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A GENERALIZATION OF GELFAND-NAIMARK-STONE DUALITY TO

COMPLETELY REGULAR SPACES

G. BEZHANISHVILI, P. J. MORANDI, AND B. OLBERDING

Abstract. Gelfand-Naimark-Stone duality establishes a dual equivalence between the cat-

egory KHaus of compact Hausdorff spaces and the category ubaℓ of uniformly complete

bounded archimedean ℓ-algebras. We extend this duality to the category CReg of completely

regular spaces. This we do by first introducing basic extensions of bounded archimedean

ℓ-algebras and generalizing Gelfand-Naimark-Stone duality to a dual equivalence between

the category ubasic of uniformly complete basic extensions and the category Comp of com-

pactifications of completely regular spaces. We then introduce maximal basic extensions

and prove that the subcategory mbasic of ubasic consisting of maximal basic extensions

is dually equivalent to the subcategory SComp of Comp consisting of Stone-Čech compacti-

fications. This yields the desired dual equivalence for completely regular spaces since CReg

is equivalent to SComp.

1. Introduction

Let CReg be the category of completely regular spaces and continuous maps, and let KHaus

be its full subcategory consisting of compact Hausdorff spaces. Let also baℓ be the category

of bounded archimedean ℓ-algebras and unital ℓ-algebra homomorphisms, and let ubaℓ be

its full subcategory consisting of uniformly complete objects in baℓ (see Section 2 for defini-

tions). There is a contravariant functor C∗ ∶ CReg → baℓ sending a completely regular space

X to the ℓ-ring C∗(X) of bounded continuous real-valued functions, and a contravariant

functor Y ∶ baℓ → CReg sending A ∈ baℓ to the space of maximal ℓ-ideals. The functors C∗

and Y define a contravariant adjunction between CReg and baℓ such that C∗(X) ∈ ubaℓ

for each X ∈ KHaus and Y (A) ∈ KHaus for each A ∈ baℓ. Thus, the contravariant adjunction

between CReg and baℓ restricts to a dual equivalence between KHaus and ubaℓ. This dual

equivalence is known as Gelfand-Naimark-Stone duality (see [11, 18, 12, 14, 2]). We note

that if X ∈ KHaus, then every continuous real-valued function on X is bounded. Therefore,

C∗(X) is equal to the ℓ-ring C(X) of all continuous real-valued functions. Thus, the functor

C∗ ∶ CReg → baℓ restricts to the functor C ∶ KHaus → ubaℓ, and we arrive at the following

commutative diagram.

CReg baℓ

KHaus ubaℓ

C∗

Y

C

Y

2010 Mathematics Subject Classification. 54D15; 54D35; 54C30; 06F25; 13J25.
Key words and phrases. Completely regular space; compactification, continuous real-valued function; ℓ-

algebra.
1

http://arxiv.org/abs/1812.07599v2


2 G. BEZHANISHVILI, P. J. MORANDI, AND B. OLBERDING

The purpose of this article is to extend Gelfand-Naimark-Stone duality to completely reg-

ular spaces. For this it is not sufficient to only work with the ℓ-ring C∗(X). The space of

maximal ℓ-ideals of C∗(X) is the Stone-Čech compactification βX , and hence X is not recov-

erable as the space of maximal ℓ-ideals of C∗(X). To recover X additional data is required,

which we show can be provided by also working with the ℓ-ring B(X) of bounded functions

on X . The idempotents of B(X) are exactly the characteristic functions of subsets of X , so

the boolean algebra Id(B(X)) of idempotents of B(X) is isomorphic to the powerset ℘(X).

The singletons {x} are the atoms of ℘(X), which correspond to the primitive idempotents

of B(X). Therefore, X is in bijective correspondence with the primitive idempotents of

B(X). Thus, to recover the topology on X it is sufficient to give an algebraic description

of the embedding C∗(X) → B(X). Since C∗(X) is isomorphic to C(βX), it suffices to give

an algebraic description of the monomorphism C(βX) → B(X) arising from the embedding

X → βX . More generally, given a compactification e ∶ X → Y , we will give an algebraic

description of the monomorphism C(Y ) → B(X) arising from e (it is a monomorphism since

e[X] is dense in Y ).

For this we will first characterize the algebras B(X) as Dedekind complete (bounded)

archimedean ℓ-algebras in which the boolean algebra of idempotents is atomic. We term such

algebras basic algebras, and prove that the category balg of basic algebras and the unital

ℓ-algebra homomorphisms between them that are normal (meaning that they preserve all

existing joins, and hence meets) is dually equivalent to the category Set of sets and functions.

This provides a ring-theoretic version of Tarski duality between Set and the category CABA

of complete and atomic boolean algebras and complete boolean homomorphisms.

We next extend the focus from algebras in baℓ to what we call basic extensions. These

are extensions α ∶ A → B such that A ∈ baℓ, B ∈ balg , and α[A] is join-meet dense in

B. Each compactification e ∶ X → Y gives rise to the basic extension e♭ ∶ C(Y ) → B(X).

In Theorem 6.3 we prove that this correspondence extends to a dual adjunction between

the category Comp of compactifications and the category basic of basic extensions, which

restricts to a dual equivalence between Comp and the full subcategory ubasic of basic

consisting of uniformly complete basic extensions.

We further consider the full subcategory SComp of Comp consisting of Stone-Čech com-

pactifications, and prove that the dual equivalence between Comp and ubasic restricts to

a dual equivalence between SComp and the full subcategory mbasic of ubasic consisting

of maximal basic extensions, which can be characterized as those uniformly complete basic

extensions α ∶ A → B for which the only elements of B that are both a join and meet of

elements from α[A] are the elements of α[A] itself. Since the category CReg of completely

regular spaces is equivalent to SComp, we conclude that the maximal basic extensions provide

an algebraic counterpart of the completely regular spaces.

This article can be viewed as a ring-theoretic companion to our article [6], in which we

show that the category of completely regular spaces is dually equivalent to the category of

what we call maximal de Vries extensions in [6], a certain class of extensions of complete

Boolean algebras equipped with a proximity relation. In so doing we extend de Vries duality

to completely regular spaces in direct analogy with how we extend Gelfand-Naimark-Stone
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duality to completely regular spaces in the present paper. In a future paper, we will make

the analogy between these two settings more precise. For the present, however, these two

dualities for completely regular spaces remain independent of each other in our approaches.

The article is organized as follows. In Section 2 we recall Gelfand-Naimark-Stone duality

and describe its restriction to the full subcategories of KHaus consisting of Stone spaces and

extremally disconnected spaces. Section 3 introduces basic algebras and their fundamental

properties. We prove that balg is dually equivalent to Set, which is a ring-theoretic version of

Tarski duality between CABA and Set. In Section 4 we define basic extensions and uniformly

complete basic extensions, and show that the category ubasic of uniformly complete basic

extensions is a reflective subcategory of the category basic of basic extensions. We also define

a functor from Comp to basic, and show that it lands in ubasic. In Section 5 we produce a

functor going the other way, from basic to Comp. With these functors in place, we show in

Section 6 that there is a dual adjunction between basic and Comp, which restricts to a dual

equivalence between ubasic and Comp. Finally, building on the previous sections, we obtain

in Section 7 our generalization of Gelfand-Naimark-Stone duality between the category CReg

of completely regular spaces and the category mbasic of maximal basic extensions, a special

class of basic extensions that we describe in detail in Section 7.

2. Gelfand-Naimark-Stone duality

In this section we recall Gelfand-Naimark-Stone duality. This requires recalling a number

of basic facts about ordered rings and algebras. For general references we use [7, 12, 14, 15].

For a detailed study of the category baℓ, which plays a central role for our purposes, we

refer to [2].

For a completely regular space X , let C(X) be the ring of continuous real-valued functions,

and let C∗(X) be the subring of C(X) consisting of bounded functions. We note that if X

is compact, then C∗(X) = C(X). There is a natural partial order ≤ on C(X) lifted from R.

Then C∗(X) with the restriction of ≤ is a bounded archimedean ℓ-algebra, where we recall

that

● A ring A with a partial order ≤ is an ℓ-ring (lattice-ordered ring) if (A,≤) is a lattice,

a ≤ b implies a + c ≤ b + c for each c, and 0 ≤ a, b implies 0 ≤ ab.

● An ℓ-ring A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n ⋅ 1 (that is, 1

is a strong order unit).

● An ℓ-ring A is archimedean if for each a, b ∈ A, whenever na ≤ b for each n ∈ N, then

a ≤ 0.

● An ℓ-ring A is an ℓ-algebra if it is an R-algebra and for each 0 ≤ a ∈ A and 0 ≤ r ∈ R

we have ra ≥ 0.

● Let baℓ be the category of bounded archimedean ℓ-algebras and unital ℓ-algebra

homomorphisms.

Convention 2.1. For a continuous map ϕ ∶ X → Y between completely regular spaces let

ϕ∗ ∶ C∗(Y )→ C∗(X) be given by ϕ∗(f) = f ○ ϕ.
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Then ϕ∗ is a unital ℓ-algebra homomorphism, and we have a contravariant functor C∗ ∶
CReg → baℓ which sends each X ∈ CReg to the ℓ-algebra C∗(X), and each continuous map

ϕ ∶ X → Y to the unital ℓ-algebra homomorphism ϕ∗ ∶ C∗(Y ) → C∗(X). We denote the

restriction of C∗ to KHaus by C since for X ∈ KHaus we have C∗(X) = C(X).

The functor C∗ has a contravariant adjoint which is defined as follows. For A ∈ baℓ and

a ∈ A, we recall that the absolute value of a is defined as ∣a∣ = a ∨ (−a), that an ideal I of

A is an ℓ-ideal if ∣a∣ ≤ ∣b∣ and b ∈ I imply a ∈ I, and that ℓ-ideals are exactly the kernels of

ℓ-algebra homomorphisms. Let YA be the space of maximal ℓ-ideals of A, whose closed sets

are exactly sets of the form

Zℓ(I) = {M ∈ YA ∣ I ⊆M},

where I is an ℓ-ideal of A. The space YA is often referred to as the Yosida space of A, and

it is well known that YA ∈ KHaus.

Convention 2.2. For a unital ℓ-algebra homomorphism α ∶ A→ B let α∗ ∶ YB → YA be given

by α∗(M) = α−1(M).

Then α∗ is continuous, and we have a contravariant functor Y ∶ baℓ → CReg which sends

each A ∈ baℓ to the compact Hausdorff space YA, and each unital ℓ-algebra homomorphism

α ∶ A → B to the continuous map α∗ ∶ YB → YA.

For A ∈ baℓ and X ∈ CReg, we have hombaℓ(A,C∗(X)) ≃ homCReg(X,YA). Thus, Y and

C∗ define a contravariant adjunction between baℓ and CReg. As we already pointed out,

YA ∈ KHaus. In fact, each compact Hausdorff space is homeomorphic to YA for some A ∈ baℓ.

To see this, for X ∈ CReg, associate with each x ∈ X the maximal ℓ-ideal

Mx ∶= {f ∈ C∗(X) ∣ f(x) = 0}.

Then ξX ∶X → YC∗(X) given by ξX(x) =Mx is an embedding, and it is a homeomorphism iff

X is compact.

To describe which objects of baℓ are isomorphic to C∗(X) for some X , we observe that

for a maximal ℓ-ideal M of A ∈ baℓ, we have A/M ≃ R. Therefore, with each a ∈ A, we can

associate fa ∈ C(YA) given by fa(M) = a+M . Then ζA ∶ A→ C(YA) given by ζA(a) = fa is a

unital ℓ-algebra homomorphism, which is a monomorphism since the intersection of maximal

ℓ-ideals is 0. It is an isomorphism iff the norm on A defined by

∣∣a∣∣ = inf{r ∈ R ∣ ∣a∣ ≤ r}

is complete. In such a case we call A uniformly complete, and denote the full subcategory of

baℓ consisting of uniformly complete ℓ-algebras by ubaℓ. Thus, A ∈ ubaℓ iff A is isomorphic

to C∗(X) for some X ∈ KHaus. Consequently, the contravariant adjunction (C∗, Y ) between

CReg and baℓ restricts to a dual equivalence (C,Y ) between KHaus and ubaℓ, and we arrive

at the following celebrated result:

Theorem 2.3 (Gelfand-Naimark-Stone duality). The categories KHaus and ubaℓ are dually

equivalent, and the dual equivalence is established by the functors C and Y .

Remark 2.4. While Stone worked with real-valued functions, Gelfand and Naimark worked

with complex-valued functions. As a result, Gelfand-Naimark duality is between KHaus and
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the category CC∗Alg of commutative C∗-algebras. However, ubaℓ is equivalent to CC∗Alg,

and the equivalence is established by the following functors. The functor ubaℓ → CC∗Alg

associates to each A ∈ ubaℓ its complexification A ⊗R C; and the functor CC∗Alg → ubaℓ

associates to each A ∈ CC∗Alg its subalgebra of self-adjoint elements; for further details see,

e.g., [2, Sec. 7].

We recall that a subset of a topological space X is clopen if it is closed and open, that

X is zero-dimensional if it has a basis of clopens, and that X is extremally disconnected if

the closure of each open is clopen. Zero-dimensional compact Hausdorff spaces are usually

referred to as Stone spaces because, by the celebrated Stone duality, they provide the dual

counterpart of boolean algebras.

Let Stone be the full subcategory of KHaus consisting of Stone spaces, and let ED be the

full subcategory of Stone consisting of extremally disconnected objects of KHaus. Gelfand-

Naimark-Stone duality yields interesting restrictions to Stone and ED.

We recall that a commutative ring A is a clean ring provided each element of A is the

sum of an idempotent and a unit. Let cubaℓ be the full subcategory of ubaℓ consisting of

clean rings. By [1, Thm. 2.5], a compact Hausdorff space X is a Stone space iff C(X) is a

clean ring. This together with Gelfand-Naimark-Stone duality yields:

Corollary 2.5. The categories Stone and cubaℓ are dually equivalent, and the dual equiv-

alence is established by restricting the functors C and Y .

We recall that A ∈ baℓ is Dedekind complete if each subset of A bounded above has a

least upper bound, and hence each subset bounded below has a greatest lower bound. Let

dbaℓ be the full subcategory of baℓ consisting of Dedekind complete objects in baℓ. By

[3, Thm. 3.3], A ∈ baℓ is Dedekind complete iff A ∈ ubaℓ and A is a Baer ring, where we

recall that a commutative ring is a Baer ring provided each annihilator ideal is generated by

an idempotent. Consequently, dbaℓ is a full subcategory of cubaℓ. By the Stone-Nakano

theorem [18, 19, 16], for X ∈ KHaus we have C(X) is Dedekind complete iff X ∈ ED. This

together with Gelfand-Naimark-Stone duality yields:

Corollary 2.6. The categories ED and dbaℓ are dually equivalent, and the dual equivalence

is established by restricting the functors C and Y .

Let BA be the category of boolean algebras and boolean homomorphisms, and let CBA

be the full subcategory of BA consisting of complete boolean algebras. By Stone duality

for boolean algebras, BA is dually equivalent to Stone and CBA is dually equivalent to ED.

Thus, we arrive at the following diagram:
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baℓ CReg

ubaℓ KHaus

cubaℓ Stone BA

dbaℓ ED cBA

Y

C∗

Y

C

Our goal is to generalize Gelfand-Naimark-Stone duality to compactifications and com-

pletely regular spaces. To achieve this, we require new concepts of basic algebras and basic

extensions.

3. Basic algebras and a ring-theoretic version of Tarski duality

Tarski duality establishes a dual equivalence between the category Set of sets and functions

and the category CABA of complete and atomic boolean algebras and complete boolean

homomorphisms. The functor ℘ ∶ Set → CABA sends a set X to its powerset ℘(X), and
a function ϕ ∶ X → Y to the boolean homomorphism ϕ−1 ∶ ℘(Y ) → ℘(X). The functor

At ∶ CABA → Set sends B ∈ CABA to the set At(B) of atoms of B. If σ ∶ B → C is

a complete boolean homomorphism, then At sends σ to σ∗ ∶ At(C) → At(B), defined by

σ∗(c) = ⋀{b ∈ B ∣ c ≤ σ(b)}.
We next use Corollary 2.6 to give a ring-theoretic version of Tarski duality. For A ∈ baℓ,

let Id(A) be the boolean algebra of idempotents of A. We recall that an idempotent e of A

is primitive if e ≠ 0 and 0 ≤ f ≤ e for some f ∈ Id(A) implies f = 0 or f = e. Thus, primitive

idempotents are exactly the atoms of the boolean algebra Id(A). Let Prim(A) be the set of

primitive idempotents of A.

Let A ∈ dbaℓ. Then Id(A) is complete. By Corollary 2.6, YA ∈ ED and α ∶ A → C(YA) is

an isomorphism. Moreover, Id(A) is isomorphic to the boolean algebra Clop(YA) of clopen

subsets of YA. Primitive idempotents then correspond to isolated points of YA.

Convention 3.1. Let XA be the set of isolated points of YA.

As follows from the next lemma, the correspondence between primitive idempotents of A

and isolated points of YA is obtained by associating with each primitive idempotent e the

maximal ℓ-ideal (1 − e)A.

Lemma 3.2. Let A ∈ dbaℓ and 0 ≠ e ∈ Id(A). The following are equivalent.

(1) e is a primitive idempotent of A.

(2) (1 − e)A is a maximal ℓ-ideal of A.

(3) For each a ∈ A, there is r ∈ R such that ae = re.

Consequently, XA = {(1 − e)A ∣ e ∈ Prim(A)}.

Proof. (1) ⇒ (2). This is proved in [5, Lem. 4.1].
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(2) ⇒ (3). Since (1 − e)A is a maximal ℓ-ideal, A/(1 − e)A ≃ R. Therefore, a + (1 − e)A =
r + (1− e)A for some r ∈ R. So a− r ∈ (1− e)A. Since 1− e is an idempotent, this yields that

(a − r)(1 − e) = (a − r). Thus, (a − r)e = 0, and hence ae = re.

(3) ⇒ (1). Let f ∈ Id(A) and f ≤ e. There is r ∈ R such that fe = re. Since f ≤ e and

e, f ∈ Id(A), we have f = ef = re. Therefore, r = 0 or r = 1. Consequently, f = 0 or f = e,

proving that e is primitive.

To prove the last statement of the lemma, since A ∈ dbaℓ, we have A ≅ C(YA). Therefore,

idempotents of A correspond to characteristic functions of clopens of YA. So if e ∈ Id(A),

then the sets Zℓ(e) and Zℓ(1 − e) are complementary clopens. Now suppose e is a primitive

idempotent. By the equivalence of (1) and (2), (1−e)A is a maximal ℓ-ideal, hence Zℓ(1−e)
is a singleton, whose complement is Zℓ(e). This yields that (1 − e)A is an isolated point of

YA. Conversely, if N is an isolated point of YA, then YA ∖ {N} is clopen. Since Clop(YA)

is isomorphic to Id(A), there is e ∈ Id(A) such that YA ∖ {N} = Zℓ(e). But then {N} =

Zℓ(1−e) = {(1−e)A}, so e is a primitive idempotent by the equivalence of (1) and (2). Thus,

XA = {(1 − e)A ∣ e ∈ Prim(A)}. �

Let A ∈ baℓ. It follows from the proof of [5, Thm. 4.3] that A ≅ B(X) for some set

X iff A ∈ dbaℓ and Id(A) is atomic. For the reader’s convenience we give a proof of this

in Proposition 3.4, along with another equivalent condition that A ≅ B(XA). For this we

require the following definition.

Definition 3.3. For A ∈ baℓ, define ϑA ∶ A→ B(XA) as the composition ϑA = κA ○ ζA where

ζA ∶ A → C(YA) is the Yosida representation and κA ∶ C(YA) → B(XA) sends f ∈ C(YA) to

its restriction to XA. Since both ζA and κA are morphisms in baℓ, so is ϑA.

For a set X and x ∈ X let

Nx = {f ∈ B(X) ∣ f(x) = 0}.

Note that if X ∈ CReg, then Mx = Nx ∩C∗(X).

Proposition 3.4. The following are equivalent for A ∈ baℓ.

(1) A ∈ dbaℓ and Id(A) is atomic.

(2) There is a set X such that A ≅ B(X).

(3) ϑA ∶ A→ B(XA) is an isomorphism.

Proof. (3) ⇒ (1). We have B(XA) ∈ baℓ and infinite joins and meets of bounded subsets of

B(XA) are pointwise, hence exist in B(XA). Therefore, B(XA) is Dedekind complete, hence

B(XA) ∈ dbaℓ. In addition, idempotents of B(XA) are exactly the characteristic functions

of subsets of XA, and primitive idempotents the characteristic functions of singletons. Thus,

the boolean algebra of idempotents of B(XA) is isomorphic to the powerset ℘(XA). It follows

that Id(B(XA)) is atomic.

(1)⇒ (2). Since A ∈ dbaℓ, YA is extremally disconnected and A ≅ C(YA) by Corollary 2.6.

So since Id(A) is atomic, XA is dense in YA. Therefore, YA is homeomorphic to the Stone-

Čech compactification β(XA) of the discrete space XA (see, e.g., [12, p. 96]). Thus, C(YA) ≅

C(β(XA)) ≅ C∗(XA). Since XA is discrete, C∗(XA) = B(XA), yielding that A ≅ B(XA).
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(2) ⇒ (3). We may assume that A = B(X). Then the primitive idempotents of A are

characteristic functions of points of X . We have Nx = (1 − χ{x})A, so XA = {Nx ∣ x ∈ X}

by Lemma 3.2. Let f ∈ A. Then ϑA(f)(Nx) = r iff f − r ∈ Nx iff f(x) = r. From this it

follows that ϑA is 1-1. To see that ϑA is onto, since A is Dedekind complete, ζA ∶ A→ C(YA)

is an isomorphism. In addition, since Id(A) is atomic, as we already pointed out, YA is

homeomorphic to the Stone-Čech compactification of XA. Therefore, κA ∶ C(YA) → B(XA)

is onto. Thus, ϑA is onto, hence an isomorphism. �

This proposition motivates the following definition.

Definition 3.5. We call A ∈ baℓ a basic algebra if A is Dedekind complete and Id(A) is

atomic.

Remark 3.6. It is shown in [5, Thm. 4.3] that for A ∈ dbaℓ, the conditions of Proposition 3.4

are also equivalent to A having essential socle.

We recall that a unital ℓ-algebra homomorphism α ∶ A→ B between A,B ∈ dbaℓ is normal

if it preserves all existing joins (and hence all existing meets). Let balg be the category of

basic algebras and normal ℓ-algebra homomorphisms.

Convention 3.7. For a map ϕ ∶X → Y , define ϕ+ ∶ B(Y )→ B(X) by ϕ+(f) = f ○ ϕ.

Remark 3.8. If X,Y ∈ CReg and ϕ ∶ X → Y is continuous, then ϕ∗ ∶ C∗(Y )→ C∗(X) is the

restriction of ϕ+ ∶ B(Y )→ B(X).

It is easy to see that ϕ+ is a normal ℓ-algebra homomorphism. Thus, we have a contravari-

ant functor B ∶ Set → balg which associates with each set X the basic algebra B(X), and

with each map ϕ ∶ X → Y the normal ℓ-algebra homomorphism ϕ+ ∶ B(Y )→ B(X).

The contravariant functor X ∶ balg → Set is defined as follows. With each basic algebra

A we associate the set XA of isolated points of YA. To define the action of the functor on

morphisms, we recall that a continuous map ϕ ∶ X → Y is skeletal if F nowhere dense in Y

implies that ϕ−1(F ) is nowhere dense in X , and that ϕ is quasi-open if U nonempty open in

X implies that the interior of ϕ(U) is nonempty in Y . It is well known that the two concepts

of skeletal and quasi-open maps coincide in KHaus. Let α ∶ A → B be a normal ℓ-algebra

homomorphism. By [4, Thm. 7.6], α∗ ∶ YB → YA is skeletal. Therefore, it is quasi-open, and

hence α∗ sends isolated points of YB to isolated points of YA. Thus, the restriction of α∗ to

XB is a well-defined map from XB to XA.

Convention 3.9. Let α+ ∶XB →XA be the restriction of α∗ ∶ YB → YA.

Consequently, we have a contravariant functor X ∶ balg → Set which associates with each

A ∈ balg the set XA and with each normal ℓ-algebra homomorphism α ∶ A → B the map

α+ ∶ XB →XA.

Theorem 3.10. The categories Set and balg are dually equivalent, and the dual equivalence

is established by the functors B and X.
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Proof. We define a natural transformation η from the identity functor on Set to XB by

ηX(x) = Nx. Given a function ϕ ∶ X →X ′, we have the following diagram.

X XB(X)

X ′ XB(X′)

ηX

ϕ (ϕ+)+

ηX′

To see that the diagram is commutative, let x ∈ X . Then ηX′(ϕ(x)) = Nϕ(x). Also,

(ϕ+)+(ηX(x)) = (ϕ
+)+(Nx) = (ϕ

+)−1(Nx) = {f ∈ B(X
′) ∣ ϕ+(f) ∈ Nx}

= {f ∈ B(X ′) ∣ f(ϕ(x)) = 0} = Nϕ(x).

Thus, ηX′ ○ϕ = (ϕ+)+ ○ ηX , and hence η is a natural transformation. Since ηX is a bijection,

we conclude that η is a natural isomorphism.

We show that ϑ is a natural transformation from the identity functor on balg to BX .

Given a normal homomorphism α ∶ A→ A′, we have the following diagram.

A B(XA)

A′ B(XA′)

ϑA

α (α+)+

ϑA′

The diagram factors into the larger diagram.

A C(YA) B(XA)

A′ C(YA′) B(XA′)

ζA

α

ϑA

(α∗)∗

κA

(α+)+

ζA′

ϑA′

κA′

We have (α∗)∗ ○ ζA = ζA′ ○α by Gelfand-Naimark-Stone duality, so the left square commutes.

To see that the right square commutes, let f ∈ C(YA). Then

(α+)
+(κA(f)) = (α+)

+(f ∣XA
) = (f ∣XA

) ○ α+.

On the other hand,

(κA′ ○ (α∗)∗)(f) = κA′(f ○ α∗) = (f ○α∗)∣XA′
.

For M ∈XA′ , we have

(f ∣XA
○ α+)(M) = f(α∗(M)) = (f ○ α∗)∣XA

(M),

so f ∣XA
○ α+ = (f ○ α∗)∣XA′

, and hence the right square commutes. Therefore, (α+)+ ○ ϑA =

ϑA′ ○α, and so ϑ is a natural transformation. It is a natural isomorphism by Proposition 3.4.

Thus, B and X yield a dual equivalence of Set and balg . �
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Remark 3.11. The duality of Theorem 3.10 relates to Tarski duality as follows. Define a

covariant functor Id ∶ balg → CABA by sending each A ∈ balg to the boolean algebra Id(A)

and a normal homomorphism α ∶ A→ B to its restriction to Id(A). It is easy to see that Id

is well defined, and we have the following diagram.

Set

balg CABA

℘

B

Id

X

At

The functor ℘ ∶ Set → CABA is the composition Id ○B, and the composition B ○At ∶ CABA →
balg takes C ∈ CABA and sends it to B(X), where X is the set of isolated points of the

Stone space of C, so B ○At ≅ Id.

4. Compactifications and basic extensions

We recall (see, e.g., [10, Sec. 3.5]) that a compactification of a completely regular space

X is a pair (Y, e), where Y is a compact Hausdorff space and e ∶ X → Y is a topological

embedding such that the image e[X] is dense in Y . Suppose that e ∶ X → Y and e′ ∶ X → Y ′

are compactifications. As usual, we write e ≤ e′ provided there is a continuous map f ∶ Y ′ → Y

with f ○ e′ = e.

X Y ′

Y

e′

e
f

The relation ≤ is reflexive and transitive. Two compactifications e and e′ are said to be

equivalent if e ≤ e′ and e′ ≤ e. It is well known that e and e′ are equivalent iff there is a

homeomorphism f ∶ Y ′ → Y with f ○e′ = e. The equivalence classes of compactifications of X

form a poset whose largest element is the Stone-Čech compactification s ∶ X → βX . There

are many constructions of βX .

Convention 4.1. We will follow Stone [17] in viewing βX as the maximal ideals of C∗(X).

Since maximal ideals of C∗(X) are the same as maximal ℓ-ideals (see [13, Lem. 1.1] or [2,

Prop. 4.2]), throughout this paper we identify βX with YC∗(X), and hence the embedding

s ∶ X → βX sends x to Mx = {f ∈ C∗(X) ∣ f(x) = 0}.

In the classical setting, one considers compactifications of a fixed base space X . The

following category of compactifications, without a fixed base space, was studied in [6].

Definition 4.2. Let Comp be the category whose objects are compactifications e ∶ X → Y

and whose morphisms are pairs (f, g) of continuous maps such that the following diagram

commutes.

X Y

X ′ Y ′

e

f g

e′
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The composition of two morphisms (f1, g1) and (f2, g2) is defined to be (f2 ○ f1, g2 ○ g1).

X1 Y1

X2 Y2

X3 Y3

e1

f2○f1

f1 g1

g2○g1
e2

f2 g2

e3

It is straightforward to see that a morphism (f, g) in Comp is an isomorphism iff both f

and g are homeomorphisms.

Convention 4.3. For a compactification e ∶ X → Y let e♭ ∶ C(Y ) → B(X) be given by

e♭(f) = f ○ e.

Remark 4.4. We have that e♭ = ι ○ e∗ where ι ∶ C∗(X)→ B(X) is the inclusion map.

Proposition 4.5. If e ∶ X → Y is a compactification, then e♭ ∶ C(Y )→ B(X) is a monomor-

phism in baℓ, and each element of B(X) is a join of meets of elements from e♭[C(Y )].

Proof. That the ℓ-algebra homomorphism e♭ ∶ C(Y )→ B(X) is 1-1 follows from the fact that

the image of e is dense in Y . Next we show that every primitive idempotent in B(X) is a

meet of elements from e♭[C(Y )]. Let b ∈ Prim(B(X)). Then b is the characteristic function

of a singleton set, so b = χ{x} for some x ∈X . Let

S = {e♭(g) ∣ 0 ≤ g ∈ C(Y ) and g(e(x)) = 1}.

We claim χ{x} = ⋀S. It is clear that χ{x} ≤ ⋀S. Suppose by way of contradiction that

χ{x} ≠ ⋀S. Then there exist x′ ∈ X and ε > 0 such that x ≠ x′ and g(e(x′)) > ε for

all 0 ≤ g ∈ C(Y ) with g(e(x)) = 1. Since e is 1-1, we have e(x) ≠ e(x′), and since Y is

completely regular, there exists 0 ≤ g ∈ C(Y ) with g(e(x)) = 1 and g(e(x′)) = 0. This

contradiction shows that χ{x} = ⋀S. Therefore, every primitive idempotent in B(X) is a

meet of elements from e♭[C(Y )].

Let 0 ≤ c ∈ B(X). By Lemma 3.2, for each b ∈ Prim(B(X)) there is rb ∈ R such that

cb = rbb. Since Id(B(X)) is atomic, we have 1 = ⋁Prim(B(X)), and so since c ≥ 0,

c = c ⋅ 1 = c ⋅ ⋁{b ∈ Prim(B(X))}

=⋁{cb ∣ b ∈ Prim(B(X))}

=⋁{rbb ∣ b ∈ Prim(B(X))}.

Since c ≥ 0, each rb ≥ 0, and as the primitive idempotent b is a meet of elements from

e♭[C(Y )], so is rbb. This yields that every positive element of B(X) is a join of meets of

elements from e♭[C(Y )].

To finish the argument, let c ∈ B(X). Then there is s ∈ R with c + s ≥ 0. By the previous

argument, we may then write c+s = ⋁{rbb ∣ b ∈ Prim(B(X))} for some 0 ≤ rb ∈ R. Therefore,

c = (c + s) − s =⋁{rbb − s ∣ b ∈ Prim(B(X))}.
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Since rbb is a meet of elements from e♭[C(Y )] and s is a scalar, rbb − s is also a meet of

elements from e♭[C(Y )], Thus, every element of B(X) is a join of meets of elements from

e♭[C(Y )]. �

Definition 4.6. Let α ∶ A→ B be a monomorphism in baℓ.

(1) We say α[A] is join-meet dense in B if each element of B is a join of meets from

α[A].

(2) We say α[A] is meet-join dense in B if each element of B is a meet of joins from

α[A].

Remark 4.7. Let α ∶ A→ B be a monomorphism in baℓ with B a basic algebra.

(1) α[A] is join-meet dense in B iff each primitive idempotent of B is a meet from α[A].

The right-to-left implication follows from the proof of Proposition 4.5. For the left-

to-right implication, let b ∈ Prim(B). Then b is a join of meets of elements from α[A],

so there is a meet c of elements from α[A] with 0 < c and c ≤ b. Because 0 ≤ 1 − b,
we have 0 ≤ c(1 − b) ≤ b(1 − b) = 0. Therefore, c(1 − b) = 0, so c = cb. By Lemma 3.2,

cb = rb for some nonzero scalar r. Thus, r > 0. This implies b = r−1c is a meet of

elements from α[A].

(2) α[A] is join-meet dense in B iff α[A] is meet-join dense in B. For the left-to-right

implication, let b ∈ B. We may write −b = ⋁{⋀{α(aij) ∣ j ∈ J} ∣ i ∈ I} for some aij ∈ A.

Then b = ⋀{⋁{α(−aij) ∣ j ∈ J} ∣ i ∈ I}, which shows b is a meet of joins from α[A].

The reverse implication is similar.

Proposition 4.5 motivates the following key definition of the article.

Definition 4.8. Let A ∈ baℓ, B ∈ balg , and α ∶ A→ B be a monomorphism in baℓ. We call

α ∶ A → B a basic extension if α[A] is join-meet dense in B.

Example 4.9.

(1) If e ∶ X → Y is a compactification, then e♭ ∶ C(Y ) → B(X) is a basic extension by

Proposition 4.5.

(2) If X is completely regular, then the inclusion map ι ∶ C∗(X) → B(X) is a basic

extension. To see this, let s ∶ X → βX be the Stone-Čech compactification of X . By

(1), s♭ is a basic extension. Since s♭ is an isomorphism from C(βX) to C∗(X), we

see that ι is a basic extension. In fact, s♭ is isomorphic to ι in the category of basic

extensions described in Definition 4.10.

(3) If Y ∈ KHaus, it follows from (1) that the inclusion map ι ∶ C(Y ) → B(Y ) is a basic

extension.

(4) If A ∈ baℓ, it follows from [5, Thm. 2.9] that ϑA ∶ A→ B(YA) is a basic extension.

Definition 4.10.
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(1) Let basic be the category whose objects are basic extensions and whose morphisms

are pairs (ρ,σ) of morphisms in baℓ with σ normal and σ ○ α = α′ ○ ρ.

A B

A′ B′

α

ρ σ

α′

The composition of two morphisms (ρ1, σ1) and (ρ2, σ2) is defined to be (ρ2 ○ ρ1, σ2 ○
σ1).

A1 B1

A2 B2

A3 B3

ρ2○ρ1

α1

ρ1 σ1

σ2○σ1

α2

ρ2 σ2

α3

(2) Let ubasic be the full subcategory of basic consisting of the basic extensions α ∶
A→ B where A ∈ ubaℓ.

Theorem 4.11. ubasic is a reflective subcategory of basic.

Proof. It is well known (see, e.g., [2, p. 447]) that ubaℓ is a reflective subcategory of baℓ,

and the reflector sends A ∈ baℓ to C(YA). If α ∶ A→ C is a morphism in baℓ with C ∈ ubaℓ,

let α̂ ∶ C(YA)→ C be the unique morphism in baℓ with α̂ ○ ζA = α.
Define a functor r ∶ basic → ubasic as follows. If α ∶ A → B is a basic extension, then

α̂[C(YA)] is join-meet dense in B because it contains α[A]. Thus, α̂ ∶ C(YA)→ B is a basic

extension. We set r(α) = α̂. If (ρ,σ) is a morphism in basic, we set r(ρ,σ) = ((ρ∗)∗, σ). To

see that ((ρ∗)∗, σ) is a morphism in basic, consider the following diagram.

A B

C(YA)

C(YA′)

A′ B′

α

ζA

ρ σ(ρ∗)∗

α̂

α̂′

α′

ζA′

We have

σ ○ α̂ ○ ζA = σ ○α = α′ ○ ρ = α̂′ ○ ζA′ ○ ρ = α̂′ ○ (ρ∗)∗ ○ ζA.

Since ζA is epic (see, e.g., [2, Lem. 2.9]), σ○α̂ = α̂′○(ρ∗)∗. Therefore, ((ρ∗)∗, σ) is a morphism

in basic. Since C is a functor, it is straightforward to see that r is a functor. For a basic
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extension α ∶ A→ B, we let rα be the morphism (ζA,1B) from α to α̂, where 1B is the identity

on B. Suppose that (ρ,σ) is a morphism to an object α′ ∶ A′ → B′ of ubasic, so A′ ∈ ubaℓ.

A B

C(YA) B

A′ B′

α

ζA

ρ

1B

σ
α̂

ρ̂ σ

α′

Then (ρ̂, σ) is a morphism in ubasic, and since ρ̂ is the unique morphism satisfying ρ̂○ζA = ρ,
it follows that (ρ̂, σ) is the unique morphism satisfying (ρ̂, σ) ○ (ζA,1B) = (ρ,σ). This proves
that ubasic is a reflective subcategory of basic. �

Define a contravariant functor E ∶ Comp → basic as follows. If e ∶ X → Y is a compactifi-

cation, define E(e) to be the basic extension e♭ ∶ C(Y ) → B(X). For a morphism (f, g) in

Comp

X Y

X ′ Y ′

e

f g

e′

define E(f, g) to be the pair (g∗, f+)

C(Y ′) B(X ′)

C(Y ) B(X),

(e′)♭

g∗ f+

e♭

Proposition 4.12. E ∶ Comp → basic is a contravariant functor such that each object of

ubasic is isomorphic to E(e) for some compactification e ∶ X → Y .

Proof. Let e ∶ X → Y be a compactification. By Proposition 4.5, e♭ ∶ C(Y )→ B(X) is a basic

extension. Thus, E(e) ∈ basic. Let (f, g) be a morphism in Comp. Then E(f, g) = (g∗, f+).

We show that E(f, g) is a morphism in basic. Let a ∈ C(Y ′). Then

(f+ ○ (e′)♭)(a) = f+((e′)♭(a)) = (a ○ e′) ○ f = a ○ (e′ ○ f) = a ○ (g ○ e)

= (a ○ g) ○ e = e♭(g∗(a)) = (e♭ ○ g∗)(a).

This yields f+ ○ (e′)♭ = e♭ ○ g∗. Because g∗, f+ are morphisms in baℓ and f+ is normal,

E(f, g) is a morphism in basic. From the definition of composition in Comp and basic

it is elementary to see that E preserves composition and identity morphisms. Thus, E

is a contravariant functor. That each object of ubasic is isomorphic to E(e) for some

compactification e ∶ X → Y follows from the definition of ubasic and Gelfand-Naimark-

Stone duality. �
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5. The functor C ∶ basic → Comp

Convention 5.1. For a morphism α ∶ A → B in baℓ, let α♭ ∶ XB → YA be the restriction of

α∗ ∶ YB → YA to XB.

Definition 5.2. Let α ∶ A → B be a monomorphism in baℓ with B a basic algebra. Define

a topology τα on XB as the least topology making α♭ ∶ XB → YA continuous.

Remark 5.3. Following usual terminology, we will refer to the topological space (XB, τα)

as XB when there is no danger of confusion about which topology we are using.

Proposition 5.4. Let α ∶ A → B be a monomorphism in baℓ with B a basic algebra. Then

α♭ ∶XB → YA is 1-1 iff α[A] is join-meet dense in B.

Proof. By Remark 4.7(1), it is sufficient to show that α♭ is 1-1 iff each b ∈ Prim(B) is meet

of elements from α[A].

First suppose that α♭ is 1-1. Let b ∈ Prim(B). We show that 1 − b is a join of elements

from α[A]. Let g be the join of all α(a) ∈ A with 0 ≤ α(a) ≤ 1 − b. Clearly g ≤ 1 − b. To

see that 1 − b ≤ g, let c ∈ Prim(B) with c ≠ b. Since α♭ is 1-1, there is α(a) ∈ (1 − b)B with

α(a) ∉ (1 − c)B. By replacing a by ∣a∣, and then multiplying by an appropriate scalar, we

may assume 0 ≤ a ≤ 1. Since α(a) ∈ (1 − b)B and 1 − b is an idempotent, α(a) = (1 − b)α(a),
so α(a)b = 0. Also α(a) /∈ (1 − c)B implies α(a)(1 − c) ≠ α(a), so α(a)c ≠ 0. Since a > 0,

Lemma 3.2 yields α(a)c = rc for some real number r > 0. We have c = r−1rc = r−1α(a)c ≤

r−1α(a) since c ≤ 1. Let a′ = 1 ∧ r−1a. Then a′ ∈ A and c ≤ α(a′). Moreover, 0 ≤ a′ ≤ r−1a, so

0 ≤ α(a′)b ≤ r−1α(a)b = 0. This implies α(a′)b = 0, so α(a′)(1 − b) = α(a′). Since α(a′) ≤ 1,

we have α(a′)(1 − b) ≤ 1 − b, hence α(a′) ≤ 1 − b. Therefore, α(a′) ≤ g by the definition of g.

This yields c ≤ α(a′) ≤ g for each c ≠ b. Since 1 − b is the join of all primitive idempotents

c ≠ b, we get 1 − b ≤ g ≤ 1 − b, so 1 − b = g. This shows that 1 − b is a join of elements from

α[A], and hence b is a meet of elements from α[A].

Conversely, suppose that each b ∈ Prim(B) is a meet of elements from α[A]. LetM,N ∈XB

and α−1(M) = α−1(N). By Lemma 3.2, there are b, c ∈ Prim(B) with M = (1 − b)B and

N = (1 − c)B. Thus, α−1((1 − b)B) = α−1((1 − c)B). As b is primitive, 1 − b is the join

of the elements from α[A] below it. Because 0 ≤ 1 − b, these elements can be taken to be

positive. Take a ∈ A with 0 ≤ α(a) ≤ 1 − b. By the calculation in the first paragraph above,

α(a)b = 0, and so α(a) = α(a)(1 − b). Therefore, a ∈ α−1((1 − b)B) = α−1((1 − c)B), and
hence α(a) ∈ (1− c)B. Since 1− c is an idempotent, it follows that α(a) = α(a)(1− c), which
implies α(a) ≤ 1− c. As 1− b is the join of all such α(a) we see that 1− b ≤ 1− c. Because b, c

are primitive idempotents, this implies b = c, and so M = N . Thus, α♭ is 1-1. �

Theorem 5.5. If α ∶ A → B is a basic extension, then XB is completely regular and α♭ ∶
XB → YA is a compactification.

Proof. By Proposition 5.4, α♭ ∶ XB → YA is 1-1. Therefore, XB is homeomorphic to α♭[XB]

by Definition 5.2, and so XB is completely regular. Since α is 1-1, α∗ ∶ YB → YA is onto, and

XB is dense in YB because B is atomic. Thus, α♭[XB] is dense in YA, and hence α♭ ∶XB → YA

is a compactification. �



16 G. BEZHANISHVILI, P. J. MORANDI, AND B. OLBERDING

Example 5.6. Let X be a completely regular space. By Example 4.9(2), the inclusion

ι ∶ C∗(X) → B(X) is a basic extension. Then ι♭ ∶ XB(X) → YC∗(X) is a compactification by

Theorem 5.5. We claim that ι♭ is isomorphic to the Stone-Čech compactification s ∶X → βX

in Comp. By Convention 4.1, βX = YC∗(X) and s(x) =Mx. Consider the following diagram

X YC∗(X)

XB(X) YC∗(X)

s

ηX

ι♭

where we recall from the proof of Theorem 3.10 that ηX ∶X → XB(X), sending x to Nx, is a

bijection. The diagram commutes because

ι♭(ηX(x)) = ι
−1(Nx) = {f ∈ C

∗(X) ∣ f(x) = 0} =Mx = s(x).

To see that ηX is a homeomorphism, since (XB(X), τι) is completely regular, it has a basis

of cozero sets. Let U be a cozero set in XB(X). Then there is f ∈ C∗(X) with U = {M ∈

XB(X) ∣ f ∉M}. We have

η−1X (U) = {x ∈X ∣ Nx ∈ U} = {x ∈X ∣ f ∉ Nx} = {x ∈X ∣ f(x) ≠ 0},

which is the cozero set of f in X . Since ηX is a bijection, we conclude that ηX is a homeo-

morphism. Thus, ι♭ and s are isomorphic in Comp.

Lemma 5.7. Suppose that e ∶X → Y and e′ ∶ X ′ → Y ′ are compactifications, g ∶ Y → Y ′ is a

continuous map, and f ∶X → X ′ is a map such that e′ ○ f = g ○ e. Then f is continuous.

X Y

X ′ Y ′

e

f g

e′

Proof. Let U be open in X ′. Then there is an open set V of Y ′ with U = (e′)−1(V ). We have

f−1(U) = f−1((e′)−1(V )) = (e′ ○ f)−1(V ) = (g ○ e)−1(V ) = e−1(g−1(V )),

so f−1(U) is open in X . Thus, f is continuous. �

Define a functor C ∶ basic → Comp as follows. If α ∶ A → B is a basic extension, set C(α)

to be the compactification α♭ ∶ XB → YA. For a morphism (ρ,σ) in basic

A B

A′ B′

α

ρ σ

α′

define C(ρ,σ) to be (σ+, ρ∗), where σ+ is the restriction of σ∗ ∶ YB′ → YB to XB′ .

XB′ YA′

XB YA

α′
♭

σ+ ρ∗

α♭
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Since σ○α = α′○ρ we have ρ∗ ○α′∗ = α∗ ○σ∗. Restricting both sides to XB′ shows this diagram

is commutative. As an immediate consequence of Lemma 5.7, we have:

Lemma 5.8. σ+ is continuous, and hence (σ+, ρ∗) is a morphism in Comp.

Proposition 5.9. C ∶ basic → Comp is a contravariant functor.

Proof. Let α ∶ A → B be a basic extension. By Theorem 5.5, α♭ ∶ XB → YA is a compact-

ification. Therefore, C(α) ∈ Comp. By Lemma 5.8, if (ρ,σ) is a morphism in basic, then

C(ρ,σ) = (σ+, ρ∗) is a morphism in Comp. Suppose that (ρ1, σ1) and (ρ2, σ2) are composable

morphisms in basic. Then

C((ρ2, σ2) ○ (ρ1, σ1)) = C(ρ2 ○ ρ1, σ2 ○ σ1) = ((σ2 ○ σ1)+, (ρ2 ○ ρ1)∗).

Since (ρ2 ○ ρ1)∗ = (ρ1)∗ ○ (ρ2)∗ and (σ2 ○ σ1)+ = (σ1)+ ○ (σ2)+, we see that

C((ρ2, σ2) ○ (ρ1, σ1)) = ((σ1)+ ○ (σ2)+, (ρ1)∗ ○ (ρ2)∗)

= ((σ1)+, (ρ1)∗) ○ ((σ2)+, (ρ2)∗) = C(ρ1, σ1) ○ C(ρ2, σ2),

which shows that C preserves composition. It is clear that C preserves identity morphisms.

Thus, C is a contravariant functor. �

6. Duality between Comp and ubasic

In this section we prove that the functors E and C yield a dual adjunction between Comp

and basic, which restricts to a dual equivalence between Comp and ubasic. For this we

require the following two lemmas.

Lemma 6.1. Let α ∶ A → B be a basic extension. Then (ζA, ϑB) is a morphism in basic,

and it is an isomorphism provided A ∈ ubaℓ.

A B

C(YA) B(XB)

α

ζA ϑB

(α♭)
♭

Proof. The map ϑB is an isomorphism by Proposition 3.4, and so it is a normal homomor-

phism. To see that (ζA, ϑB) is a morphism in basic we need to show (α♭)♭ ○ ζA = ϑB ○α. We

have the following diagram.

A B

C(YA) C(YB) B(XB)

α

ζA ζB
ϑB

(α∗)∗

(α♭)
♭

κB

The left-hand side commutes by Gelfand-Naimark-Stone duality, and the right-hand side

commutes by the definition of ϑB . Therefore, (α♭)♭ ○ ζA = ϑB ○ α, and hence (ζA, ϑB) is a

morphism in basic. If A ∈ ubaℓ, then ζA is an isomorphism. Since ϑB is an isomorphism,

(ζA, ϑB) is an isomorphism. �
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Lemma 6.2. Let e ∶ X → Y be a compactification. Then ηX ∶ X → XB(X) is a homeomor-

phism, and (ηX , ξY ) is an isomorphism of compactifications between e and (e♭)♭.

X Y

XB(X) YC(Y )

e

ηX ξY

(e♭)♭

Proof. We already observed in the proof of Theorem 3.10 that ηX is a bijection. We show

that ξY ○ e = (e♭)♭ ○ ηX . Let x ∈X . Then ξY (e(x)) =Me(x). We have

(e♭)♭(ηX(x)) = {c ∈ C(Y ) ∣ e
♭(c)(x) = 0} = {c ∈ C(Y ) ∣ c(e(x)) = 0} =Me(x).

Therefore, (e♭)♭ ○ ηX = ξY ○ e. Then, by Lemma 5.7, ηX is continuous, and so (ηX , ξY )

is a morphism in Comp. Since ηX is a bijection and ξY is a homeomorphism, applying

Lemma 5.7 (with the pair η−1X and ξ−1Y ), shows that ηX is a homeomorphism. Thus, (ηX , ξY )

is an isomorphism in Comp. �

Theorem 6.3. The functors E ∶ Comp→ basic and C ∶ basic → Comp define a dual adjunc-

tion of categories that restricts to a dual equivalence between Comp and ubasic.

Proof. Propositions 4.12 and 5.9 show that E and C are contravariant functors. We first

show that CE is naturally isomorphic to the identity functor on Comp. The functor E sends

e ∶ X → Y to e♭ ∶ C(Y )→ B(X). Then C sends this to (e♭)♭ ∶ XB(X) → YC(Y ). By Lemma 6.2,

(ηX , ξY ) is an isomorphism in Comp.

X Y

XB(X) YC(Y )

e

ηX ξY

(e♭)♭

Let (f, g) be be a morphism in Comp. Then E(f, g) = (g∗, f+), and so CE(f, g) =

C(g∗, f+) = ((f+)+, (g∗)∗). Thus, ((f+)+, (g∗)∗) is a morphism in Comp.

XB(X) YC(Y )

XB(X′) YC(Y ′)

(e♭)♭

(f+)+ (g∗)∗

((e′)♭)♭

We define a natural transformation p from the identity functor on Comp to CE as follows.

For a compactification e ∶ X → Y we set pe = (ηX , ξY ). By Lemma 6.2, pe is an isomorphism
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in Comp. We have the following diagram.

XB(X) YC(Y )

X Y

XB(X′) YC(Y ′)

X ′ Y ′

(e♭)♭

(f+)+

(g∗)∗

ηX

f

e

g

ξY

((e′)♭)♭

e′

ηX′ ξY ′

The front and back faces of this cube are commutative because (f, g) and CE(f, g) =

((f+)+, (g∗)∗) are morphisms in Comp. The top and bottom faces are commutative since pe
and pe′ are morphisms in Comp. The right face is commutative by Gelfand-Naimark-Stone

duality, and the left face is commutative by Theorem 3.10. The commutativity of this cube

shows that p is a natural transformation. In fact, since pe is an isomorphism in Comp, we

see that p is a natural isomorphism.

We next define a natural transformation q from the identity functor on basic to EC. Given

a basic extension α ∶ A → B, the functor C sends it to α♭ ∶ XB → YA. This is then sent by E

to (α♭)♭ ∶ C(YA)→ B(XB).

A B

C(YA) B(XB)

α

ζA ϑB

(α♭)
♭

The pair (ζA, ϑB) is a morphism in basic by Lemma 6.1. Define q by setting qα = (ζA, ϑB)

for a basic extension α ∶ A → B. By Lemma 6.1, qα is a morphism in basic. To show

naturality, let (ρ,σ) be a morphism in basic. We have the following diagram.

C(YA) B(XB)

A B

C(YA′) B(XB′)

A′ B′

(α♭)
♭

(ρ∗)∗

(σ+)+

ζA

ρ

α

σ

ϑB

((α′)♭)
♭

α′

ζA′ ϑB′

The front and back faces of this cube are commutative because (ρ,σ) and EC(ρ,σ) =

((ρ∗)∗, (σ+)+) are morphisms in basic. The top and bottom faces are commutative because

qα and qα′ are morphisms in basic. The left face is commutative by Gelfand-Naimark-Stone

duality, and the right face is commutative by Theorem 3.10. This shows that q is a natural
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transformation. In addition, if α ∶ A→ B is an object of ubasic, then qα is an isomorphism

by Lemma 6.1. Therefore, C and E yield a dual equivalence between Comp and ubasic. This

together with Theorem 4.11 gives that E and C define a dual adjunction between Comp and

basic. �

We conclude this section by relating Theorem 6.3 to Gelfand-Naimark-Stone duality.

Remark 6.4. Let I ∶ KHaus → Comp be the functor sending a compact Hausdorff space Y

to the compactification 1Y ∶ Y → Y where 1Y is the identity map. Let also G ∶ baℓ → basic

be the functor sending A ∈ baℓ to the basic extension ϑA ∶ A → B(YA) (see Example 4.9(3)).

We have the following diagram.

baℓ KHaus

basic Comp

Y

G

C

I

C

E

Let A ∈ baℓ. Then I(Y (A)) is the compactification YA → YA. On the other hand, C(G(A))

is the image under C of the basic extension A → B(YA), which is XB(YA) → YA, and this is

naturally isomorphic to YA → YA. Therefore, I ○ Y and C ○G are naturally isomorphic.

Next, let Y ∈ KHaus. Then G(C(Y )) is the basic extension C(Y ) → B(YC(Y )). Also,

E(I(Y )) is the image under E of the compactification Y → Y , which is the extension

C(Y ) → B(Y ). Since Y and YC(Y ) are naturally homeomorphic, G ○ C and E ○ I are natu-

rally isomorphic. Consequently, the duality of Theorem 6.3 extends Gelfand-Naimark-Stone

duality.

7. Duality for completely regular spaces

In this final section we show how to use Theorem 6.3 to derive duality for the category

CReg of completely regular spaces. For this we will need to introduce the concept of a

maximal basic extension and connect it to the Stone-Čech compactification.

Since the Stone-Čech compactification is the largest among compactifications of a given

completely regular space, it is natural to define a maximal basic extension as the largest

with respect to the corresponding order among basic extensions α ∶ A → B that yield the

same completely regular topology on XB. We call such basic extensions compatible. To give

a purely algebraic description of compatibility requires some preparation.

Let e ∶ X → Y and e′ ∶ X → Y ′ be two compactifications of the same completely regular

space X . Then we have two basic extensions e♭ ∶ C(Y ) → B(X) and (e′)♭ ∶ C(Y ′) → B(X).

While the images of C(Y ) and C(Y ′) in B(X) are in general different, as we will see shortly,

they have isomorphic Dedekind completions. For this we need to recall Dilworth’s notion of

a normal lower semicontinuous function [9].

Let X be completely regular. For x ∈ X let Nx be the family of open neighborhoods of x.

For f ∈ B(X) set

f∗(x) = inf
U∈Nx

sup
y∈U

f(y) and f∗(x) = sup
U∈Nx

inf
y∈U

f(y).
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We recall that f is lower semicontinuous if f = f∗, upper semicontinuous if f = f∗, and

normal (lower semicontinuous) if (f∗)∗ = f . We set N(X) = {f ∈ B(X) ∣ (f∗)∗ = f}.

Remark 7.1.

(1) Dilworth [9] showed that if we view C∗(X) and N(X) as lattices, then N(X) is the

Dedekind completion of C∗(X).

(2) Dăneţ [8] showed that Dilworth’s result generalizes to the setting of vector lattices,

and hence N(X) is the Dedekind completion of C∗(X) as a vector lattice.

(3) Clearly C∗(X) ∈ baℓ. It follows from [4, Ex. 8.4(2)] that there is a multiplication on

N(X) extending the multiplication on C∗(X) such that N(X) ∈ baℓ. Consequently,

N(X) is the Dedekind completion of C∗(X) also as an ℓ-algebra.1

Lemma 7.2. Let X be a subspace of a topological space Y . If f is a bounded lower

(resp. upper) semicontinuous real-valued function on X, then there is a bounded lower

(resp. upper) semicontinuous real-valued function g on Y with g∣X = f .

Proof. Let f be a bounded lower semicontinuous function on X . Then s ∶= sup{f(x) ∣ x ∈X}
exists. We extend f to a function f ′ on Y by setting f ′(y) = s for all y ∈ Y ∖X . Then f ′ is

a bounded function on Y . We define g on Y by setting

g(y) = sup
U∈Ny

inf
z∈U

f ′(z)

for each y ∈ Y . Then g is lower semicontinuous by [9, Sec. 3]. Let x ∈ X . By the definition

of f ′, if U ∈ Nx, then inf{f ′(y) ∣ y ∈ U} = inf{f(z) ∣ z ∈ U ∩X}. Therefore,

g(x) = sup
U∈Nx

inf
y∈U

f ′(y) = sup
U∈Nx

inf
z∈U∩X

f(z).

Because X is a subspace of Y , we see that {U ∩ X ∣ U ∈ Nx} is the collection of open

neighborhoods of x in X . Thus, since f is lower semicontinuous on X ,

f(x) = sup
U∈Nx

inf
z∈U∩X

f(z) = g(x)

for each x ∈ X , and hence g∣X = f . The argument for upper semicontinuous functions is

similar and left to the reader. �

Lemma 7.3. Let α ∶ A→ B be a basic extension and let f ∈ C∗(XB). Then f is a pointwise

join and meet of elements from α∗♭ ζA[A].

A B

C(YA) B(XB)

C∗(XB)

α

ζA ϑB

(α♭)
♭

α∗
♭

ι

1We point out that neither the lattice nor the algebra operations on N(X) are pointwise.
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Proof. Since f is continuous, by Lemma 7.2 there is a lower semicontinuous function g ∈

B(YA) and an upper semicontinuous function h ∈ B(YA) with g ○ α♭ = f = h ○ α♭. By [9,

Lem. 4.1] (and its dual for lower semicontinuous functions), g = ⋁S is a pointwise join of

elements from C(YA) and h is a pointwise meet of elements from C(YA). Because the map

(α♭)+ ∶ B(YA)→ B(XB) sending f to f ○ α♭ is a normal homomorphism,

f = g ○ α♭ = α+♭ (g) =⋁{α
+
♭ (k) ∣ k ∈ S} =⋁{α

∗
♭ (k) ∣ k ∈ S}

is a join of elements from (α♭)∗[C(YA)]. Similarly, f is a meet of elements from α∗♭ [C(YA)].

Thus, f is both a pointwise join and meet from α∗♭ [C(YA)]. The argument of [5, Lem. 2.8]

shows that each element of C(YA) is both a pointwise join and meet from ζA[A]. Each

k ∈ S then can be written, in B(YA), as k = ⋁{ζA(a) ∣ a ∈ Tk} for some Tk ⊆ A. Set

T = ⋃{Tk ∣ k ∈ S}. We have

f =⋁{α∗♭ (k) ∣ k ∈ S} =⋁{α
∗
♭ (⋁ ζA(a)) ∣ a ∈ Tk}) ∣ k ∈ S}

=⋁{α∗♭ (ζA(a)) ∣ a ∈ T}.

Therefore, f is a pointwise join from α∗♭ ζA[A]. Repeating the argument above but replacing

g by h and joins with meets shows that f is a pointwise meet from α∗♭ ζA[A]. �

As an immediate consequence of Lemma 7.3 we obtain:

Lemma 7.4. Let e ∶ X → Y be a compactification. Then each f ∈ C∗(X) is a pointwise join

and meet from e∗[C(Y )].

Lemma 7.5. If e ∶X → Y is a compactification, then N(X) is isomorphic to N(Y ) in baℓ.

Proof. It follows from Lemma 7.4 that e∗[C(Y )] is join-dense and meet-dense in C∗(X).

Consequently, C(Y ) and C∗(X) have isomorphic Dedekind completions. Thus, by Re-

mark 7.1(3), N(Y ) and N(X) are isomorphic in baℓ. �

Remark 7.6. In fact, the restriction of e+ ∶ B(Y ) → B(X) to N(Y ) is a well-defined

isomorphism of N(Y ) and N(X). Since we do not require this fact in what follows, we omit

the proof.

Let e ∶ X → Y be a compactification and α ∶= e♭ ∶ C(Y ) → B(X) the corresponding basic

extension. Using [9, Lem. 4.1] as motivation, we define uα, lα ∶ B(X) → B(X) as follows.

For f ∈ B(X) let

uα(f) =⋀{α(g) ∣ g ∈ C(Y ), f ≤ α(g)} and lα(f) =⋁{α(g) ∣ g ∈ C(Y ), α(g) ≤ f}.

We set

Nα(X) = {f ∈ B(X) ∣ lαuα(f) = f}.

Lemma 7.7. Let e ∶ X → Y be a compactification and α = e♭ ∶ C(Y ) → B(X) the corre-

sponding basic extension. Then Nα(X) = N(X).

Proof. Let f ∈ B(X). By [9, Lem. 4.1], f∗ = ⋀{g ∈ C∗(X) ∣ f ≤ g}. By Lemma 7.4, each

g ∈ C∗(X) is a pointwise meet from α[C(Y )]. Thus, f∗ = uα(f). A similar argument yields

that f∗ = lα(f). Thus, (f∗)∗ = lαuα(f). From this and the definitions of Nα(X) and N(X)

it follows that Nα(X) = N(X). �
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This motivates the following definition.

Definition 7.8. Let α ∶ A→ B be a basic extension.

(1) For b ∈ B set

uα(b) =⋀{α(a) ∣ a ∈ A, b ≤ α(a)} and lα(b) =⋁{α(a) ∣ a ∈ A,α(a) ≤ b}.

(2) Let Nα = {b ∈ B ∣ lαuα(b) = b}.

We are ready to define when two basic basic extensions are compatible.

Definition 7.9. We call two basic extensions α ∶ A → B and γ ∶ C → B compatible if

Nα = Nγ .

Lemma 7.10.

(1) If α ∶ A→ B is a basic extension, then ϑB(Nα) = N(XB).

(2) Two basic extensions α ∶ A→ B and γ ∶ C → B are compatible iff τα = τγ.

Proof. (1). By Lemma 7.7, it suffices to show that ϑB(Nα) = Nα(XB). We first show

that ϑB(uα(b)) = uα(ϑB(b)) for each b ∈ B. To see this, since ϑB is an isomorphism and

ϑBα(a) = α∗♭ ζA(a),

ϑB(uα(b)) =⋀{ϑB(α(a)) ∣ a ∈ A, b ≤ α(a)} =⋀{α∗♭ ζA(a) ∣ a ∈ A, b ≤ α(a)}.

On the other hand, uα(ϑB(b)) = ⋀{α∗♭ (g) ∣ g ∈ C(YA), ϑB(b) ≤ g}. By [5, Lem. 2.8], each

g ∈ C(YA) is a pointwise meet from ζA[A]. Consequently,

uα(ϑB(b)) =⋀{α∗♭ ζA(a) ∣ a ∈ A,ϑB(b) ≤ α
∗
♭ ζA(a)}.

Since ϑBα(a) = α∗♭ ζA(a) and ϑB is an isomorphism, b ≤ α(a) iff ϑB(b) ≤ α∗♭ ζA(a). Thus,

ϑB(uα(b)) = uα(ϑB(b)). Similarly, ϑB(lα(b)) = lα(ϑB(b)). From this it follows that ϑB(Nα) =

Nα(XB).

(2). Because we are working with two topologies, to avoid confusion, we write N(XB, τα)

and N(XB , τγ). First suppose that τα = τγ . Then N(XB , τα) = N(XB, τγ). Therefore, by

(1), ϑB(Nα) = ϑB(Nγ). Since ϑB is 1-1, we conclude that Nα = Nγ .

Conversely, suppose thatNα = Nγ . Then ϑB(Nα) = ϑB(Nγ), and soN(XB , τα) = N(XB, τγ)

by (1). To show that τα = τγ , it suffices to show that U ⊆ XB is regular open in τα iff it is reg-

ular open in τγ . Now, U is regular open in τα iff the characteristic function χU ∈ N(XB, τα)

(see, e.g., [4, Ex. 4.11]). The corresponding statement for τγ holds for the same reason. Since

N(XB, τα) = N(XB, τγ), we see that U is regular open in τα iff U is regular open in τγ . Thus,

τα = τγ . �

We are now ready to define the notion of a maximal basic extension.

Definition 7.11.

(1) A basic extension α ∶ A → B is maximal provided that for every compatible extension

γ ∶ C → B, there is a morphism δ ∶ C → A in baℓ such that α ○ δ = γ.

A B

C

α

δ γ
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(2) Let mbasic be the full subcategory of basic consisting of maximal basic extensions.

We next give different characterizations of maximal basic extensions. Let α ∶ A → B be

a basic extension. Then α♭ ∶ XB → YA is a continuous map, and so we have a morphism

(α♭)∗ ∶ C(YA)→ C∗(XB) in baℓ.

Definition 7.12. Define µ ∶ A → C∗(XB) as the composition µ = (α♭)∗ ○ ζA.

Since both ζA and (α♭)∗ are morphisms in baℓ, so is µ. In fact, µ is a monomorphism

in baℓ. To see this, note that ζA is 1-1. We show that (α♭)∗ is 1-1. If (α♭)∗(f) = 0 for

f ∈ C(YA), then f ○ α♭ = 0. Therefore, f ∣α♭[XB] = 0. Since α♭[XB] is dense in YA, we have

f = 0. Thus, (α♭)∗ is 1-1, and so µ is 1-1.

Let ι ∶ C∗(XB) → B(XB) be the inclusion morphism. The following diagram commutes

because the top half commutes by Gelfand-Naimark-Stone duality and the bottom half com-

mutes by application of the relevant definitions.

A B

C(YA) C(YB)

C∗(XB) B(XB)

α

ζA

µ

ζB

ϑB

(α∗)∗

(α♭)
∗ κB

ι

Proposition 7.13. The following are equivalent for a basic extension α ∶ A→ B.

(1) α is maximal.

(2) µ = (α♭)∗ ○ ζA ∶ A→ C∗(XB) is an isomorphism.

(3) A is uniformly complete and α♭ ∶ XB → YA is isomorphic to the Stone-Čech compact-

ification s ∶XB → βXB.

(4) A is uniformly complete and α♭ ∶XB → YA is equivalent to s.

(5) The only elements of B that are both a join and meet of elements from α[A] are

those that are in α[A].

Proof. (1) ⇒ (2). Since ubaℓ is a reflective subcategory of baℓ, there is a monomorphism

α̂ ∶ C(YA) → B in baℓ with α̂ ○ ζA = α. As we pointed out in the proof of Theorem 4.11,

α̂ ∶ C(YA) → B is a basic extension. Since ϑB is an isomorphism (see Proposition 3.4), we

may define γ = ϑ−1B ○ι. By Example 4.9(2), ι is a basic extension. Thus, γ is a basic extension.

By Example 5.6, τγ is equal to τα, and so γ is compatible with α. By (1), there is a morphism

δ ∶ C∗(XB)→ A in baℓ such that α ○ δ = γ.

A B

C(YA)

C∗(XB) B(XB)

µ

α

ζA

ϑB

α̂

(α♭)
∗

δ

ι

γ
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As we pointed out before the proposition, ϑB ○ α = ι ○ µ. Therefore,

ι ○ µ ○ δ = ϑB ○ α ○ δ = ϑB ○ γ = ι.

Since ι is monic, µ ○ δ is the identity on C∗(XB). This implies µ is onto. Because µ is 1-1,

we conclude that µ is an isomorphism.

(2) ⇒ (3). In light of (2), it is clear that A is uniformly complete. Let f ∈ C(YA). Since

the diagram above is commutative, (µ,ϑB) is a morphism in basic. Because both µ and

ϑB are isomorphisms, (µ,ϑB) is an isomorphism in basic. Applying C yields α♭ and ι♭ are

isomorphic in Comp. Therefore, by Example 5.6, α♭ and s are isomorphic in Comp.

(3) ⇒ (4). It is proved in [6, Thm. 3.3] that if a compactification e ∶ X → Y is isomorphic

to the Stone-Čech compactification s ∶ X → βX , then e is equivalent to s.

(4) ⇒ (1). Let γ ∶ C → B be compatible with α. Then γ♭ ∶ XB → YC and α♭ ∶ XB → YA

are compactifications of the same topological space. By (4), YA is homeomorphic to βXB,

so there is a continuous map ϕ ∶ YA → YC with ϕ ○ α♭ = γ♭.

XB YA

YC

α♭

γ♭
ϕ

This implies that (α♭)♭ ○ ϕ∗ = (γ♭)♭ since if f ∈ C(YC), then

[(α♭)
♭ ○ ϕ∗](f) = f ○ ϕ ○ α♭ = f ○ γ♭ = (γ♭)♭(f).

Define δ = ζ−1A ○ ϕ
∗ ○ ζC. We have the following diagram.

A B

C(YA) B(XB)

C(YC)

C

α

ζ−1
A

(α♭)
♭

ϑ−1
B

ϕ∗ (γ♭)
♭

ζC

δ γ

We just observed that the middle triangle commutes, and the top square commutes by

Lemma 6.1. Another application of Lemma 6.1 yields that γ = ϑ−1B ○ (γ♭)
♭ ○ γC. Thus,

α ○ δ = γ, which proves that α is maximal.

(4) ⇒ (5). By (4) we may assume α is the basic extension ι ∶ C∗(XB) → B(XB). Then

α[A] = C∗(XB). If b ∈ B(XB) is a meet from C∗(XB), then it is upper semicontinuous by

[9, Lem. 4.1], and if it is a join from C∗(XB), then it is lower semicontinuous by the dual of

[9, Lem. 4.1]. Therefore, if b is both a join and meet from C∗(XB), then b is continuous, so

b ∈ C∗(XB) = α[A].
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(5) ⇒ (2). Let f ∈ C∗(XB). By Lemma 7.3, f is both a pointwise join and a meet from

elements of (α♭)∗[ζA[A]]. By (5), ϑ−1B (f) ∈ α[A], so f ∈ ϑBα[A] = µ[A]. Thus, µ is onto.

Since it is 1-1, we conclude that µ is an isomorphism. �

As a consequence, we obtain that mbasic is a full subcategory of ubasic.

Definition 7.14. Let SComp be the full subcategory of Comp consisting of Stone-Čech

compactifications.

Theorem 6.3 and Proposition 7.13 immediately yield the following:

Theorem 7.15. There is a dual equivalence between SComp and mbasic.

It is well known that CReg and SComp are equivalent (see, e.g., [6, Prop. 6.8]). Thus, as

an immediate consequence we obtain:

Theorem 7.16. There is a dual equivalence between CReg and mbasic.

Remark 7.17. To describe the functors yielding the dual equivalence of Theorem 7.16, we

recall that the equivalence between CReg and SComp is obtained by the functors S ∶ CReg →
SComp and F ∶ SComp → CReg. The covariant functor S sends a completely regular space

X to the Stone-Čech compactification s ∶ X → βX and a continuous map f ∶ X → Y to the

unique continuous map βf ∶ βX → βY that makes the following diagram commute.

X Y

βX βY

f

sX sY

βf

The covariant functor F sends a Stone-Čech compactification s ∶ X → βX to X , and a mor-

phism (f, βf) to f . The dual equivalence of Theorem 7.16 is obtained by the contravariant

functors E ○ S and F ○ C. We give a more direct description of the contravariant functors

between CReg and mbasic that yield this dual equivalence.

SComp mbasic

CReg

E

F

C

R
S

M

The contravariant functor M ∶ CReg → mbasic sends a completely regular space X to

ι ∶ C∗(X)→ B(X), and a continuous map f ∶ X → Y to (f∗, f+).

C∗(Y ) B(Y )

C∗(X) B(X)

ιY

f∗ f+

ιX
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By Example 4.9(2) and Theorem 7.13, M is a well-defined functor. The contravariant functor

R sends a maximal basic extension α ∶ A → B to (XB, τα), and a morphism (ρ,σ) to σ+ ∶
XB′ → XB. By Theorem 5.5 and Lemma 5.8, R is a well-defined functor. That F ○ C = S
follows from the definition of the functors, and E○S ≅M follows from Example 4.9(2). Thus,

the above diagram commutes.

We conclude the article by deriving several consequences of Theorem 7.16. Recall that a

completely regular space X is strongly zero-dimensional if βX is zero-dimensional (see, e.g.,

[10, Thms. 6.2.7 and 6.2.12]). We next obtain a duality for strongly zero-dimensional spaces.

Theorem 7.18. The dual equivalence between CReg and mbasic restricts to a dual equiva-

lence between the full subcategory of CReg consisting of strongly zero-dimensional spaces and

the full subcategory of mbasic consisting of the maximal basic extensions α ∶ A → B for

which A is a clean ring.

Proof. Let X be a strongly zero-dimensional space. Then M(X) is the maximal extension

ι ∶ C∗(X) → B(X). Since X is strongly zero-dimensional, C∗(X) is clean by [1, Thm. 2.5].

Let α ∶ A → B be a maximal extension with A clean. Then the image under R of α is the

completely regular space XB. By Proposition 7.13, YA is the Stone-Čech compactification

of XB. Since A is clean, YA is a zero-dimensional space [2, Thm. 5.9]. Thus, XB is strongly

zero-dimensional. To complete the proof, apply Theorem 7.16. �

Theorem 7.19. The dual equivalence between CReg and mbasic restricts to a dual equiv-

alence between the full subcategory of CReg consisting of extremally disconnected spaces and

the full subcategory of mbasic consisting of the maximal extensions α ∶ A→ B with A ∈ dbaℓ.

Proof. If X is an extremally disconnected space, then so is βX (see, e.g., [10, Thm. 6.2.27]).

The image under M of X is the maximal extension ι ∶ C∗(X) → B(X). Since C∗(X) is

isomorphic to C(βX), we see that C∗(X) ∈ dbaℓ by Corollary 2.6. Conversely, if α ∶ A→ B is

a maximal extension, then A ≅ C(YA), and if A ∈ dbaℓ, then YA is an extremally disconnected

space by Corollary 2.6. By Proposition 7.13, YA is the Stone-Čech compactification of XB.

Thus, XB is extremally disconnected (see, e.g., [10, Thm. 6.2.27]). Now apply Theorem 7.16.

�

Recall that a topological space X is connected if ∅,X are the only clopens of X , and that

a commutative ring A is indecomposable if Id(A) = {0,1}.

Theorem 7.20. The dual equivalence between CReg and mbasic restricts to a dual equiva-

lence between the full subcategory of CReg consisting of connected spaces and the full subcat-

egory of mbasic consisting of the maximal extensions α ∶ A → B with A an indecomposable

ring.

Proof. Let X be connected. The image under M of X is the maximal extension ι ∶ C∗(X)→
B(X). The idempotents of C∗(X) are exactly the characteristic functions of clopen subsets

of X . Since X is connected, the only clopen subsets are ∅ and X , so Id(C∗(X)) = {0,1},

and hence C∗(X) is indecomposable. Conversely, if α ∶ A → B is a maximal extension with

A indecomposable, then A ≅ C(YA) and YA has no nontrivial clopen subsets. Therefore, YA
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is connected. By Proposition 7.13, YA is the Stone-Čech compactification of XB. Thus, XB

is connected (see, e.g., [10, Thm. 6.1.14]). Now apply Theorem 7.16. �
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