2s(y)
7. Then show

dH(Lx,r ∩Br(x), Ly,s ∩Br(x)) < C(n)δr and ||π̂x,r − π̂y,s|| < C(n)δ, where || · || is the matrix norm.

6Recall the distance function d(y, S) ≡ infx∈S d(y, x).
7This is saying that the balls Bs(y) and Br(x) are comparable on scale a ≥ 10.
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The above exercise is telling us that the ’best’ subspaces Lx,r cannot change too quickly from scale to

scale, and is the basis for our ability to glue them together in a controlled fashion.

The outline of the proof of the Reifenberg Theorem is as follows. In Section 4.1 we begin by stating the

Submanifold Approximation Theorem 4.2, which builds a family of smooth manifolds Sr which approxi-

mate the set S on scale r. One can take S1 = L to be an affine subspace without any loss, and if we consider

the sequence Si ≡ S2−i then a key observation will be that Si and Si+1 are smoothly close. Thus we can

consider the projection maps πi : Si+1 → Si and we will build our end biHölder mapping Π : S → L = S1

from S to k-dimensional Euclidean space by simply composing the projection maps πi. Compare to Exam-

ple 3.3.

The most direct route to understanding the existence of Sr is to use Exercise 4.1 to glue together the

subspaces Lx,r. One can indeed make this rigorous, but primarily because of how things will work in future

sections, we take a different approach. Instead we will construct a smooth function Φr : B2 → R which

behaves like a distance function to Sr. A little more precisely, Φr will be a Morse Bott function whose

zero level set Sr ≡ Φ−1
r (0) will consist of nondegenerate critical points, and thus is a smooth manifold.

Estimates on Φr will then translate to estimates on Sr.

In the end this proof strategy requires a little more work than simply gluing together the subspaces Lx,r,

however comes with a key advantage. In the proof of the Rectifiable Reifenberg Theorem 8.2, and in

particular in the proof of the associated Neck Structure Theorem 9.12, a very similar construction and proof

will be needed, however it will be done on a discrete set of balls. This discreteness can cause a major

technical headache, and previous arguments [JN] have used quite involved covering arguments to deal with

it. Instead, we will see our approach for the classical Reifenberg Theorem will pass over almost verbatim,

with only minimal extra work.

4.1. Submanifold Approximation Theorem. Now we begin by building a series of smooth manifold ap-

proximations to S.

Theorem 4.2 (Reifenberg Submanifold Approximation). Let S ⊆ B2 ⊆ Rn satisfy the δ-Reifenberg con-

dition. Then for each 0 < r < 1 there exists a smooth submanifold Sr ⊆ B2 which satisfies

(1) dH(Sr, S) < C(n)δ r,

(2) dH(Sr ∩Bs(x), Lx,s ∩Bs(x)) < C(n)δs for s ≥ r.

(3) Sr is a (C(n)δ, r)-graphical submanifold, see Definition 2.12.

(4) ∃ smooth πr : Br(S) → Sr ⊆ Rn with πr ∩ Sr = Id, |∂iπr(y)− π̂y,10r| , r|∂i∂jπr| < C(n)δ. 8

(5) dH(Sr/2, Sr) < C(n)δr with |πr(x)− x| < C(n)δr for x ∈ Sr/2.

(6) For x ∈ Sr/2 and a unit vector v ∈ Lx,r we have ||dπr[v]| − 1| < C(n)δ2. 9

Remark 4.3. Note that if we take S1 to be a linear subspace with π1 the orthogonal projection map then the

above holds with r = 1. It will be convenient to make this choice.

8Recall since πr maps Rn to Rn that ∂iπr is a matrix, and thus our norm |∂iπr(y)− π̂x,10r | is the matrix norm.
9Recall dπr[v] = ∂iπrv

i ∈ Tπr(x)Sr .
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Remark 4.4. Observe in (6) the square gain on δ in the error. This will not be used in this section, but in

the rectifiable Reifenberg, see also [Jon90, DS93, DT12], it is an important gain in order to conclude mass

bounds and rectifiable structure.

Let us first see that most of the conclusions of Theorem 4.2 follow from (1) and (3):

Exercise 4.5. Show (2) follows from (1) and the Reifenberg property of S.

Exercise 4.6. Define πr : Br(S) → Sr to be the closest point projection map πr(x) = argminy∈Sr |x− y|.
Show (4) using (3) and Theorem 2.18.

Exercise 4.7. Show the first part of (5) follows from (1). Show the second part of (5) follows from Exercise

2.19.

Thus we see (1)− (5) follow from (1) and (3). To show (6) follows from (1)− (5) is done in two steps.

First, observe that the tangent spaces of Sr and Sr/2 must be close:

Exercise 4.8. Use (2) and (3) to show for y, z ∈ B2r(x) with x ∈ S that dH(TySr∩Br(x), TySr∩Br(x)) <

C(n)δr and dH(TySr ∩Br(x), TySr/2 ∩Br(x)) < C(n)δr.

Hint: Use (2) and Exercise 2.17.

Exercise 4.9. Use (2) and Exercise 4.8 to show (6).

Hint: Observe 1 = |v|2 = |dπr[v]|2 + |dπr[v]− v|2 and the Taylor expansion
√
1− x ≈ 1− 1

2x+O(x2)

in order to conclude 1 ≥ |dπr[v]| =
√

1− |dπr[v] − v|2 ≥ 1− C(n)δ2.

Finally, we add one more complication to the mix by doing the above slightly less locally:

Exercise 4.10. Use the last two exercises to show for each x ∈ S and y, z ∈ Sr∩B2r(x) that the unit vector

v ≡ z−y
|z−y| satisfies the estimate

∣

∣π̂x,r[v]− v
∣

∣ < C(n)δ.

Hint: Consider the curve γ(t) = tz+(1−t)y and use (3) to show
∣

∣

d2

dt2

(

πr(γ(t))−γ(t)
)
∣

∣ ≤ C(n)δ|z−y|.
Next use the fundamental theorem to then conclude

∣

∣

d
dt

(

πr(γ(t))− γ(t)
)
∣

∣ ≤ C(n)δ|z− y|. Finally use that

|dπr − π̂x,r| < C(n)δ to conclude the final estimate.

Let us now see how to prove the Reifenberg Theorem given the Submanifold Approximation Theorem:

Proof of Theorem 2.23 given Theorem 4.2. Consider the radii ri = 2−i and the submanifolds Si = Sri from

Theorem 4.2. Let πi = πri ∩ Si+1 : Si+1 → Si be the δ-submersion from Theorem 4.2 restricted to Si+1.

Our main claims are the following:

Claim 1: If x, y ∈ Si+1 with |x− y| < ri then
∣

∣|πi(x)− πi(y)| − |x− y|
∣

∣ ≤ C(n)δ |x− y|.
Claim 2: If x, y ∈ Si+1 with |x− y| ≥ ri then

∣

∣|πi(x)− πi(y)| − |x− y|
∣

∣ ≤ C(n)δ ri.
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To prove Claim 1 consider the straight line xt = tx+ (1 − t)y which connects y to x. Let Lt ≡ TxtSr,

then by Exercise 4.8, Exercise 4.10 and Theorem 4.2.2 we have for each t ∈ [0, 1] that

∣

∣

d

dt
πr(xt)− (x− y)

∣

∣ = |dπr(xt)[x− y]− (x− y)
∣

∣

≤ |
(

dπr(xt)− π̂Lt

)

[x− y]
∣

∣+ |π̂Lt [x− y]− (x− y)
∣

∣

≤ C(n)δ |x− y| . (4.2)

By integrating we in particular have shown Claim 1, indeed we have the stronger estimate
∣

∣(πi(x)−πi(y))−
(x − y)

∣

∣ ≤ C(n)δ |x − y|. To prove Claim 2 first observe that since Si+1 ⊆ BCδri(S) ⊆ B2Cδri(Si) we

have by Exercise 4.8 the estimate |π(x) − x|, |π(y) − y| < C(n)δri. Using the triangle inequality we get
∣

∣(x− y)− (π(x)− π(y))
∣

∣ ≤ C(n)δri, which in particular finishes the proof of Claim 2. 10 �

With the claim in hand let us build the maps which will connect S to L. Let us first define the maps

Πi,j ≡ πj ◦ · · · ◦ πi−1 : Si → Sj

Πi ≡ Πi,0 : Si → S0 ≡ L , (4.3)

where recall that as in the remark following Theorem 4.2 we have taken S0 to be a linear subspace. We

claim the following:

Claim 3: Let x, y ∈ Si, then |x− y|1+C(n)δ ≤ |Πi(x)−Πi(y)| ≤ |x− y|1−C(n)δ .

To prove the claim let d = di ≡ |x− y| and define dj ≡ |Πi,j(x)−Πi,j(y)|. Note that if dj ≤ rj then by

Claim 1 we have that

|dj−1 − dj | ≤ C(n)δ dj =⇒ dj−1 ≤ (1 + C(n)δ) dj ,

=⇒ dj−1 ≤ rj−1 =⇒ dk < rk for all k ≤ j . (4.4)

On the other hand if dj > rj , then by Claim 2 we have that

|dj+1 − dj | ≤ C(n)δ rj . (4.5)

In particular, using from above that dk > rk for all k > j this then gives

dj ≤ di +

i−1
∑

j

|dk+1 − dk| ≤ di + C(n)δ

j
∑

i

rk ≤ di + C(n)δ dj ,

=⇒ dj ≤ (1 + C(n)δ)d . (4.6)

Now let j be the smallest integer such that d ≤ rj . The above tells us that dj ≤ (1 + C(n)δ)d, and then

using (4.4) j − i times we obtain

|Πi(x)−Πi(y)| ≡ d0 ≤ (1 + C(n)δ)j−id

≤ (1 + C(n)δ)ln dd = d1−C(n)δ = |x− y|1−C(n)δ , (4.7)

10Recall the analyst’s convention that C(n) changes from line to line, but is always a dimensional constant.
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which provides one direction of the claim. The other direction is the same. �

To finish the proof of the Reifenberg Theorem 2.23 we need to simply limit Πi → Π : S → L by

combining Claim 3 with the Ascoli theorem and Theorem 4.2.1. �

4.2. Distance Approximation Theorem and Proof of Theorem 4.2. We have now seen how to prove the

Reifenberg Theorem 2.23 given the Submanifold Approximation Theorem 11.11. Our focus now becomes

the proof of the Submanifold Approximation Theorem itself.

Our basic strategy for the proof of Theorem 4.2 will be to build a smooth function Φr : B2r(S) → R

which roughly behaves as smooth approximation to the distance function to Sr. In reality, we will build

Φr ≥ 0 first and then define Sr ≡ Φ−1
r (0) to be the zero level set. We will see that sufficiently strong

estimates hold on Φr in order to conclude our estimates on Sr.

We will build Φr in two steps. First, we will build a smoothly varying distribution on B2 which will

assign to each y ∈ B2 a k-dimensional affine subspace Lr(y) which acts as a Reifenberg approximation on

the scale

ry ≡ 10d(y, S) ∨ r , (4.8)

where recall s∨t ≡ max{s, t}. This assignment has a variety of useful applications in its own right. We will

then use these affine subspaces to build Φr directly. We begin with the statement of the subspace selection

lemma:

Lemma 4.11 (Subspace Selection Lemma). Let S ⊆ B2 ⊆ Rn satisfy the δ-Reifenberg condition with

0 < r < 1 fixed and let ry be from (4.8). Then for each y ∈ B2 there exists a k-dimensional affine subspace

Ly where if π̂y = π̂Ly and my ≡ πy[y] then:

(1) Ly varies smoothly in y with ry|∇π̂y|, |∇imy − π̂y| ≤ C(n)δ and r2y|∇2π̂y|, ry|∇2my| ≤ C(n)δ.

(2) We have dH(S ∩B10ry(y), Ly ∩B10ry(y)) < C(n)δry.

(3) We have dH(Ly ∩B10r̄y(y), Ly,105r̄y ∩B10r̄y(y)) < C(n)δ.

We will prove the above in the next section, and simply take it for granted now. Morally, it is nothing

more than an averaging procedure, though requires a little technical work to check the details.

Given Lemma 4.11 let us now define our approximate distance function Φr : B2 → R as follows:

Φr(y) ≡
1

2
d(y, Ly)

2 =
1

2
|y − πy[y]|2 =

1

2
|y −my|2 . (4.9)

Let us collect together the main properties of this approximate distance function:

Theorem 4.12 (Approximate Distance Function). Let Φr be defined in (4.9) with ry from (4.8). Then for

each y ∈ B2 the following is satisfied:

(1) For each x ∈ S and ℓ ∈ Lx ∩Br(x) ∃! zℓ ∈ L̂⊥
x + ℓ such that Φr(zℓ) = 0.
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(2)

∣

∣

∣
|∇Φr|2 − 4Φr

∣

∣

∣
(y) ≤ C(n)δΦr(y).

(3) |∇2Φr(y)− π̂⊥
y | < C(n)δ2.

(4) |∇(k)Φ|(y) ≤ C(n, k)δ2 r2−k for k ≥ 3.

Remark 4.13. Building a function which satisfies just (2)-(4) is a little easier and one does not need the

Subspace Selection Lemma. Our construction is primarily designed so that (1) is also easily satisfied.

Without (1) defining Sr = Φ−1
r (0) may not be a reasonable definition.

We will also prove the above in the next subsection, it is mostly a direct application of the definition of

Φr combined with the properties of Ly. In this section we want to use Theorem 4.12 in order to finish the

proof of the Submanifold Approximation Theorem 4.2:

Proof of Submanifold Approximation Theorem 4.2 given the Distance Approximation Theorem 4.12. Let us

define the set Sr ≡ Φ−1
r (0). Let us make some first observations about this set:

Exercise 4.14. Use Lemma 4.11.2, Theorem 4.12.1 and the definition of Φr to show dH(Sr, S) < C(n)δr.

The exercise thus proves Theorem 4.2.1. Now we will prove some regularity results on Sr, and then

use this regularity to prove Theorem 4.2.3. Both will eventually be consequences of the implicit function

theorem.

Let x ∈ S and let us write B2r(x) in coordinates (y, z) where y ∈ Lx and z ∈ L̂⊥
x , where Lx is the

subspace given in Lemma 4.11. Let us consider the derivative mapping F : Lx × L̂⊥
x → L⊥

x given by

〈F (y, z), w〉 = ∂wΦr(y, z) . (4.10)

Using the definition of Φr, Theorem 4.12.2 and Theorem 4.12.3 we have in B2r(x) that:

|F (y, z) − z| < C(n)δ r ,

|∂yF (y, z)| , |∂zF (y, z) − Id| < C(n)δ . (4.11)

First note that the zeros of F describe Sr:

Exercise 4.15. Show Sr ∩Br(x) = {|∇Φr| ≡ 0} = {(y, z) ∈ Br(x) : F (y, z) = 0}.

Hint: Note that (4.11) says that F (y, z) has a unique zero on each z-slice, use Theorem 4.12.1 to see that

the zero of F must be a zero of Φr.

Remark 4.16. This exercise is the main place we use condition (1) of Theorem 4.12.

Now by (4.11) and Theorem 4.12.3 we may use the implicit function theorem 2.1 in order to find a smooth

function f : Br(x) ∩ Lx → L̂⊥
x such that

|∇f | ≤ C(n)δ , r|∇2f | ≤ C(n)δ ,

Sr ∩Br(x) = {(y, z) ∈ Br(x) : F (y, z) = 0} = {(y, f(y))} ∩Br(x) . (4.12)

Thus we have seen that Sr is locally a smooth graphical submanifold and thus proved Theorem 4.2.3. We

have seen in Section 4.1 that (1) − (6) of Theorem 11.11 follow from (1) and (3), and therefore we have

completed the proof of Theorem 4.2.

�



LECTURE NOTES ON RECTIFIABLE REIFENBERG FOR MEASURES 19

5. PROOF OF DISTANCE APPROXIMATION THEOREM

We now complete the proof of the Reifenberg Theorem by completing the proof of the Subspace Selec-

tion Lemma 4.11 and the Distance Approximation Theorem 4.12. Let us begin some technical results, in

particular we first build a useful covering of B2:

Lemma 5.1. There exists a covering B2 ⊆ ⋃

α Br̃α(xα), where r̃α = r̃xα = d(xα,S)∨r
100 , and smooth

nonnegative functions φα such that

(1) {B 1
4
r̃α
(xα)} are disjoint.

(2) For each y ∈ B2 we have #{xα : y ∈ B4r̃α(xα)} < C(n).

(3)
∑

φα = 1 on B2 with supp φα ⊆ B4r̃α(xα).

(4) |∂(k)φα| ≤ C(n, k)r̃−k
α . 11

Proof. Let {xα} ∈ S be any maximal subset so that {Br̃α/4(xα)} are disjoint. By maximal we mean if

y ∈ B2 then Br̃y/4(y) ∩ Br̃α/4(xα) 6= ∅ for some α. Now let us show that B2 ⊆ ⋃

αBr̃α(xα). So for

y ∈ B2 let α be such that Br̃y/4(y) ∩Br̃α/4(xα) 6= ∅. Observing that |∇r̃y| ≤ 1
100 we have that r̃y ≤ 2r̃α.

In particular then gives us y ∈ Br̃α(xα), and thus we have shown B2 ⊆
⋃

α Br̃α(xα).

The proof of (2) follows from a volume estimate. Indeed, for y ∈ B2 consider the subset {xβ}N1 such

that y ∈ B4r̃β (xβ). Observe as in the last paragraph that by using |∇r̃y| ≤ 1
100 we have for any such β that

1
2ry ≤ rβ ≤ 2ry . In particular, Br̃y/10(xβ) ⊆ B8r̃y(y) and are disjoint. Thus we can estimate

Nωn 10
−nr̃ny = Vol(

⋃

Br̃y/10(xβ)) ≤ Vol(B8r̃y(y)) = ωn8
nr̃ny , (5.1)

which gives N ≤ 80n, as claimed.

To build the partition of unity first let φ′ : B4(0
n) → R be a fixed smooth, compactly supported nonneg-

ative function with φ′ ≡ 1 on B1. Let us define φ′
α(x) ≡ φ′(r̃−1

α (x + xα)), and with this the partition of

unity itself by

φα(x) ≡
φ′
α(x)

∑

α φ
′
α(x)

. (5.2)

Exercise 5.2. Use (2) to prove c(n) ≤ ∑

φα(x) ≤ C(n) for x ∈ B2. Use this to prove (3) and (4).

�

Let us now first complete the proof of the Subspace Selection Lemma:

Proof of Subspace Selection Lemma 4.11. Let {Br̃α(xα)} and φα be the covering and partition of unity

from Lemma 5.1. For each α let

Lα ≡ Lxα,104r̃α , (5.3)

be as in (4.1). Morally, we simply want to define Ly ≡ ∑

φαLα and check what estimates hold. Of course,

one needs a well defined way of averaging affine subspaces in order to do this. Indeed, using the notion of

nonlinear averages this is possible, but since we want these notes to be self-contained (and that is a rather

11Recall |∂(k)f | is the matrix norm of the kth derivative of f .
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technical proceedure) we will do this by hand. However, it is helpful to keep in mind that the remainder of

the proof is nothing other than some technical work in order to average nonlinear objects.

Now we wish to define subspaces Ly as in the lemma. To define an affine subspace we need a linear

subspace π̂y and a point ℓy ∈ Ly. Let us begin by writing these out, and then we will move on to estimating

them. We define the point ℓy simply by

ℓy ≡
∑

α

φα(y)πα[y] . (5.4)

The definition of π̂y is a bit more involved. Let us begin by defining the matrix valued function

My ≡
∑

α

φα(y)π̂α . (5.5)

One sees from Exercise 4.1 and Lemma 5.1 that |My − π̂β| < C(n)δ for any y ∈ B8r̃β (xβ), and in

particular My is close to a projection map. If e1(y), . . . , en(y) are the eigenvectors of My , in decreasing

order, we then define our linear subspace

π̂y ≡ span{e1(y), . . . , ek(y)} . (5.6)

Using our estimate on My we at least have |π̂y − πβ| < C(n)δ for any y ∈ B8r̃β (xβ). Let us state our first

Claims on the regularity of ℓy and My:

Claim 1: We have the estimates |∂iℓy − π̂y|, r̃y|∂2ℓy| ≤ C(n)δ.

Claim 2: We have the estimates |My − π̂β| , r̃2y|∂2My| ≤ C(n)δ.

We prove the gradient estimate of Claim 1. The other estimates are all the same. We first compute

∂iℓy =
∑

α

∂iφα(y)πα(y) +
∑

φαπα[ei] . (5.7)

Now by using Exercise 4.1 and that
∑

α φα = 1 we obtain the following:

∑

α

∂iφα = 0 ,

|π̂α − π̂β|, |π̂⊥
α − π̂⊥

β | < C(n)δr̃β if B8r̃α(xα) ∩B8r̃β(xβ) 6= ∅ . (5.8)

Choosing β so that xβ ∈ B4r̃y(y) we then have

|∂iℓy − πβ| = |
∑

α

∂iφα(y)(πα − πβ)| ≤ C(n)δr̃−1
y , (5.9)

where we have used that our partition estimates on φα and that r̃y ≈ r̃α for any ball B4r̃α(xα) which con-

tains y. �

Estimating the subspaces π̂y takes a bit more technical work, as it is not just a partition of unity argument:

Claim 3: r̃y|∂π̂y|, r̃2y|∂2π̂y| ≤ C(n)δ.
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We will focus on the gradient estimate, the hessian estimate is the same. The key is that we need to

convert the estimates on My into estimates on π̂y. The important point in this estimate is that there is a gap

between the k largest eigenvalues and the n−k smallest eigenvalues, otherwise the estimate would not even

be correct. Let us begin by using the Rellich characterization to write

π̂y ≡ arg sup
L̂k

trL(My) = arg sup
L̂k

∑

My(e
i, ei) , (5.10)

where the sup is taken over all k-dimensional subspaces and ei are an arbitrary orthonormal basis of L̂k.

Now observe from Claim 2 that for y ∈ B4r̃β(xβ) we have

|π̂y − π̂β| , |My − π̂β| < C(n)δ . (5.11)

Now consider the spaces of linear maps

V = {v : L̂β → L̂⊥
β } ,

Vs = {v : L̂β → L̂⊥
β s.t. ||v|| < 10−1} , (5.12)

where Vs ⊆ V is the subset of maps with small norm. For v ∈ Vs we let L̂v = Graph(f) = {(ℓ, v(ℓ)) : ℓ ∈
L̂β} be the associated linear subspace, and thus we may view Vs as the open set of linear subspaces which

are close to L̂β . Then we define the smooth mapping F : B4r̃β (xβ)× Vs → V by

〈F (y, v), w〉 ≡ ∂wtrL̂v
(My) . (5.13)

Note that F (y, π̂y) = 0. We wish to use the implicit function theorem 2.1 to give estimates on π̂y. Thus

using Claim 2 and the eigenvalue gap we have the estimates

r|∂yiF | , r2|∂yi∂yjF | , |〈∂vF,w〉 − 〈v,w〉| < C(n)δ . (5.14)

In particular, by the implicit function theorem 2.1 there exists π̂y : B2r̃β (xβ) → Vs such that {(y, v) :

F (y, v) = 0} = {(y, π̂y)} which satisfies the estimates of the claim. �

Having constructed Ly we need only see that it satisfies the desired estimates from the Lemma.

Exercise 5.3. Show the following:

(1) Using that πy[v] = π̂y[v − ℓy] + ℓy show the estimates |∂my − π̂y|, ry|∂2my| ≤ C(n)δ.

(2) Show dH(Ly ∩ B10r̃y(y), Lα ∩ B10r̃y(y)) < C(n)δ ry. Use this to prove estimate dH(Ly ∩
B10r̃y(y), S ∩B10r̃y(y)) < C(n)δ ry.

�

With the Subspace Selection Lemma complete we may now prove Theorem 4.12:

Proof of the Approximate Distance Function Theorem 4.12. Recall we define Φr explicitly by the formula

Φr(y) ≡
1

2
d(y, Ly)

2 =
1

2
|y − πy[y]|2 =

1

2
|y −my|2 , (5.15)

as in (4.9). We begin by proving (1). Thus let x ∈ S and ℓ ∈ Lx ∩ Br(x). Let φ : L̂⊥
x → L̂⊥

x be a smooth

cutoff function with φ ≡ 1 in Br(0) and φ ≡ 0 outside of B2r(0). Note that for each y ∈ Br(x) there exists
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a unique point in the intersection Ly ∩ L̂⊥
x since they are transverse. This point moves smoothing since Ly

moves smoothly. Consider the smooth mapping π : L̂⊥
x → L̂⊥

x given by

π(y) ≡ y − φ(y) · Ly ∩ L̂⊥
x . (5.16)

Note that π = y outside B2r and from our estimates on Ly we have

|π(y)− y| < C(n)δ r , |dπ − Id| < C(n)δ . (5.17)

We see then that π is a degree 1 mapping which fixes the boundary of B2r(0), and hence there exists y ≈ 0

for which π(y) = 0. At this point we then have

y ∈ Ly =⇒ Φr(y) =
1

2
|y − πy(y)|2 = 0 , (5.18)

as claimed.

Estimates (2) − (4) are now relatively straight forward computations. To prove Theorem 4.12.2 we first

compute the derivative of Φr:

∂iΦr = 〈π̂⊥
y [ei], y −my〉+ 〈(π̂y − ∂my)[ei], y −my〉 . (5.19)

Squaring this gives
∣

∣

∣
|∂Φr|2 − |y −my|2

∣

∣

∣
≤ C(n)δ |y −my|2 ≤ C(n)δΦr , (5.20)

as claimed. To compute Theorem 4.12.3 we similarly first compute the hessian

∂i∂jΦr = 〈π̂⊥
y [ei], π̂

⊥
y [ej ]〉+ 〈(π̂y − ∂my)[ej ], π̂

⊥
y [ei]〉+ 〈∂j π̂⊥

y [ei], y −my〉
+ 〈(∂j π̂y − ∂j∂my)[ei], y −my〉+ 〈(π̂y − ∂my)[ei], π̂

⊥
y [ej ]〉

+ 〈(π̂y − ∂my)[ei], (π̂y − ∂my)[ej ]〉 , (5.21)

which gives
∣

∣∂i∂jΦr − π̂⊥
y

∣

∣ ≤ C(n)δ , (5.22)

as claimed. Theorem 4.12.4 is the same.

�
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Lecture 2: Rectifiable Reifenberg for Measures

Let us now explore the various issues that arise in attempting to use the classical Reifenberg theorem

in applications (for instance singular sets of nonlinear equations). To summarize we need to deal with the

following three issues:

(I) The hausdorff distance used in Reifenberg condition behaves as a pointwise L∞ bound, and in

practice we will have more integral control than pointwise control.

(II) In applications our sets or measures can have holes and need not satisfy the Reifenberg condition!

Best we can do is force symmetry on some special regions.

(III) BiHölder control is simply too weak. Lack of gradient control prevents understanding of volume or

rectifiable structure.

To deal with (I) it becomes more natural to discuss controlling measures than sets and one works with

the Jones β-numbers of these sets instead of the Hausdorff distance. Though this adds some technical

complication, it is a relatively minor issue by itself.

Dealing with (II) is a more serious, and one introduces k-neck regions to help deal with this, see Section

9. One is able to gain back a weak version of the Reifenberg control in this case, but only on certain

regions and in a discrete sense. Dealing with these neck regions then becomes similar to the classical

Reifenberg case, though dealing with the holes presents some subtle points in the construction. One also

has to then prove such neck regions exist and are even fairly common, which is the content of the the Neck

Decomposition Theorem in Section 9.

Dealing with (III) is again a serious issue, and will require both the neck region ideas of (II) and a

more refined collection of hypotheses. One issue at hand is the snowflake example of the previous section,

which shows that the assumptions of the Reifenberg theorem cannot give better than biHölder control.

One therefore needs more than just scalewise control on the Jones β-numbers, and we will require a Dini

condition be satisfied. To understand this a little better let us begin by revisiting the snowflake example:

Example 5.4 (Snowflake 2). We are refining the snowflake construction of Example 3.3, so that much of our

terminology originates there. As before let a0−1 = (−2, 0), a01 = (2, 0) with S0 = ℓa0−1,a
0
1

the associated

interval, but now also choose a sequence 0 < δi ≤ 1
8δ. Similar to the original construction, we define Si

inductively in the following way. If Si =
⋃

ℓai
j
,ai

j+1
is piecewise linear, then let Si+1 = Sδi

i ≡ ⋃

ℓδi
aij ,a

i
j+1

≡
⋃

ℓai+1
j ,ai+1

j+1
. Note that dH(Si, Sj) ≤ 4

∑j
k=i 2

−kO(δk) ≤ 2−iO(δ), and in particular there exists S =

limSi and S is an O(δ)-Reifenberg set as in Example 3.3.

As before, let us use the pythogorean theorem to compute the length of Si to be

|Si|2 = 16
∏

j≤i

(

1 + δ2j

)

. (5.23)

As observed previously, for |Si| to remain uniformly bounded it is not sufficient for δj to remain uniformly

small. One sees from the above that |Si| remains uniformly bounded iff
∑

δ2j < ∞. In particular, to control

the volume and lipschitz structure of S one requires not only that the Reifenberg constant of S ∩Br(x) tend

to zero as r tends to zero, but that the Reifenberg constants be square summable in the scales. �
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The above example is generalized into a Theorem in [DT12], where they show that a Reifenberg set S for

which the sum
∑

β∞
k (x, 2−i) ≈

´ 2
0 β∞

k (x, s)dss is uniformly bounded at each point is bilipschitz to B1(0
k).

We want in this lecture to work toward stating the main generalization of the Reifenberg Theorem which

will interest us and solve the issues (I), (II), (III). The context is more involved now, and thus we will

need to begin by describing some structure.

6. HAUSDORFF, MINKOWSKI, AND PACKING CONTENT

In this section we give a brief review of the notions of Hausdorff, Minkowski, and packing content. For

a more detailed reference, we refer the reader to [Mat95, Fed69b]. Let us begin with the notions of content:

Definition 6.1 (Content). Given a set S ⊆ Rn and r > 0 we define the following:

(1) The k-dimensional Hausdorff r-content of S is given by 12

Hk
r (S) ≡ inf

{

∑

ωk r
k
i : S ⊆

⋃

Bri(xi) and ri ≤ r
}

. (6.1)

(2) The k-dimensional Minkowski r-content of S is given by

Mk
r (S) ≡ inf

{

∑

ωk r
k : S ⊆

⋃

Br(xi)
}

≈ rk−n Vol(Br(S)) . (6.2)

(3) The k-dimensional packing r-content of S is given by

Pk
r (S) ≡ sup

{

∑

ωkr
k
i : xi ∈ S with {Bri(xi)} disjoint, and ri ≤ r

}

. (6.3)

Exercise 6.2. Let Sℓ = Lℓ ∩ B1 where Lℓ is an ℓ-dimensional subspace. Show there exists 0 < c(n) <

C(n) < ∞ such that for all 0 < r < 1:

Hk
r (S

ℓ) , Mk
r (S

ℓ) ≈ rk−ℓ ,

Pk
r (S

ℓ) = ∞ if ℓ > k ,

Pk
r (S

ℓ) ≈ rk−ℓ if k ≥ ℓ . (6.4)

Example 6.3. Let S = Qn ∩B1(0
n) be the rationals. Then for all 0 < r < 1 we have

Hk
r (S) = 0 if k > 0 with Hk

r (S)
r→0−→ ∞ if k = 0 . (6.5)

In particular, Hk(S) = 0 for k > 0 and so dimH(S) = 0. However, the Minkowski and Packing content

are quite badly behaved:

Mk
r (S) ≈ rk−n r→0−→ ∞ for k < n ,

Pk
r (S) = ∞ for all k . (6.6)

Morally, this is because the closure S = B1 is an n-dimensional set, and so from a packing and minkowski

point of view S itself is treated as an n-dimensional set.

12 The constant ωk is the volume of a unit ball in Rk.
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Note then that controlling the Hausdorff content amounts to finding some covering of S which is well

behaved, controlling the Minkowski content amounts to saying the covering S by balls of radius r is well

behaved, and controlling the packing content amounts to saying every covering is well behaved. In particular,

bounding the Hausdorff content is less powerful than bounding the Minkowski content, which is itself less

powerful than bounding the packing content. Thus we have the relations

Hk
r (S) . Mk

r(S) . Pk
r (S) , (6.7)

where . means the inequality holds up to a dimensional constant. One can use these notions in the classical

manner to define measures and dimensions. In particular, for completeness sake let us recall the definition

of Hausdorff measure:

Definition 6.4 (Hausdorff Measure). Given S ⊆ Rn we define its Hausdorff measure Hk(S) = limr→0Hk
r (S).

6.1. Rectifiability of Sets. Let us now discuss the notion of rectifiable sets. In essence, these are sets which

are manifolds away from a set of measure zero, though this set of measure zero need not be closed. We begin

with a definition:

Definition 6.5. Let S ⊆ Rn be a set, then we say S is k-rectifiable if there exists a countable collection of

lipschitz maps fi : Si ⊆ Rk → Rn such that Hk(S \⋃ fi(Si)) = 0.

Sometimes the above is referred to as countably rectifiable, and one additionally assumes Hk(S) < ∞ in

order to call S rectifiable.

Example 6.6. Let Sk ⊆ Rn be a k-dimensional submanifold, then Sk is k-rectifiable. Let S̃k ⊆ Sk be an

arbitrary subset, then Sk is also k-rectifiable. Let S ≡ ⋃

q∈Qn(S̃k + q), then S is also k-rectifiable.

Note that the example S above is dense in Rn, so the notation of rectifability depends heavily on the

ability to decompose the set.

The notion of a rectifiable measure is very similar:

Definition 6.7. Let µ be a measure on B1(0
n). We say µ is k-rectifiable if there exists a k-rectifiable set S

such that µ(B1 \ S) = 0 and µ∩ S is absolutely continuous with respect to the Hausdorff measure Hk ∩ S.

7. JONES β-NUMBERS

The Rectifiable Reifenberg Theorem 8.2 we will be introducing will be for a measure µ instead of a set

S. As such, let us discuss the Jones β-numbers to estimate how close the support of µ is to a k-plane in a

more L2 sense, as in (I). Because of the possibility of holes as in (II) we will only be concerned with how

closely the support of µ is to living inside a k-plane, without care for how dense the support is inside Lk.

Precisely:

Definition 7.1 (Jones β-numbers). Given a measure µ and integer k ∈ N we define the L2 β-numbers

βk(x, r;µ)
2 = βk(x, r)

2 ≡ inf
Lk

r−2−k

ˆ

Br(x)
d(y, L)2 dµ[y] , (7.1)
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where the infimum is taken over all k-planes Lk.

When no confusion arises we will simply write β(x, r) and drop the dependence on the measure. Let us

state the following example, which shows in particular how control on β(x, r) does not stop the existence

of ’holes’ in supp µ:

Example 7.2. Let Lk ⊆ Rn be a fixed subspace and let µk be an arbitrary measure with supp µk ⊆ Lk ∩B2.

Then βk(x, r) = 0 for all Br(x) ⊆ B2. �

Let us now give a series of examples which illustrate how βk behaves when the support of µ takes its

support on sets of various dimensions:

Example 7.3. As a more specific example, consider µk ≡ α0δ0 + αkHk ∩ Lk ∩ B2, where Hk ∩ Lk is the

k-dimensional Hausdorff measure restricted to the subspace L, δ0 is the dirac delta measure at the origin,

and α0, αk are arbitrary. Then βk(x, r) = 0 for all Br(x) ⊆ B2. �

We see from the above example, by taking α0, αk very large, that the measure µk does not need to have

any apriori bounds, even if βk(x, r) = 0 is identically zero. The example also illustrates how even if the

support suppµk is k-rectifiable, the measure itself may not be.

The next example studies what happens for measures supported on higher dimensional subsets:

Example 7.4. Consider µ+ = δHn ∩B2, where Hn is the n-dimensional Hausdorff measure. Then we can

compute

βk(x, r)
2 ≈ ωn δ

2 rn−k . (7.2)

In particular, we have that βk(x, r) is always δ-small, and indeed is decaying polynomially. �

The above example shows that βk(x, r) may be uniformly small, even decaying, but that the support of

µk need not live on a k-dimensional object.

The following exercises are fairly straightforward but very instructive in building an intuition for the

behavior of the β-numbers:

Exercise 7.5. Show that if Bs(y) ⊆ Br(x) ⊆ Bas(y) then βk(y, s) ≤ C(n, a)βk(x, r).

Exercise 7.6. Show if ri = 2−i that
´ 1
r β(x, s)2 ds

s ≤ ∑

r≤ri≤1 β(x, ri)
2 ≤
´ 2
r β(x, s)2 ds

s .

Exercise 7.7. Show if µ = µ1 + µ2 then β(x, r;µi)
2 ≤ β(x, r;µ)2.

8. RECTIFIABLE REIFENBERG THEOREM FOR MEASURES

We are now in a position to deal with the general case and state the Rectifiable Reifenberg Theorem,

which is designed to handle the issues (I), (II) and (III).

Let us now combine the examples of the last section in order to illustrate all the subtle issues involved in

trying to use the βk-numbers to study a completely general measure:
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Example 8.1 (Varying Dimensions Example). Consider the measure

µ ≡ µk + µ+ , (8.1)

where µk is from Example 7.2 and µ+ is from Example 7.4. Then by considering the subspace Lk from the

examples we may estimate

βk(x, r)
2 ≤ 4ωn δ

2 rn−k . (8.2)

In particular, for arbitrary α0, αk we have that β(x, r) is always δ-small, and indeed is decaying polynomi-

ally. �

The above example shows that even when one has extremely strong conditions on βk, that for a general

measure we cannot make a general statement about the rectifiability of µ or its total mass. This may seem

like endgame, however the example also suggests that maybe we can decompose the measure into pieces

where we do have such control. Indeed, this is exactly the case and the content of the Rectifiable Reifenberg

Theorem:

Theorem 8.2 (Rectifiable Reifenberg [ENVb]). Let µ be a nonnegative Borel-regular measure supported in

B1(0
n). Suppose

ˆ

B1

ˆ 2

0
β(x, r)2

dr

r
dµ ≤ Γ . (8.3)

Then we can write µ = µk + µ+ into a sum of measures such that

(1) µ+(B1) ≤ C(n)Γ.

(2) If K ≡ supp µk then K is k-rectifiable with Hk(K) < C(n), and indeed we have the Minkowski and

packing content estimates:

Vol(Br(K)) ≤ c(n)rn−k , Pk
r (K) ≤ C(n) . (8.4)

Remark 8.3. This result holds for measures in Hilbert spaces, see [ENVa], and in particular the c(n) con-

stants above are turned into c(k) constants. The result is also generalizable to Banach Spaces, see [ENVa],

however this is more subtle.

The above result is for a general measure. We may obtain some stronger results if we strict ourselves to

measures with either upper or lower density bounds. First let us precisely define this:

Definition 8.4. Let µ be a nonnegative measure. Then we define the upper and lower densities:

θ∗(µ, x) ≡ lim sup
r→0

µ(Br(x))

ωkrk
,

θ∗(µ, x) ≡ lim inf
r→0

µ(Br(x))

ωkrk
. (8.5)

Let us discuss some corollaries of Theorem 8.2:

Corollary 8.5. Let µ be a nonnegative Borel-regular measure supported in B1(0
n) and let (8.3) hold. Then

we have the following:
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(1) If θ∗(µ, x) ≤ A then µ(B1) ≤ C(n)
(

Γ +A
)

.

(2) If a ≤ θ∗(µ, x) then K ≡ supp µ is k-rectifiable with Hk(K) ≤ C(n, a) Γ.

(3) If a ≤ θ∗(µ, x) and θ∗(µ, x) ≤ A then µ is k-rectifiable with µ(B1) ≤ C(n)
(

Γ +A
)

.

Remark 8.6. Note that we are requiring the relatively weak conditions of an upper bound on the lower

density in (1), and conversely a lower bound on the upper density in (2). This is directly due to the packing

estimates on K. If one only had weaker Hausdorff measure estimates on K, one would have to make the

stronger assumptions of upper bounds on upper density and lower bounds on lower density.

Remark 8.7. Tolsa [Tol15b] and [AT15] have proved the following related result. If µ is a measure whose

upper and lower densities are bounded almost everywhere, then µ is k-rectifiable iff
´ 2
0 βk(x, s)

ds
s < ∞

for a.e. x. An effective version of the if direction is given in (3), however [Tol15b] also proves the only if

direction.
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Lecture 3: Outline Proof of Rectifiable Reigenberg - Neck Regions and their Structure Theory

We now want to begin the proof of the Rectifiable Reifenberg Theorem 8.2. This lecture will focus on

introducing Neck regions and their associated Structure and Decomposition theorems. After we discuss

these we will use them to prove Theorem 8.2. In subsequent lectures we will prove the Neck Structure and

Neck Decompositions themselves. In the process we will build quite a bit more information than is present

in Theorem 8.2, which itself is quite useful in applications.

9. NECK REGIONS AND THEIR STRUCTURE AND DECOMPOSITION

This section is dedicated to introducing the reader to the notion of a neck region, and we will be stating

the basic structure theory and decomposition theorem associated to Neck Regions. Neck regions first made

their appearance in [JN] during the proof of the n − 4 finiteness conjecture and again in [NV] in the proof

of the energy identity conjecture for Yang-Mills. They are also used in [Nab],[CJN] in order to to prove

the rectifiability of singular sets of harmonic maps and spaces with lower Ricci curvature, respectively. The

notion of a neck region developed in these notes is very analogous, though in some manners quite a bit easier

to work with than in the last references due to the technical conditions involved.

Neck Regions will be regions which we can control in a manner analogous to our control in the classical

Reifenberg theorem. There are many subtle points, including the fact that we cannot get a true Reifenberg

condition to hold. That is, when we restrict ourselves to well behaved points they may not be dense in

some k-plane on each scale. However, we can replace it with a weaker notion by making sure at each scale

there are enough well controlled points to at least weakly span a k-dimensional plane. This will be enough

to get the control we desire in the end. To make this more precise let us introduce the notions of linear

independence and noncollapsing. Recall a set of points {xi}k0 is called linearly independent if no point lives

in the span of any of the others. More effectively:

Definition 9.1 (ǫ-Linear Independence). We call a set {xi}k0 ∈ Br ǫ-linearly independent if xi+1 6∈
Bǫr

(

x0 + span{x1 − x0, . . . , xi − x0}
)

for each i. We say a set S ⊆ Br is a (k, ǫ)- linearly indepen-

dent set if ∃ a ǫ-linearly independent set of points {xi}k0 ∈ S.

The notion of ǫ-independence can be viewed as a very weak version of the Reifenberg condition. That

is, a set of points may not densely span an affine space, but they at least effectively span such a space. In

practice what we will need to be independent are noncollapsing points, which is to say points with lower

mass bounds. Precisely:

Definition 9.2 (Noncollapsing). Let µ be a measure, then we say a ball Br(x) is (k, ǫ, ν)-noncollapsed if

there exists a 2ǫ-linearly independent {xi}k0 ∈ Br(x) such that we have the lower mass bounds µ(Bǫr(x)) >

ν(ǫr)k.

Remark 9.3. The condition that Br(x) be (k, ǫ, ν)-noncollapsed guarantees not only that there are balls

with definite mass in Br(x), but that there are k+1 such balls which effectively span a k-dimensional affine

subspace.



30 AARON NABER

Remark 9.4. The condition implies that if yi ∈ Bǫr(xi) then {yi}k0 are ǫ-linearly independent.

Let us now give our formal definition of Neck Regions:

Definition 9.5 (Neck Regions). Let µ be a measure on Br with C ⊆ Br a closed subset and rx : C → R+ a

radius function such that the closed balls {Bτ2rx(x)} are disjoint 13. We call N = Br \Brx(C) a (k, δ, ǫ, ν)-

neck region if 14

(n1) For x ∈ C and rx ≤ s ≤ r ∃ affine Lk such that L ∩Bs ⊆ Bτs(C) and C ∩Bs ⊆ Bδs(L).

(n2) For each x ∈ C with τ−1rx ≤ r ≤ 1 we have that Br(x) is (k, ǫ, ν)-noncollapsed.

(n3)
´ 2r
rx

βk(x, s)
2 ds

s < δ for each x ∈ C.

Remark 9.6. We call C0 ≡ {x ∈ C : rx = 0} and C+ ≡ {x ∈ C : rx > 0}.

Remark 9.7. One should imagine δ << ǫ << τ = τ(n) ≡ 10−10n.

Remark 9.8. Note that condition (n3) implies, along with the scale continuity of Exercise 7.5, for every

rx < s < 100r that βk(x, s) < C(n)δ.

It is probably helpful to begin with a handful of random remarks discussing the conditions of a Neck

Region and where they come into play. Some of these remarks may not be completely sensible until the

reader begins the process of going through the details of the constructions, however it seems nonetheless

helpful to have these remarks to put everything in the right framework:

(nr1) τ represents the scale parameter. In the iterative construction of Neck Regions we will drop by a

factor of τ in each stage. The condition that {Bτ2rx(x)} be disjoint guarantees we do not overcover

any region by more than a controlled amount.

(nr2) One imagines C as roughly living on the best approximating subspaces at each stage, hence the (n1)

condition C ∩ Bs ⊆ Bδs(L). Because {Bτ2rx(x)} are disjoint one cannot ask for better than the

weak converse L ∩Bs ⊆ Bτs(C).
(nr3) The purpose of ǫ is to control the linear independence in the noncollapsing in (n2). One wants

ǫ << τ so that when a ball fails to be (k, ǫ, ν)-noncollapsed, then when recovering the number of

balls which have large mass is appropriately small. This will be important in controlling the number

balls which are not Neck regions in the Decomposition Theorem.

(nr4) The (n3) condition
´ 2r
rx

βk(x, s)
2 ds

s < δ tells us that the error from approximating µ by an affine

subspaces is summably small at each point. As we will see in Section 11.1 using βk to control µ

is only meaningful on noncollapsed balls, otherwise βk may be small for trivial reasons. We want

δ << ǫ so that our ability to approximate µ by an affine subspace is much better than how spaced

out the noncollapsed balls are.

13From this point forward we take τ = τn ≡ 10−10n . The main property necessary for this constant is that on scale τn we need

that the k-content of an ℓ-plane is small when ℓ < k, more precisely we need Vol(Bτn(L
k−1) ∩B2) < 10−2τk

n .
14If A ⊆ Rn is a closed subset and rA : A → R+ is a nonnegative function then we define the closed variable radius tube

BrA(A) ≡
⋃

a∈A
BrA(a)(a).
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(nr5) A nice exercise is to see that the disjoint property of {Bτ2rx(x)} trivially forces the lipschitz estimate

|Lip rx| ≤ τ−2. It is possible in the construction to force the much nicer condition |Lip rx| ≤ δ,

however this requires a nontrivial argument which complicates the proof of the Neck Decomposition

Theorem rather significantly, see [JN].

(nr6) As in the classical Reifenberg we will prove a form of submanifold approximation theorem for Neck

regions. Under the condition |Lip rx| ≤ δ a gluing construction for the submanifold approximation

theorem is possible, however under the condition |Lip rx| ≤ τ−2 it really is not. This is our primary

reason for introducing the approximate distance function construction in Section 4.2, which is a

more flexible argument.

We will discuss examples in a moment, but let us first introduce some basic notation which will be in

force throughout.

Notation: Given a Neck region N = B1 \ Brx(C) we extend the radius function rx : C → R to

rx : B1 → R by the regularity scale formula:

rx ≡ sup{0 < s < 1 : ry ≥ τ−2s ∀ y ∈ C ∩Bs(x)} . (9.1)

Let us observe that rx ≥ d(x, C). Below are a handful of basic properties about our regularity scale:

Exercise 9.9. Show the following:

(1) rx is lipschitz with |Lip rx| ≤ τ−2. 15

(2) If x ∈ C then rx agrees with the radius function on C.

The above exercise tells us that rx is a fair extension of the radius function on C. Let us begin with an

easy example:

Example 9.10 (Trivial Neck Region). Let µk = νHk ∩ L ∩B1 be a multiple of the Hausdorff meausure on

a linear subspace Lk ⊆ Rn. Let rx : L ∩ B1 → R+ any nonnegative function with |∇rx| ≤ τ−2 and let

C ⊆ Lk ∩B1 be any closed subset such that {Bτ2rx(x)}C are disjoint and maximal. By maximal we mean

that if y ∈ L ∩B1, then Bτ2ry(y) ∩Bτ2rx(x) 6= ∅ for some x ∈ C. Then observe that N ≡ B1 \Brx(C) is

a (k, δ, ǫ, ν)-neck region for µ.

We can extend this example slightly:

Example 9.11 (Neck Region Example). Let µ = µk + µ+, where µk = νHk ∩ L ∩ B1 + µ−
k is a multiple

of the Hausdorff meausure on a subspace Lk ⊆ Rn, plus an arbitrary measure µ′
k supported on Lk, and

µ+ = δHn ∩ B1 is a small multiple of the standard Hausdorff measure. Let rx : L ∩ B1 → R+ any

nonnegative function with |∇rx| ≤ τ−2 and let C ⊆ Lk ∩ B1 be any closed subset such that {Bτ2rx(x)}C
are disjoint and maximal. Then observe that N ≡ B1 \Brx(C) is a (k, δ, ǫ, ν)-neck region for µ.

Let us make some observations about the above examples:

• The center points C all lie inside a well behaved submanifold, indeed just a linear subspace.

• The measure µ is uniformly bounded, and indeed small, on the neck region.

15Recall |Lipf |(x) ≡ lim supy→x
|f(x)−f(y)|

|x−y|
. The lipschitz constant is controlled by how large of radii are disjoint.
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These two properties are not random, and indeed we wish to show they actually always hold on Neck

Regions. The following is our main structure theorem for Neck Regions:

Theorem 9.12 (Neck Structure Theorem). Let µ be a measure on B1 with N = B1 \Brx(C) a (k, δ, ǫ, ν)-

neck region. Then there exists a submanifold T ⊆ B1 such that

(1) C ⊆ T .

(2) T is 1 + C(n, ǫ, ν)δ-bilipschitz to B1(0
k).

(3) µ(N ) ≤ µ(Brx(T )) < C(n, ǫ) δ.

In particular, for δ < δ(n, ǫ, ν) we have C0 ⊆ T is k-rectifiable with Hk(C0) +
∑

C+ rkx ≤ C(n).

Remark 9.13. Note that if µC = Hk ∩C0+ωk
∑

C+ rkx is the packing measure of C, then condition (2) gives

us that for each x ∈ C and rx ≤ r ≤ 2 the Ahlfors regularity condition A(n)−1rk ≤ µC(Br(x)) ≤ A(n)rk.

See Exercises 2.3.

Remark 9.14. Note if Bsi(yi) is any disjoint collection of balls with yi ∈ T , then (2) gives that
∑

ski ≤
C(n). See Exercise 2.3.

Remark 9.15. The Neck Regions and Neck Structure Theorem mimic very closely the constructions and

results from singularity analysis of nonlinear equations, see [NV17],[CJN]. However, in those contexts one

replaces the assumed β-bounds in (n3) with bounds on the appropriate monotone quantity. This makes

the proof of the Neck Structure Theorem much more subtle in those contexts. One proves so-called L2-

subspace approximation theorems in order to (sharply) turn the monotone quantity drop into a β-number

estimate, however to do this one must already know the volume bound on µ. This leads to a loop where one

must prove the volume estimates, rectifiability, and β-number estimates all simultaneously. In the context

of these notes we get to avoid this subtlety.

Now that we have introduced Neck regions and discussed some their structure theory, the next reasonable

question is whether or not any exist. More than that, for this to be worth the time and effort we should some-

how hope that enough neck regions exist that we may potentially use them toward our greater goal of proving

the Rectifiable Reifenberg Theorem 8.2. The next result tells us how under the correct β-number bounds we

may decompose suppµ ⊆ B1 into pieces with special behavior. The crucial piece of this decomposition will

turn out to be neck regions:

Theorem 9.16 (Neck Decomposition). Let µ be a Borel measure on B1 and assume for each x ∈ B1 that
´ 2
0 βk(x, s)

2 ds
s ≤ Γ. Then for each ν, ǫ, δ > 0 with δ < δ(n, ǫ, ν) ∃ a covering B1 ⊆ S− ∪ Sk ∪ S+ with

S+ =
⋃

a

(

Na ∩Bra

)

∪
⋃

b

Brb(xb) and Sk =
⋃

a

C0,a , (9.2)

and such that

(1) Na = B2ra(xa) \Bra,x(Ca) is a (k, δ, ǫ, ν)-neck region. In particular, µ(Na) ≤ C(n)δ rka and C0,a
is k-rectifiable by Theorem 9.12.

(2) Brb(xb) satisfies the measure constraint µ(B2rb) < C(n)ν rkb .
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(3) We have the content estimates
∑

rka+
∑

rkb < C(n, δ, ǫ, ν,Γ) and packing estimate Pk(S−∪Sk) <

C(n, δ, ǫ, ν,Γ) 16,

(4) We have the Hausdorff measure estimate Hk(S−) = 0.

Remark 9.17. It follows immediately that Sk is k-rectifiable.

Remark 9.18 (Effective Estimates). It follows from (1), (2) and (3) that Hk(Sk) ≤ C(n, ǫ,Γ) and µ(S+) <

C(n, δ, ǫ,Γ). Repeating (4) gives Hk(S−) = 0.

Remark 9.19. If the measure µ has a lower density bound then one can weaken the assumption to more

of a Carlson estimate: r−k
´

Br(x)

´ 2r
0 βk(x, s)

2 ds
s dµ ≤ Γ for all Br(x) ⊆ B1. Indeed, most interesting

examples satisfy this but not the pointwise condition. The lower density bound is important as one can go

from the pointwise condition to the carleson condition through an iterative process, but to control estimates

one needs to turn small mass into small hausdorff measure at each stage.

Let us present an example of this:

Example 9.20. Let L and L′ be perpendicular k-dimensional subspaces with µ = νHk ∩ L ∩B1 + νHk ∩
L′∩B1. For each x ∈ L∪L′\{0} consider the radius dx ≡ 10−2|x|. Note then that we may write the trivial

neck region Nx = B2dx(x) \L with Cx = C0,x = L ∩B2dx(x). Now let {Bra(xa)} with xa ∈ L ∪L′ ∩B1

and ra ≡ 10−2|xa| be a maximal collection of balls such that {Bτ2ra(xa)} are disjoint, so that in particular

(L ∪ L′ ∩ B1) \ {0} ⊆ ⋃

a C0,a. Similarly let us now choose {Brb(xb)} to be a maximal collection with

xb ∈ B1 \
⋃

aBra(xa), rb ≡ 10−3|xb| and such that {Bτ2rb(xb)} are disjoint. If we then define

S+ ≡
⋃

a

(

Na ∩Bra(xa)
)

∪
⋃

b

Brb(xb) ,

Sk ≡
⋃

a

C0,a ,

S− ≡ {0} , (9.3)

then we see that B1 ⊆ S− ∪ Sk ∪ S+ is a Neck Decomposition covering. In particular one sees from this

example that it is fully possible to have a countable number of pieces in the decomposition. �

The rest of this section will be dedicated to seeing that the Neck Decomposition Theorem can be used to

conclude the Rectifiable Reifenberg of Theorem 8.2.

10. PROOF OF THE RECTIFIABLE REIFENBERG THEOREM 8.2 GIVEN THE NECK DECOMPOSITION

THEOREM 9.16

First note that if we prove the result for Γ = 1, then the general result has been proven by simply rescaling

µ. Thus, we will focus on this case. Now observe that using (8.3) we can define the set

UΛ ≡ {x ∈ B1 :

ˆ 2

0
βk(µ;x, r)

2 dr

r
< Λ} , (10.1)

16Due to time constraints we will not carefully prove the packing estimate in these notes and instead focus on the Hausdorff

measure estimates, however they follow from the precise arguments of these notes, no new ideas are necessary, just a little messy

technical work.
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so that we have

µ(B1 \ Uδ) ≤ Λ−1 . (10.2)

Thus if we eventually choose Λ = 1 say, then the above tells us we need only worry about estimating µ on

UΛ
17. Now let µΛ ≡ µ ∩ UΛ. Using that µΛ ≤ µ, and hence βk(µΛ;x, r) ≤ βk(µ;x, r), we then have by

the definition of UΛ and Exercise 4.1 that for every x ∈ B1

ˆ 2

0
βk(µΛ;x, r)

2 dr

r
< C(n)Λ . (10.3)

Let us now apply the Neck Decomposition Theorem 9.16 to µΛ in order to write B1 ⊆ S−
Λ ∪Sk

Λ∪S+
Λ with

S+
Λ =

⋃

a

(

Na ∩Bra

)

∪
⋃

b

Brb(xb) ,

Sk
Λ =

⋃

a

C0,a . (10.4)

We now write

µk
Λ ≡ µΛ ∩ (SK ∪ S−) , µ+

Λ = µΛ ∩ S+ . (10.5)

Using the content estimate Theorem 9.16.4 and the volume condition Theorem 9.16.2 we have that

µ+
Λ(B1) ≤

∑

a

µΛ(Na) +
∑

b

µΛ(Brb(xb)) ≤ ν
(

∑

a

rka +
∑

b

rkb
)

≤ C(n, δ, ν,Λ) . (10.6)

On the other hand, using Theorem 9.16.4, Theorem 9.16.5, and Remark 9.17 then we see that if K ≡
suppµk

Λ = Sk ∪S− then K is k-rectifiable with the packing estimates Pk(K) < C(n, δ, ν,Λ). In particular,

Hk(K) < C(n, δ, ν,Λ). Now fix ν > 0 with δ < δ(n, ν,Λ) with Λ = 1, and define

µ+ = µ ∩ UΛ + µ+
Λ , µk = µk

Λ , (10.7)

then we see we have completed the proof of Theorem 8.2.

10.1. Proof of Corollary 8.5. To prove Corollary 8.5.1 let us consider the decomposition µ = µ+ + µk

from Theorem 8.2 and let K ≡ suppµk. For each x ∈ K use the density assumption to fix sx > 0 such that

µ(Bsx(x)) ≤ 2Aωk s
k
x . (10.8)

Note then that K ⊆ ⋃

x∈KBsx(x) is a so called Besicovitch covering, and thus by the Besicovitch covering

theorem we have

K ⊆
N
⋃

i=1

⋃

ai

Bsiai
(xiai) , (10.9)

17We consider general Λ here as it will be used also in the proof of Corollary 8.5.
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where N ≤ N(n) and each collection {Bsiai
(xiai)} ⊆ {Bsx(x)} are of disjoint balls. Note then that the

packing estimate Pk(K) ≤ C(n) tells us for each i that
∑

ai
skai ≤ C(n), and thus we can estimate

µ(K) ≤
N
∑

i=1

∑

ai

µ(Bsiai
(xiai)) ≤ 2Aωk

N
∑

i=1

∑

ai

skai ≤ C(n)A , (10.10)

as claimed.

Let us now prove Corollary 8.5.2. Let us first prove the Hausdorff measure estimate on suppµ. For this

consider again the decomposition µ = µ+ + µk. The estimates for µk are already sufficient, so we focus on

µ+. For each x ∈ suppµ+ \ suppµk consider a radius sx ≤ r · d(x, suppµk) such that18

µ+(Bsx(x)) = µ(Bsx(x)) ≥
1

2
aωk s

k
x . (10.11)

As before we then have a Besicovitch covering suppµ+ ⊆ ⋃

x∈suppµ+
Bsx(x) so that we can find a covering

suppµ+ \ suppµk ⊆
N
⋃

i=1

⋃

ai

Bsiai
(xiai) , (10.12)

where N ≤ N(n) and each collection {Bsiai
(xiai)} ⊆ {Bsx(x)} are of disjoint balls. We can then estimate

ωk

N
∑

i=1

∑

ai

skai ≤ 2a−1
N
∑

i=1

∑

ai

µ+(Bsiai
(xiai)) ≤ 2a−1N(n)µ+(B1) ≤ 2a−1C(n,Γ) . (10.13)

In particular, this gives the content estimate Hk
r (suppµ+ \ suppµk) ≤ 2a−1C(n,Γ). Since r < 1 was

arbitrary this gives the Hausdorff measure estimate, as claimed.

To finish Corollary 8.5.2 we need to show that suppµ is k-rectifiable. Recall from (10.2) the definition of

UΛ and µΛ, and as in the proof of Theorem 8.2 from the last subsection we have

µ(B1 \ UΛ) < Λ−1 ,

µΛ = µ+
Λ + µk

Λ . (10.14)

It is thus enough to show µΛ is k-rectifiable for each Λ < ∞. Now since for each x ∈ UΛ we have
´ 2r
0 βk(x, s)

2 ds
s < Λ, note then that for each x ∈ UΛ we must also have

lim
r→0

ˆ 2r

0
βk(x, s)

2 ds

s
= 0 . (10.15)

Fix η > 0 very small, then by the above we can find r > 0 such that if

Uη,r ≡ {x ∈ UΛ :

ˆ 2r

0
βk(x, s)

2 ds

s
≤ η} ,

then

µΛ(B1 \ Uη,r) < η . (10.16)

18Note that since P(suppµk) < C(n) we have that suppµk is compact, thus this is a reasonable constraint on the radius.
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Let us now use the Hausdorff measure estimate on Uη,r ⊆ UΛ ⊆ suppµ previously proved in order to find a

covering

Uη,r ⊆
⋃

i

Bri(xi) with ri ≤ r and
∑

rki ≤ C(n) . (10.17)

Let µi ≡ µΛ ∩ Uη,r ∩Bri(xi). Then we can apply Theorem 8.2 in order to write µi = µ+
i + µ−

i such that

µ+
i (Bri(xi)) ≤ C(n)η rki ,

µk
i is k-rectifiable . (10.18)

In particular, we have that µΛ is k-rectifiable away from a set of measure

µΛ(B1 \ Uη,r) +
∑

i

µ+
i (Bri(xi)) ≤ η + C(n)η

∑

rki ≤ C(n)η . (10.19)

As η > 0 was arbitrary, this proves that µΛ is k-rectifiable. As Λ was arbitrary, this proves that µ is

k-rectifiable. �
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Lecture 4: Proof of Neck Structure Theorem and Neck Decomposition Theorem

We focus in this lecture on the meat of the argument, and prove the neck structure theorem and the neck

decomposition theorem.

11. PROOF OF NECK STRUCTURE THEOREM

Our proof of the classical Reifenberg Theorem 2.23, given in Lecture 1, was designed precisely to pass

over to the context of the Neck Structure Theorem. Though the basic outline will remain the same, in the

context of Theorem 9.12 most of the results are a bit more refined and there are a handful of technical

challenges and nuances beyond the classical result, which we will describe. In particular, we begin with a

few technical preliminaries in order to deal with this:

11.1. Best Subspaces on Neck Regions. Exercise 4.1 told us in the context of the classical Reifenberg

theorem that the best approximating subspaces do not change much from scale to scale. For a general mea-

sure, even with well controlled β-numbers, this will not need to be the case. We will study this phenomena

some in this section and aim toward proving that at least on Neck regions, one can indeed control the best

subspaces in a manner analogous to Exercise 4.1. Let us begin with some notation and definitions.

Recall that for each x ∈ B1 and 0 < r ≤ 10 we have fixed a choice of affine k-dimensional subspace

Lx,r = Lx,r[µ] satisfying

Lx,r ∈ argmin
L

r−2−k

ˆ

Br(x)
d2(y, L)dµ[y] , (11.1)

so that

βk(x, r)
2 = r−2−k

ˆ

Br(x)
d2(y, Lx,r)dµ[y] . (11.2)

Given an affine subspace Lx,r we denote πx,r : Rn → Lx,r ⊆ Rn to be the projection map, L̂x,r the

associated linear subspace, and π̂x,r : Rn → L̂x,r ⊆ Rn the linear projection map. The first point that is

worth making is that unlike Exercise 4.1, if µ is arbitrary then there is no reason the subspaces need to be

comparable, even if the β-numbers are small:

Example 11.1. Let p, q ∈ B1 be points with |p − q| = 10−1 µ = δp + δq be the sum of dirac deltas. Note

that for every x ∈ B1 and r > 0 we have that β1(x, r) = 0. If p, q ∈ Br(x) are both points in the ball then

the best subspace Lx,r is the line connecting p and q. If Bs(y) contains only one of the points, say p, then

Ly,s can be any line which contains p. In particular, Lx,r and Ly,s need not be at all comparable, even if

Br(x) and Bs(y) are comparable. �

Our main goal in this section is to see that in a Neck region the above does not happen, namely the

subspaces Lx,r are indeed comparable, in the spirit of Exercise 4.1. The following is the main result of this

section, which we will prove by its completion:

Proposition 11.2 (Best Subspace Behavior on Neck Regions). Let N = B1 \Brx(C) be a (k, δ, ǫ, ν)-neck

region with δ < δ(n, ǫ, ν). Consider subspaces {Lx,r} defined as in (11.1) and let r ≥ 102rx. Then for

x, y ∈ C the following hold:

(1) dH(Lx,r ∩Br(x), Ly,s ∩Br(x)) < C(n, ǫ, ν, a)βk(x, 10a r) r if |x− y| ≤ 10r and a−1 ≤ r
s ≤ a.
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(2) If Br(x) and Bs(y) are as above then
∣

∣|π̂x,r[v]|− 1
∣

∣ ≤ C(n, ǫ, ν, a)βk(x, 10a r)
2 for each v ∈ L̂y,s

with |v| = 1,.

Estimates (1) and (2) above tell us that if Br(x) and Bs(y) are comparable balls, then Lx,r and Ly,s are

comparable affine subspaces. As in Example 11.1 let us note that we need to be in a neck region for this,

otherwise such results are false. Let us also emphasize the square gain in (2), as it is key to the volume and

rectifiability estimates on µ later.

To prove Proposition 11.2 we need to learn how to compare the best approximating subspaces of a mea-

sure in an accurate manner. The following definition of a center of mass, which originates in [ENVb], will

be used to tell us how to control at least one point in a given ball:

Definition 11.3. [Center of Mass] We define the generalized µ-center of mass X of a ball Br(x) as follows.

If µ(Br(x)) < ∞, let X = 1
µ(Br(x))

´

Br(x)
zdµ(z) be the usual center of mass. If µ(Br(x)) = ∞, we let X

be any point in the intersection

X ∈ Br(x) ∩
⋂

{

affine V k :

ˆ

Br(x)
d(z, V )2dµ(z) < ∞

}

. (11.3)

Exercise 11.4. Show if µ(Br(x)) = ∞ but βk(x, r) < ∞ then such a point X exists.

Exercise 11.5. More generally, let Bs(y) ⊆ Br(x) with µ(Bs(y)) = ∞ but βk(x, r) < ∞, then show the

center of mass Y of Bs(y) lives in Lx,r.

Let us now see how on a given ball we can at least control how far away the center of mass is from a best

subspace. The main result is the following:

Lemma 11.6 (Center of Mass and Best Subspaces). Suppose Bs(y) ⊂ Br(x) and let Lx,r be a best subspace

as in (11.1). Let Y be the generalized center of mass for Bs(y). Then

d(Y,Lx,r)
2 ≤ rk

µ(Bs(y))
βk(x, r)

2 r2 . (11.4)

Remark 11.7. In this business it is key how various quantities depend on one another. Let us emphasize that

the above formula depends inverse linearly on µ(Bs(y)) and quadratically on βk(x, r)
2. This relationship

will be crucial to the mass bounds on Neck Regions later.

Proof. We can assume βk(x, r) < ∞, otherwise there is nothing to show. From Exercise 11.5 we have if

µ(Bs(y)) = ∞ then Y ∈ Lx,r. Otherwise we can calculate by Jensen’s inequality

d(Y,Lx,r)
2 ≤ 1

µ(Bs(y))

ˆ

Bs(y)
d(z, Lx,r)

2dµ(z) (11.5)

≤ rk+2

µ(Bs(y))
r−k−2

ˆ

Br(x)
d(z, Lx,r)

2dµ(z) =
rk+2

µ(Bs(y))
βk(x, r)

2 , (11.6)

as claimed. �

Now we need to move from our ability to control best subspaces at a single point to being able to control

the whole best subspace. The first step in this direction is to see that two k-dimensional affine subspaces are
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close iff they are close at k+1 independent points. This is quite intuitive as an affine subspace is well defined

by such a collection. Before reading the next lemma recall from Definition 9.1 the notion of (k, ǫ)-linearly

independence:

Lemma 11.8 (Subspace Distance Estimates). Let L1, L2 be two k-dimensional affine subspaces and let

{xi}k0 ⊆ B1 be a (k, ǫ)-linearly independent set. Then we have the estimate

dH
(

L1 ∩B1, L2 ∩B1

)

≤ C(n, ǫ)
∑

i

(

d(xi, L1) + d(xi, L2)
)

. (11.7)

Proof. Observe that we may assume
∑

i

(

d(xi, L1)+d(xi, L2)
)

< 10−3ǫ, as otherwise by choosing C(n, ǫ)

large the estimates trivially hold. Let L = x0 + span{xi − x0}, and we will prove the result

dH
(

L1 ∩B1, L ∩B1

)

≤ C(n, ǫ)
∑

i

d(xi, L1) , (11.8)

the general case then follows from a triangle inequality.

Now with all of this given we define {x1i }k0 = {πL1(xi)} and see that this set is (k, 10−1ǫ)-linearly

independent with d(x1i , xi) < 10−2ǫ. Now let ℓ1 be any point in L1 ∩B1. Then we can uniquely write

ℓ1 − x10 =
k

∑

1

ℓi1(x
1
i − x10) . (11.9)

An instructive exercise, which depends strongly on the ǫ-linear independence of the set {x1i }, is to show the

following:

Exercise 11.9. Show |ℓi1| < C(n, ǫ)|ℓ1 − x10| < C(n, ǫ).

Now if we define ℓ ≡ x0 +
∑k

1 ℓ
i
1(xi − x0) ∈ L then we have the estimate

d(ℓ1, ℓ) < C(n, ǫ)
∑

i

∣

∣

∣
x1i − xi| = C(n, ǫ)

∑

i

d(xi, L1) . (11.10)

Since ℓ1 was arbitrary this proves every point of L1 ∩B1 lives within C(n, ǫ)
∑

i d(xi, L1) of a point in L.

The verbatim argument works with L1 and L switched, and thus we have proven the Hausdorff estimate and

completed the Lemma. �

The above Lemma’s will be the key point in proving Proposition 11.2.1. In order to prove Proposition

11.2.2 we provide one more general lemma:

Lemma 11.10. Let L1, L2 be two linear subspaces with d ≡ dH
(

L1 ∩B1, L2 ∩B1

)

. Then for each v ∈ L2

with |v| = 1 we have that
∣

∣|π1[v]| − 1
∣

∣ < d2 . (11.11)

Proof. The proof is a simple application of the pythagorean theorem, however we emphasize here the im-

portant square gain on d here, as this is crucial for future applications.

To prove the result let v′ = π1[v] with w ≡ v′ − v. Note the two estimates:

|w| = d(v, L1) ≤ d ,

|v|2 = |v′|2 + |w|2 . (11.12)
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With these in hand we obtain
∣

∣|v′| − 1
∣

∣ ≤
∣

∣1−
√

1− |w|2
∣

∣ ≤ |w|2 ≤ d2 , (11.13)

as claimed. �

Finally we are now in a position to prove Proposition 11.2:

Proof of Proposition 11.2. We first prove Proposition 11.2.1. Let us fix Br(x) with r ≥ 102rx, and by using

(n2) let {zi}k0 ∈ Br/4(x) be a (k, 2ǫ)-linearly independent set with ri = ǫr/4 such that µ(Bri(zi)) > νrki .

Now let Zi ∈ Bri(zi) be the generalized µ-center of mass as in (11.3). Note then that the {Zi} are (k, ǫ)-

linearly independent. Thus by using Lemma 11.6 and that µ(Bri(zi)) > νrki by (n2) we get that

d(Zi, Lx,r) < C(n, ν, ǫ)βk(x, r)r ,

d(Zi, Lx,10ar) < C(n, ǫ, a, ν)βk(x, 10ar) r , (11.14)

Therefore by Lemma 11.8 we have that dH(Lx,r∩B10ar(x), Lx,10ar∩B10ar(x)) < C(n, ǫ, ν, a)βk(x, 10ar) r.

Note that Bs(x) ⊆ B10ar(x), so that the same argument gives dH(Ly,s ∩B10ar(x), Lx,10ar ∩B10ar(x)) <

C(n, ǫ)βk(x, 10ar) r. The triangle inequality then proves Proposition 11.2.1.

Now to prove Proposition 11.2.2 we simply use Lemma 11.10 together with Proposition 11.2.1.

�

11.2. Submanifold Approximation Theorem. Recall that a primary goal in the proof of the Neck Struc-

ture Theorem 9.12 is to build a submanifold T which contains C and is bilipschitz to the ball B1(0
k). In the

spirit of the classical Reifenberg, we will build a family Tr of smooth submanifolds which live near C and

are scale invariantly smooth. To state the Approximating Submanifold Theorem more precisely, let us begin

by introducing some notation. Recall from (9.1) our extension of the radius function rx to all of B1 by a

regularity scale procedure. In the construction of the submanifolds Tr we will not want to look below scale

r, and as such we also consider the following:

rx ≡ rx ∨ r ≡ max{ry, r} . (11.15)

Note that ry ≥ d(y, C) ∨ r.

We can now state the Approximating Submanifold Theorem, which is one of the central technical results

needed in the proof of Theorem 9.12:

Theorem 11.11 (Approximating Submanifold Theorem). Let N = B1\Brx(C) be a (k, δ, ǫ, ν)-neck region

with with subspaces {Lx,r} defined as in (11.1). For each r > 0 there exists a smooth submanifold Tr ⊆ B2

with Tr = T1 = L0,2 on A3/2,2(0) and which satisfy

(1) C ⊆ BC(n)δry(Tr), Tr ⊆ BC(n)τry(C).
(2) dH(Tr ∩Bs(x), Lx,s ∩Bs(x)) < C(n)

(

´ τ−1s
r̄y

βk(x, t)
dt
r

)

s ≤ C(n)δs for s ≥ ry.

(3) Tr is a (C(n)βk(x, τ
−1rx), rx)-graphical submanifold, see Definition 2.12.
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(4) ∃ smooth πr : Bry(Tr) → Tr ⊆ Rn with πr ∩ Tr = Id and |∇2πr|(y) < C(n)β(y, τ−1ry).

(5) dH(Tr/2, Tr) < C(n)δr with |πr(x)− x| < C(n)δr for x ∈ Tr/2.

(6) For x ∈ Tr/2 and a unit vector v ∈ Lx,r̄x we have ||dπr[v]| − 1| < C(k)βk(x, τ
−1rx)

2.

Remark 11.12. Note that if we take T1 to be the affine subspace L0,2 with π1 the orthogonal projection map

then the above holds with r = 1. It will be convenient to make this choice.

Remark 11.13. Note the square gain in (6) on the β-number estimate.

Let us begin with some exercises. If the reader completed the exercises of Section 2.4 and Section 4.1

then these are almost the same:

Exercise 11.14. Use Exercise 2.17, Theorem 11.11.2 and Theorem 11.11.3 to see that for each x ∈ Tr if

L ≡ TxTr is the tangent space at x, then dGH(L ∩B1(x), Lx,rx ∩B1(x)) ≤ C(n)βk(x, τ
−1r).

Exercise 11.15. Use the last exercise and Theorem 11.11.6 and Theorem 11.11.4 to see that for each x ∈ Tr

if v ∈ TxTr is a unit tangent vector19 at x, then ||dπr[v]| − 1| < C(n)βk(x, τ
−1rx)

2.

Exercise 11.16. Let x, y ∈ Tr with |x − y| ≤ 10rx. Let σ : [0, 1] → Tr be the curve connecting x

and y defined by σ(t) = πr
(

(1 − t)x + ty
)

. Use Theorem 11.11.4 to show the length |σ| of σ satisfies

(1− C(n)δ)|x− y| ≤ |σ| ≤ (1 + C(n)δ)|x − y|.
Hint: Write the length |σ| =

´ 1
0 |σ̇| and argue as is outlined in Exercise 4.10 to estimate |σ̇|.

The above exercise is telling us that locally the intrinsic and extrinsic geometry of Tr are the same. The

proof of Theorem 9.12 in the next subsection will implicitly prove that this holds globally.

11.3. Proof of Neck Structure Theorem 9.12 given the Approximating Manifold Theorem 11.11. The

beginning of the proof is similar to the proof of the classical Reifenberg Theorem 2.23 given Theorem 4.2.

However, the key estimates are different as we now need to conclude bilipschitz control over the submani-

folds Tr, not just bihölder, and we need to conclude a mass bound on the neck region µ(N ).

Begin by considering the radii ri = 2−i and the submanifolds Ti = Tri from Theorem 11.11. Let

πi = πri ∩ Ti+1 : Ti+1 → Ti be the projection map from Theorem 11.11 restricted to Ti+1. Let us define

the maps

Πi,j ≡ πi−1 ◦ · · · ◦ πj : Ti → Tj

Πi ≡ Πi,0 : Ti → T0 ≡ L . (11.16)

Note that the Πi are necessarily diffeomorphisms which equal the identity in A3/2,2(0). Note first the weak

estimate, which follows from Exercise 2.19 and Theorem 11.11.5:

|Πi,j(x)− x| ≤
∑

|πℓ
(

Πi,ℓ+1(x)
)

−Πi,ℓ+1(x)| < C(n)δ

j
∑

i

rℓ ≤ C(n)δrj . (11.17)

19Recall TxTr is an affine subspace, we say v ∈ TxTr is a unit vector if |v − x| = 1. That is, as an element of the associated

linear subspace v is a unit norm vector.
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With this in hand we turn to our first main Claim of the result:

Claim 1: If x ∈ Ti and v ∈ TxTi is a unit tangent vector then ||dΠi[v]| − 1| < C(n)δ.

Note by the chain rule that dΠi,j [v] = dπj [dΠi,j−1[v]]. Thus using (11.17), Exercise 7.5 and Exercise

11.15 we have that

||dΠi,j [v]| − |dΠi,j−1[v]|| ≤ C(n)βk(x, τ
−1rj)

2|dΠi,j−1[v]| , (11.18)

and hence

(

1− C(n)βk(x, τ
−2rj)

2
)

|dΠi,j−1[v]| ≤ |dΠi,j [v]| ≤
(

1 + C(n)βk(x, τ
−1rj)

2
)

|dΠi,j−1[v]| . (11.19)

Composing the upper bounds gives us

|dΠi,j [v]| <
j
∏

i

(

1 +C(n)βk(x, τ
−1rℓ)

2
)

. (11.20)

Exercise 11.17. Use a geometric series to show if ci << 10−1 then
∏

i(1 + ci) ≤ 1 + 2
∑

i ci.

By this exercise we have ifC(n)βk(x, τ
−1rℓ)

2 < C(n)δ << 1 for each rℓ then we can conclude the

estimate

|dΠi,j [v]| < 1 +C(n)

j
∑

i

βk(x, τ
−1rℓ)

2

≤ 1 +C(n)

ˆ 2τ−1rj

ri

βk(x, s)
2 ds

s
,

≤ 1 +C(n)δ , (11.21)

where the middle estimate follows from Exercise 7.6 and the last estimate follows from the definition of a

Neck Region. The lower bound is the same, which finishes the proof of the Claim. �

Let us now see that Πi : Ti → L is a bilipschitz map20. Precisely:

Claim 2: Let x, y ∈ Ti, then (1− C(n)δ)|x− y| ≤ |Πi(x)−Πi(y)| ≤ (1 + C(n)δ)|x − y| .

Let us first consider the case when |x − y| ≤ 10ri and let γ : [0, 1] → Ti be the smooth curve γ(t) =

πr̄
(

(1− t)x+ ty
)

which connects x and y. Note that by Exercise 11.16 we have

(1− C(n)δ)|x− y| ≤ |γ| ≤ (1 + C(n)δ)|x − y| . (11.22)

20One should specify whether Ti is given the intrinsic or extrinsic geometry. The next Claim is for the extrinsic geometry,

however a very similar proof goes through to prove the bilipschitz estimate for the intrinsic geometry as well.



LECTURE NOTES ON RECTIFIABLE REIFENBERG FOR MEASURES 43

Now consider the curve Πi ◦ γ connecting Πi(x) and Πi(y). Then using Claim 1 we have the estimate

|Πi(x)−Πi(y)| ≤ |Πi ◦ γ| =
ˆ 1

0
|dΠi[γ̇]| ≤

ˆ 1

0
|γ̇|+

ˆ 1

0

∣

∣

∣
|dΠi[γ̇]| − |γ̇|

∣

∣

∣

≤ (1 + C(n)δ)|γ| ≤ (1 + C(n)δ)|x − y| , (11.23)

which completes half the estimate. The other half is the same, beginning with the curve γ : [0, 1] → L given

by γ(t) = (1 − t)Πt(x) + tΠi(y). Then we can similarly estimate

|x− y| ≤ |Π−1
i ◦ γ| ≤ (1 + C(n)δ)|γ| = (1 + C(n)δ)|Πi(x)−Πi(y)| . (11.24)

Thus we have proven the result when |x− y| ≤ 10ri. Let us now consider the general case.

For x, y ∈ Ti let rj be such that rj ≤ |x− y| ≤ 2rj . Then by the weak estimate (11.17) we have

(1−C(n)δ)|x − y| ≤ |Πi,j(x)−Πi,j(y)| ≤ (1 + C(n)δ)|x− y| . (11.25)

In particular |Πi,j(x)−Πi,j(y)| ≤ 10rj and thus we can estimate

(1− C(n)δ)|Πi,j(x)−Πi,j(y)| ≤ |Πj ◦Πi,j(x)−Πj ◦ Πi,j(y)|
≤ (1 + C(n)δ)|Πi,j(x)−Πi,j(y)| . (11.26)

Using that Πi = Πj ◦ Πi,j and combining with (11.25) we have finished the proof of the Claim. �

Let us now consider the bilipschitz maps Φi ≡ Π−1
i : L → Ti ⊆ Rn. Note that Φi(L) = Ti for every i.

Using the standard Ascoli convergence we can now limit

Φi → Φ : L → T ≡ Φ(L) ⊆ Rn , (11.27)

so that Φ satisfies the bilipschitz estimates of Claim 2. The following are intuitively helpful:

Exercise 11.18. Show Ti → T in the Hausdorff topology.

Exercise 11.19. Use Theorem 11.11.2 and the Ascoli convergence to show for x ∈ T that dH(T ∩
Br(x), Lx,r ∩Br(x)) < C(n)δr for r ≥ rx, where rx is as in (9.1).

This finishes the proof of Theorem 9.12.2, so that we are left with needing to prove the mass estimate on

the Neck Region from Theorem 9.12.3. To begin let us associate to T its Hausdorff measure

µT ≡ Hk ∩ T . (11.28)

Recall from (9.1) the regularity scale extension of rx. An important consequence of the bilipschitz esti-

mate of Claim 2 is the Alhfors regularity of µT and control on the β-numbers of µ on balls centered on T :

Claim 3: For each x ∈ T and rx ≤ r < 4 we have (1−C(n)δ)ωkr
k ≤ µT (Br(x)) ≤ (1+C(n)δ)ωkr

k.

and
´ 4
rx
βk(x, s)

2 ds
s < C(n)δ.

Let us first prove the Alhfors regularity. Indeed, recall from Section 6 that if U ⊆ Rn then

Hk(U) = lim
s→0

Hk
r (U) = lim

r→0
inf{ωk

∑

rki : U ⊆
⋃

Bri(xi) and ri ≤ s} . (11.29)
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Now consider U = Br(x) and let U ′ = Φ−1(Br(x)) ⊆ Rk. Note by the bilipschitz condition on Φ that if

x′ = Φ−1(x) then

B(1−C(n)δ)r(x
′) ⊆ U ′ ⊆ B(1+C(n)δ)r(x

′) . (11.30)

Note by the bilipschitz estimate we similarly have that for any covering Br(x) ⊆
⋃

Bri(xi):

U ′ ⊆
⋃

Br′i
(x′i) where x′i = Φ−1(xi) and r′i = (1 + C(n)δ)ri , (11.31)

and notice for this covering we have

ωk

∑

(r′i)
k = (1 + C(n)δ)kωk

∑

rki . (11.32)

In particular, since this held for any covering of Br(x) we get the estimate

Hk(Br(x)) ≥ (1− C(n)δ)Hk(U ′) ≥ (1− C(n)δ)Hk(B(1+C(n)δ)r(x
′))

≥ (1− C(n)δ)ωkr
k , (11.33)

which proves half the estimate. By instead beginning with any covering of U ′ and using Φ to construct a

covering of Br(x) we obtain the reverse estimate by a verbatim argument.

Now let us focus on the β-number estimate. Indeed, let y ∈ T and then by the definition of ry we can

find x ∈ C ∩Bry(y) such that rx ≤ τ−2ry. Thus by Exercise 7.5 we can estimate

ˆ 4

rx

β(x, s)2
ds

s
≤ C(n)

ˆ 4

τ−2ry

β(y, s)2
ds

s
≤ C(n)δ , (11.34)

as claimed. �

Let us now turn our attention to the proof of the mass bound µ(N ) < C(n)δ. The main technical estimate

is the following, which tells us we can locally control the mass in N by the square of the β-numbers:

Claim 4: Let y ∈ N with d ≡ d(y, T ), then µ
(

Bd/10(y)
)

< B(n)2
´

B2d(y)
βk(x, 10d)

2dµT .

Recall by Claim 3 that µT (B2d(y)) ≤ C(n)dk, and thus we can find z ∈ T ∩ B2d(y) such that

βk(z, 10d)
2 ≤ C(n)d−k

´

B2d(y)
βk(x, 2d)

2dµT . Now let L = Lz,2τ−2d and note by Exercise 11.19 we

have that d(T ∩ B2d(z), L ∩ B2d(z)) << 1
10d. On the other hand, let us take Y ∈ Bd/10(y) to be the

generalized center of mass of Bd/10(y), as in Definition 11.3. In particular, by the last sentence we must

have d(Y,L) > 1
2d.

However, let us now assume µ
(

Bd/10(y)
)

≥ B(n)2
´

B2d(y)
βk(x, 10d)

2dµT , and in particular by apply-

ing Exercise 7.5 we have

µ
(

Bd/10(y)
)

≥ B2

C2
βk(z, 10d)

2dk ≥ B(n)2

C(n)2
βk(y, d/10)

2 dk . (11.35)

If we apply Lemma 11.6 we can then get that d(Y,L) < C(n)
B(n)d, so that if we have chosen B(n) >> C(n)

we get that d(Y,L) < 1
2d, which is our desired contradiction. �
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Let us now finish the proof that µ(N ) < C(n)δ. To begin let us apply the usual Vitali process (see lemma

2.2, Exercise 2.4 and Exercise 2.5) to cover N :

N ⊆
⋃

y∈N
Bdy/50(y) ⊆

⋃

i

Bdi/10(yi) , (11.36)

where dy ≡ d(y, T ) and {Bdi/50(yi)} are disjoint.

Exercise 11.20. Show for α ∈ N that if we consider the collection of balls {B2di(yi)} with 2−α ≤ di ≤
2−α+1, then each z ∈ Rn intersects at most C(n) balls from this collection. Hint: See Exercise 2.4.

Now using Claim 4 we can estimate

µ(N ) ≤
∑

i

µ(Bdi/10(yi)) ≤ B(n)2
∑

i

ˆ

B2di
(yi)

βk(x, 10di)
2dµT ,

= B(n)2
∑

α

∑

2−α≤di<2−α+1

ˆ

B2di
(yi)

βk(x, 10di)
2dµT ,

≤ C(n)

ˆ

B1

∑

2−α≥rx

βk(x, 10
2 · 2−α)2dµT ,

≤ C(n)

ˆ

B1

ˆ 2

rx

βk(x, s)
2 ds

s
dµT ≤ C(n)δµT (B1)

≤ C(n)δ , (11.37)

as claimed, which finishes the proof of Theorem 9.12. �

11.4. Proof of Submanifold Approximation Theorem 11.11. What remains is to prove the Submanifold

Approximation Theorem 11.11. From this point forward the proof will mimick very closely the proof of the

classical Reifenberg we presented in Lecture 1. We will first need to prove the subspace selection lemma,

which is essentially nothing more than smoothing out our local choices of best subspaces at each point and

scale. We will use this smooth collection of subspaces in order to define our approximate distance function,

which will itself be a morse bott function with good estimates. The zero level set of these approximate

distance functions will be our choice of submanifolds Tr. Because most of the proofs are almost verbatim

to those in Lecture 1 we will mainly emphasize the slight changes (which are mostly in the form of what

scale we are working on using a more local error), and leave the rest as an exercise.

11.4.1. Subspace Selection Lemma. Let us begin with a statement of the Subspace Selection Lemma:

Lemma 11.21 (Subspace Selection Lemma). Let N = B1 \Brx(C) be a (k, δ, ǫ, ν)-neck region with r > 0.

Then for each y ∈ B1 there exists a k-dimensional affine subspace Ly where if π̂y = π̂Ly is the linear

projection map and my ≡ πy[y] then:

(1) Ly varies smoothly in y with ry|∂iπ̂y|, |∂imy−π̂y| ≤ C(n, ǫ, ν)βk(y, τ
−1ry) and r2y|∂i∂j π̂y|, ry|∂i∂jmy| ≤

C(n, ǫ, ν)βk(y, τ
−1ry).

(2) We have Ly ∩B10ry(y) ⊆ BC(n)τ r̄x(C) and C ∩B10ry(y)) ⊆ BCδrx(Ly).

(3) We have dH(Ly ∩B10r̄y(y), Ly,τ−1r̄y ∩B10r̄y(y)) < C(n)βk(y, τ
−1r̄y).
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The proof of the subspace selection lemma follows almost exactly from Section 4.2. The main technical

distinction is that we work on scale τ instead of scales which are powers of 10, and our estimates are now

in terms of βk on that scale instead of δ, however this changes almost nothing in the line by line. We begin

by building a partition of unity on the ball B2 which will be used for our gluing process:

Lemma 11.22. There exists a covering B2 ⊆ ⋃

α Brα(xα), where rα ≡ τ2r̄xα , and smooth nonnegative

functions φα such that

(1) {B 1
4
rα
(xα)} are disjoint.

(2) For each y ∈ B2 we have #{xα : y ∈ B4rα(xα)} < C(n).

(3)
∑

φα = 1 on B2 with supp φα ⊆ B4rα(xα).

(4) |∂(k)φα| ≤ C(n, k)r̃−k
α .

Proof. See Lemma 5.1 and Exercise 2.5. �

In order to prove the Subspace Selection Lemma we follow the path of Lecture 1. Using the partition

from above let us define for each α the affine subspace

Lα ≡ Lxα,10−1τ−1rα . (11.38)

Morally, we simply want to define Ly ≡ ∑

φαLα and check what estimates hold. To do this by hand we

make the observation, as in Section 4.2, that to construct an affine subspace Ly one requires constructing a

point ℓy ∈ Ly and a linear subspace π̂y. We define them by the formulas:

ℓy ≡
∑

α

φα(y)πα[y] ,

My ≡
∑

α

φα(y)π̂α ,

π̂y ≡ span{e1(y), . . . ek(y)} , (11.39)

where e1(y), . . . , ek(y) are the k-largest eigenvectors of My . The proof of the Subspace Selection Lemma

is now the same as in Section 4.2.

11.4.2. Distance Approximation Theorem. The statement and proof of the Distance Approximation Theo-

rem is almost verbatim as in Section 4.2. Recall the definition

Φr(y) ≡
1

2
d(y, Ly)

2 =
1

2
|y − πy(y)|2 ≡

1

2
|y −my|2 . (11.40)

Then the main estimates on Φr are the following:

Theorem 11.23 (Approximate Distance Function). Let N = B1 \Brx(C) be a (k, δ, ν, ǫ)-neck region with

r̄y defined in (9.1) and Φr defined in (11.40). Then for each y ∈ B2 the following is satisfied:

(1) For ℓ ∈ Ly ∩B102ry(y) ∃! zℓ ∈ L̂⊥
y + ℓ such that Φr(zℓ) = 0.

(2)

∣

∣

∣
|∇Φr|2 − 4Φr

∣

∣

∣
(y) ≤ C(n, ν, ǫ)βk(y, τ

−1ry)Φr(y).

(3) |∇2Φr(y)− π̂⊥
y | < C(n, ν, ǫ)βk(y, τ

−1ry).

(4) |∇(k)Φ|(y) ≤ C(n, k, ν, ǫ)βk(y, τ
−1ry) r

2−k
y for k ≥ 3.
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Proof. With the Subspace Selection Lemma 11.21 the proof of Theorem 11.23 is almost verbatim from

Section 4.2.

�

11.4.3. Proof of Submanifold Approximation Theorem 11.11. With the the construction of the approximate

distance function and studied some of its properties in hand, the proof of the Submanifold Approximation

Theorem is now verbatim that in Section 4.1.

12. PROOF OF NECK DECOMPOSITION THEOREM 9.16

We now focus our attention on the proof of Theorem 9.16. The proof is essentially just an involved cov-

ering argument, and was first introduced in [JN],[NV]. The sharp content estimates of Theorem 9.16.3 will

be a consequence of the Neck Structure Theorem from the previous section. Let us first restate the theorem

for the readers convenience:

Theorem. [Theorem 9.16 Restated] Let µ be a Borel measure on B1 and assume for each x ∈ B1 we

have
´ 2
0 βk(x, s)

2 ds
s dµ ≤ Γ. Then for each ν, ǫ, δ > 0 with ǫ < ǫ(n) and δ < δ(n, ǫ, ν) ∃ a covering

B1 ⊆ S− ∪ Sk ∪ S+ with

S+ =
⋃

a

(

Na ∩Bra

)

∪
⋃

b

Brb(xb) and Sk =
⋃

a

C0,a , (12.1)

and such that

(1) Na = B2ra(xa) \Bra,x(Ca) are (k, δ, ǫ, ν)-neck regions. In particular, µ(Na) ≤ C(n)δ rka and C0,a
are k-rectifiable by Theorem 9.12.

(2) Brb(xb) satisfies the measure constraint µ(B2rb) < C(n)ν rkb .

(3) We have the content estimates
∑

rka+
∑

rkb < C(n, δ, ǫ, ν,Γ) and packing estimate Pk(S−∪Sk) <

C(n, δ, ǫ, ν,Γ),

(4) We have the Hausdorff measure estimate Hk(S−) = 0.

We begin by discussing a variety of notation which will be convenient throughout the proof:

Definition 12.1. We define the k-dimensional distortion Dk(x, r) of a measure µ by

Dk(x, r) =

ˆ r

0
βk(x, s)

2 ds

s
. (12.2)

The following short exercises give some good intuition for the basic properties and behavior of Dk:

Exercise 12.2. Show the following:

(1) Dk(x, r) is monotone in r and Dk(x, r) = Dk(x, s) for some s < r iff suppµ ∩ Br(x) ⊆ Lk for

some k-dimensional affine subspace.

(2) C(n)−1βk(x, r) ≤ Dk(x, 2r) −Dk(x, r) ≤ C(n)βk(x, 2r).

(3) If ri = 2−i then C(n)−1
∑

ri≤r βk(x, ri)
2 ≤ Dk(x, r) ≤ C(n)

∑

ri≤2r βk(x, ri)
2.
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There are two primary pieces of information to keep track of during the proof. The first is the distortion

drop from scale to scale, the second is a lower mass bound on balls. We formalize this with the following

noncollapsing set:21

Definition 12.3 (Noncollapsing Set). Let ǫ, ν > 0 be fixed, then we define the set of noncollapsed points:

V (x, r) ≡ {y ∈ Br(x) : µ(Bs(y)) > ν sk for ǫr ≤ s ≤ r} .

Remark 12.4. Recall the definition of noncollapsing as in Definition 9.2.

The following tells us that V (x, r) must always live close to a best approximating subspace:

Exercise 12.5. If βk(x, 2r) < δ2 and L = Lx,2r is a best affine subspace obtaining βk(x, 2r), then for each

y ∈ V (x, r) we have d(y, L) < (ǫ + C(n, ǫ)ν−1/2δ2)r. Hint: Apply Lemma 11.6 to the center of mass

Y ∈ Bǫr(y) and use the triangle inequality.

12.1. Proof Outline and Induction Step. The Proof of Theorem 9.16 will be done inductively on the size

of the distortion.

12.2. Notation and Ball Types. In our notation for the proof during this section the subscript we use to

denote a ball will always designate special structure of that ball. All ball types will fall into the following

categories:

(a) A ball Bra(xa) is associated with a (k, δ, ǫ, ν)-neck region Na = B2ra(xa) \Bra,x(Ca).
(b) A ball Brb(xb) satisfies µ(B2rb(xb)) < νrkb .

(c) A ball Brc(xc) is such that βk(xc, 4rc) < δ2 and V (xc, rc) is a (k, 2ǫ)-linearly independent set.

(d) A ball Brd(xd) is such that V (xd, rd) is not a (k, 2ǫ)-linearly independent set.

(e) A ball Bre(xe) is such that βk(xe, 4re) > δ2.

(s) A ball Brs(xs) is such that for each y ∈ Brs(xs) we have Dk(y, 2rs) < D − δ6. 22

(f) A ball Brf (xf ) is one for which we know nothing about.

Before continuing let us discuss a little the role of each of these ball types. The simplest two types are

the (a) and (b) balls, as of course these are what we are wanting to construct in the theorem and there will

be nothing left to do with them.

Part of the proof will involve an induction on Dk(x, r). Therefore the (s)-balls will represent balls for

which the distortion has strictly dropped, and therefore we will apply our inductive hypothesis to handle

them. Thus in practice we are also done on s-balls as well. The (f)-balls will also require starting over

on, however in practice when we label a ball an (f)-ball we will make sure it is only on a set of very small

context, therefore starting over will be okay as the errors will become a geometric series, see Section 12.6.

The next easiest ball types to deal with are the (d) and (e) balls. For a (d)-ball we will be able to cover

all of Brd(xd) by (b)-balls away from a set of very small context of (f)-balls. For an (e)-ball we will be

able to entirely cover Bre(xe) by (s)-balls for which the distortion has strictly dropped, and thus we will be

able to apply our inductive hypotheses to these new balls.

21Recall ωn is the volume of the unit ball in Rn.
22In practice D̄ = supBR

Dk(x,R) will be the distortion of a potentially much larger ball.
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The most complicated ball type to deal with in the construction is therefore a (c)-ball. The goal will be

to build a neck region so that Brc(xc) ⊆ N ∪Brx(C). In order to proceed with the next step, this will have

to be done in a maximal fashion so that each ball Brx(x) with x ∈ C is either a (b),(d), (e) or (s) ball. Then

using the Neck Structure Theorem 9.12 in combination with the (d) and (e) coverings just discussed we can

estimate the content of those balls we need to start over as being small.

12.3. Collapsing and d-Ball Covering. Recall the definition of the noncollapsing set from Definition 12.3.

Proposition 12.6 (d-Ball Covering). Let Brd(xd) be such that V (xd, rd) is not a (k, 2ǫ)-linearly indepen-

dent set, then we can cover

Brd(xd) ⊆
⋃

b

Brb(xb) ∪
⋃

f

Brf (xf ) , (12.3)

such that µ(Brb(xb)) < νrkb for each (b)-ball and we have the estimates
∑

b r
k
b < C(n, ǫ)rkd and

∑

f r
k
f <

C(n)ǫ rkd .

Proof. Since V (xd, rd) is not a (k, 2ǫ)-linearly independent set we can find a subspace Lk−1 such that

V (xd, rd) ⊆ B2ǫrd(L). In particular, let {xf} ∈ Brd ∩L be ǫrd-dense with rf ≡ 4ǫrd. We see the (f)-balls

satisfy the required property. Now for each x 6∈ V (xd, rd) let rx ≥ 1
2ǫrd be such that µ(B2rx(x)) < νrkb .

Let {Brb(xb)} be any maximal subset such that B10−1rb(xb) are disjoint. Then a simple volume estimate23

shows that {Brb(xb)} satisfies the conditions of the proposition. �

12.4. Symmetry and e-Ball Covering.

Proposition 12.7 (e-Ball Covering). Let Bre(xe) be such that βk(xe, 4re) > δ2. Then we can cover

Bre(xe) ⊆
⋃

b

Brs(xs) , (12.4)

such that
∑

rks ≤ C(n)rke and Dk(y, rs) < Dk(y, 10rs)− C(n)δ4 for each y ∈ Brs(xs).

Proof. Let rs ≡ re with {xs} ∈ Bre(xe) a maximal subset such that B10−1rs(xs) are disjoint. In particular,

{Brs(xs)} is a covering of Bre(xe) and
∑

rks ≤ C(n)rke . Finally, let y ∈ B2re(xe) and consider

Dk(y, 10rs)−Dk(y, rs) =

ˆ 10re

re

βk(y, r)
2 dr

r
≥
ˆ 10re

6re

βk(y, r)
2 dr

r

≥ C(n)βk(xe, 4re)
2 > C(n)δ4 ,

where the last line uses Exercise 7.5. �

23See Exercise 2.3 and Lemma 5.1.
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12.5. Neck Regions and c-Ball Covering.

Proposition 12.8 (c-Ball Covering). Let Brc(xc) be such that βk(xc, 4rc) ≤ δ2 and V (xc, rc) is a (k, 2ǫ)-

linearly independent set. Then for δ < δ(n, ǫ, ν) there exists a (k, δ, ǫ, ν)-neck region

N = B2rc(xc) \
⋃

x

Brx(C) , (12.5)

such that for each x ∈ C with rx > 0 we have that Brx(x) satisfies one of the following:

(d) Brx(x) = Brd(xd) is such that V (x, rx) is not a (k, 2ǫ)-linearly independent set.

(e) Brx(x) = Bre(xe) is such that βk(x, 4rx) > δ2.

(s) Brx(x) = Brs(xs) is such that for y ∈ Brx(x) we have Dk(y, 2rx) < supB2rc (xc)Dk(y, 4rc)− δ6.

That is, Brx(x) is either a (d), (e) or (s)-ball.

Proof. The proof is purely constructive, and will be done inductively on scales sα = ταrc. At each step of

the induction we will have built a (k, δ, ǫ, ν)-neck region Nα = B2rc \Brαx (Cα), and for the next step of the

induction we will recover those balls {Brαx (x
α)} which are not (d), (e) or (s)-balls.

Construction Step:. Let us begin by describing the constructive step which will be applied each time we

need to recover a ball. Let Br(x) be a ball for which none of the conditions (d), (e) or (s) hold. In this case

let us define the best affine subspace

Lx,4r ≡ argmin
L

(4r)−2−k

ˆ

B4r(x)
d(y, L)2 dµ[y] , (12.6)

so that β(x, 4r)2 ≤ δ2 is obtained by Lx,4r. Note by Exercise 12.5 that for δ < δ(n, ǫ, ν) we have

V (x, 2r) ⊆ B4ǫ r(Lx,4r) . (12.7)

Now for each y ∈ Lx,4r ∩B2r(x) let

ry ≡ inf
s
{τr ≤ s ≤ r : V (y, s) is (k, 2ǫ)-linearly independent in Bs(y)} . (12.8)

Now let {Bri(xi)} ⊆ {Bry(y)}y∈L be a maximal subcollection such that {Bτ2ri(xi)} are disjoint. For

future notational use we define Cx,2r = {xi} with rxi
= ri ≥ τr. In particular, Lx,4r ∩ B2r(x) ⊆

B10−1τr(Cx,2r) and Cx,2r ⊆ Lx,4r.

Base Step: Let us start with the beginning ball Brc(xc) and observe that by assumption the hypotheses of

the constructive step apply. Thus we can apply the constructive step and define C0 ≡ Cxc,2rc to be the center

points with the radius function r0x. The following exercise follows immediately from the construction:

Exercise 12.9. Show that N1 ≡ B2rc(xc) \Br0x
(C0) is a (k, δ, ǫ, ν)-neck region.

Inductive Step: Let us now assume we have constructed a (k, δ, ǫ, ν)-neck region Nα = B2rc \Brαx (Cα).
We wish to define from this the next step of the inductive process. Let us first break the centerpoints Cα into
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two groups:

Cα = Cg
α ∪ Cb

α ,

Cg
α = {x ∈ C : Brαx (x) satisfies either condition (d), (e), or (s)} ,

Cb
α = {x ∈ C : rαx = ταrc and Brαx (x) does not satisfy conditions (d), (e), or (s)} . (12.9)

We will let Cg
α ⊆ Cα+1 with rα+1

x ≡ rαx for each x ∈ Cg
α. It is then the balls represented by Cb

α which must

be recovered.

Thus for each x ∈ Cb
α we can apply the Constructive Step in order to produce a best subspace Lx = Lx,4rαx

and an associated collection of balls {Brα+1
y

(y)}, where y ∈ Cx,2rαx and rα+1
y ≥ τα+1rc. Note that by

construction we have that {Bτ2rα+1
y

(y)} are disjoint and Cx,2rαx ⊆ Lx. If we do this for each ball from Cb
α

we can choose a maximal subset:

C̃α+1 ⊆
⋃

x∈Cb
α

Cx,2rαx , such that

{Bτ2rα+1
x

(x)}C̃α+1
∪ {Bτ2rα+1

x
(x)}Cg

α
are disjoint. (12.10)

We now define Cα+1 ≡ C̃α+1 ∪ Cg
α. It is somewhat tedious but otherwise straightforward to check the

following:

Exercise 12.10. Show Nα+1 = B2rc \Brα+1
x

(Cα+1) is a (k, δ, ǫ, ν)-neck region.

Limiting Step. We now want to finish the proof of Proposition 12.8 by taking a limit N = limNα. Let

us see how this limit is carefully constructed. Note first that Cα is a sequence of bounded closed subsets and

thus after passing to a subseqence we can take a Hausdorff limits

C = lim
α→∞

Cα . (12.11)

Let us define the radius function rx : C → R+ as follows. For x ∈ C if for all α sufficiently big we have

x ∈ Cα with rαx = rα+1
x , then we define rx ≡ lim rαx . Otherwise for x ∈ C we define rx ≡ 0. Though we

do not strictly need it, the following is a useful exercise for building intuition about the construction:

Exercise 12.11. Show one does not need to pass to a subsequence in order to take the Hausdorff limit

C = lim Cα. Show that if xα → x with xα ∈ Cα then rαx → rx.

It is clear that conditions (n1), (n2) and (n3) all pass to the limits in this construction so that N ≡
B2rc \ Brx(C) is a (k, δ, ǫ, ν)-neck region. What is left is to check that if rx > 0 then Brx(x) satisfies one

of the conditions (d), (e), or (s). However, by construction if rx > 0 then there exists α for which x ∈ Cα

with rx = rαx . In the inductive step the ball Brαx (x) remained in Cα+1 only if it satisfied (d), (e), or (s).

This finishes the proof of Proposition 12.8. �

12.6. Inductive Proof of the Neck Decomposition Theorem. We now finish the proof of the Neck De-

composition Theorem. The idea will be simply to continuously apply the covering propositions of the

previous subsections. We begin by applying each of the Propositions once in order to get a first covering:
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Proposition 12.12 (Induction Step 1). Let µ be a Borel measure and assume for each x ∈ B2 that
´ 4
0 βk(x, r)

2 dr
r ≤ Γ . Then for each ν, ǫ, δ > 0 with ǫ < ǫ(n, ν) and δ < δ(n, ν, ǫ) ∃ a covering

B1 ⊆ N ∪ C0 ∪
⋃

b

Brb(xb) ∪
⋃

s

Brs(xs) ∪
⋃

f

Brf (xf )

such that

(1) N = B2 \Brx(C) is a (k, δ, ǫ, ν)-neck region. In particular, µ(N ) ≤ C(n)δ and C0 is k-rectifiable

by Theorem 9.12.

(2) Brb(xb) satisfy the measure constraints µ(B2rb) < ν rkb .

(3) For each y ∈ Brs(xs) we have Dk(y, 2rs) < Γ− δ6.

(4) We have the content estimates Hk(C0) +
∑

rkb +
∑

rks < C(n, ǫ),

(5) We have the content estimate
∑

rkf ≤ C(n)ǫ.

Remark 12.13. The Neck Decomposition will follow by repeated applications of this Proposition. The balls

Brs(xs) have a drop in the distortion, and thus we can handle them later by an induction argument. The

balls Brf (xf ) we know nothing about, however this is a set with small k-content. Therefore in Inductive

Step 2 we will start over on them and all errors become a geometric series which converge.

Proof. We begin with the ball B1 and observe that it is either a (c), (d), (e) or (s) ball, as in Subsection

12.2. If B1 is a (d), (e) or (s) ball then the Proposition is immediately proved simply by applying either

Proposition 12.6 or Proposition 12.7. Thus we will assume B1 is a (c)-ball.

Now we can apply Proposition 12.8 in order to build a Neck Region N = B2 \ Brx(C) such that each

ball Brx(x) with rx > 0 is either a (d), (e) or (s)-ball. This gives us the covering

B1 ⊆ N ∪ C0 ∪
⋃

d

Brd(xd) ∪
⋃

e

Bre(xe) ∪
⋃

s

Brs(xs) . (12.12)

By applying the Neck Structure Theorem 9.12 we get the estimates

Hk(C0) +
∑

d

rkd +
∑

e

rke +
∑

s

rks ≤ C(n) . (12.13)

Now we wish to remove the (d) and (e) balls from this covering and control what is left. If we apply Propo-

sition 12.7 we can cover each e-ball Bre(xe) ⊆
⋃

sBres(xes) such that
∑

s r
k
es ≤ C(n)rke . In particular the

new collection of s balls satisfies the estimate

∑

rkes +
∑

rks ≤ C(n) +C(n)
∑

e

rke ≤ C(n) . (12.14)

Combining these (s)-balls together together gives the covering

B1 ⊆ N ∪ C0 ∪
⋃

d

Brd(xd) ∪
⋃

s

Brs(xs) , (12.15)

with the estimates

Hk(C0) +
∑

d

rkd +
∑

s

rks ≤ C(n) . (12.16)
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We can now apply Proposition 12.6 in order to cover each d-ball Brd(xd) ⊆
⋃

b Brdb(xdb)∪
⋃

f Brdf (xdf )

such that
∑

b r
k
eb ≤ C(n, ǫ)rkd and

∑

s r
k
df ≤ C(n)ǫ rkd . Combining all of these together we get the covering

B1 ⊆ N ∪ C0 ∪
⋃

b

Brb(xb) ∪
⋃

s

Brs(xs) ∪
⋃

f

Brf (xf ) , (12.17)

where
∑

b r
k
b +

∑

s r
k
s ≤ C(n, ǫ) and

∑

f r
k
f ≤ C(n)ǫ

∑

rkd ≤ C(n)ǫ as claimed. �

Our next step in our inductive proof to get rid of the (f)-balls in the covering. As there is only a small

content of (f)-balls, the trick is to count the errors which appear and see that form a geometric series. As

not everything goes away in the limit, we may be left with a Hk null set:

Proposition 12.14 (Induction Step 2.). Let µ be a Borel measure and assume for each x ∈ B2 that
´ 4
0 βk(x, r)

2 dr
r ≤ Γ . Then for each ν, ǫ, δ > 0 with ǫ < ǫ(n, ν) and δ < δ(n, ν, ǫ) ∃ a covering

B1 ⊆
⋃

a

(

Na ∩Bra

)

∪
⋃

a

(C0,a ∩Bra

)

∪ S− ∪
⋃

b

Brb(xb) ∪
⋃

s

Brs(xs)

such that

(1) Na = B2ra \ Brx(Ca) are (k, δ, ǫ, ν)-neck regions. In particular, µ(Na) ≤ C(n)δrka and C0,a are

k-rectifiable by Theorem 9.12.

(2) Brb(xb) satisfy the measure constraints µ(B2rb) < ν rkb .

(3) For each y ∈ Brs(xs) we have Dk(y, 2rs) < Γ− δ6.

(4) We have the measure estimate Hk(S−) = 0.

(5) We have the content estimates Hk(C0) +
∑

rka +
∑

rkb +
∑

rks < C(n, ǫ),

Proof. To get from Proposition 12.12 to Proposition 12.14 we will simply continually recover the f -balls.

Indeed, let us begin by applying Proposition 12.12 to B1 to get the covering

B1 ⊆ N ∪ C0 ∪
⋃

b

Br0
b
(xb) ∪

⋃

s

Br0s
(x0s) ∪

⋃

f

Br0
f
(x0f ) , (12.18)

where Hk(C0) +
∑

(r0b )
k +

∑

(r0s)
k < C(n, ǫ) and

∑

(r0f )
k ≤ C(n)ǫ. Let us now apply Proposition 12.12

to each f -ball Br0
f
(x0f ) in order to get the new covering

B1 ⊆
⋃

a

(

Na ∩Bra(x
1
a)
)

∪
⋃

a

(C0,a ∩Br1a(x
1
a)

)

∪
⋃

b

Br1
b
(x1b) ∪

⋃

s

Br1s
(x1s) ∪

⋃

f

Br1
f
(x1f ) , (12.19)

with

∑

a

(r1a)
k +

∑

b

(r1b )
k +

∑

s

(r1s)
k ≤ C(n, ǫ) + C(n, ǫ)

∑

f

(r0f )
k ≤ C(n, ǫ)(1 + C(n)ǫ) ,

∑

f

(r1f )
k ≤

(

C(n)ǫ
)2

. (12.20)
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Now we can again apply Proposition 12.12 to each f -ball Br1
f
(x1f ). Indeed, if we continue this N -times

then we get the covering

B1 ⊆
⋃

a

(

Na ∩BrNa
(xNa )

)

∪
⋃

a

(C0,a ∩BrNa (xN
a )

)

∪
⋃

b

BrN
b
(xNb ) ∪

⋃

s

BrNs
(xNs ) ∪

⋃

f

BrN
f
(xNf ) ,

(12.21)

with

∑

a

(rNa )k +
∑

b

(rNb )k +
∑

s

(rNs )k ≤ C(n, ǫ)

N
∑

j=0

(

C(n)ǫ
)j

,

∑

f

(rNf )k ≤
(

C(n)ǫ
)N

. (12.22)

Now for each N < M let us observe by construction that

{BrNa
(xNa )} ⊆ {BrMa

(xMa )} , {BrN
b
(xNb )} ⊆ {BrM

b
(xMb )} , {BrNs

(xNs )} ⊆ {BrMs
(xMs )} ,

⋃

BrM
f
(xMf ) ⊆

⋃

B2rN
f
(xNf ) . (12.23)

In particular, we can limit the (a),(b) and (s) covers and Hausdorff limit S− ≡ lim{BrN
f
(xNf )} to get the

covering

B1 ⊆
⋃

a

(

Na ∩Bra(xa)
)

∪
⋃

a

(C0,a ∩BrNa (xa)

)

∪
⋃

b

Brb(xb) ∪
⋃

s

Brs(xs) ∪ S− , (12.24)

with the estimates

∑

a

rka +
∑

b

rkb +
∑

s

rks ≤ C(n, ǫ)

∞
∑

j=0

(

C(n)ǫ
)j ≤ C(n, ǫ) ,

Hk(S−) = 0 . (12.25)

The last estimate follows because for each N we have S− ⊆ ⋃

f B2rN
f
(xNf ) with

∑

rNf < (C(n)ǫ)N → 0

if ǫ ≤ ǫ(n). �

Let us now finish the proof of the Neck Decomposition:

Proof of the Neck Decomposition Theorem 9.16. Our goal then is to remove the s-balls from Proposition

12.14 by iteratively applying the Proposition 12.14 some finite number of times. To begin, if Γ < δ6 then

Theorem 9.16 follows immediately from Proposition 12.14, as in this case there cannot be any s-balls. Now

assume we have proved Theorem 9.16 for Γ′ > 0, let us now prove it holds for Γ = Γ′ + δ6. So apply

Proposition 12.14 for Γ = Γ′ + δ6 in order to get the covering

B1 ⊆
⋃

a

(

Na ∩Bra

)

∪
⋃

a

(C0,a ∩Bra

)

∪
⋃

b

Brb(xb) ∪ S− ∪
⋃

s

Brs(xs) , (12.26)

where for each Brs(xs) we now have that Dk(y, 2rs) < Γ′. In particular, by our inductive hypothesis we

can now apply Theorem 9.16 to these balls in order to then conclude Theorem 9.16 for Γ = Γ′ + δ6, as

desired. As the amount we increased was some definite δ6 independent of Γ′, we can for any Γ > 0 simply

apply this procedure δ−6Γ times in order to then conclude Theorem 9.16 holds for all Γ. �
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