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AN ELEMENTARY APPROACH TO

THE DIMENSION OF MEASURES SATISFYING

A FIRST-ORDER LINEAR PDE CONSTRAINT

ADOLFO ARROYO-RABASA

Abstract. We give a simple criterion on the set of probability tangent
measures Tan(µ, x) of a positive Radon measure µ, which yields lower
bounds on the Hausdorff dimension of µ. As an application, we give an
elementary and purely algebraic proof of the sharp Hausdorff dimension
lower bounds for first-order linear PDE-constrained measures; bounds
for closed (measure) differential forms and normal currents are further
discussed. A weak structure theorem in the spirit of [Ann. Math. 184(3)
(2016), pp. 1017–1039] is also discussed for such measures.

1. Introduction

The question of determining the dimension of a vector-valued Radon mea-
sure satisfying a PDE-constraint is a longstanding one. A good starting
point are curl-free measure fields. The seminal work of De Giorgi [7] on
the structure of sets of finite perimeter and the co-area formula [11] from
Fleming & Rishel yield the estimate |Du| ≪ Hd−1 for all distributional
gradients Du represented by a Radon measure. Later on, Federer ex-
tended (see [10, Sec. 4.1.21]) this result to the estimate ‖T‖ ≪ Im ≪ Hm

for m-dimensional normal currents T ∈ Nm(Rd).1 Recently, these results
have been further extended to deal with more general differential constraints
(in the context of A-free measures). Namely, in [6] it is shown that |µ| ≪
Iℓ

Pk ≪ Hℓ
Pk for measures µ satisfying a generic constraint of the form

P (D)µ = 0, where P (D) is a kth-order linear partial differential operator
with constant coefficients and ℓPk is a positive integer depending only on
the principal symbol Pk of P (D). This ℓPk dimensional estimate turns out
to be sharp for first-order operators; for higher-order operators it is an open
question whether it remains an optimal bound (see [6, Conjecture 1.6]).

The compendium of results mentioned above are of stronger structural
character than the ones presented on this note, since only bounds on the
Hausdorff dimension of such measures will be discussed here. However, they
also require a significantly stronger machinery. Our main interest is to give
a self-contained and “elementary” proof of the Hausdorff dimension (sharp)
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bounds for measures µ ∈ M(Ω, E) solving, in the sense of the distributions,
an equation of the form

(1) P (D)µ :=
d
∑

i=1

Pi[∂iµ] + P0µ = 0 , P0, Pi ∈ F ⊗ E ,

where E,F are finite dimensional euclidean spaces.
The angular stone of our proof rests on a rather simple invariance crite-

rion affecting all normalized blow-ups of a given positive Radon measure σ,
which effortlessly yields a lower bound on the Hausdorff dimension dimH(σ),
where as usual

dimH(σ) := sup
{

0 ≤ κ ≤ d : σ ≪ Hκ
}

.

This criterion (contained in Lemma 9) links the vector-space dimension, of
those directions with respect to which a blow-up of σ may be an invariant
measure, to a lower bound of the Hausdorff dimension. In particular, this
re-directs the study of dimensional estimates for measures satsifying (1),
to the study of the structural rigidity of their sets Tan(|µ|, x) of probabil-
ity tangent measures (described in Sec. 3). (A similar method for estab-
lishing dimensional estimates has been considered in [4] by Ambrosio &

Soner; see also [13] for the slightly more restrictive context of tangent spaces
Tσ(x) ⊂ R

d introduced by Bouchitté, Buttazzo and Seppecher.)
The advantage of this viewpoint lies in the fact that the principal symbol

ξ 7→ P(ξ) :=

d
∑

i=1

ξiPi, ξ ∈ R
d,

being linear as function of ξ, precisely characterizes those directions where
tangent measures are invariant measures. Thus, allowing one to define a
dimension associated to the principal part of the operator:

(2) ℓP := min
e∈E\{0}

dim
(

{P[e] ≡ 0}⊥
)

.

Here, we have used the short-hand notation {P[e] ≡ 0} := { ξ : P(ξ)[e] = 0 }.
Note that this definition of dimension agrees with the definition given in [6,
eq. (1.6)]. It may be worth to mention that, in the context of cocancelling op-
erators (introduced by Van Schaftingen [18] and further extended in [6];
see also [16,17]), P (D) is an (ℓP − 1)-cocancelling operator.

Our main result is contained in the following theorem:

Theorem 1. Let Ω ⊂ R
d be an open set, let P (D) be a first-order differential

operator as in (1), and let µ ∈ M(Ω;E) be a solution of the equation

P (D)µ = 0 in the sense of distributions on Ω.

Then,

dimH(|µ|) ≥ ℓP.

Moreover, this estimate is sharp since the measure

µ = eHℓPx{P[e] ≡ 0}⊥

is a solution of (1) on R
d, whenever e ∈ E is any vector at which the

minimum in (2) is attained.
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Remark 2. The proof of Theorem 1 does not require, in any way, the
structure theorem for PDE-constrained measures [9, Theorem 1.1].

At all points x where [P (D) ◦ dµ
d|µ|(x)] is elliptic, that is, precisely when

the polar dµ
d|µ|(x) does not belong to the wave cone set

ΛP :=
⋃

ξ∈Rd

kerP(ξ) ⊂ E,

the sets Tan(|µ|, x) turn out to be trivial (containing only fully-invariant
measures). The invariance criterion then allows us to give the following soft

version of [9, Theorem 1.1] (see also [1] in the case of gradients):

Corollary 3 (weak structure theorem). Let Ω ⊂ R
d be an open set, let

P (D) be a first-order differential operator as in (1), and let µ ∈ M(Ω;E)
be a solution of the equation

P (D)µ = 0 in the sense of distributions on Ω.

Then,

|µ|x
{

x ∈ Ω :
dµ
d|µ|(x) /∈ ΛP

}

≪ Hκ for all 0 ≤ κ < d.

Remark 4. The results contained in Theorem 1 and Corollary 3 apply to
solutions of the inhomogeneous equation

P (D)µ = τ ∈ M(Ω;F ).

To see this, let µ̃ = (µ, τ), Ẽ = E × F , and consider the operator P̃ (D)µ̃ =
P (D)µ− τ .

Further comments. Both Theorem 1 and Lemma 9 do not lead to rec-
tifiability, nor estimates of the form |µ| ≪ IℓP , or even |µ| ≪ HℓP by the
methods presented on this note. This assertion is in line with the following
observation. The shortcoming of Corollary 3 —with respect to the (strong)
structure theorem— lies in the requirement of κ being strictly smaller than
d. As it has been remarked by De Lellis (see [8, Proposition 3.3]), Preiss’
example [15, Example 5.8(1)] of a purely singular measure with only trivial
tangent measures hinders the hope for a traditional blow-up strategy leading
to the estimate in the critical case κ = d.2

In a forthcoming paper [5], it will be shown that all functions u : Ω →
R
d of bounded deformation satisfy the following rigidity property: every

probability tangent measure τ ∈ Tan(Eu, x) can be split as a sum of 1-
directional measures (here, Eu = 1

2(Du + Dut) ∈ M(Ω; sym(Rd ⊗ R
d)) is

the distributional symmetric gradient of u). Hence, by Lemma 9, one may
recover the dimensional estimate dimH(|Eu|) ≥ d − 1 from [2] through a
completely different method. Note however that symmetric gradients satisfy
the St. Venant compatibility conditions (see [12, Example 3.10(e)]) which is
a 2nd-order differential constraint.

2The definition of tangent measure introduced by Preiss in [15] is slightly different than
our definition of probability tangent measure. However, the same triviality in the cited
example can be inferred for our notion of tangent measure (see [14, Remark 14.4(1)]).
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Organization. Applications of our results for several relevant first-order
operators are discussed in Section 2; dimension bounds for closed differential
forms and normal currents are discussed in Corollaries 6-8. A brief list of
definitions (required for the proofs) and the invariance criterion (contained
in Lemma 9) are given in Section 3. Section 4 is devoted to the proofs.
Lastly, an appendix on multilinear algebra operations has been included,
this may be of use for the applications on differential forms and normal
currents discussed below.

Acknowledgments. I gratefully thank G. de Philippis and F. Rindler for
introducing me to this problem, and to other related questions. I would also
like to thank J. Hirsch and P. Gladbach for several fruitful discussions about
this subject.

2. Applications

In this section we discuss explicit dimensional bounds for several relevant
first-order differential operators.

Here and in what follows Ω ⊂ R
d is an open set.

2.1. Gradients. The space BV(Ω;Rm) of functions of bounded variation
consists of functions u : Ω → R

m whose distributional derivative Du can be
represented by a Radon measure µ in M(Ω;Rm ⊗ R

d). We recall (see [12])
that the gradient µ = Du is (locally) a curl-free field in the sense that

curl(µ) := (∂iµkj − ∂jµki)kij = 0, 1 ≤ i, j ≤ d, 1 ≤ k ≤ m.

In the case P (D) = curl we have

kerPcurl(ξ) =
{

a⊗ ξ : a ∈ R
m
}

, ξ ∈ R
d,

and therefore ℓcurl = d−1. Theorem 1 then recovers the well-known (see [2])
dimensional bound for gradients

u ∈ BV(Ω;Rm) =⇒ dimH(|Du|) ≥ d− 1.

2.2. Fields of bounded divergence. Consider the divergence operator
defined on matrix-fields µ ∈ M(Ω;Rk ⊗ R

d) defined as

(3) divµ =

(

d
∑

i=1

∂iµij

)

j

, 1 ≤ j ≤ k.

In this case we get Pdiv(ξ)[M ] = M · ξ over the space of tensors M ∈
R
k ⊗ R

d, and {Pdiv[M ] ≡ 0}⊥ = (kerM)⊥ ∼= ranM . It follows from Riesz’

representation theorem ( dµ
d|µ|(x) 6= 0 for |µ|-a.e. x) and Theorem 1 that

divµ ∈ M(Ω;Rk) =⇒ dimH(|µ|) ≥ 1.

In a further refinement, we get the following corollary:

Corollary 5. Let µ ∈ M(Ω;Rk⊗R
d) satisfy the non-homogeneous equation

divµ = τ for some τ ∈ M(Ω;Rk). Further, assume the set
{

x ∈ Ω : rank
dµ

d|µs|
(x) ≥ ℓ

}

has full |µs|-measure on Ω. Then, dimH(|µ|) ≥ ℓ.
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Proof. In this case dim({Pdiv[M ] ≡ 0}⊥) = rankM ≥ ℓ. Then, by (4) and
Lemma 9, one gets the desired bound dimH(|µ|) ≥ ℓ. �

2.3. Measure differential forms. Let m ∈ {0, . . . , d − 1} and let ω ∈
M(Ω;

∧m
R
d) be a measure m-form. The exterior derivative of ω is the

(m+ 1)-form distribution

dω :=
∑

i=1,...,n
1≤i1<···<im≤n

∂iωi1···im [ dxi ∧ dxi1 ∧ · · · ∧ dxim ],

where the ωi1···im = 〈ω, dxi1 ∧ · · · ∧ dxim〉 ∈ M(Ω) are the coefficients of
ω. The exterior derivative defines a first-order operator of the form (1) with

V =
∧m

R
d and F =

∧m+1
R
d, and a principal symbol d(ξ) :

∧m
R
d →

∧m+1
R
d acting on m-co-vectors as

d(ξ)[v∗] = ξ∗ ∧ v∗.

Here, w∗ ∈
∧m

R
d is the image of w ∈

∧

mR
d under the canonical isomor-

phism. By Lemma 11 in the Appendix, we get {d[v∗] ≡ 0} = Ann1(v∗)
(see (5) in the Appendix) and therefore ℓ

d

= d−m.

Corollary 6. Let ω ∈ M(Ω;
∧m) be a measure m-form satisfying dω = η

for some η ∈ M(Ω;
∧m+1

R
d). Then, ω satisfies the dimensional estimate

dimH(|ω|) ≥ d−m.

2.4. Normal currents. Let 1 ≤ m ≤ d be an integer. The space of m-
currents consists of all distributions T ∈ D′(Ω;

∧

mR
d). In duality with the

space of smooth differential forms and the exterior derivative, one defines the
boundary of a current T as the (m− 1)-current acting on C∞

c (Ω;
∧m−1

R
d)

as ∂T [ω] = T (dω). The space Nm(Ω) of m-dimensional normal currents

is defined as the space of m-currents T , such that both T and ∂T can be
represented by a measure, that is,

Nm(Ω) ∼=
{

T ∈ M(Ω;
∧

mR
d)) : ∂T ∈ M(Ω;

∧

m−1 R
d)
}

.

The total variation of a normal current T is denoted by ‖T‖; and we write

T = ~T ‖T‖ to denote its polar decomposition. The boundary operator on
Nm(Ω) defines a first-order operator of the form (1), with a principal symbol
d

∗(ξ) :
∧

mR
d →

∧

m−1 R
d acting on m-vectors as the interior multiplication

d

∗(ξ)[v] = vxξ∗ where 〈vxξ∗, z∗〉 = 〈v, ξ∗ ∧ z∗〉.

Using the notation contained in the appendix, we readily check that {d∗[v] ≡
0} = Ann1(v). By means of Lemma 12 and definition (2), we conclude
ℓ
d

∗ = m. Theorem 1 gives an alternative proof of the known dimensional
estimates for normal currents:

Corollary 7. Let T = ~T‖T‖ ∈ Nm(Ω) be an m-dimensional normal current

on Ω. Then, ‖T‖ satisfies the dimensional estimate

dimH(‖T‖) ≥ m.

Moreover, by the natural association between fields with bounded diver-
gence and one-dimensional normal currents, Corollary 3 and Proposition 5
yield a simple proof of the following soft version of [9, Corollary 1.12]:
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Corollary 8. Let T1 = ~T1‖T1‖, . . . , Td = ~Td‖Td‖ ∈ N1(Ω) be one-dimensional

normal currents and assume there exists a positive Radon measure σ ∈
M(Ω) satisfying the following properties:

(i) σ ≪ ‖Ti‖ for all i = 1, . . . , d,

(ii) span
{

~T1(x), . . . , ~Td(x)
}

= R
d for σ-almost every x ∈ R

d.

Then, σ ≪ Hκ for all 0 ≤ κ < d.

3. Preliminaries

Let E be a finite dimensional euclidean space. We denote by M(Ω;E) ∼=
Cc(Ω;E)∗ the space of E-valued Radon measures over Ω. For a vector-valued
measure µ ∈ M(Ω;E), we write the Radon–Nykodým–Lebesgue decompo-
sition of µ as

µ = µac
L

d
xΩ + gµ|µ

s|, |gµ|E = 1,

where µac ∈ L1(Ω;E), |µs| ⊥ L d
xΩ, and gµ ∈ L1(Ω, |µs|;E).

The map T r,x(y) = (y − x)/r, which maps the open ball Br(x) ⊂ R
d

into the open unit ball B1 ⊂ R
d, induces a (isometry) push-forward T r,x

# :

M(Rd;E) → M(Rd;E). A (normalized) sequence of the form

γj =
1

|µ|(Brj (x))
(T

rj ,x0

# µ)xB1, rj ↓ 0, j ∈ N,

is called a bounded blow-up sequence of µ at x0. If τ = w*-lim γj on M(B1),
we say that σ is a probability tangent measure of µ at x0, symbolically we
denote this by

τ ∈ Tan(µ, x0).

Observe that |τ |(B1) = 1 and, at a |µ|-Lebesgue point x0 ∈ Ω, it holds

τ ∈ Tan(µ, x0) ⇐⇒ τ =
dµ

d|µ|
(x0)|τ | and |σ| ∈ Tan(|µ|, x0).

For this an other facts about Tan(µ, x), we refer the interested reader to the
monograph [3, Sec. 2.7].

For a finite dimensional euclidean vector space W , we write Gr(W ) to
denote the Grassmanian of all linear subspaces ofW , and Gr(ℓ,W ) to denote
the set of ℓ-dimensional subspaces of W ; whenW = R

d we shall simply write
Gr(d) and Gr(ℓ, d) respectively. For given V ∈ Gr(d), a measure µ ∈ M(Rd)
is called V -invariant if

τ#µ = µ for all translations τ : Rd → R
d satisfying τ(V ) = V .

The subspace of V -invariant measures is denoted MV (Rd). Note that this
space is sequentially weak-∗ closed in M(Rd).

The dimension criterion is contained in the next result:

Lemma 9 (invariance criterion). Let 0 ≤ ℓ ≤ d be a positive integer and let

σ ∈ M(Ω) be a positive measure. Assume that at, σs-almost every x ∈ Ω,
every bounded tangent measure τ ∈ Tan(σs, x) can be split on B1 as a finite

sum

(C) τ = (τ1 + · · · + τk)xB1, k = k(σ) ∈ N,



7

where, for each 1 ≤ h ≤ k, τh is a Vh-invariant measure for some Vh ∈
Gr(ℓh, d) with ℓh ≥ ℓ. Then, σ satisfies the dimensional estimate

dimH(σ) ≥ ℓ.

4. Proofs

We begin by proving an estimate on the upper Hausdorff densities.

Lemma 10. Let 0 ≤ ℓ ≤ d be a positive integer and let σ ∈ Mloc(Ω) be a

positive measure. Let x ∈ Ω be a |µs|-Lebesgue point and assume that every

bounded tangent measure τ ∈ Tan(µs, x) can be split on B1 as a finite sum

τ = τ1 + · · · + τk, k = k(σ) ∈ N,

where each τh is a Vh-invariant measure for some Vh ∈ Gr(ℓh, d) with ℓ ≤ ℓh.
Then, the upper κ-density of µ at x is equal to zero for all κ ∈ [0, ℓ), that

is,

θ∗κ(µs, x) := lim sup
r↓0

µ(Qr(x))

rκ
= 0 ∀κ ∈ [0, ℓ).

Proof. It suffices to show that θ∗κ(µs, x) is finite for all κ ∈ [0, ℓ). The
fact that θ∗κ(µs, x) is equally zero will then follow from the next simple
observation: if θ∗κ1(µs, x) > 0, then θ∗κ(µs, x) = ∞ for all κ ∈ (κ1, ℓ).

We argue by contradiction. Assume that θ∗κ(µs, x) = ∞ for some κ ∈

[0, ℓ) and let t ∈ (0, 4−
d

ℓ−κ ). Then, by [3, Proposition 2.42], there exists a
bounded tangent measure τ ∈ Tan(µs, x) with tκ ≤ τ(Bt) ≤ τ(B1) ≤ 1. On
the other hand, by assumption, we may find a positive integer k = k(τ) such
that

τ = τ1 + · · ·+ τk,

where each τh is a positive Vh-directional measure, for all 1 ≤ h ≤ k. Let us
denote by ph : Rd → V ⊥

h the canonical projection so that

τh(F ) ≤ L
ℓh((1− ph)F ) · τ̃h(phF ) F ⊂ B1,

where up to a linear isometry transformation we have τh = L ℓh ⊗ τ̃h.
Next, we use that 4t < 1 and that ℓ ≤ ℓh (for all 1 ≤ h ≤ k) to obtain

the estimate

tκ ≤ τ(Bt) = τ1(Bt) + · · · + τk(Bt)

≤ (2t)ℓ1 τ̃1(p1B 1

4

) + · · · + (2t)ℓk τ̃k(pkB 1

4

)

≤ (2t)ℓ12−(d−ℓ1)τ1(B1) + · · ·+ (2t)ℓk2−(d−ℓk)τk(B1)

≤ 2dtℓτ(B1) ≤ 2dtℓ.

This chain of inequalities implies 2−
d

ℓ−κ ≤ t, which directly contradicts our
choice of t. This shows θ∗κ(µ, x) < ∞, as desired. �

Proof of Lemma 9. Fix an arbitrary κ ∈ [0, ℓ). By the previous lemma and
the assumption we know that the set Θκ

0 := {x ∈ Ω : θ∗κ(σ, x) = 0 } has full
|σs|-measure on Ω. Hence, σs

xΘκ
0 = σs. Moreover, for every ε > 0, it holds

θ∗κ(σs, x) ≤ ε for all x ∈ Θκ
0 . Then, the upper-density criterion contained

in [3, Theorem 2.56] holds and therefore

σs
xΘκ

0 ≤ 2κεHκ
xΘκ

0 for all ε > 0.
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Letting ε ↓ 0 we deduce that σs(F ) = 0 whenever Hκ(F ∩ Θκ
0) < ∞ for

a Borel set F ⊂ Ω. By the definition of Hausdorff dimension, this implies
dimH(σ

s) ≥ κ. Since κ ∈ [0, ℓ) was chosen arbitrarily and dimH(σ) =
dim(σs), we conclude that dimH(σ) ≥ ℓ. �

Proof of Theorem 1. Let x ∈ Ω be a |µ|s-Lebesgue point so that every prob-
ability tangent measure σ ∈ Tan(µs, x) can be written as σ = e|σ| with

e = dµ
d|µ|(x) ∈ E and |σ| ∈ Tan(|µ|s, x).

Fix σ ∈ Tan(µs, x). Note that P 1(D)σ = 0 in the sense of distributions
on B1, where P 1(D) is the principal part of P (D). This follows from the
scaling rule

P 1(D)[T
rj ,x

# µ] = −rj · P0[T
rj ,x

# µ],

where the term in the right-hand side converges strongly to zero (in the
sense of distributions) as j → ∞. We now use the fact that B1 is a star-
shaped domain to define smooth approximations of σ on B1 as follows. Fix

δ > 0 to be a small parameter and define σδ := (T 1−δ,0
# σ) ⋆ ρδ ∈ C∞(B1;E),

where ρδ is a standard mollifier at scale δ. In this way σδ L d
xB1

∗
⇀ σ and

|σδ|L
d
xB1

∗
⇀ |σ| as δ ↓ 0 on B1. Observe that, for each δ > 0, the measure

σδ (which satisfies σδ = e|σδ|) solves (in the classical sense) the homogeneous
equation

P 1(D)σδ =

n
∑

i=1

Pi[e] (∂i|σδ|) = 0 on B1.

In symbolic language this reads P(∇|σδ|)[e] = 0, or equivalently, in terms of
the differential inclusion,

∇(|σδ|) ∈ {P[e] ≡ 0} on B1.

We deduce that ∇(|σδ|)(x)[ξ] = 0 for all ξ ∈ {P[e] ≡ 0}⊥ and all x ∈ B1. In
particular, for every δ > 0, the measure |σδ|L

d
xB1 is {P[e] ≡ 0}⊥-invariant.

Since the space of {P[e] ≡ 0}⊥-invariant measures is sequentially weak-∗
closed, we infer that

(4) |σ| ∈ Tan(|µ|s, x) is a {P[e] ≡ 0}⊥-invariant measure on B1.

Finally, since x was chosen to be an arbitrary |µ|s-Lebesgue point, |µ|
satisfies (C) with ℓ = ℓP. We conclude, by Lemma 9, that dimH(|µ|) ≥
ℓP. �

Proof of Corollary 3. By the very definition of ΛP, it follows that {P[e] ≡

0} = {0} for all e /∈ ΛP. Let us write SP,µ :=
{

x ∈ Ω :
dµ
d|µ|(x) /∈ ΛP

}

.

From (4), it follows that |µ|xSP,µ satisfies the assumptions of Lemma 9 with
ℓ = d. Therefore dimH(|µ|xSP,µ) = d. The sought estimate is then an
immediate consequence of the definition of Hausdorff dimension. �

Appendix A. Multilinear algebra

Let V be a finite dimensional euclidean space. The exterior algebra
∧∗ V

is a graded algebra with the “∧” product. Specifically ∧ :
∧p V ×

∧q V →
∧p+q V : (ξ∗, ω∗) 7→ ξ∗ ∧ ω∗.
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In the particular situation when p = 1, this is the multiplication by 1-
covectors. As such, we can define the annihilator of this map on a fixed
m-vector by setting

(5) Ann1(v∗) :=
{

ξ ∈ V : ξ∗ ∧ v∗ = 0
}

.

Lemma 11. Let V be an euclidean space of dimension d, let m ∈ {0, . . . , d}
be a positive integer, and let v∗ ∈

∧m V be a non-zero m-covector. Then

Ann1(v∗) ∈ Gr(ℓ, V ) for some 0 ≤ ℓ ≤ m.

Moreover, if v∗ is a simple m-covector, then ℓ = m.

Proof. The assertion that Ann1(v) is in fact a linear space follows im-
mediately from the bi-linearity of the wedge product. Notice also that,
on simple vectors v∗ = v∗1 ∧ · · · ∧ v∗m, the result is immediate since then
Ann1(v∗) = span{v1, . . . , vm} (so that ℓ = m in this case). Any automor-
phism ϕ of V lifts to an automorphism Φ on

∧∗ V satisfying

Φ(v∗1 ∧ · · · ∧ v∗m) = ϕ(v∗1) ∧ · · · ∧ ϕ(v∗m).

Hence, once v∗ ∈
∧

m V is fixed, we may assume without loss of generality

that Ann1(v∗) = span{e1, . . . , eℓ} for some 0 ≤ ℓ ≤ d, where {e1, . . . , ed}
is an orthonormal basis of V . Indeed, let {ξ1, . . . , ξℓ} be a normal basis of
Ann1(v) and let ϕ be the automorphism of V satisfying ϕ(ξ∗i ) = e∗i for all
1 ≤ i ≤ ℓ and ϕ(w∗) = w∗ for all w∗ ∈ Ann1(v∗)⊥. Then,

Φ(ξ∗i ∧ v∗) = e∗i ∧ ϕ(v∗).

Let us fix i0 ∈ {1, . . . , ℓ} and observe that

e∗i0 ∧ v∗ =
∑

1≤i1<···<im≤d
i1,...,im 6=i0

vi1···im(e
∗
i0
∧ e∗i1 ∧ · · · ∧ e∗im),

where vi1···im = 〈v∗, ei1 ∧ · · · ∧ eim〉. On the other hand, the set
{

e∗i0 ∧ e∗i1 ∧ · · · ∧ e∗im : 1 ≤ i1 < · · · < im ≤ d, i1, . . . im 6= i0
}

conforms a set of linearly independent m-covectors in
∧m+1 V . Therefore,

e∗i ∧ v∗ = 0 if and only if e∗i0 ∧ e∗i1 ∧ · · · ∧ e∗im = 0 for all 1 ≤ i1 < · · · < im ≤ d
such that vi1···im 6= 0. Since 1 ≤ i0 ≤ ℓ was chosen arbitrarily, this yields
the set contention

Ann1(v∗) ⊂
⋂

i1,...,im 6=i0
vi1···im 6=0

Ann1(e∗i1 ∧ · · · ∧ e∗im).

By the first observation, on the dimension of annihilators of simple vectors,
we conclude that dim[Ann1(v∗)] = ℓ ≤ m. �

By duality, the exterior product induces tan interior multiplication on the
algebra of vectors

∧

∗ V . This is a bilinear map x:
∧

q V ×
∧p V 7→

∧

q−p V :

(v,w∗) 7→ vxw∗, where vxw acts on (q − p)-co-vectors z∗ as

〈vxw∗, z∗〉 = 〈v,w∗ ∧ z∗〉.

Similarly as before, when p = 1, we may consider its corresponding annihi-
lator

Ann1(v) :=
{

ξ ∈ R
d : vxξ∗ = 0

}

.
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A similar (dual) proof to the one of Lemma 11 yields the following result:

Lemma 12. Let V be an euclidean space of dimension d, let m ∈ {0, . . . , d},
and let v ∈

∧

m V be a non-zero m-vector. Then

Ann1(v) ∈ Gr(d− ℓ, V ) for some 0 ≤ ℓ ≤ m.

Furthermore, if v is a simple m-vector, then ℓ = d−m.
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