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ABSTRACT. The Heisenberg group H equipped with a sub-Riemannian metric is one of the most well
known examples of a doubling metric space which does not admit a bi-Lipschitz embedding into any
Euclidean space. In this paper we investigate which subsets of H bi-Lipschitz embed into Euclidean
spaces. We show that there exists a universal constant L > 0 such that lines L-bi-Lipschitz embed intoR3

and planes L-bi-Lipschitz embed into R4. Moreover, C 1,1 2-manifolds without characteristic points as
well as all C 1,1 1-manifolds locally L-bi-Lipschitz embed intoR4 where the constant L is again universal.
We also consider several examples of compact surfaces with characteristic points and we prove, for
example, that Korányi spheres bi-Lipschitz embed into R4 with a uniform constant. Finally, we show
that there exists a compact, porous subset ofHwhich does not admit a bi-Lipschitz embedding into any
Euclidean space.

1. INTRODUCTION

Given two metric spaces (X ,dX ) and (Y ,dY ), we say that a mapping f : X → Y is L-bi-Lipschitz for
L ≥ 1 if

L−1dX (a,b) ≤ dY ( f (a), f (b)) ≤ LdX (a,b) for any a,b ∈ X .

In this case we say that X bi-Lipschitz embeds in Y or that X admits a bi-Lipschitz embedding into Y .
For two metric spaces X and Y , we define the quantity

Lip(X ,Y ) := inf{L : there exists L-bi-Lipschitz f : X → Y } ∈ [1,∞]

so that X admits a bi-Lipschitz embedding into Y if and only if Lip(X ,Y ) <∞.
When does a metric space admit a bi-Lipschitz embedding into some (finite-dimensional) Eu-

clidean space? Spaces admitting such embeddings can roughly be thought to live inside a Euclidean
space, and this is very important for a comprehensive study of their geometry. The embedding prob-
lem has attracted considerable attention over the years due to its applications in theoretical computer
science and, more specifically, in graphic imaging and storage and access issues for large data sets
[KV15, Nao10].

It is well know that a metric space bi-Lipschitz embeds into some Euclidean space only if it is dou-
bling. Recall that a space is doubling if every ball of radius r can be covered by at most N balls
of radii r /2 for some fixed N > 1. Moreover Assouad [Ass77, Ass79, Ass83] showed that, if a met-
ric space (X ,d) is doubling, then, for any ε > 0, the snowflaked space (X ,dε) bi-Lipschitz embeds
into some Euclidean space. Nevertheless, the doubling condition is not sufficient for the existence
of a bi-Lipschitz embedding into a Euclidean space. The Heisenberg group endowed with a sub-
Riemannian metric is probably the most well known example of a doubling space which does not
admit bi-Lipschitz embedding into any Euclidean space. This follows from a deep theorem of Pansu
[Pan89] and an observation of Semmes [Sem96]. In fact, the second author showed that H does not
bi-Lipschitz embed in any Hilbert space [Li16]. We also record that bi-Lipschitz embeddability of
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sub-Riemannian manifolds, and especially of Carnot groups, has been studied by various authors
[Sem96, Wu15a, RV17, Wu15b, Rom16].

Here, we are concerned with the following question: which subsets of H admit a bi-Lipschitz em-
bedding into some Euclidean space? Clearly, every finite subset of the Heisenberg group admits such
an embedding. On the other hand, following the arguments of Pansu and Semmes, it is easy to see
that no open subset of the Heisenberg group admits such a bi-Lipschitz embedding. We are partic-
ularly interested in the bi-Lipschitz embeddability of submanifolds of H, which have been studied
extensively in the past 20 years in connection to geometric measure theory and geometric analysis,
see e.g. [SC16, CDPT07].

Our first theorem focuses on affine subsets ofR3. Here and in what follows, dK is the Korányi metric
defined in Section 2.

Theorem 1.1. There exists a universal L > 1 with the following properties.

(1) If `⊂R3 is a line, then Lip((`,dK ),R3) ≤ L.
(2) If P ⊂R3 is a plane, then Lip((P,dK ),R4) ≤ L.

We note that the Euclidean dimensions in the preceding theorem are sharp. Indeed, the z-axis in
the Heisenberg group is bi-Lipschitz homeomorphic to the snowflaked space (R, | · |1/2) which cannot
be embedded inR2. On the other hand, the plane {x = 0} is bi-Lipschitz homeomorphic to the product
space (R, | · |)× (R, | · |1/2) which can not be embedded in R3.

Using a bi-Lipschitz welding theorem [MM16], we obtain the following result as a corollary.

Theorem 1.2. If M is a compact piecewise linear 2-manifold in R3, then there exists N ∈ N such that
Lip((M ,dK ),RN ) <∞.

It is natural now to ask if Theorem 1.2 holds if “piecewise linear” is replaced by some degree of dif-
ferentiability. Our next theorem asserts that any C 1,1 1-manifold can be locally bi-Lipschitz embed-
ded in R4 with a uniform constant. Moreover we prove that the same holds true for C 1,1 2-manifolds
around non-characteristic points. Recall that a point p on a differentiable manifold in R3 is called
characteristic if the horizontal distribution at that point is the same as the tangent space. Other-
wise, the point is called H-regular. By well known results of Balogh [Bal03], almost all points of a
C 1,1 smooth 2-manifold in R3 are H-regular. A 2-manifold is called H-regular if all of its points are
H-regular.

Theorem 1.3. There exists universal L > 1 with the following properties.

(1) If γ ⊂ R3 is a C 1,1 1-manifold and x ∈ γ, then there exists a neighborhood U ⊂ γ of x such that
Lip((U ,dK ),R4) ≤ L.

(2) If M ⊂R3 is a C 1,1 2-manifold and x ∈ M is H-regular, then there exists a neighborhood U ⊂ M
of x such that Lip((U ,dK ),R4) ≤ L.

The dimension for the second part is sharp. Moreover, the embeddings are only local as there exists
a C 1,1 curve γ such that (γ,dH) does not bi-Lipschitz embed into any Euclidean space (simply take a
C 1,1 curve that contains Z3).

The case of 2-manifolds with characteristic points is more complicated, and we only give partial
results. In §5, we show that every C 1,1 surface obtained by revolving a curve around the z-axis admits
local bi-Lipschitz embeddings into R4. In particular, we show that all Korányi spheres bi-Lipschitz
embed in R4 with a uniform constant. Such surfaces contain at most 2 characteristic points. In §5.3
we show that the surface z = 1

2 x y , which contains infinitely many characteristic points, bi-Lipschitz
embeds in R19.

Recall that a subset E of a metric space X is porous if there exists c ≥ 1 such that, for every x ∈ E
and every r > 0, the set B(x,r )\E contains a ball of radius r /c. Following the techniques of Pansu and
Semmes and using an Arzelá-Ascoli argument, one can show that a non-porous subset ofH admits no
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bi-Lipschitz embedding in any Euclidean or Hilbert space. As all the curves and surfaces considered
above are porous sets in H, it is natural to ask if all compact porous subsets of H admit a bi-Lipschitz
embedding into some Euclidean space. In §6 we answer this question negatively.

Theorem 1.4. There exists a compact porous subset X ⊂H that does not admit a bi-Lipschitz embed-
ding into `2.

The paper is organized as follows. In Section 2 we will introduce the Heisenberg group and we will
prove some basic estimates for the Korányi metric which will be used repeatedly in the following. In
Section 3 we will prove Theorem 1.1, while in Section 4 we consider smooth curves and smooth regu-
lar surfaces and provide the proof of Theorem 1.3. In Section 5 we study several examples of smooth
surfaces with characteristic points, and, in particular, we prove that Korányi spheres bi-Lipschitz em-
bed into R4 with a uniform constant. Finally in Section 6 we use Laakso graphs in order to construct
a porous compact subset of H which does not admit a bi-Lipschitz embedding into any Euclidean
space.

2. PRELIMINARIES

Given numbers x, y ≥ 0 and parameters a1, . . . , an , we write x .a1,...,an y if there exists a positive
and finite constant C depending on at most a1, . . . , an such that x ≤ C y . We write x 'a1,...,an y when
x .a1,...,an y and y .a1,...,an x. Similarly, we write x . y or x ' y to denote that the implicit constants
are universal.

Recall (see [BH04, Wu15a]) that there exists LΦ > 1 and an embeddingΦ :R→R3 such that

(1) for all x, y ∈R,
L−1
Φ |x − y |1/2 ≤ |Φ(x)−Φ(y)| ≤ LΦ|x − y |1/2,

(2) Φ([0,1]) ⊂ [0,1]3 withΦ(0) = (1/2,1/2,0) andΦ(1) = (1/2,1/2,1),
(3) for all t ∈ [0,1],

dist(Φ(t ),∂[0,1]3) ≤ L−1
Φ dist(Φ(t ), {(1/2,1/2,0), (1/2,1/2,1)}).

That is,Φ is a bi-Lipschitz embedding of (R, | · |1/2) in R3.
Similarly, there exists φ :S1 →R3 such that, for all x, y ∈S1,

(2.1) L−1
Φ |x − y |1/2 ≤ |φ(x)−φ(y)| ≤ LΦ|x − y |1/2.

2.1. Heisenberg group. The Heisenberg group is the sub-Riemannian manifold (R3, H , g ) where H is
the horizontal distribution generated by the vector fields

X = ∂x − 1

2
y∂z and Y = ∂y + 1

2
x∂z

and with g given by
g (aX +bY ,c X +dY ) = ac +bd .

The Heisenberg group can also be thought as a groupH= (R3, ·) with the group law

(x, y, z) · (x ′, y ′, z ′) = (
x +x ′, y + y ′, z + z ′+ 1

2 (x y ′−x ′y)
)

.

An absolutely continuous curve γ(t ) = (x(t ), y(t ), z(t )) with t ∈ [0,T ] is horizontal if γ′(t ) ∈ Hγ(t ) for
almost all t ∈ [0,T ]. That is,

z ′(t )+ 1
2 x ′(t )y(t )− 1

2 x(t )y ′(t ) = 0 for almost all t ∈ [0,T ].

The Carnot-Carathéodory metric onH is defined by

dcc (p, q) = inf
γ

∫ 1

0

√
g (γ̇(t ), γ̇(t ))d t

where the infimum is taken over all horizontal curves γ : [0,1] →R3 such that γ(0) = p and γ(1) = q .
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The following example describes the horizontal curves on planes.

Example 2.1. In vertical planes y = bx + c, the horizontal curves are exactly the lines{(
t ,bt + c,−1

2 ct +C1
)

: t ∈R}
, C1 ∈R

while the vertical lines {(0,0, t +C2) : t ∈ R}, C2 ∈ R are bi-Lipschitz homeomorphic to the snowflake
(R, | · |1/2).

On the other hand, in the plane z = ax +by + c, the horizontal curves are exactly the lines which
project to

{(−2b,2a)+ t s : t ∈R}, s ∈S1,

in the x y-plane, while the curves which project to the concentric circles

{(−2b,2a)+ t s : s ∈S1}, t > 0

are bi-Lipschitz homeomorphic to re-scaled copies of the snowflake (S1, | · |1/2).

Given points p = (x, y, z) and q = (x ′, y ′, z ′) inH, define the Korányi metric

dK (p, q) =
((

(x −x ′)2 + (y − y ′)2)2 +16(z − z ′+ 1
2 (x y ′−x ′y))2

)1/4

It is well known that dK is a metric, and it is also bi-Lipschitz equivalent to dcc in the sense that

C−1dK (p, q) ≤ dcc (p, q) ≤C dK (p, q) for all p, q ∈H
for some constant C ≥ 1; see [CDPT07]. More often, we consider the following distance dH (which is
not a true metric since there is a sub-additive constant present in the triangle inequality):

dH(p, q) = |x −x ′|+ |y − y ′|+ ∣∣z − z ′+ 1
2 (x y ′−x ′y)

∣∣ 1
2 .

Though dH is not a metric, it is bi-Lipschitz equivalent to dK in the above sense. Thus, it suffices
to construct bi-Lipschitz embeddings of sets A ⊂ R3 endowed with dH. This provides a bi-Lipschitz
embedding of the set A when considered as a subset of the metric space (H,dK ). The distance dH is
related to the Euclidean metric in the following way.

Lemma 2.2. Suppose that R > 0 and w, w ′ ∈R3 with max{|w |, |w ′|} ≤ R. Then

min{R1/2,R−1}|w −w ′|. dH(w, w ′).max{1,R1/2}|w −w ′|1/2.

Proof. Note that, if w = (x, y, z) and w ′ = (x ′, y ′, z ′), then

(2.2) dH(w, w ′) = |x −x ′|+ |y − y ′|+ |z − z ′+ 1
2 y ′(x −x ′)− 1

2 x ′(y − y ′)|1/2.

Therefore, by (2.2) and the triangle inequality, we have

dH(w, w ′) ≤ |z − z ′|1/2 +|x −x ′|1/2(|y ′|1/2 +|x −x ′|1/2)+|y − y ′|1/2(|x ′|1/2 +|y − y ′|1/2)

. (1+R1/2)|w −w ′|1/2.

If max{|x −x ′|, |y − y ′|} ≤ (2R)−1|z − z ′|, then by (2.2)

dH(w, w ′) ≥ (|z − z ′|− 1
2 R|x −x ′|− 1

2 R|y − y ′|)1/2& |z − z ′|1/2

&min{1,R1/2}|w −w ′|1/2

≥ min{R−1/2,R1/2}|w −w ′|.
If max{|x −x ′|, |y − y ′|} > (2R)−1|z − z ′|, then by (2.2)

dH(w, w ′) ≥ |x −x ′|+ |y − y ′|&min{1,R−1}|w −w ′|.
The proof completes by noting that min{1,R−1,R1/2,R−1/2} = min{R−1,R1/2}. �

The length of a horizontal curve between two points can be estimated by the following lemma.
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Lemma 2.3. Let w : [t1, t2] →H be a horizontal curve with w(t ) = (x(t ), y(t ), z(t )). Then,

dH(w(t1), w(t2)).
(‖x ′(t )‖∞+‖y ′(t )‖∞

) |t1 − t2|.
Proof. We have from the absolute continuity of x and y that

|x(t1)−x(t2)|+ |y(t1)− y(t2)| =
∣∣∣∣∫ t2

t1

x ′(s)d s

∣∣∣∣+ ∣∣∣∣∫ t2

t1

y ′(s)d s

∣∣∣∣≤ (‖x ′(t )‖∞+‖y ′(t )‖∞
) |t1 − t2|.

Moreover,∣∣∣z(t1)− z(t2)+ 1

2
x(t1)y(t2)− 1

2
x(t2)y(t1)

∣∣∣1/2

= 2−1/2
∣∣∣∣∫ t2

t1

[x ′(t )y(t )−x(t )y ′(t )]d t +x(t1)y(t2)−x(t2)y(t1)

∣∣∣∣1/2

= 2−1/2
∣∣∣∣∫ t2

t1

[x ′(t )y(t )−x(t )y ′(t )]d t − y(t2)(x(t2)−x(t1))+x(t2)(y(t2)− y(t1))

∣∣∣∣1/2

= 2−1/2
∣∣∣∣∫ t2

t1

[x ′(t )(y(t )− y(t2))d t −
∫ t2

t1

y ′(t )(x(t )−x(t2))d t

∣∣∣∣1/2

≤
(∫ t2

t1

|x ′(t )||y(t )− y(t2)|d t +
∫ t2

t1

|y ′(t )||x(t )−x(t2)|d t

)1/2

≤ ‖x ′(t )‖1/2
∞ ‖y ′(t )‖1/2

∞ |t1 − t2|.
The proof completes by noting that ‖x ′(t )‖1/2∞ ‖y ′(t )‖1/2∞ . ‖x ′(t )‖∞+‖y ′(t )‖∞. �

Given a C 1,1 2-manifold M ⊂R3 and a point p ∈ M , we denote by Tp M (resp. Hp ) the tangent plane
of M (resp. the horizontal distribution) at p.

Definition 2.1. Let M be a C 1,1 2-manifold. A point p ∈ M is characteristic if Tp M = Hp . A point p ∈ M
is regular if it is not characteristic.

In the example of vertical planes, all points are regular. In the example of the plane z = 0, all points
are regular except for the origin which is characteristic.

Theorem 2.4. [Bal03, Theorem 1.2] Let C (M) be the set of characteristic points of a 2-manifold M in
R3.

(1) If M is C 1,1 then C (M) has (Euclidean) Hausdorff dimension less than 2.
(2) If M is C 2 then C (M) has (Euclidean) Hausdorff dimension less or equal to 1.

3. LINES, PLANES AND PL COMPLEXES

In §3.1 we show the first part of Theorem 1.1 and in §3.2 the second part. In §3.3 we show Theorem
1.2.

3.1. Lines in the Heisenberg group. Here we show the first part of Theorem 1.1 which we restate in
the following proposition.

Proposition 3.1. There exists universal L > 1 such that, for any straight line ` ⊂ R3, the space (`,dH)
L-bi-Lipschitz embeds into R3.

Proof. Suppose that ` is given by the formula

w(t ) = (a1t + c1, a2t + c2, a3t + c3), t ∈R
with |a1|2+|a2|2+|a3|2 = 1. Without loss of generality we may assume that |a2| ≤ |a1|. Moreover, since
dH is invariant under vertical translations, we may assume that c3 = 0. Consider the following cases.
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Case 1. Suppose that a1 = a2 = 0. Define the map F : (`,dH) → R3 given by F (w(t )) = Φ(t ). Since
|a3| = 1, we have for any τ,τ′ ∈R,

dH(w(τ), w(τ′)) = |τ−τ′|1/2 and |F (w(τ))−F (w(τ′))| = |Φ(τ)−Φ(τ′)|.
Thus F is LΦ-bi-Lipschitz where LΦ is the bi-Lipschitz constant ofΦ.

Case 2. Suppose that 2a3+c2a1−c1a2 = 0. That is, the line is a horizontal curve. Define F : (`,dH) →
R by F (w(t )) = (|a1|+ |a2|)t . Let τ,τ′ ∈R. Then

dH(w(τ), w(τ′)) = (|a1|+ |a2|)|τ−τ′| = |F (w(τ))−F (w(τ′))|,
so F is in fact an isometry.

Case 3. Suppose that none of the above cases applies. Set

κ= |a1|+ |a2| 6= 0, λ= ∣∣a3 + 1
2 (c2a1 − c1a2)

∣∣1/2 6= 0, and µ= κ2

λ2 ,

and define F : (`,dH) →R3 by

F (w(t )) = κ

µ
Φ

(
µt − [

µt
])+ κ

µ

(
0,0,

[
µt

])
where [a] denotes the integer part of a.

Let τ,τ′ ∈R, w = w(τ) and w ′ = w(τ′). Without loss of generality, assume that τ′ > τ. We have that

dH(w, w ′) = κ|τ−τ′|+λ|τ−τ′|1/2.

We now divide Case 3 into three sub-cases.
Case 3.1. Suppose that there exist at least two integers contained in the interval (µτ,µτ′). Let

m = minZ∩ (µτ,µτ′) and n = maxZ∩ (µτ,µτ′).

Then, |τ−τ′| ≥µ−1 which yields λ≤ κ|τ−τ′|1/2, and thus

κ|τ−τ′| ≤ dH(w, w ′) ≤ 2κ|τ−τ′|.
On the other hand, since |µτ−µτ′| > 1,

µ

κ
|F (w)−F (w ′)| ≤ ∣∣Φ(

µτ′−n
)−Φ(

µτ− (m −1)
)∣∣+ (n −m +1)

.
∣∣µτ−µτ′∣∣1/2 + (n −m)1/2 +1+ (n −m)+1

. |µτ−µτ′| =µ|τ−τ′|.
Notice that the third component ofΦ lies between 0 and 1. Thus we have

µ

κ
|F (w)−F (w ′)| ≥ (n −m +1)− ∣∣Φ(

µτ′−n
)−Φ(

µτ− (m −1)
)∣∣

≥ (n −m)& |µτ−µτ′| =µ|τ−τ′|
since 3(n −m) ≥ (n −m)+2 > |µτ−µτ′|. Hence, in this case, |F (w)−F (w ′)| ' κ|τ−τ′| ' dH(w, w ′).

Case 3.2. Suppose that there exists no integer in (µτ,µτ′). Then, |τ−τ′| <µ−1 which yields

λ|τ−τ′|1/2 ≤ dH(w, w ′) ≤ 2λ|τ−τ′|1/2.

Moreover, [µτ] = [µτ′], so

|F (w)−F (w ′)| = κ

µ

∣∣Φ(
µτ− [

µτ
])−Φ(

µτ′− [
µτ′

])∣∣' κ

µ
|µτ−µτ′|1/2 =λ|τ−τ′|1/2.

Case 3.3. Suppose that there exists exactly one integer n in (µτ,µτ′). Then, |τ′−τ| < 2λ2/κ2 which
yields

λ|τ−τ′|1/2 ≤ dH(w, w ′) < (1+
p

2)λ|τ−τ′|1/2.
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Set τ′′ = n/µ ∈ (τ,τ′) and w ′′ = w(τ′′). Before estimating |F (w)−F (w ′)|, we make two observations.
Firstly, by (3) of the definition ofΦ, the assumptions of this case, and the choice of τ′′, it is easy to see
that

|F (w)−F (w ′)| ' |F (w)−F (w ′′)|+ |F (w ′)−F (w ′′)|.
Also, t 7→Φ(µt − [µt ]) is periodic with period 1/µ; in particular,

|F (w(t +1/µ))−F (w(s +1/µ))| = |F (w(t ))−F (w(s))|.
Combining these two observations, we have

|F (w)−F (w ′)| ' |F (w)−F (w ′′)|+ |F (w ′)−F (w ′′)|
=

∣∣∣F (
w

(
τ− n−1

µ

))
−F

(
w

(
1
µ

))∣∣∣+ ∣∣∣F (
w

(
τ′− n

µ

))
−F (w (0))

∣∣∣
= κ

µ

∣∣Φ(
µτ− (n −1)

)−Φ (1)
∣∣+ κ

µ

∣∣Φ(
µτ′−n

)−Φ (0)
∣∣

' κ

µ

(∣∣n −µτ∣∣1/2 + ∣∣µτ′−n
∣∣1/2

)
'λ|τ−τ′|1/2. �

3.2. Planes in the Heisenberg group. We now show the second part of Theorem 1.1 which we restate
in the following proposition.

Proposition 3.2. There exists a universal L > 1 such that, for any plane P in R3, there exists an L-bi-
Lipschitz embedding of (P,dH) into R4.

For the proof of Proposition 3.2 we distinguish two cases.

3.2.1. Planes parallel to z-axis. Suppose that

P = {(x, y, z) ∈R3 : y = bx + c}

for some b,c ∈ R. Without loss of generality we may assume that |b| < 1. Otherwise we consider the
plane P ′ = {(x, y, z) ∈R3 : x = b−1 y +b−1c} and the proof is similar. Define the map f : P →R4 with

f (x,bx + c, z) = (
x,Φ

(
z − c

2 x
))

.

Then, if w = (x,bx + c, z) and w ′ = (x ′,bx ′+ c, z ′) we have

| f (w)− f (w ′)|. |x −x ′|+ ∣∣Φ(
z − c

2 x
)−Φ(

z ′− c
2 x ′)∣∣

≤ |x −x ′|+b|x −x ′|+LΦ
∣∣(z − z ′)− c

2 (x −x ′)
∣∣ 1

2

= LΦdH(w, w ′).

Similarly we obtain

| f (w)− f (w ′)| ≥ (LΦ|b|+LΦ)−1dH(w, w ′) ≥ (2LΦ)−1dH(w, w ′).

3.2.2. Planes not parallel to z-axis. Suppose that

P = {(x, y, z) ∈R3 : z = ax +by + c}

for some a,b,c ∈R.
Define first P0 = {(x, y, z) ∈R3 : z = 0} and g : P0 → P with

g (x, y,0) = (x −2b, y +2a, a(x −2b)+b(y +2a)+ c).

Note that g is an isometry with respect to dH. Indeed, if w = (x, y,0) and w ′ = (x ′, y ′,0) then

dH(g (w), g (w ′)) = |x −x ′|+ |y − y ′|+ ∣∣1
2 (x ′y −x y ′)

∣∣1/2 = dH(w, w ′).

Therefore, it suffices to prove Proposition 3.2 for the plane P0.
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Given a point w ∈ R2 there exist t ≥ 0 and s ∈S1 such that w = t s; if w 6= (0,0), then t > 0 and s are
unique. Define now the embedding F : P0 → R4 by F (t s,0) = (t φ(s), t ) where φ is defined as in (2.1).
The following two simple lemmas imply that F is bi-Lipschitz.

Lemma 3.3. For each i ∈ {1,2} let si ∈S1, ti ≥ 0 and wi = (si ti ,0) ∈R3. Then,

dH(w1, w2) ' |t1 − t2|+ (t1 ∧ t2)|s1 − s2|1/2.

Proof. Without loss of generality assume that t1 ≤ t2. For i = 1,2 write si = (cos(θi ),sin(θi )) for some
θi ∈ [0,2π). Then,

dH(w1, w2) ' |s1t1 − s2t2|+ (t1t2)1/2|sin(θ1 −θ2)|1/2

' (t2 − t1)+ t1|s1 − s2|+ (t1t2)1/2|sin(θ1 −θ2)|1/2.

If t2 ≥ 2t1, then t1 ≤ (t2 − t1), so (t1t2)1/2. (t2 − t1) and the claim holds.
If t2 < 2t1 and (θ1 −θ2) >π/2, then |s1 − s2| ' 1, t1 ' t2 and the claim holds.
If t2 < 2t1 and (θ1 −θ2) ≤ π/2, then |s1 − s2| ' sin(θ1 −θ2), t1 ' t2, and |s1 − s2|. |s1 − s2|1/2, and so

the claim holds. �
Lemma 3.4. If t1, t2 ≥ 0 and s1, s2 ∈S1 then

|(t1φ(s1), t1)− (t2φ(s2), t2)| ' |t1 − t2|+ (t1 ∧ t2)|s1 − s2|1/2

Proof. Indeed,

|(t1φ(s1), t1)− (t2φ(s2), t2)| ' |t1 − t2|+ |t1φ(s1)− t2φ(s2)|
' |t1 − t2|+ (t1 ∧ t2)|φ(s1)−φ(s2)|
' |t1 − t2|+ (t1 ∧ t2)|s1 − s2|1/2. �

3.3. Simplicial complexes. Recall that a 0-simplex is a point of R3, a 1-simplex E ⊂ R3 is the convex
hull of two distinct points and a 2-simplex E ⊂R3 is the convex hull of three distinct points in R3 that
do not lie on the same line. The boundary of a k-simplex consists of j -faces ( j ≤ k − 1) which are
j -simplices.

A (compact) simplicial 2-complex K ⊂R3 is a finite union of simplices S1∪·· ·∪Sk with the following
properties

(1) each Si is a ki -simplex for some k1 ∈ {0,1,2};
(2) for each i , j ∈ {1, . . . ,n}, either Si ∩S j is empty, or Si ∩S j is a common edge of Si and S j , or

Si = S j .

Theorem 3.5. Let K ⊂ R3 be a finite union K = D1 ∪·· ·∪Dk where each Di is a simplicial 2-complex.
Then, there exists N ∈N and a bi-Lipschitz embedding of (K ,dH) into RN .

For the proof of Theorem 3.5 we use the following bi-Lipschitz welding theorem.

Lemma 3.6 ([MM16, Theorem 1.1]). Let X be a metric space and let X1, X2 ⊂ X be closed subsets such
that X = X1∪X2. If X1 bi-Lipschitz embeds inRn and X2 bi-Lipschitz embeds inRm then X bi-Lipschitz
embeds in Rn+m+1.

We now show Theorem 3.5.

Proof of Theorem 3.5. By Lemma 3.6 we only need to show that a simplicial 2-complex admits a bi-
Lipschitz embedding into some RN . Let K ⊂ R3 be a simplicial 2-complex. Then, K = ⋃n

i=1 Si where
each Si is a ki -simplex for some ki ∈ {0,1,2}. By Proposition 3.2, each (Si ,dH) L-bi-Lipschitz embeds
into R4 for some universal L > 1. Applying Lemma 3.6 n times we obtain a bi-Lipschitz embedding of
(K ,dH) into R5n−1. �
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4. SMOOTH CURVES AND H-REGULAR SURFACES

In §4.1 we show the first part of Theorem 1.3, and in §4.2 we prove the second part. For a set A ⊂R3,
we will say that (A,dH) locally L-bi-Lipschitz embeds in RN for some L > 1 if, for any p ∈ A, there is a
neighborhood U of p such that (U ∩ A,dH) L-bi-Lipschitz embeds in RN .

4.1. Smooth curves. For the rest of §4.1, we denote by I a non-degenerate interval of R. We prove the
following proposition.

Proposition 4.1. There is a universal constant L > 1 such that, for any C 1,1 curve w : I → R3 with unit
speed, (w(I ),dH) locally L-bi-Lipschitz embeds into R4.

The idea of the proof is to decompose the curve γ = w(I ) into two types of sub-arcs and embed
each one in R4. In the following lemma we consider sub-arcs of γ that are “vertical" enough.

Lemma 4.2. Let w : [0,T ] → R3 be a C 1,1 smooth curve with unit speed such that |2z ′(t )+ x ′(t )y(t )−
y ′(t )x(t )| ≥ 1 for all t ∈ [0,T ]. Then, (w([0,T ]),dH) locally L-bi-Lipschitz embeds into R3 for some
universal L > 1.

Proof. Let M > 0 be such that, for all t ∈ [0,T ],

1 ≤ |2z ′(t )+x ′(t )y(t )−x(t )y ′(t )| ≤ M .

By compactness of [0,T ] and uniform continuity of w ′(t ), there exists ε ∈ (0,1) such that if t0, . . . , t5 ∈
[0,T ] are such that |ti − t j | ≤ ε, then

(4.1)
1

2
≤ |2z ′(t1)+x ′(t2)y(t3)−x(t4)y ′(t5)|

|2z ′(t0)+x ′(t0)y(t0)−x(t0)y ′(t0)| ≤ 2.

We claim that, for any t , t ′ ∈ [0,T ] with |t−t ′| < ε, there is an L-bi-Lipschitz map between (w([t , t ′]),dH)
and ([t , t ′],λ| · |1/2) for some constant λ ≥ 1 and a universal constant L > 1. Assuming the claim, we
see that (w([0,T ]),dH) locally L-bi-Lipschitz embeds into R3 for some universal L.

To prove the claim, fix τ1,τ2 ∈ [0,T ] such that 0 < τ2 −τ1 ≤ ε. Fix also t0 ∈ [τ1,τ2] and set

λ= |2z ′(t0)+x ′(t0)y(t0)−x(t0)y ′(t0)|1/2 ∈ [1, M 1/2].

By the Mean Value Theorem, (4.1), and the fact that ε < 1 ≤ λ, if t1, t2 ∈ [τ1,τ2], there exist c1, . . . ,c5 ∈
(t1, t2) such that

dH(w(t1),w(t2))

= |x(t1)−x(t2)|+ |y(t1)− y(t2)|+ |z(t1)− z(t2)+ 1
2 (x(t1)y(t2)−x(t2)y(t1))|1/2

= (|x ′(c1)|+ |y ′(c2)|)|t1 − t2|+ |z ′(c3)+ 1
2 x ′(c4)y(t2)− 1

2 x(t2)y ′(c5)||t1 − t2|1/2

' |z ′(t0)+ 1
2 x ′(t0)y(t0)− 1

2 x(t0)y ′(t0)||t1 − t2|1/2

=λ|t1 − t2|1/2.

Hence, (w([τ1,τ2]),dH) is L-bi-Lipschitz equivalent to ([τ1,τ2],λ| · |1/2) and the claim follows. �

Proof of Proposition 4.1. Fix t1, t2 ∈ I with t1 < t2. We show that the space (w([t1, t2]),dH) locally bi-
Lipschitz embeds in R4.

Let M > 1 be such that

max{|x(t )|, |y(t )|} ≤ M for all t ∈ [t1, t2].
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Let ε0 = (4M)−2. Note that if |x ′(t )|2 +|y ′(t )|2 ≤ ε0, then, since w has unit speed in R3, we have

|2z ′(t )+x ′(t )y(t )−x(t )y ′(t )| ≥ 2|z ′(t )|− |x ′(t )||y(t )|− |x(t )||y ′(t )|(4.2)

≥ 2|z ′(t )|−2M
p
ε0

= 2
√

1−|x ′(t )|2 −|y ′(t )|2 −2M
p
ε0

≥ 2
√

1−ε0 −2M
p
ε0

≥ 1.

By uniform continuity of w ′|[t1,t2] and compactness of [t1, t2], there exist finitely many closed inter-
vals I1, . . . , Ik ⊂ [t1, t2] such that

(1)
⋃k

j=1 I j = [t1, t2],

(2) for each j ∈ {1, . . . ,k}, either |x ′(t )|2 +|y ′(t )|2 ≤ ε0 for all t ∈ I j or |x ′(t )|2 +|y ′(t )|2 ≥ ε0/2 for all
t ∈ I j .

If |x ′(t )|2 + |y ′(t )|2 ≤ ε0 for all t ∈ I j , then (4.2) and Lemma 4.2 imply that (w(I j ),dH) locally bi-
Lipschitz embeds in R3.

If |x ′(t )|2+|y ′(t )|2 ≥ ε0/2 for all t ∈ I j , then the projection of w(I j ) on R2×{0} is a C 1,1 smooth curve
which can be re-parameterized so that |x ′(t )|2 + |y ′(t )|2 = 1. The surface (w(I j )×R,dH) is C 1,1 and
consists only of H-regular points. Hence, we will see in Proposition 4.3 that (w(I j )×R,dH) locally
bi-Lipschitz embeds in R4 with a universal constant. In particular, this means that (w(I j ),dH) locally
bi-Lipschitz embeds in R4. �
4.2. H-regular surfaces. Here we show the second part of Theorem 1.3 which we restate in the fol-
lowing proposition.

Proposition 4.3. There exists a universal constant L > 1 satisfying the following. Let M ⊂ R3 be a C 1,1

2-manifold in R3 and let p0 be an H-regular point of M. Then there exist a neighborhood U ⊂R3 of p0

and an L-bi-Lipschitz embedding of (U ∩M ,dH) in R4.

The proof of this proposition is comprised by the following two lemmas. In Lemma 4.4, we show
that M can be foliated near p0 by horizontal curves with C 1 dependence on parameters. In Lemma 4.5,
we construct a local embedding of any surface which possesses such a foliation. In fact, Lemma 4.5
will be used in several other arguments throughout the rest of this paper when a foliation by horizon-
tal curves can be constructed.

Lemma 4.4. There exists a universal constant L′ > 1 satisfying the following. Let M be a C 1,1 2-manifold
in R3 and let p0 be an H-regular point of M. Then there exist ε > 0 and an L′-bi-Lipschitz map G :
[−ε,ε]2 → (M , | · |) such that

(1) G(0,0) = p0

(2) for all v ∈ [−ε,ε], the curve u 7→G(u, v) is a horizontal curve.

Proof. In a neighborhood of p0 = (x0, y0, z0), the manifold M can be written as the level set H(x, y, z) =
0 for some C 1,1 function H with |∇H(x0, y0, z0)| > 0. Without loss of generality, we assume that

|Hz (x0, y0, z0)| ≥ max{|Hx (x0, y0, z0)|, |Hy (x0, y0, z0)|}.

The other two cases are similar and are left to the reader.
Then, in a sufficiently small neighborhood U of p0 we can write

M ∩U = {(x, y,F (x, y)) : (x, y) ∈V }

for some open V ⊂R2 where F is a C 1,1 function with F (x0, y0) = z0 and

sup
(x,y)∈V

{|Fx (x, y)|, |Fy (x, y)|} ≤ 2.
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Since p0 is H-regular, either x0 −2Fy (x0, y0) 6= 0 or y0 +2Fx (x0, y0) 6= 0. Without loss of generality,
we assume that x0 −2Fy (x0, y0) 6= 0 and that

(4.3) |y0 +2Fx (x0, y0)| ≤ |x0 −2Fy (x0, y0)|.
There exists a neighborhood V1 ⊂V of (x0, y0) such that x −2Fy 6= 0 in V1. Thus the horizontal curves
in a neighborhood of p0 in M are given by the ODE

(4.4)
d y

d x
= y +2Fx

x −2Fy
.

By standard existence and uniqueness theorems (e.g. [CL55, Theorem 1.2] and [CL55, Theorem 2.2]),
there is some ε1 > 0 such that, for each v ∈ [−ε1,ε1], there exists a unique solution y = gv (x) of (4.4)
defined on [x0 −ε1, x0 +ε1] such that gv (x0) = y0 + v . Moreover, the function

f : [−ε1,ε1]2 →R2 with f (u, v) := (x0 +u, gv (x0 +u))

is C 1 [CL55, Theorem 7.1]. By existence and uniqueness of solutions, there is a neighborhood of
(x0, y0) in which the graphs of gv do not intersect, and every point in this neighborhood is contained
in the graph of some gv . Moreover, the derivative of f at (0,0) satisfies

D f (0,0) =
[

1 0
d

du g0(x0 +u)|u=0
d

d v gv (x0)|v=0

]
=

[
1 0

y0+2Fx (x0,y0)
x0−2Fy (x0,y0) 1

]
.

Thus, for some ε2 > 0, G is a C 1 diffeomorphism in [−ε2,ε2]2, and, by (4.3), there exists a universal
constant L1 > 1 such that

(4.5) L−1
1 |(u, v)− (u′, v ′)| ≤ | f (u, v)− f (u′, v ′)| ≤ L1|(u, v)− (u′, v ′)|

for all (u, v), (u′, v ′) ∈ [−ε2,ε2]2.
Define now G : [−ε2,ε2]2 → M by G(u, v) = ( f (u, v),F ( f (u, v))) which has been defined so that the

curves u 7→G(u, v) are horizontal curves contained in M for any v ∈ [−ε2,ε2]. Moreover

L−1
1 |(u, v)− (u′, v ′)| ≤ |G(u, v)−G(u′, v ′)|

. (L1 +‖Fx‖∞+‖Fy‖∞)|(u, v)− (u′, v ′)|
≤ (L1 +2)|(u, v)− (u′, v ′)|,

and hence G is L′-bi-Lipschitz for some universal L′ > 1. �

Lemma 4.5. There exists a universal constant L > 1 satisfying the following. Fix M ⊂R3. Suppose there
exist ε> 0, L′ > 1, and an L′-bi-Lipschitz map G : [−ε,ε]2 → M such that

(1) G(0,0) = p0

(2) for all v ∈ [−ε,ε], the curve u 7→G(u, v) is a horizontal curve.

Write G = (g1, g2, g3), and set

κ := |2∂v g3(0,0)+ g2(0,0)∂v g1(0,0)− g1(0,0)∂v g2(0,0)|
λ := |∂u g1(0,0)|+ |∂u g2(0,0)|.

Define the map

Ψ : (G([−ε,ε]2)∩M ,dH) →R4 with Ψ(G(u, v)) = (λu,κ1/2Φ(v)).

Then there is a neighborhood U ⊂R3 of p0 such thatΨ : (U ∩M ,dH) →R4 is L-bi-Lipschitz.

Note that, while L may be found independent of the bi-Lipschitz constant L′, the size of the neigh-
borhood U certainly depends on the value of L′.
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Proof. We first note that λ > 0 since the curve γ1(u) = G(u,0) is horizontal. Moreover, since G is L′-
bi-Lipschitz, λ is bounded from above by a constant C depending only on L′. On the other hand, the
curve γ2(v) =G(0, v) intersects γ1 transversely at p0 and hence cannot be horizontal. Thus, κ> 0. Fix
(u1, v1), (u2, v2) ∈ [−ε,ε]2 and set

p1 =G(u1, v1), p2 =G(u2, v2), p3 =G(u1, v2).

That is, p2 and p3 lie along the same horizontal curve u 7→G(u, v2).
Choosing ε possibly smaller, we have for some c1,c2,c3 ∈ [−ε,ε]

dH(p1, p3) = |g1(u1, v1)− g1(u1, v2)|+ |g2(u1, v1)− g2(u1, v2)|
+ ∣∣g3(u1, v1)− g3(u1, v2)+ 1

2 g1(u1, v1)g2(u1, v2)− 1
2 g2(u1, v1)g1(u1, v2)

∣∣1/2

= (|∂v g1(u1,c1)|+ |∂v g1(u2,c2)|)|v1 − v2|
+ ∣∣∂v g3(u1,c3)+ 1

2∂v g1(u1,c1)g2(u1, v2)− 1
2∂v g2(u1,c2)g1(u1, v2)

∣∣1/2 |v1 − v2|1/2

.λ|u1 −u2|+κ1/2|v1 − v2|1/2.

Additionally, by Lemma 2.3 we have

dH(p2, p3). (‖∂u g1‖∞+‖∂u g2‖∞)|u1 −u2|.λ|u1 −u2|(4.6)

assuming that ε is sufficiently small. By the triangle inequality,

dH(p1, p2).λ|u1 −u2|+κ1/2|v1 − v2|1/2 ' |Ψ(p1)−Ψ(p2)|.
We now show that dH(p1, p2)& |Ψ(p1)−Ψ(p2)|. By (4.6), there exists a universal constant C0 such

that

(4.7)
∣∣g3(u1, v2)− g3(u2, v2)+ 1

2 g1(u1, v2)g2(u2, v2)− 1
2 g2(u1, v2)g1(u2, v2)

∣∣1/2 ≤C0λ|u1 −u2|.
Consider the following two cases

Case 1. Suppose that C0λ|u1 −u2| ≥ (κ/16)1/2|v1 − v2|1/2.

|Ψ(p1)−Ψ(p2)| 'λ|u1 −u2|+κ1/2|v1 − v2|1/2.λ|u1 −u2|. dH(p1, p2).

Case 2. Suppose that C0λ|u1 −u2| < (κ/16)1/2|v1 − v2|1/2. Then,

dH(p1, p2) ≥λ|u1 −u2|+ |g3(u1, v1)− g3(u2, v2)+ 1
2 g1(u1, v1)g2(u2, v2)− 1

2 g2(u1, v1)g1(u2, v2)|1/2.

Now,

g3(u1, v1)− g3(u2, v2)+ 1
2 g1(u1, v1)g2(u2, v2)− 1

2 g2(u1, v1)g1(u2, v2)

= g3(u1, v1)− g3(u1, v2)+ 1
2 g2(u2, v2)(g1(u1, v1)− g1(u1, v2))

− 1
2 g1(u2, v2)(g2(u1, v1)− g2(u1, v2))

+ g3(u1, v2)− g3(u2, v2)+ 1
2 g1(u1, v2)g2(u2, v2)− 1

2 g2(u1, v2)g1(u2, v2)

Again assuming that ε is sufficiently small,∣∣∣g3(u1, v1)− g3(u1, v2)+ 1
2 g2(u2, v2)(g1(u1, v1)− g1(u1, v2))

− 1
2 g1(u2, v2)(g2(u1, v1)− g2(u1, v2))

∣∣∣
= ∣∣∂v g3(u1,c3)+ 1

2 g2(u2, v2)∂v g1(u1,c1)− 1
2 g1(u2, v2)∂v g2(u1,c2)

∣∣ |v1 − v2|
≥ κ/2|v1 − v2|.



BI-LIPSCHITZ EMBEDDINGS OF HEISENBERG SUBMANIFOLDS 13

Thus, by (4.7)

dH(p1, p2)&λ|u1 −u2|+ (κ/2)1/2 |v1 − v2|1/2 −C0λ|u1 −u2|
&λ|u1 −u2|+κ1/2|v1 − v2|1/2

' |Ψ(p1)−Ψ(p2)|.
Therefore,Ψ is bi-Lipschitz in a neighborhood of p0. �

4.3. The smooth torus. Although the set of characteristic points of a given smooth manifold is very
small, it rarely is empty. By the Hairy-Ball Theorem and the classification of 2-manifolds, if a compact
differentiable manifold M has no characteristic points, then it must be homeomorphic to the torus
S1 ×S1. On the other hand, a topological torus could be H-regular. Given numbers 0 < r < R, define
the torus

Tr,R = {(x, y, z) : (R −
√

x2 + y2)2 + z2 = r 2}.

We claim thatTr,R has no characteristic points. Recall first that both the horizontal distribution and
the tangent space ofTr,R are invariant under rotations with respect to the z-axis in the following sense.
If Pw (resp. P̂w ) is the affine space containing w ∈Tr,R and generated by TwTr,R (resp. generated by
Hw ) and if ζ : R3 → R3 is a rotation with respect to z-axis, then ζ(Pw ) = Pζ(w) and ζ(P̂w ) = P̂ζ(w). To
show the claim, suppose that a point w ∈Tr,R is characteristic and write w = (r0,θ0, z0) in cylindrical
coordinates. By the rotation invariance of the tangent space and the horizontal distribution, every
point of the circle S = {(r0,θ, z0) : θ ∈ [0,2π)} is characteristic. Therefore, S is horizontal. However, by
§3.2, (S,dH) is bi-Lipschitz equivalent to (S1, | · |1/2), which is a contradiction.

Let V be a smooth unitary vector field onTr,R such that V (w) ∈ TwTr,R ∩Hw for all w ∈Tr,R . By the
Frobenius Theorem, V is integrable and Tr,R is foliated by the (closed) integral curves of V which are
obtained by rotating one of them with respect to the z-axis. Specifically, there exists a diffeomorphism
G :S1 ×S1 →Tr,R such that s 7→G(s,η) is a horizontal curve for each η ∈S1.

We now claim that (Tr,R ,dH) bi-Lipschitz embeds in R4. Indeed, say τ is an identification of R2/Z2

with S1 ×S1 and defineΨ :Tr,R →R4 so that

Ψ(G(τ(u, v))) = (u,Φ(v)) for all (u, v) ∈R2/Z2.

According to Lemma 4.5, there is a constant L > 1 such that, for any p ∈Tr,R , there exists a neighbor-
hood Up of p in Tr,R whereinΨ|(Up ,dH) is L-bi-Lipschitz. By the compactness of Tr,R , there exists ε> 0
such that Ψ is bi-Lipschitz on all compact sets of Tr,R with (Euclidean) diameter at most ε. On the
other hand, by Lemma 2.2, for all w, w ′ ∈Tr,R with |w −w ′| ≥ ε we have

dH(w, w ′) 'ε 1 'ε |Ψ(w)−Ψ(w ′)|.
Therefore,Ψ is bi-Lipschitz.

5. SOME SMOOTH SURFACES WITH CHARACTERISTIC POINTS

Here we examine the bi-Lipschitz embeddability of some special classes of smooth surfaces that
contain characteristic points.

5.1. Surfaces obtained by revolution about the z-axis. Let F : [0,∞) →R be a C 1,1 function. Let Σ be
the surface of revolution generated by F :

Σ= {(w,F (|w |)) : w ∈R2}.

Below we denote by 0 the origins (0,0) and (0,0,0), depending on the context.
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Theorem 5.1. Suppose that F is C 1,1 with F ′(0) = 0, and set

M := max

{
1, limsup

t↓0

|F ′(t )|
t

}
.

There exist ε> 0, L = L(M) > 1, and a neighborhood U ⊂Σ of (0,0,F (0)) such that (U ,dH) L-bi-Lipschitz
embeds in R4.

Before proving this theorem, we observe an application of this embedding. Combined with Lemma
3.6 and theH-regularity of Σ\ {(0,0,F (0))}, Theorem 5.1 yields the following corollary.

Corollary 5.2. Suppose that F is C 1,1 with F ′(0) = 0. Any compact subset of (Σ,dH) bi-Lipschitz embeds
in some Euclidean space Rn .

Proof. We first show that all points of Σ\ {(0,0,F (0))} are regular points. Indeed, suppose that (x, y) 6=
(0,0) is a characteristic point of Σ. Then,

y =−2x
F ′(|(x, y)|)
|(x, y)| and x = 2y

F ′(|(x, y)|)
|(x, y)| .

If x = 0 or y = 0, then both must be equal to 0, and this is a contradiction. However, if x 6= 0 and
y 6= 0, then y/x = x/y which implies that x2 + y2 = 0, and this is again a contradiction. Thus the only
characteristic point of Σ is (0,0,F (0)).

Let S be a compact subset of Σ. By Theorem 5.1, Proposition 4.3, and the compactness of S, there
exist open sets D1, . . . ,Dk such that each Di bi-Lipschitz embeds into R4 and S ⊂⋃k

i=1 Di . By Lemma

3.6, we obtain a bi-Lipschitz embedding of
⋃k

i=1 Di (and thus of S) into R5k−1. �

We now prove Theorem 5.1. The idea of the proof is as follows. In Lemma 5.3, we construct a
bi-Lipschitz homeomorpism of a disc centered at the origin in R2 such that any radial segment in
the disc is mapped to a curve which is the projection of a horizontal curve in Σ. Since Σ is a surface
of revolution, rotations of this horizontal curve foliate the surface. We then complete the proof of
Theorem 5.1 by re-parameterizing Σ in terms of the horizontal curve (which embeds into R) and the
snowflaked unit circle (which embeds into R3).

Lemma 5.3. Let F : [0,+∞) → R be as in Theorem 5.1. There exist T > 0, L = L(M) > 1, and an L-bi-
Lipschitz map G : B 2(0,T ) → B 2(0,T ) with G(0) = 0, such that for each s ∈S1, the curve

t 7→ (G(t s),F (|G(t s)|))

is horizontal. Moreover, |G(st )| = |G(s′t )| for any s, s′ ∈S1 and t ∈ [0,T ).

Proof. For each t ≥ 0 consider the point wt = (t ,0,F (t )). Then

TwtΣ∩Hwt =
{(

x,2
F ′(t )

t
(x − t ),F (t )+F ′(t )(x − t )

)
: x ∈R

}
.

Consider now the vector field V :R2 \ {0} →R2 given by

V (t s) = s +2(F ′(t )/t )ŝ

where t > 0, s, ŝ ∈S1 and ŝ is the rotation of s by an angle of π/2. Note that V has been defined in such
a way that, when any integral curve γ of V is lifted to a curve on Σ, this lifted curve is horizontal. That
is, the curve t 7→ (γ(t ),F (γ(t ))) is a horizontal curve.

Fix T > 0 such that |F ′(t )|/t ≤ 2M for every t ∈ (0,T ). That is,

|V (p)| =
√

1+
(
2

F ′(|p|)
|p|

)2

∈ [1,5M ] for all p ∈ B 2(0,T ) \ {0}.
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Then, for all p ∈ B 2(0,T ) \ {0} we have

(5.1) V (p) ·p = |p| ≥ (5M)−1|p||V (p)|.
From (5.1) we have that if γ is an integral curve of V , then

(|γ|2)′ = γ′ ·γ= |γ| = (|γ|2)1/2

which implies that (|γ|)′ = 1/2. Therefore, given 0 < t1 ≤ t2 in the domain of γ,

(5.2) |γ(t2)|− |γ(t1)| = 1

2
(t2 − t1).

We construct a particular integral curve in B(0,T ) as follows. For each i ∈ N let Si be the circle
∂B 2(0,21−i T ), and let Ai be the closed annulus A(0;2−i T,21−i T ). By (5.2), every integral curve of V |Ai

is a C 1 curve that joins Si with Si+1 defined on an interval of length 21−i T .
For each i ∈ N, let γ̃(i ) be the integral curve of V |Ai joining Si+1 to the point (21−i T,0) defined on

the interval [21−i T,22−i T ]. The vector field V is defined in such a way that rotating γ̃(i ) produces all
integral curves of V |Ai . Appropriately rotating each γ̃(i ), we obtain a curve γ0 that joins 0 with the
point (T,0) such that γ̃|Ai is an integral curve of V |Ai . Note that, by a limiting argument, (5.2) also
holds if one or both of the ti is zero. Hence the domain of γ0 is [0,2T ].

For each s ∈ S1, let γs(t ) : [0,2T ] → R2 be the curve obtained by rotating γ0 in such a way that
γs(2T ) = Ts ∈ ∂B 2(0,T ). By the rotation invariance of V , the integral curves of V are exactly the curves
{γs(t ) : s ∈ S1} which join 0 with ∂B 2(0,T ). As discussed above, the lift of each γs to Σ is a horizontal
curve since γ′s(t ) =V (γs(t )).

Define now G : B 2(0,T ) → B 2(0,T ) with G(t s) = γs(2t ). To show that G is bi-Lipschitz, fix s1, s2 ∈S1

and 0 ≤ t1 ≤ t2 ≤ T . By the triangle inequality, the Mean Value Theorem, and (5.2), for some c ∈
[2t1,2t2],

|G(t1s1)−G(t2s2)| ≤ |G(t2s1)−G(t2s2)|+ |G(t1s1)−G(t2s1)|
= |γ0(2t1)||s1 − s2|+ |γs1 (2t1)−γs1 (2t2)|
= t1|s1 − s2|+ |γ′s1

(c)||t1 − t2|
≤ t1|s1 − s2|+5M |t1 − t2|
'M |t1s1 − t2s2|.

For the other inequality we consider two cases.
Case 1. Suppose that 10M |t1 − t2| ≥ t1|s1 − s2|. By (5.2),

|G(t1s1)−G(t2s2)| ≥ |G(t2s2)|− |G(t1s1)| = |γ0(2t2)|− |γ0(2t1)| = |t1 − t2|&M |s1t1 − s2t2|.
Case 2. Suppose that 10M |t1 − t2| < t1|s1 − s2|. By (5.2) and the Mean Value Theorem, for some

c ∈ [2t1,2t2],

|G(t1s1)−G(t2s2)| ≥ |G(t2s1)−G(t2s2)|− |G(t2s1)−G(t1s1)|
= |γ0(2t2)||s1 − s2|− |γ′s1

(c)||t1 − t2|
≥ t1|s1 − s2|−5M |t1 − t2|
≥ 1

2 t1|s1 − s2|
&M |s1t1 − s2t2|. �

We can now prove Theorem 5.1.

Proof of Theorem 5.1. For a point w ∈ R3, we denote by π(w) the projection of w on {z = 0}. Since dH
is invariant under vertical translations, we may assume that F (0) = 0. Define

Σ0 = {w ∈Σ :π(w) ∈ B 2(0,T )}



16 VASILEIOS CHOUSIONIS, SEAN LI, VYRON VELLIS, AND SCOTT ZIMMERMAN

and choose ε> 0 such that B 3(0,ε)∩Σ⊂Σ0. Define now the homeomorphism

Ψ : {z = 0}∩B 3(0,T ) →Σ0 as Ψ(st ,0) = (G(st ),F (|G(st )|))

where s ∈ S1 and t ∈ [0,T ]. We show that, if T is chosen small enough, then the map Ψ is L-bi-
Lipschitz for some L = L(M) > 1.

Fix s1, s2 ∈S1, 0 < t1 ≤ t2 ≤ T and points w1 = (s1t1,0) and w2 = (s2t2,0). By Lemma 3.3 it suffices to
show that

dH(Ψ(w1),Ψ(w2)) 'M (t2 − t1)+ t1|s1 − s2|1/2.

For the rest of the proof denote w ′
1 =Ψ(w1) and w ′

2 =Ψ(w2). We write G(st ) = (x(st ), y(st )). Recall
that G(st ) =G(s′t ) lie on the same circle centered at the origin. Therefore, since dH and G(st ) are both
invariant under rotations, we may assume that x(s1t1) = x(s2t1). Then

dH(w ′
1, w ′

2) ' |G(s1t1)−G(s2t2)|
+

∣∣∣F (|G(s1t1)|)−F (|G(s2t2)|)+ 1
2 x(s1t1)y(s2t2)− 1

2 x(s2t2)y(s1t1)
∣∣∣1/2

' |t1 − t2|+ t1|s1 − s2|(5.3)

+
∣∣∣F (|G(s2t1)|)−F (|G(s2t2)|)+ 1

2 x(s2t1)y(s2t2)− 1
2 x(s2t2)y(s2t1)

+ 1
2 x(s2t2)(y(s2t1)− y(s1t1))

∣∣∣1/2
.

Since the points (G(s2t1),F (|G(s2t1)|)) and (G(s2t2),F (|G(s2t2)|)) lie on the horizontal curve t 7→
(G(s2t ),F (|G(s2t )|)), Lemma 2.3 gives a constant C1 =C1(M) > 0 such that∣∣F (|G(s2t1)|)−F (|G(s2t2)|)+ 1

2 x(s2t1)y(s2t2)− 1
2 x(s2t2)y(s2t1)

∣∣1/2. ‖∂tG(s2t )‖∞|t1 − t2|
= ‖V (st )‖∞|t1 − t2|
≤C1|t1 − t2|(5.4)

Set ε= min{2−3/2, (2C1)−1, (12L2)−1} where L is the bi-Lipschitz constant of G . (Note that ε depends
only on M .) Also, we may choose δ > 0 sufficiently small so that |x(s2t1)| > |y(s2t1)| whenever |s1 −
s2| < δ. Indeed, we assumed earlier that x(s1t1) = x(s2t1) so that the points G(s1t1) and G(s2t1) are
reflections of one another across the x-axis. Since G is L(M)-bi-Lipschitz, such a δ can be chosen
depending only on M . Therefore, |x(s2t1)| ≥ 1

2 |G(s2t1)| when |s1 − s2| < δ. We consider the following
cases.

Case 1: |s1 − s2| ≥ δ. By Lemma 3.3, dH(w1, w2) 'δ t2. On the other hand,

dH(w ′
1, w ′

2) ≥ |G(s1t1)−G(s2t2)|&M |s1t1 − s2t2| ' |t1 − t2|+ t1|s1 − s2| 'δ t2.

Moreover, there exist 0 < ξ1 < |G(s1t1)| and 0 < ξ2 < |G(s2t2)| such that

dH(w ′
1, w ′

2) ≤ dH(w ′
1,0)+dH(w ′

2,0)

= |G(s1t1)|+ |G(s2t2)|+ |F (|G(s1t1)|)−F (0)|1/2 +|F (|G(s2t2)|)−F (0)|1/2

.M (t1 + t2)+|F ′(ξ1)|1/2|G(s1t1)|1/2 +|F ′(ξ2)|1/2|G(s2t2)|1/2.

Assuming now that T is sufficiently small we have

dH(w ′
1, w ′

2).M t2 +M 1/2(|ξ1|1/2|G(s1t1)|1/2 +|ξ2|1/2|G(s2t2)|1/2)

.M t2 + (|G(s1t1)|+ |G(s2t2)|)

.M t2.

Therefore, dH(w ′
1, w ′

2) 'M ,δ t2 'M ,δ |w1 −w2|.
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Case 2: |s1 − s2| < δ and |t1 − t2| ≥ εt 1/2
1 t 1/2

2 |s1 − s2|1/2. Note that

|x(s2t2)(y(s2t1)− y(s1t1))|1/2.M |x(s2t2)|1/2t 1/2
1 |s1 − s2|1/2.M t 1/2

1 t 1/2
2 |s1 − s2|1/2.M |t1 − t2|.

Hence by (5.3), (5.4), and Lemma 3.3

dH(w ′
1, w ′

2).M |t1 − t2|+ t1|s1 − s2|. |t1 − t2|+ t1|s1 − s2|1/2. dH(w1, w2).

Moreover,

dH(w1, w2). |t1 − t2|+ t1|s1 − s2|1/2 ≤ |t1 − t2|+ t 1/2
1 t 1/2

2 |s1 − s2|1/2.M |t1 − t2|.M dH(w ′
1, w ′

2).

Case 3: |s1 − s2| < δ and |t1 − t2| < εt 1/2
1 t 1/2

2 |s1 − s2|1/2. By (5.3), (5.4), and the choice of ε,

dH(w ′
1, w ′

2).M |t1 − t2|+ t1|s1 − s2|+ |x(s2t2)|1/2|y(s2t1)− y(s1t1)|1/2 +|t1 − t2|
. |t1 − t2|+ t1|s1 − s2|+ |x(s1t2)|1/2|y(s2t1)− y(s1t1)|1/2

+|x(s2t2)−x(s1t2)|1/2|y(s2t1)− y(s1t1)|1/2

.M |t1 − t2|+ t 1/2
1 t 1/2

2 |s1 − s2|+ t 1/2
1 t 1/2

2 |s1 − s2|1/2 + t 1/2
1 t 1/2

2 |s1 − s2|
. |t1 − t2|+ t 1/2

1 t 1/2
2 |s1 − s2|1/2

while

dH(w1, w2)& |t1 − t2|+ t1|s1 − s2|1/2

= |t1 − t2|+ t2|s1 − s2|1/2 − (t2 − t1)|s1 − s2|1/2

> |t1 − t2|+ t 1/2
1 t 1/2

2 |s1 − s2|1/2 −
p

2εt 1/2
1 t 1/2

2 |s1 − s2|1/2

≥ |t1 − t2|+ t 1/2
1 t 1/2

2 |s1 − s2|1/2.

For the other direction, note that, |s1 − s2| < δ gives |x(s2t1)| ≥ 1
2 |G(s2t1)|. Thus,

|x(s2t2)| ≥ |x(s2t1)|− |x(s2t2)−x(s2t1)| ≥ 1
2 |G(s2t1)|− |G(s2t2)−G(s2t1)|

≥ 1
2 |G(s2t2)|− 3

2 |G(s2t2)−G(s2t1)|
≥ 1

2L t2 − 3L
2 |t1 − t2|

> 1
4L t2

since ε≤ 1/(12L2). Therefore,

dH(w ′
1, w ′

2)&M |t1 − t2|+ 1
2 |x(s2t2)|1/2|y(s2t1)− y(s1t1)|1/2 −C1|t1 − t2|

&M |t1 − t2|+ t 1/2
1 t 1/2

2 |s1 − s2|1/2 −C1|t1 − t2|
> |t1 − t2|+ t 1/2

1 t 1/2
2 |s1 − s2|1/2 −C1εt 1/2

1 t 1/2
2 |s1 − s2|1/2

≥ |t1 − t2|+ t 1/2
1 t 1/2

2 |s1 − s2|1/2

≥ |t1 − t2|+ t1|s1 − s2|1/2

& dH(w1, w2)

and the proof is complete. �

5.2. Korányi spheres. Following the ideas in §5.1, we show directly that the Korányi sphere

SK = {p ∈H : dK (p,0) = 1}

admits a bi-Lipschitz embedding into R4. (Note that this is the sphere in the metric dK rather than
dH.) Since the metric is left invariant on H and commutes with dilations, this shows that any Korányi
sphere admits a bi-Lipschitz embedding into R4.
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Proposition 5.4. There exists a bi-Lipschitz embedding of (SK ,dH) into R4.

Since the proof is similar to that of Theorem 5.1, we only sketch the steps and leave the details to
the reader.

Proof. Given s ∈S1 and t ∈ [−1,1], we define

`s(t ) := (s(1−|t |), t ) ∈R3 and C = {`s(t ) : t ∈ [−1,1], s ∈S1}.

The arc `s([−1,1]) is the longitude of C in the direction of s with `s(−1) (resp. `s(1)) being the south
pole S = (0,0,−1) (resp. north pole N = (0,0,1)) for all s ∈S1. Given ε ∈ (0,1), define the sets

N (ε) = {`s(t ) : s ∈S1,1−ε≤ t ≤ 1} and S (ε) = {`s(t ) : s ∈S1,−1 ≤ t ≤−1+ε}.

Define also the two poles of SK , N ∗ = (0,0,1/4) and S ∗ = (0,0,−1/4).
Working as in Lemma 5.3, we can show that there exists a bi-Lipschitz homeomorphism G : C →

SK such that G(S ) = S ∗, G(N ) = N ∗ and every longitude `s([−1,1]) is mapped to a horizontal
curve. In fact every curve t 7→G(`s(t )) is an integral curve of the vector field

V (x, y, z) = 1√
4(x2 + y2)+ (x2 + y2)4

(−8xz −2y(x2 + y2),−8y z +2x(x2 + y2), (x2 + y2)2)
which lies in the intersection of TpSK and Hp at any p = (x, y, z) ∈SK .

Define nowΨ : (SK ,dH) →R4 by

Ψ(G(s(1−|t |), t ) = (t , (1−|t |)φ(s))

where φ is the bi-Lipschitz embedding of (S1, | · |1/2) into R3. By §3.2.2 and Theorem 5.1, we know
that Ψ is bi-Lipschitz on a neighborhood of N and on a neighborhood of S . Moreover, for all w ∈
SK \{N ∗,S ∗}, we can use the result of Lemma 4.5 to see that there exists a neighborhood of w onSK

on whichΨ is bi-Lipschitz with a universal constant. By the compactness of SK , there exist ε> 0 and
L > 1 such that Ψ is L-bi-Lipschitz on each B(p,ε)∩SK with p ∈ SK . On the other hand, by Lemma
2.2, if w, w ′ ∈SK with |w −w ′| ≥ ε, then

dH(w, w ′) 'ε 1 'ε |Ψ(w)−Ψ(w ′)|. �
We may follow very similar arguments to prove the following result.

Proposition 5.5. There exists a bi-Lipschitz embedding of (S2,dH) into R4.

As with Proposition 5.4, one needs to construct a bi-Lipschitz mapping G :S2 →S2 such that every
longitude `s([−1,1]) is mapped to a horizontal curve. Here, the vector field V is defined as

V (x, y, z) = 1√
5(x2 + y2)

(xz +2y, y z −2x,−y2 −x2).

The rest of the proof follows in the same way as above.

5.3. The surface z = 1
2 x y . The manifolds considered in §5.1 and in §5.2 are manifolds that contain

at most two characteristic points. Now we consider the surface z = x y/2 which has infinitely many
characteristic points, namely all points along the x-axis. Solving the ODE for d x/d y in (4.4), we obtain
the horizontal curves {(

c, t , 1
2 ct

)
: t ∈R}

for c ∈R and {(t ,0,0) : t ∈R}.

On the other hand, for any a ∈R and c ∈R, the curve

{(t ,c,ct/2) : t ∈ [a, a + c]}

is a snowflake; that is, it is bi-Lipschitz homeomorphic to a rescaled copy ofΦ([0,1]) whereΦ :R→R3

is the 1
2 -snowflaking map from §2. The construction of the following embedding resembles a general

construction by Seo [Seo11].
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Proposition 5.6. The metric space ({z = 1
2 x y},dH) bi-Lipschitz embeds in R19.

Proof. For each n,m ∈Z let

Q±
n,m = {(x,±y,±1

2 x y) : m2−n ≤ x ≤ (m +1)2−n ,2−n ≤ y ≤ 21−n}

Firstly, we show that (Q+
0,0,dH) bi-Lipschitz embeds in [1,2]× [0,1]3 ⊂R4. Indeed, consider the map

g : (Q+
0,0,dH) →R4 with g (x, y, 1

2 x y) = (y,Φ(x)).

Then, for w = (x, y, 1
2 x y) ∈Q+

0,0 and w ′ = (x ′, y ′, 1
2 x ′y ′) ∈Q+

0,0, we have

dH(w, w ′) = |x −x ′|+ |y − y ′|+2−1/2(y + y ′)1/2|x −x ′|1/2

' |y − y ′|+ |x −x ′|1/2

' |g (w)− g (w ′)|.
Secondly, we remark that the maps ζ±n,m : (Q+

0,0,dH) → (Q±
n,m ,dH) given by

ζ±n,m(x, y, 1
2 x y) = (2−n(x +m),±2−n y,±1

2 4−n(x +m)y)

are 2−n-similarities i.e. dH(w, w ′) = 2−ndH(ζ±n,m(w),ζ±n,m(w ′)). Let also σ±
n,m :R4 →R4 be the similari-

ties given by
σ±

n,m(x, y, z, t ) = (±2−n x,2−n(y +m),2−n z,2−n t ).

Thirdly, we decompose ({z = 1
2 x y},dH) into 4 pieces, we embed each piece bi-Lipschitz intoR4, and

we glue these 4 embeddings via Lemma 3.6. Define the following four families of squares

Q1 = {Q±
n,m : n is even and m is even} Q2 = {Q±

n,m : n is even and m is odd}

Q3 = {Q±
n,m : n is odd and m is even} Q4 = {Q±

n,m : n is odd and m is odd}.

Fix an i ∈ {1,2,3,4} and define Gi : ({y = z = 0}∪⋃
Qi ,dH) →R4 by

Gi |Q±
n,m

=σ±
n,m ◦ g ◦ (ζ±n,m)−1|Q±

n,m
and Gi (x,0,0) = (0, x,0,0).

By the first two steps, for each Q ∈ Qi , the map Gi |Q is bi-Lipschitz with bi-Lipschitz constant in-
dependent of the size of Q. It remains to show that each Gi is bi-Lipschitz. Assuming this is true,
({z = 1

2 x y},dH) bi-Lipschitz embeds into R19 by Lemma 3.6.
Fix Q,Q ′ ∈Qi with Q 6=Q ′ and fix w = (x, y, 1

2 x y) ∈Q and w ′ = (x ′, y ′, 1
2 x ′y ′) ∈Q ′. (The case that one

of them is on the x-axis follows by a limit argument). Recall that

dH(w, w ′) ' |x −x ′|+ |y − y ′|+ |y + y ′|1/2|x −x ′|1/2.

We claim that dH(w, w ′) ' |x −x ′|+ |y − y ′|. To see that, consider the following two cases.
Case 1. Suppose that Q =Q+

n,m and Q ′ =Q+
n,m′ for m 6= m′. Then,

|y + y ′|. 2−n ≤ |m −m′|2−n . |x −x ′|.
Hence, |y + y ′|1/2|x −x ′|1/2. |x −x ′|. The same conclusion holds if Q =Q−

n,m and Q ′ =Q−
n,m′ .

Case 2. Suppose that Case 1 does not hold. Then Q = Q±
n,m and Q ′ = Q±

n′,m′ for n 6= n′, and so

|y − y ′| ' |y + y ′|. The claim follows.
With similar reasoning, we can show that, for any Q,Q ′ ∈Qi with Q 6=Q ′ and for any w = (x, y, 1

2 x y) ∈
Q and w ′ = (x ′, y ′, 1

2 x ′y ′) ∈Q ′, we have

(5.5) |Gi (w)−Gi (w ′)| ' |x −x ′|+ |y − y ′|.
Indeed, notice that (g ◦ (ζ±n,m)−1)(Q) ⊂ [1,2]× [0,1]3 for any Q =Q±

n,m ∈Qi , and thus

Gi (Q) ⊂ [±2−n ,±21−n]× [m2−n , (m +1)2−n]× [0,2−n]× [0,2−n].
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According to the definition of Qi and arguments as above, then, (5.5) holds for any Q,Q ′ ∈ Qi with
Q 6=Q ′. That concludes the proof of Proposition 5.6. �

6. NONEMBEDABBILITY OF HEISENBERG POROUS SETS

The focus of this section is the proof of Theorem 1.4. For the rest of §6, we set π :H→ R2 to be the
1-Lipschitz abelianization map. Given α> 0, we define a α-cone inH as the set

(6.1) Cα := {(x, y, z) : |z| ≤α(x2 + y2)}.

It is easily seen that Cα is dilation and rotation invariant and Cα ⊆ Cβ when α ≤ β. In §6.1 we define
the set X and explain why there is no bi-Lipschitz embedding of X in `2, and in §6.2 we show that X
is indeed porous.

6.1. Laakso graphs. Let {Gn}∞n=1 denote the sequence of Laakso graphs defined in Section 2.2 of [Li16]
and let fn : Gn →H denote the embedding defined starting from the bottom of p. 1625 (there it was
just denoted f by abuse of notation). (Note in particular that each Gn consists only of the vertices
in the graph and does not include the edges.) Recall that fn is specified with a sequence of angles

θ j =
(√

M + j log(M + j )
)−1

for some M sufficiently large to be fixed. Theorem 1.2 of [Li16] showed

that fn on Gn has distortion O((log |Gn |)1/4
√

loglog |Gn |).MARKOV CONVEXITY OF THE HEISENBERG GROUP 11

G0: G1:

G2: G3:

Figure 2.1. The first four Laakso graphs
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Thus, we finish the proof by appealing to Lemma 2.2. "
Proof of Theorem 1.1. — The proof of Theorem 2.1 of [19] shows that

Markov 4-convexity follows directly from a four point 4-convexity inequality

of the form given by Proposition 2.3. "

2.2. Lower bound

In this section, we will let H denote the three dimensional Heisenberg

group H1.

We now prove that the Markov convexity upper bound shown in the

previous subsection is tight and use it to derive Theorem 1.2. Laakso graphs

were described in [11,13]. We will define the graphs {Gi}∞
i=0 as follows. The

first stage G0 is simply an edge and G1 is pictured as in Figure 2.1. To get

Gk once Gk−1 is constructed, we replace each edge of Gk−1 with a copy of

G1. We will choose not to rescale the metric so the diameters of Gk will be

6k. By abuse of terminology, we will still call these graphs Laakso graphs.

Given Gn, we say G is an unscaled copy of Gk in Gn if it is isometric to

Gk and each edge of G has length 1. If we do not require that each edge

of G has length 1, then we say G is an isometric copy of Gk. Note that

each edge of G, while not necessarily having length 1, does have constant

length as it is isometric to Gk. We will let Gn,k denote the unique largest

isometric copy of Gk in Gn. We will call two points in Gk,1 ⊂ Gk that have

edge degree 3 fork points.

Note that each Laakso graph has only two vertices with edge degree one,

which we will denote the terminals. We will choose one arbitrarily to call

SUBMITTED ARTICLE : CONVEX-HEISENBERG-2.TEX

FIGURE 1. The construction of {Gn}∞n=1.

One of the main goals of [Li16] was to use fn to show that the image fn(Gn) cannot uniformly
bi-Lipschitz embed into Markov p-convex metric spaces when p < 4. This is explicitly done in the
proof of Corollary 1.4 of [Li16] (although one needs to remove the intermediary H(Z) that appears
there). Since Hilbert space is Markov 2-convex, we get that fn(Gn) do not embed into `2 with uniform
bi-Lipschitz distortion.

We now require that the diameter of each Gn is 1. Thus, the length of edges in Gn become 6−n . This
allows us to define a limiting compact object G∞ also of diameter 1. It is not hard to show that G∞
contains each Gn isometrically.

One also has that G∞ is self-similar and is composed as a union of 10 scaled copies of G∞. Call
these level 1 copies. We use H1 to denote any one of these copies, and they are all isometric. (Note
that H1 could refer to any level 1 copy of G∞.) Each of these in turn are composed of 10 scaled copies
of G∞. Call these level 2 copies, and use H2 to denote each of these copies. We can continue and
identify level n copies for all n ∈N each denoted Hn . If a copy Hi does not contain a terminal point of
some Hi−1 we say it is forked. Note that each Hi contains 8 forked and 2 non-forked copies of Hi+1.

Each Hi contains a unique scaled copy of Gk that is maximal in diameter. We call this Hi ,k . Again,
Hi ,k could refer to any one of many isometric objects.
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We can define a Lipschitz map f : G∞ →H so that the restriction of f on each embedded copy of
Gn in G∞ is a re-scaled (and possibly translated and rotated) copy of fn(Gn). Thus, f (G∞) is compact
and cannot embed into `2 as it contains copies of fn(Gn). Define X = f (G∞).

6.2. Proof of Theorem 1.4. From the discussion above, Theorem 1.4 immediately follows from the
following proposition.

Proposition 6.1. The set X = f (G∞) is porous inH.

For the rest of §6.2, given a subset A ⊂G∞, we let Ã :=π( f (A)) ⊂R2, and if x ∈G∞, set x̃ :=π( f (x)).
We require two lemmas from [Li16]. The first one follows from Lemma 2.6 of [Li16].

Lemma 6.2. For M sufficiently large, if s, t are terminal points of a level n copy Hn of G∞, then 6−n

2 ≤
|π( f (s))−π( f (t ))| ≤ dH( f (s), f (t )).

The second is Lemma 2.7 of [Li16].

Lemma 6.3. For any i , the set H̃i is contained in the closed convex hull of the corresponding H̃i ,1.

Remark 6.4. Let C and C ′ be convex hulls of H̃i+1,1 for copies of Hi+1 in Hi that are in parallel and

intersect at a fork point a. Lemma 6.3 says that there exists a cone based at a of aperture at θi − θi+1
2 ≥

θi
2 between C and C ′.

Corollary 6.5. For any Hn , we have 6−n

2 ≤ diamdH f (Hn) ≤ 6−n .

Proof. The upper bound comes from 1-Lipschitzness of f . The lower bound comes from Lemma
6.2. �
Proposition 6.6. There exists M > 0 sufficiently large so that the following holds. Let Hi ⊃ Hi+1 ⊃ ... ⊃
Hk be a nested sequence of sub-graphs so that Hi+1 is forked in Hi . Let S ⊆ {i +2, ...,k} be the indices j
so that H j is forked in H j−1. Suppose there exists another forked copy H ′

i+1 ⊂ Hi that is in parallel with

Hi+1 so that there are points x ∈ Hk and y ∈ H ′
i+1 for which 6−k ≤ |x̃− ỹ | ≤ 6−k+1. Then

∑
j∈S θ j ≤ 1/100.

Proof. We suppose for contradiction that
∑

j∈S θ j > 1
100 . In particular, S is nonempty so let `= minS

and a,b,c ∈ R2 be the points of H̃i ,1 ⊂ H̃i with degree at least 3. Then the distance from x̃ to a,b,c
is at least 6−`/2 by Lemma 6.2. By Remark 6.4, the distance from x to any point in H̃ ′

i+1 (which is in

parallel with H̃i+1) is at least 6−`θi /8 and so 6−k+1 ≥ 6−`θi /8 by the assumption of the lemma. This
tells us that k ≤ `+3+ log 1

θi
and so |S| ≤ 3+ log 1

θi
≤ 1

100

p
i +M for large enough M . Thus,

∑
j∈S

θ j ≤
p

i+M/100∑
j=1

θi+1+ j ≤
p

i+M/100∑
j=1

1

log(M + i + j +1)
√

M + i + j +1
< 1

100
,

which is a contradiction. �
We also choose M sufficiently large so that 100θ1 < 1

100 .
Fix some x ∈ X and choose some k ∈N. Let y ∈ G∞ be any point so that f (y) = x. For each i ∈N,

there exists some Hi that contains y . We call this subset Yi . If y is a terminal point of some Hi , then
the choice of Yi may not be unique. In this case, choose Yi arbitrarily while ensuring that, at each
step, Yi+1 ⊂ Yi . We let si and ti denote the source and sink of Yi .

Let (u, v) ∈S1 be a 90◦ clockwise rotation of the direction from s̃k to t̃k . Let

x ′ = f (sk ) · (u6−k+10, v6−k+10,0)

and define the ball B = B(x ′,6−k ). Our goal is to prove that B ∩ X = ;. It suffices to show that B ∩
( f (Yi )\ f (Yi+1)) = ; for every i ∈N. If k ≤ i +5, then it is obvious that this intersection is empty by a
simple triangle inequality argument and the fact that f (Yi ) ⊆ B( f (sk ),6−k+5).
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We may now suppose i < k −5. Let S ⊆ {i +2, ...,k} be the indices j so that Y j is forked in Y j−1. Let
P : R2 → R denote the orthogonal projection onto the linear subspace spanned by s̃i and t̃i with the
orientation that P (s̃i ) < P (t̃i ).

Lemma 6.7. Suppose at least 100 of {Y j }k
j=i+2 are forked. Then

P (π(B)) ⊆ [P (s̃i+1)+10 ·6−k ,P (t̃i+1)−10 ·6−k ].(6.2)

Proof. Let ` ∈ {i +2, ...,k} be the smallest integer so that Y` is forked. Thus, in Y`, there exists a non-
forked H`+1 separating Yk from s` and t` (since at least one Y j is forked for j ∈ {`+2, . . . ,k}). As ` was
minimal in {i +2, ...,k}, P (s̃`) ≥ P (s̃i+1) and we get that P (s̃k )−P (s̃`) > 6−`/2. As k ≥ `+99 and since
the group multiplication acts in the first two coordinates simply as addition, this proves the lemma
(arguing similarly for the right hand side of the interval). �
Lemma 6.8. If B intersects f (Yi )\ f (Yi+1), then Yi+1 must be forked and B must intersect some other
f (Hi+1) where Hi+1 is in parallel with Yi+1.

Proof. Since B∩ f (Yi ) 6= ;, the ball B intersects some f (Hi+1) in f (Yi ). We denote this Hi+1 as Y ′
i+1. Let

θ denote the angle between the line segments connecting the terminals of Ỹi and Ỹk . First suppose
that θ ≤ 1/100. Then an elementary geometric argument in R2 using Lemma 6.3 shows that π(B)
cannot intersect any H̃i+1 where Hi+1 is in series with Yi+1. Thus Y ′

i+1 must be in parallel with Yi+1,
and this proves the lemma in this case.

Now suppose θ > 1/100. Then as 100θ1 ≤ 1/100, we must have that at least 100 of {Y j }k
j=i+2 are

forked. The lemma then follows from the previous lemma. Indeed, P (π(B))∩P (Ỹ ′
i+1) 6= ;, and so Y ′

i+1
cannot be in series with Yi+1. �

Recall that C1 is the 1-cone defined in (6.1).

Lemma 6.9. 6B ⊆ f (sk ) ·C1.

Proof. We may suppose f (sk ) = (0,0,0). Let p ∈ B(0,6−k+1). Then (u6−k+10, v6−k+10,0) · p has a z-
coordinate of absolute value at most 6−2k+2 +6−k+10 ·6−k+1 ≤ 6−2k+12. On the other hand, the x and
y coordinates have absolute value at least 6−k+9. This easily proves the lemma (with drastic overesti-
mation). �

We now show Proposition 6.1.

Proof of Proposition 6.1. Suppose B intersects f (Yi )\ f (Yi+1). Let Y ′
i+1 denote the Hi+1 that is in par-

allel with Yi+1 such that B ∩ f (Y ′
i+1) is nonempty (from Lemma 6.8). Let p ∈ B ∩ f (Y ′

i ). In a similar
way, for j ∈ {i +2, ...,k}, let Y ′

j denote the H j that contain p with Y ′
j ⊆ Y ′

j−1 and s′k , t ′k , s̃′k , t̃ ′k be defined

similarly. Note that the inflated ball 6B must intersect s̃′k . Let S′ be the indices j of {i +2, ...,k} where
Y ′

j is forked in Y ′
j−1. By Proposition 6.6, we have that both

∑
j∈S θ j and

∑
j∈S′ θ j are less than 1/100.

Take a geodesic path from sk to s′k . This is pushed intoH via f to a piecewise affine horizontal path
p1p2 · · ·pn so that p1 = f (sk ) and pn = f (s′k ). As max{

∑
j∈S θ j ,

∑
j∈S′ θ j } ≤ 1/100 and the line fromπ(p1)

to π(pn) is almost orthogonal to the line between the terminals of Ỹi , the closed piecewise affine path
π(p1) · · ·π(pn)π(p1) in R2 does not self intersect. It follows from Remark 6.4 that this path encloses an

isosceles triangle of angle θi − θi+1
2 and base at least |π(pn )−π(p1)|

2 which has area

1

2

|π(p1)−π(pn)|
2

|π(p1)−π(pn)|
2tan

(
θi − θi+1

2

) ≥ 1

16θi
|π(p1)−π(pn)|2.

Thus, we see that pn ∉ p1 ·C1/16θi−1 . As θi is decreasing, this means pn ∉ p1 ·C1/16θ1 . However, from
Lemma 6.9 we have that pn ∈ p1 ·C1. This is a contradiction, which means B does not intersect
f (Yi )\ f (Yi+1). This proves that X = f (G∞) is porous inH. �
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