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Deleting or adding arrows of a bound quiver

algebra and Hochschild (co)homology

Claude Cibils, Marcelo Lanzilotta, Eduardo N. Marcos,
and Andrea Solotar ∗

Abstract

We describe how the Hochschild (co)homology of a bound quiver algebra
changes when deleting or adding arrows to the quiver. The main tools are
relative Hochschild (co)homology, the Jacobi-Zariski long exact sequence ob-
tained by A. Kaygun and a length one relative projective resolution of tensor
algebras.
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1 Introduction

Hochschild (co)homology has been widely studied for algebras presented by quivers
and relations, that is for bound quiver algebras. The main purpose of this work is
to make precise how the Hochschild (co)homology changes when deleting or adding
arrows.

In 1956 G. Hochschild [24] introduced a relative (co)homological theory, which
amounts to consider an exact category, see [29, 7]. This theory has been used rarely,
in part because of a lack of relation with the usual (co)homological theory given in
[23]. Nevertheless, for an extension of algebras B ⊂ A such that A/B is a projective
B-bimodule, A. Kaygun has established in 2012 [25, 26] a Jacobi-Zariski long exact
sequence connecting both theories. Note that M. Auslander and Ø. Solberg have
considered relative homological algebra, see [4] and [33].

In Section 2 we provide an account of the relative (co)homological theory and
we show that for a tensor algebra there is a relative projective resolution of length
one.

An inert arrow of a bound quiver algebra A is an arrow of the quiver which is
not involved in a minimal set of relations of A. Our main result in Section 3 is that
deleting a set of inert arrows does not change the Hochschild homology in degrees
greater or equal than 2.

On the other hand in Section 4 we provide formulas for Hochschild cohomology,
also when deleting inert arrows of a bound quiver algebra. For degrees greater or
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member of CONICET (Argentina) and a Senior Associate at ICTP.
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equal than 2, the change of dimension is expressed in terms of the dimensions of
Ext vector spaces between indecomposable injective and projective modules, with
multiplicities given by the dimensions of some relative paths that we introduce in
Section 4.

The proofs rely on the reverse procedure, that is on adding arrows. This way we
obtain a tensor algebra over the original algebra for a suitable projective bimodule.
This algebra is finite dimensional if and only if adding arrows does not create relative
cycles. In case of adding just one arrow, which does not leads to a relative cycle,
the tensor algebra is a trivial extension which has been already considered in [17].
In this paper E.L. Green, C. Psaroudakis and Ø. Solberg study this operation in
relation to the finitistic dimension conjecture.

In Section 5 we apply our results to the amalgamation of a bound quiver algebra
with a quiver without oriented cycles. In this section we also consider Hochschild
cohomology of Gorenstein algebras, by adding arrows to its quiver.

The results that we obtain in this paper are in the framework of replacing
an algebra by a closely related algebra, towards producing algorithmic ways for
computing Hochschild (co)homology. Other work in this direction can be found for
instance in [5, 6, 9, 10, 15, 16, 18, 22, 27, 28]. Hochschild (co)homology has been
also considered for bound quiver algebras in relation to their representations and
their deformations, see for instance [19, 21, 22, 32].

Hochschild (co)homology is a derived invariant, see for instance [30]. M. Ger-
stenhaber has shown in [14] that Hochschild (co)homology affords additional struc-
ture: cup and cap products, and the Gerstenhaber bracket. Together with Connes’
differential this constitutes the differential calculus, or Tamarkin-Tsygan calculus of
an algebra, see for instance [34, 11]. This theory is also a derived invariant, see
[1, 2]. It should be interesting to describe the effect of deleting an inert arrow of a
bound quiver algebra on its differential calculus.

2 Relative Hochschild (co)homology and tensor algebras

Let k be a field and let B ⊂ A be an extension of k-algebras. Modules are left
modules.

An A-module P is relative projective if for any A-morphism f : X → Y with a
B-section, and any A-morphism g : P → Y , there exists an A-morphism g′ : P →
X such that fg′ = g. The category of A-modules is an exact category with respect
to the short exact sequences which are B-split, see [7]. As mentioned in [7], these
notions are commonly attributed to D. Quillen [29]. The projective objects of this
exact category (see [7, Definition 11.1]) are the relative projective modules.

An A-module is induced if it is isomorphic to A⊗B U , where U is a B-module.
As proved by Hochschild in [24], a module is relative projective if and only if it is
isomorphic to a direct summand of an induced module.

Definition 2.1 [24] A relative projective resolution P• → M of an A-module M is
a complex

· · ·
d
→ P2

d
→ P1

d
→ P0

d
→ M → 0

where Pi is relative projective for all i and there exists a B-contracting homotopy,
that is there exist B-maps t of degree −1 such that dt+ td = 1.
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It can be easily shown that relative projective resolutions are the projective
resolutions in the exact category with respect to B-split short exact sequences, see
[7, Definition 12.1]. The usual comparison theorem holds for relative projective
resolutions, see [24, p. 250] and [7, Theorem 12.4]. Hence the following definitions
do not depend, up to isomorphism, on the choice of a relative projective resolution.

Definition 2.2 Let M and N be A-modules and let P• → M be a relative projec-
tive resolution. The cohomology of the cochain complex

0 → HomA(P0, N) → HomA(P1, N) → · · ·

is Ext∗A|B(M,N).
Let M be a left A-module and let N be a right A-module. Let P• → M be a

relative projective resolution. The homology of the chain complex

· · · → N ⊗A P1 → N ⊗A P0 → 0

is TorA|B
∗ (N,M).

Next we recall the relative theory provided by Hochschild in [24] for bimodules.
Let C and D be k-algebras. The category of C−D-bimodules is identified with

the category of C ⊗ Dop-modules. A projective C − D-bimodule is a projective
C ⊗Dop-module.

Definition 2.3 Let M be an A-bimodule. The relative Hochschild cohomology
and homology of A respect to B with coefficients in M are respectively the graded
vector spaces

H∗(A|B,M) = Ext∗(A−A)|(B−B)(A,M)

H∗(A|B,M) = Tor(A−A)|(B−B)
∗ (M,A).

There is a relative bar resolution of A which provides the subsequent way of
computing relative Hochschild (co)homology, see [24]. As mentioned in the In-
troduction, Kaygun obtained long exact sequences relating the usual Hochschild
(co)homology with the relative one, see [25, 26].

Let B be a k-algebra and let N be a B-bimodule. The tensor algebra

T = TB(N) = B ⊕ N ⊕ N ⊗B N ⊕ · · · ⊕N⊗Bn ⊕ · · ·

is a non negatively graded algebra with T0 = B and Tn = N⊗Bn for n > 0. Its
positive part is T>0 = ⊕n>0N

⊗Bn.

Example 2.4 Let Q be a finite quiver, with set of vertices Q0, set of arrows Q1,
and s, t : Q1 → Q0 the maps which associate to each arrow respectively its source
and target vertices. The path algebra kQ is the tensor algebra over the semisimple
commutative algebra kQ0 of the kQ0-bimodule kQ1. We denote by Qn the set of
paths of length n, note that (kQ)n = kQn.

A bound quiver algebra is an algebra kQ/I, where I is an admissible ideal, that
is 〈Qn〉 ⊂ I ⊂ 〈Q2〉 for some n.

Let k be an algebraically closed field. By results of P. Gabriel in [12, 13], see
also for instance [3, Theorem 3.7] or [31], a finite dimensional k-algebra A is Morita
equivalent to a bound quiver algebra.
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We recall the universal property of a tensor algebra T = TB(N). Let Λ be a
k-algebra. An algebra morphism ϕ : T → Λ is uniquely determined by an algebra
morphism ϕ0 : B → Λ - which turns Λ into a B-bimodule - and a B-bimodule
morphism ϕ1 : N → Λ.

Theorem 2.5 Let T = TB(N) be the tensor algebra over a k-algebra B of a
B-bimodule N . Let X be a T -bimodule. For ∗ ≥ 2,

H∗(T |B,X) = 0,

H∗(T |B,X) = 0.

Proof. We will show that the following is a (T −T |B− B) relative projective
resolution of T :

0 → T ⊗B N ⊗B T
g
→ T ⊗B T

f
→ T → 0 (2.1)

where f is the product of T and g(x ⊗ n ⊗ y) = xn ⊗ y − x ⊗ ny. We obtain
the results of the statement by using this relative resolution to compute Hochschild
(co)homology.

It is straightforward to verify that fg = 0. Clearly the involved T -bimodules are
induced, hence they are relative projective.

In order to define a (B−B)-contracting homotopy, we introduce notation. Firstly,
instead of x1 ⊗ · · · ⊗ xn we will write x1, . . . , xn. Secondly observe that the tensor
element x1, . . . , xn can be considered in different ways: for any decomposition
n = i+ j with i ≥ 0 and j ≥ 0, it can be viewed as an element of

N⊗Bi ⊗B N⊗Bj ⊂ (T ⊗B T )n =
⊕

k+l=n

(
N⊗Bk ⊗B N⊗Bl

)
⊂ T ⊗B T.

In this case we write this element as (x1, . . ., xi
▽, xi+1, . . . , xn). For n = 0+n and

n = n+ 0 we remark that the notation is:

(▽, x1, . . . , xn) ∈ B ⊗B N⊗Bn ⊂ (T ⊗B T )n,

(x1, . . . , xn
▽, ) ∈ N⊗Bn ⊗B B ⊂ (T ⊗B T )n.

Finally for n = i + 1 + j with i ≥ 0 and j ≥ 0, the tensor x1, . . . , xn can also be
considered as an element of

N⊗Bi ⊗B N ⊗B N⊗Bj ⊂ (T ⊗B N ⊗B T )n

=
⊕

k+1+l=n

(
N⊗Bk ⊗B N ⊗B N⊗Bl

)

⊂ T ⊗B N ⊗B T.

In this case we denote it by x1, . . . , xi,
▽

xi+1, xi+2, . . . , xn. For n = 0+1+ (n− 1)
and n = (n− 1) + 1 + 0 we write:

▽

x1, . . . , xn ∈ B ⊗B N ⊗B N⊗B(n−1) ⊂ (T ⊗B N ⊗B T )n,

x1, . . . ,
▽

xn∈ N⊗B(n−1) ⊗B N ⊗B B ⊂ (T ⊗B N ⊗B T )n.
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With these notations the morphisms f and g are as follows:

f(x1, . . . , xi, ▽, xi+1, . . . , xn) = x1, . . . , xn

g(x1, . . . , xi,
▽

xi+1, xi+2, . . . , xn) = (x1, . . . , xi+1
▽, . . . , xn)− (x1, . . . ▽, xi+1, . . . , xn).

The sequence (2.1) is graded, it is the direct sum of the following sequences of
B-bimodules:

0 −→ (T ⊗B N ⊗B T )n
g

−→ (T ⊗B T )n
f

−→ Tn −→ 0

Next we define s : Tn → (T ⊗B T )n and r : (T ⊗B T )n → (T ⊗B N ⊗B T )n and
we prove that these maps verify the following:

• r and s are B−B-bimodule maps,

• fs = 1 and rg = 1,

• gr + sf = 1

providing this way the required contracting homotopy, see Definition 2.1.
The morphism s is defined by s(x1, . . . , xn) = (▽, x1, . . . , xn), note that it is

well defined. Moreover s is easily seen to be a B−B-section of f .
In order to define r, let i ≥ 0, j ≥ 0 with i+ j = n. Let

ri : N
⊗Bi ⊗B N⊗Bj → (T ⊗B N ⊗B T )n

be given by

ri(x1, . . . , xi, ▽, xi+1, . . . , xn) =

i∑

k=1

(x1, . . .,
▽

xk, . . . , xn).

Observe that r0 = 0. Each ri is a well defined B−B-morphism. We put r = ⊕n
i=0ri.

Next we verify that rg = 1.

rg(x1, . . . ,
▽

xi+1, . . . , xn) =

ri+1(x1, . . . , xi+1
▽, . . . , xn)− ri(x1, . . . ▽, xi+1, . . . , xn) =

∑i+1
k=1(x1, . . .

▽

xk, . . . , xn)−
∑i

k=1(x1, . . .
▽

xk, . . . , xn) =

(x1, . . . ,
▽

xi+1, . . . , xn).

Finally we verify that gr + sf = 1.

sf(x1, . . . , xi
▽, xi+1, . . . , xn) = s(x1, . . . , xn) = (▽, x1, . . . , xn).

gr(x1, . . . , xi
▽, xi+1, . . . , xn) = g

(∑i
k=1(x1, . . . ,

▽

xk, . . . , xn)
)
=

∑i
k=1 ((x1, . . . , xk

▽, . . . , xn)− (x1, . . . ▽, xk, . . . , xn)) =

−(▽, x1, . . . , xn) + (x1, . . . , xi
▽, xi+1, . . . , xn).

In particular (gr + sf)(▽, x1, . . . , xn) = 0 + (▽, x1, . . . , xn). ⋄
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3 Homology

Let A = kQ/I be a bound quiver algebra, and let R be a minimal finite subset of
the path algebra kQ such that I = 〈R〉. Note that elements r ∈ I are possibly
linear combination of parallel paths, that is of paths with the same source and the
same target vertices, see for instance [3].

Definition 3.1 Let A = kQ/〈R〉 be a bound quiver algebra. An arrow a of Q is
inert if a does not appear in any of the paths which provide the elements of R.

Let D be a set of inert arrows, let Q\D be the quiver Q where the arrows of D
are deleted. We set

A\D = k(Q\D)/〈R〉k(Q\D) (3.1)

where the denominator is the two sided ideal generated by R in k(Q\D). Note that
A\D is a bound quiver algebra. Moreover A\D is a subalgebra of A.

Theorem 3.2 Let A = kQ/〈R〉 be a bound quiver algebra and let D be a set of
inert arrows of Q. For ∗ ≥ 2

HH∗(A\D) ≃ HH∗(A).

The proof will rely on the reverse procedure, namely adding new arrows.

Definition 3.3 Let Q be a quiver and let F be a finite set of new arrows, that
is F is a finite set with maps s, t : F → Q0. The new quiver QF is given by
(QF )0 = Q0 and (QF )1 = Q1 ∪F , where the source and target maps are provided
by the corresponding maps of Q1 and F .

Let B = kQ/I be a bound quiver algebra, and let F be a set of new arrows.
We set

BF = kQF /〈I〉kQF
.

Remark 3.4 Suppose that BF is finite dimensional. Obviously the set of arrows F
is inert and (BF )\F = B.

If A = kQ/〈R〉 is a bound quiver algebra and D is a set of inert arrows, then(
A\D

)
D
= A.

Given a bound quiver algebra B and a set of new arrows F , consider the pro-
jective B-bimodule

N =
⊕

a∈F

Bt(a)⊗ s(a)B. (3.2)

The following result is clear by using the universal property of tensor algebras.

Theorem 3.5 Let B = kQ/〈R〉 be a bound quiver algebra, and let F be a set of
new arrows. The algebra BF is isomorphic to the tensor algebra T = TB(N).

Theorem 3.6 Let B be a bound quiver algebra, and let F be a set of new arrows.
For ∗ ≥ 2

HH∗(BF ) ≃ HH∗(B).
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Proof. By the previous result, BF ≃ T = TB(N). The B-bimodule T/B = T>0

is projective, hence the Jacobi-Zariski long exact sequence for Hochschild homology
obtained by Kaygun holds, see [25, 26]. On the other hand, by Theorem 2.5 we
have that H∗(T |B, T ) = 0 for ∗ ≥ 2. Then HH∗(T ) ≃ H∗(B, T ) for ∗ ≥ 2.
Moreover H∗(B, T ) = HH∗(B)⊕ H∗(B, T>0). The second summand is zero since
the B-bimodule of coefficients is projective. ⋄

4 Cohomology

In case of deleting one inert arrow we will obtain the following result. Note that for
X a right module, we denote by X ′ the left module Homk(X, k).

Theorem 4.1 Let A be a bound quiver algebra, let a be an inert arrow from e to
f and let B = A\{a}. For ∗ ≥ 2 we have

dimkHH
∗(B) = dimkHH

∗(A)− dimkExt
∗
A((fA)

′, Ae).

See Remark 4.3 for a proof of the previous result.
Next we state a result for a set of deleted arrows. As in the previous section, the

proof will be by the reverse procedure of adding arrows. However the Jacobi-Zariski
long exact sequence for cohomology requires that the bimodule of coefficients is
finite dimensional. To ensure this, and to state the result, we introduce the following.

Let A = kQ/〈R〉 be a bound quiver algebra, let D be a set of inert arrows and
let B = A\D, see (3.1).

- A pair of arrows (a2, a1) of D is linked if s(a2)Bt(a1) 6= 0.

- A relative n-path is a sequence γ = anan−1 . . . a2a1 of arrows of D such that
(ai+1, ai) is linked for i = 1, . . . , n− 1. The source s(γ) and the target t(γ)
of γ are respectively s(a1) and t(an).

- The set of relative n-paths is denoted Γn, while the set of all relative paths
is denoted Γ.

- The relative path γ is a relative cycle if (a1, an) is linked. This way an arrow
a is a relative cycle if (a, a) is linked, that is if s(a)Bt(a) 6= 0.

- We set

dimkγ =

n−1∏

i=1

dimks(ai+1)Bt(ai).

If γ = a ∈ F , then dimkγ = 1.

We will prove the following as a consequence of Theorem 4.6.

Theorem 4.2 Let A be a bound quiver algebra, let D be a set of inert arrows and
let B = A\D. For ∗ ≥ 2 we have

dimkHH
∗(B) = dimkHH

∗(A)−
∑

γ∈Γ

dimkγ dimkExt
∗
B((t(γ)B)′, Bs(γ)).

7



Remark 4.3 The proof of Theorem 4.1 follows: if D = {a}, then there is only one
relative path γ = a. The formula above gives

dimkHH
∗(B) = dimkHH

∗(A)− dimkExt
∗
B((t(a)B)′, Bs(a)).

Moreover, at the end of this section we will prove that

Ext∗A((t(a)A)
′, As(a)) ≃ Ext∗B((t(a)B)′, Bs(a)).

We first prove the following.

Proposition 4.4 Let B be a bound quiver algebra, let F be a set of new arrows
and let N be the associated projective B-bimodule, see (3.2). We have

N⊗Bn ≃
⊕

γ∈Γn

dimkγ Bt(γ)⊗ s(γ)B.

The algebra TB(N) = BF is finite dimensional if and only if the length of the
relative paths is bounded, that is there are no relative cycles.

Proof. We sketch the proof in case F = {a1, a2}, where a1 is from e to f and a2
from g to h, hence N = (Bf ⊗eB)⊕ (Bh⊗gB). One of the four direct summands
of N ⊗B N is

(Bh⊗ gB)⊗B (Bf ⊗ eB) = Bh⊗ gBf ⊗ eB

which is isomorphic as a B-bimodule to dimk(gBf)Bh⊗ eB. If (a2, a1) is linked,
then this direct summand is non zero and it corresponds to the relative path a2a1
in the formula. The rest of the proof is along the same lines.

Lemma 4.5 Let B be a bound quiver algebra, and let e, f ∈ Q0. We have

H∗(B,Bf ⊗ eB) = Ext∗B((eB)′, Bf)

Proof. First we recall that if U and W are left B-modules, then

H∗(B,Homk(W,U)) ≃ Ext∗B(W,U),

see for instance [8, p. 170, 4.4]).
Let U and V be respectively left and right finite dimensional B-modules, so that

the B-bimodules U ⊗ V and Homk(V
′, U) are isomorphic. Then

H∗(B,U ⊗ V ) ≃ Ext∗B(V
′, U)

⋄

Theorem 4.6 Let B = kQ/〈R〉 be a bound quiver algebra, let F be a set of new
arrows and let A = BF = TB(N). Suppose that there are no relative cycles, that
is A is finite dimensional. For ∗ ≥ 2

HH∗(A) = HH∗(B)⊕
⊕

γ∈Γ

dimkγ Ext∗B((s(γ)B)′, Bt(γ)).

8



Proof. We infer from the Jacobi-Zariski long exact sequence obtained by Kaygun
in [25, 26] and from Theorem 2.5 that for ∗ ≥ 2 we have HH∗(A) ≃ H∗(B,A).
Moreover H∗(B,A) ≃ HH∗(B)⊕ H∗(B, T>0). By Proposition 4.4

H∗(B,N⊗Bn) ≃
⊕

γ∈Γn

dimkγ H∗(B,Bt(γ)⊗ s(γ)B).

Lemma 4.5 provides the result. ⋄

Theorem 4.2 is inferred from the previous result by adding as new arrows the
deleted ones.

Lemma 4.7 Let B be a bound quiver algebra. Let a be a new arrow from e to f
which does not provides a relative oriented cycle, and let A = BF = TB(N). For
∗ ≥ 2

Ext∗A((fA)
′, Ae) ≃ Ext∗B((fB)′, Be).

Proof. The Kaygun’s Jacobi-Zariski long exact sequence and Theorem 2.5, show
that for ∗ ≥ 2

HH∗(A,Af ⊗ eA) ≃ HH∗(B,Af ⊗ eA).

We have that N ⊗B N = 0 because a is not a relative oriented cycle, that is
eBf = 0. Hence A = B ⊕N , where N = Bf ⊗ eB. A simple computation shows
that Af ⊗ eA = Bf ⊗ eB. Hence

HH∗(B,Af ⊗ eA) = HH∗(B,Bf ⊗ eB).

Lemma 4.5 provides the result. ⋄

We record the following result as a consequence of Theorem 4.1.

Corollary 4.8 Let A be a bound quiver algebra, let a be an inert arrow from e to
f and let B = A\{a}. If Ae is an injective module, and/or if (fA)′ is a projective
module, we have for ∗ ≥ 2

HH∗(B) ≃ HH∗(A).

In order to use the previous result, we recall the well known criterion for a
projective indecomposable module to be injective.

Proposition 4.9 Let A = kQ/I be a bound quiver algebra and let e ∈ Q0. The
indecomposable projective left module Ae is injective if and only if socAe is a simple
module Sy for a vertex y, and dimk(Ae) = dimk(yA)

′. In that case Ae ≃ (yA)′.

5 Examples

5.1 Amalgamation with a quiver without oriented cycles

Let Λ = kQ/I be a bound quiver algebra, and let S be a finite quiver without
oriented cycles. We will construct a quiver where some vertices of S and Q are
identified.

Let Y ⊂ S0 and X ⊂ Q0, with a bijective map u : X → Y . Let ∼ be the
equivalence relation on X ∪ Y given by x ∼ u(x). We extend it to an equivalence
relation on Q0 ∪ S0 in the obvious manner, each other vertex is just equivalent to
itself.

9



Definition 5.1 The amalgamated quiver Q ∪u S is given by

• Q0 ∪u S0/ ∼,

• (Q ∪u S)1 = Q1 ∪ S1.

The amalgamated algebra Λ ∪u S is k(Q ∪u S)/〈I〉k(Q∪uS).

Theorem 5.2 Let Λ = kQ/I be a bound quiver algebra, let S be a finite quiver
without oriented cycles and let u be as above. Suppose that for each path of positive
length of S, one of its extremities is not in Y . For ∗ ≥ 2

HH∗(Λ ∪u S) ≃ HH∗(Λ).

Proof. Let G be the quiver Q with the set S0 \ Y of new vertices added - each
one is a connected component of G. Consider the algebra B = Λ ××|S0\Y |k.
Hochschild cohomology is additive on the product of algebras, and HH∗(k) = 0 for
∗ ≥ 1, hence HH∗(Λ) = HH∗(B) for ∗ ≥ 1.

Recall that GS1
is the quiver G with the set S1 of new arrows added, we have

GS1
= Q ∪u S. The hypotheses on the paths of S imply that there are no relative

oriented cycles, hence BS1
= Λ ∪u S is finite dimensional. Moreover, for each

relative path at least one of its extremities is an isolated vertex x ∈ S0 \ Y . We
have that (xB)′ = Bx, which is a simple module. The corresponding ExtB’s in
Theorem 4.6 vanish. ⋄

5.2 Gorenstein algebras

A finite dimensional k-algebra B is Gorenstein if B is of finite injective dimension
n1 as a left module, and the injective left module B′ is of finite projective dimension
n2, see for instance [20]. The algebra is called n-Gorenstein for n the maximum of
these numbers.

Let B = kQ/〈R〉 be a bound quiver algebra. If B is n-Gorenstein, then for any
x ∈ Q0 the projective dimension of (xB)′ and the injective dimension of Bx is at
most n. For instance selfinjective algebras are 0-Gorenstein algebras. The following
result is a consequence of Theorem 4.6.

Proposition 5.3 Let B = kQ/I be a bound quiver algebra which is n-Gorenstein.

Let Q̂ be the quiver obtained from Q by adding a finite number of new arrows, and
suppose B̂ = kQ̂/〈I〉

Q̂
is finite dimensional. For n > 0 and ∗ ≥ n+ 1,

HH∗(B̂) ≃ HH∗(B)

while for n = 0 - that is if B is selfinjective- the isomorphism holds for ∗ ≥ 2.

Example 5.4 For m ≥ 2, let Q be the following cyclic connected quiver:

10



s0

s1

si

sm−1

a0

a1am−2

am−1

ai

For 2 ≤ l < m, let B = kQ/〈Ql〉, which is a selfinjective algebra. Let Q̂ be
the quiver obtained from Q by adding a finite number of arrows at pairs of vertices.
Suppose that B̂ = kQ̂/〈Ql〉Q̂ is finite dimensional, that is there are no relative
oriented cycles. For ∗ ≥ 2

HH∗(B̂) ≃ HH∗(B).
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la República, Uruguay.

marclan@fing.edu.uy

E.N.M.:
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