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Abstract

The scientific and practical needs of the twenty-first century
lead humankind to convergence of the specialized and diverse
branches of science and technology. This convergence reveals
the need for new mathematical theories capable of providing
common languages and frameworks to be utilized by profes-
sionals from different fileds in solving interdisciplinary and chal-
lenging problems.
The present thesis is done in the same direction. Here, we de-
velop a new formalism with the central idea of “unification of
various mathematical branches”. For this purpose, we utilize
three major tools from today’s mathematics, each of which pos-
sessing a unifying nature itself: category theory and especially
the theory of “double cateogries”, the theory of “universal di-
algebra”, and the “Chu construction”. With the aid of these
tools, we define and study a double category that subsumes a
significant portion of the formalisms usual within the body of
mathematics and theoretical computer science. We show that
this double category possesses the properties of “horizontal self-
duality” and “vertical self-duality”. Also, we perform a primary
investigation about existence of binary horizontal products and
coproducts in this category. Finally, we give some suggestions
for future work.
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Preface

Convergence of the various scientific and technological fields, towards solving
challenging multi-dimensional problems, is a need that is felt in the twenty-first cen-
tury far more than anytime in the past. Today, we are the heirs of an enormous
amount of scientific and technological achievements, and those continue to accumu-
late at accelerating rates. Within this roaring ocean of information, the degrees of
specialization of the study areas have reached such levels that, frequently, effective
transference of findings from one professional to another becomes a serious challenge
itself.

In addition, we are the heirs of huge amounts of human and environmental prob-
lems. Today, few people in the scientific community ever doubt the role of man in
global warming. Non-degradable plastic and rubber waste, various toxic chemicals,
petrochemicals, and heavy metals that humans have been producing and releasing
into nature since the beginning of the twentieth century have polluted lands and wa-
ters; those substances interfere with ecological cycles, they cause death of organisms
and cause undesirable changes in food chains, and the result of all these returns
to us humans in the form of environmental disasters and health threats. On the
other hand, the emergence of drug-resistant pathogens due to overconsumption of
antibiotics has made the medical sciences face new challenges in fighting infectious
diseases. Yet another set of alarming issues is the crises of water and food shortages
and hard-to-treat epidemics and pandemics throughout the world, especially in the
impoverished areas. Along with all these problems, one should add the potential
dangers of the new technologies. Today, nanotechnology, biotechnology, and infor-
mation technology are already forming new industrial revolutions throughout the
world while many of their side-effects are unknown to us.

For solving difficult multi-dimensional problems in such an extremely complex
era, effective cooperation of professionals from different disciplines is a clear neces-
sity. But any effective cooperation requires using a “potent common language” by
all involved; therefore, mathematics manifests its value as the common language of
sciences and technologies once again. Although various mathematical theories de-
veloped up to now have offered brilliant services to natural sciences and engineering
fields, currently we need a new mathematics which is even more capable of uni-
fying the infrastructures as well as the bodies of different branches of science and
technology.

The crucial point to be considered is that it is impossible for mathematics to
succeed in such unification when it is internally fragmented (as we witness today);
rather, the process of convergence and unification has to start within mathematics
itself. By “unification of mathematics” we do not mean a theory principally for the

vii



viii PREFACE

foundations of mathematics (such as axiomatic set theory), but one which is able
to encompass the essence of different theories within the body of mathematics and
which provides the working mathematician with the necessary toolbox for effective
cross-disciplinary communication of ideas.

The present thesis is done in the same direction. For this purpose, we utilize
three major tools from today’s mathematics, each of which possessing a unifying
nature itself: category theory and especially the theory of “double cateogries”, the
theory of “universal dialgebra”, and the “Chu construction”.

Eilenberg and Mac Lane officially founded the theory of categories in their his-
toric paper in 1945 [6]. There were various generalizations of the theory later, of
which we point to Ehresmann’s theory of double categories (see [21] and the refer-
ences within). The notion of double category can be seen as a “two-dimensional
generalization” of the notion of category. The formalism developed in the current
thesis makes use of the language of double categories.

From a categorical viewpoint, algebraic theories can have their corresponding
“dual theories”. These duals are referred to as coalgebras. Whereas the theory
of universal algebra [24, 13] recognizes and studies the common patterns among
specific algebraic theories such as the theories of groups, rings, linear algebra, etc.,
the theory of universal coalgebra does the same with specific coalgebraic theories
such as automata, transition systems, Petri nets, and event systems [53, 28].

Again, categorically one can think of dialgebras [44] as common generalizations
of algebras and coalgebras. Also, the theory of universal dialgebra [56] has been
developed as a common generalization of universal algebra and universal coalgebra.
Universal dialgebra recognizes and studies the common patterns among specific di-
algebraic theories.

From a different perspective, tracing the property of “self-duality” in categories
(see Definition 1.2.27) leads us to a family of categories called the Chu construction
[9]. Existence of the self-duality property is essential for the purposes of the present
work (see the discussion given in Section 1.1). It is well-known that Set, the category
of sets and functions, lacks this property; therefore, in order to achieve a unified
formalism for solving interdisciplinary problems, one has to develop the theory of
universal dialgebra based on some other category which, along with other desirable
properties, possesses self-duality. Consequently, the Chu construction enters the
scene as an appropriate substitute for Set.

In this thesis, after introducing the above tools, we define and study a formalism
which subsumes a significant portion of the formalisms usual within the body of
mathematics and theoretical computer science. The general structure of the thesis
is as follows. In Chapter 1 the preliminaries are given. Next, the Chu construction is
introduced in Chapter 2. The contents of that chapter are mainly from [9, 18, 45, 49].
Next, universal dialgebra is given in Chapter 3, with the materials mainly inspired
by [44, 56].

Then, the main formalism of the thesis is given in Chapter 4. In that chapter,
after introducing double categories, we introduce the DLC construction (see Section
4.2). We show that this double category possesses the property of “Klein-invariance”
(see Definition 4.1.27), which is the conjunction of the two properties of horizontal
and vertical self-duality. Also, we do a primary investigation concerning existence
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of binary horizontal products and coproducts in DLC. Finally, a few suggestions for
future work will be given in Chapter 5.
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Chapter 1

Introduction

This chapter discusses the general ideas and motivations behind the present work
and provides the preliminaries for the next chapters.

Thesis organization. In Section 1.1 we speak of the fundamental motivations; in
Section 1.2 we quickly review the essentials of basic category theory; and in Section
1.3, internal categories are introduced.

Chapter 2 introduces the Chu construction and discusses a number of its proper-
ties. Chapter 3 studies universal dialgebra on a given base category C in general and
on the Chu construction in particular. Chapter 4 begins with introducing the for-
malism of double categories and proceeds towards the main formalism of the present
work. Finally, Chapter 5 gives the conclusions and directions for future work.

1.1 The fundamental motivations

Today, in the twenty-first century, we live at a time of ever-accelerating changes,
of which scientific and technological advancements constitute a significant portion.
Virtually every aspect of human life is constantly flooded with scientific discover-
ies and technological innovations. This situation was forecast with relatively high
accuracy in [51] in 2002:

“We stand at the threshold of a New Renaissance in science and technology,
based on a comprehensive understanding of the structure and behavior of matter
from the nanoscale up to the most complex system yet discovered, the human brain.
A coherent science and engineering approach based on the unity of nature and its
holistic investigation will lead to technological convergence and a more efficient so-
cietal structure...”

The article then explains this “technological convergence” as follows [ibid]:

“The phrase ‘convergent technologies’ refers to the synergistic combination of
four major ‘NBIC’ (Nano-Bio-Info-Cogno) provinces of science and technology, each
of which is currently progressing at a rapid rate: (a) nanoscience and nanotechnol-
ogy; (b) biotechnology and biomedicine, including genetic engineering; (c) informa-
tion technology, including advanced computing and communications; (d) cognitive
science, including cognitive neuroscience.

1



2 CHAPTER 1. INTRODUCTION

Accelerated scientific and social progress can be achieved by combining research
methods and results across these provinces in duos, trios, and the full quartet.”

On the other hand, there is a crucial fact concerning the nature of scientific
research itself [ibid]:

“The sciences have reached a watershed at which they must combine if they are
to continue to advance. The New Renaissance must be based on a holistic view
of science and technology that envisions new technical possibilities and focuses on
people.”

Finally, the article lays emphasis on the key roles of mathematics, computer
science, and system approach in the New Renaissance [ibid]:

“Developments in system approach, mathematics, and computation in conjunc-
tion with NBIC allow us for the first time to understand the natural world, and social
events and humanity as closely coupled complex, hierarchical systems. Applied both
to particular research problems and to the over-all organization of the research en-
terprise, this complex system approach provides holistic awareness of opportunities
for integration, in order to obtain maximum synergism along main directions of
progress.”

From the above, it follows that development of mathematics in the twenty-first
century shall be heavily influenced by the requirements of intensely-converging sci-
ences and technologies. This shall result in more unified mathematical theories,
capable of solving more diverse, more complex, more hierarchical, and more chal-
lenging problems arising in the NBIC hybrid. Needless to say, this historical process
also requires the pure and applied parts of mathematics to unify and function as a
whole.

Now, the present work has been inspired by ideas and motivations inclusive of
what described above. The author has been trying to develop a new and unified
theoretical framework in which those aspects of pure mathematics that are of (po-
tential or actual) practical importance may be embodied. The result is a theory that
interweaves three threads of existing mathematical theories, each of which having a
unifying nature itself: category theory, universal dialgebra, and the Chu construc-
tion.

Category theory. The twentieth century witnessed a number of triumphs in so-
lidification of mathematical thinking, one of which was the formulation of various
axiomatic set theories as candidate foundations of mathematics. Moreover, Eilen-
berg and Mac Lane officially formulated category theory in their historic paper
(“General theory of natural equivalences”) in 1945 [6]. Contrary to set theory which
places emphasis on sets and membership, category theory prioritizes arrows, which
are relationships between different mathematical objects. This way, category theory
sheds light on even the farthest corners of mathematical realm and unifies struc-
tures so distant from each other that would seem totally unrelated otherwise. It is
also worth mentioning that in addition to the set-theoretic foundations, there are
suggestions for category-theoretic foundations of mathematics (e.g. see [59] and the
references therein). Therefore, as foundational systems for mathematics, category
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theory possesses much more unifying power than set theory.

Now, ordinary categories themselves can be seen as kinds of “one-dimensional
structures”, in which objects play the role of “points” and arrows that of “one-
dimensional entities between points”. These can be generalized to higher dimensions
in various ways. The present work utilizes a definite kind of generalization known
as “double categories” [21, 22]. These will be introduced in Chapter 4.

Universal dialgebra. From the viewpoint of mathematical logic, groups, rings,
fields, lattices, and other algebraic structures can be viewed as models of particular
theories. Whereas abstract algebra studies those models, universal algebra deals
with algebraic or equational theories in general [24, 69]. Grätzer gives the following
notes on the latter subject in his book [24]:

“In A. N. Whitehead’s book on Universal Algebra, published in 1898, the term
universal algebra had very much the same meaning that it has today....

Thus universal algebra is the study of finitary operations on a set, and the purpose
of research is to find and develop the properties which such diverse algebras as rings,
fields, Boolean algebras, lattices, and groups may have in common.”

Now, with the aid of category theory, the above picture can be expanded in a
number of ways. First of all, the collection of finitary operations on a given set
may be replaced with the notion of “F -algebra”, where F is an endofunctor (see
1.2.50) on the category of sets . The advantage of this approach is that instead of
an indexed set of fundamental operations, we have only one mapping [16]. Next,
F -algebras can be categorically “dualized” (see 1.2.12) to yield F -coalgebras. F -
coalgebras provide the (categorical) basis for the theory of universal coalgebra.
Quoting Rutten [53]:

“These observations, then, have led to the development in the present paper of
a general theory of coalgebras called ‘universal coalgebra’, along the lines of uni-
versal algebra. Universal algebra ... deals with the features common to the many
well-known examples of algebras such as groups, rings, etc. The central concepts are
Σ-algebra, homomorphism of Σ-algebras, and congruence relation. The correspond-
ing notions ... on the coalgebra side are: coalgebra, homomorphism of coalgebras,
and bisimulation equivalence. These notions constitute the basic ingredients of our
theory of universal coalgebra. (More generally, the notion of substitutive relation
corresponds to that of bisimulation relation; hence congruences, which are substitu-
tive equivalence relations, correspond to bisimulation equivalences.) Adding to this
the above-mentioned observation that various dynamical systems (automata, tran-
sition systems, and many others as we shall see) can be represented as coalgebras,
makes us speak of universal coalgebra as ‘a theory of systems’. We shall go even as
far as, at least for the context of the present paper, to consider coalgebra and system
as synonyms.”

Also, Jacobs [28] writes:

“Mathematics is about the formal structures underlying counting, measuring,
transforming etc.... In more recent decades also ‘dynamical’ features have become a
subject of research. The emergence of computers has contributed to this development.
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Typically, dynamics involves a ‘state of affairs’, which can possibly be observed and
modified....

Both mathematicians and computer scientists have introduced various formal
structures to capture the essence of state-based dynamics, such as automata (in var-
ious forms), transition systems, Petri nets and event systems. The area of coalgebra
has emerged within theoretical computer science with a unifying claim. It aims to
be the mathematics of computational dynamics. It combines notions and ideas from
the mathematical theory of dynamical systems and from the theory of state-based
computation. The area of coalgebra is still in its infancy but promises a perspective
on uniting, say, the theory of differential equations with automata and process theory
and with biological and quantum computing, by providing an appropriate semanti-
cal basis with associated logic. The theory of coalgebras may be seen as one of the
original contributions stemming from the area of theoretical computer science.”

Thirdly, the assumption that universal algebra and universal coalgebra merely
deal with set-based operations and dynamics may be dropped. In other words, one
can study algebras and coalgebras induced by arbitrary endofunctors F : C−→ C,
where C may be any category, not necessarily the category of sets.

Finally, universal algebra and universal coalgebra themselves can be unified. So
far, the situation is roughly as follows: universal algebra unifies specific algebraic
structures, universal coalgebra does the same with specific state-based dynamical
systems, and these two are categorical duals to each other. Now, unification of the
two theories results in the more recent theory of universal dialgebra. The notion
of dialgebra was investigated in [44] as a common generalization of algebras and coal-
gebras. Dialgebras subsume both features of algebraic structuring and coalgebraic
dynamics; also, there are many interesting examples of dialgebras that are neither
algebra nor coalgebra.

However, it was not until 2010 that the first paper on “universal dialgebra”
as a new theory was published. In that year, Voutsadakis [56] gave a systematic
treatment of the subject for the first time, and showed how the fundamental results
in both universal algebra and universal coalgebra can be viewed as special cases of
those in universal dialgebra. There, the notion of 〈F,G〉-dialgebra is introduced as
the categorical formalism of dialgebras, where F,G are arbitrary endofunctors on
the category of sets. Although Voutsadakis’s work deals exclusively with set-based
dialgebras, as he himself states: “... many of the results (in fact most of them, if
adequately translated) will be easily seen to hold in arbitrary categories”. This is
what we will do to some extent in Chapter 3.

An interesting fact is that “being a dialgebra” is a self-dual statement (see
1.2.15); that is, the dual of a dialgebra is again a dialgebra. This can be contrasted
with the above-mentioned fact that algebras and coalgebras are duals to each other.
In other words, whereas the process of dualization interchanges algebraic and coal-
gebraic concepts, the same process does not affect dialgebras conceptually.

However, this does NOT mean that dialgebras are perfectly immune to dualiza-
tion. Indeed, there is a subtle fact concerning the dualization process. For example,
when C= Set (the category of sets and functions), quoting Gumm [26]:

“Universal coalgebra is dual to universal algebra over the dual of the category
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of sets. As the category Set is not self-dual, universal algebra cannot simply be
translated to deliver a corresponding theory of coalgebras. It can, however, serve as
a formidable source of inspiration.”

The same issue affects dialgebras, too. Again, this will be discussed in Chapter
3.

A remedy for the above problem is to replace Set with a self-dual category (see
1.2.27). Consequently, in search for a self-dual substitute for Set, the author has
found the third essential ingredient of the current thesis.

The Chu construction. Thu Chu construction is exactly what the author has
found appropriate for the purposes of the present work. Quoting Barr [9]:

“In 1975, I began a sabbatical leave at the ETH in Zürich, with the idea of
studying duality in categories in some depth. By this, I meant not such things as the
duality between Boolean algebras and Stone spaces, nor between compact and discrete
abelian groups, but rather self-dual categories such as complete semi-lattices, finite
abelian groups, and locally compact abelian groups. Moreover, I was interested in
the possibilities of having a category that was not only self-dual but one that had an
internal hom and for which the duality was implemented as the internal hom into a
‘dualizing object’....

The desired properties were what I subsequently called ∗-autonomy....

By the end of the year, I had in fact produced a moderate number of examples of
∗-autonomous categories. One of them was a full subcategory of topological abelian
groups that included all the locally compact abelian (LCA) groups in such a way that
the duality restricted to them was the well-known duality of LCA groups....

Another example was a full subcategory of the category of locally convex topolog-
ical vector spaces....

Thus I ended up with a category whose objects were pairs E = (E,E ′) of vector
spaces equipped with a pairing E ⊗ E ′ −→ C [with C being the set of complex
numbers]. A map from E to F is a pair of linear maps (f, f ′) in which f : E −→
F and f ′ : F ′ −→ E ′ (note the direction reversal) such that 〈fv, w〉 = 〈v, f ′w〉
whenever v ∈ E and w ∈ F ′. There is no topology assumed and no continuity on
the linear maps....”

He then continues to describe how he had formulated a new collection of ∗-
autonomous categories; and finally [ibid]:

“It seemed clear that this gave a ∗-autonomous category, but there were a number
of unpleasant details to be verified. Since my student, Po-Hsiang Chu needed a
master’s project, so I asked him to verify them, which he did.... I now had expanded
from six to infinity the repertory of known ∗-autonomous categories.”

Eventually, the new collection of ∗-autonomous categories gets named after P.
Chu’s work in his thesis in 1979. The details of the construction will be given in
Chapter 2 (see Section 2.2). The Chu construction, especially the set-based Chu
construction, has many interesting features (see Chapter 2), among which is self-
duality. Those features altogether make the (set-based) Chu construction an excel-
lent replacement for Set, the category of sets and functions, for serving as a base
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category for a theory of universal dialgebra.

The present work. Although developing a theory of universal dialgebra on a
self-dual basis has been one of the initial motivations for the author, the present
work goes beyond it. Indeed, the formalism that we will be developing in Chapter
4 subsumes and interrelates all possible theories of universal dialgebra on the set-
based Chu construction. More precisely, assuming a set-based Chu category Chu, we
will develop a double categorical structure in which every horizontal “cross-section”
corresponds to a “counter-current pairing” of two theories of universal dialgebra
on Chu, while every vertical “cross-section” corresponds to interrelations between
different dialgebraic theories for a fixed pair of objects of Chu. Moreover, we
will show that the new double category is Klein-invariant (see Definition 4.1.27).
This way, a two-dimensional unified framework emerges that subsumes a significant
portion of what pure and applied mathematicians and computer scientists deal with
in everyday work. The author hopes that the results of this work will prove to be
beneficial for future scientific and technological advancements.

1.2 A quick review of basic category theory

In this section, we take a brief look at the basic definitions and constructions of
category theory. We assume the reader’s familiarity with some kind of axiomatic
set theory (e.g., refer to [36]). For the purpose of the present work, we need the
concepts of “class” and “conglomerate” besides that of “set” and “function”. The
material given in this section is mainly borrowed from [3, 11, 32, 34].

Classes

Intuitively speaking, classes consist of “large collections of sets”. In particular,
the following are required.

(1) The members of each class are sets.

(2) For every “property” P , one can form the class of all sets with prroperty P .

Hence there is the largest class U of all sets, called the universe. Classes are
precisely the subcollections of U. Thus, given classes A and B, one can form
such classes as A∪B,A∩B, and A×B. Because of this, there is no problem
in defining functions between classes, equivalnce relations, etc.

(3) If X1, X2, ..., Xn are classes, then so is the n-tuple (X1, X2, ..., Xn).

(4) Every set is a class.

(5) There is no surjection from a set to a proper class.

This means that sets have “fewer” elements than proper classs.
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Conglomerates

The concept of “conglomerate” has been created to deal with “collections of
classes”. The following are required.

(1) Every class is a conglomerate.

(2) For every property P , one can form the conglomerate of all classes with prop-
erty P .

(3) Conglomerates are closed under analogues of the usual set-theoretic construc-
tions (pairing, union, intersection, product, etc.)

Thus, we can form the conglomerate U′ of all classes, as well as functions
between conglomerates.

Remark 1.2.1. Classes that are not sets are called proper classes. Similarly,
conglomerates that are not classes are called proper conglomerates. For example,
U is a proper class, while U′ is a proper conglomerate.

Categories

There are various ways to define a category. We state two of them since each
will be useful in some parts of the current work.

Definition 1.2.2. (The first definition of categories.) A category is a quadru-
ple C= 〈O, hom, ◦, id〉 consisting of:

• a class O, whose elements are called objects of the category or C-objects;
this class is also denoted by Cobj; we prefer this latter notation, and we will
be using it in the sequel;

• for every pair X, Y of objects, a set hom(X, Y ), whose elements are called
morphisms or arrows or C-morphisms or C-arrows from X to Y ; this
set is also denoted by homC(X, Y ) or by C(X, Y ); we prefer the last notation,
and we will be using it in the sequel;

• for each triple X, Y, Z of objects, a function

◦ : C(X, Y )× C(Y, Z) −→ C(X,Z),

called the composition, which assigns, to each pair of morphisms 〈f, g〉, the
composite morphism g ◦ f or just gf ; each of these two notations has its own
advantages and therefore, we will be using both in the sequel;

• for each object X, an element idX or 1X of C(X,X), called the identity
morphism or identity arrow on X; we prefer the notation “1X”, and we
will use it most of the time.

These data are subject to the following axioms.
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(1) Associativity Axiom. Given morphisms f ∈ C(W,X), g ∈ C(X, Y ),
h ∈ C(Y, Z), the following equality holds:

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Hence we can safely discard parentheses and write hgf .

(2) Identity Axiom. Given a morphism f ∈ C(X, Y ), the following equalities
hold:

1Y ◦ f = f = f ◦ 1X .

(3) Disjointness Axiom. The sets C(X, Y ) are pairwise disjoint.

The union of all sets C(X, Y ) is denoted by Cmor and is called the class of mor-
phisms or the class of arrows of C, or equivalently, the class of C-morphisms
or the class of C-arrows.

Remark 1.2.3. (1) A morphism f ∈ C(A,B) is represented by the notation
f : A −→ B. The object A is called the domain or the source of f , and the
object B is called the codomain or the target of f . We may write

Dom(f) = A, Cod(f) = B.

Two arrows f, g with Dom(g) = Cod(f) are called composable.

(2) We will often write X ∈ C instead of X ∈ Obj(C), and f ∈ C instead of
f ∈ Mor(C).

(3) Also, in the situation of a diagram like that of 1.1, we say that the diagram
is commutative (or the diagram commutes) if, taking any two vertices, the
composite of the arrows along any path from the first vertex to the second
is equal to the composite along any other path from the first to the second;
e.g., when g ◦ f = k ◦ h in this diagram. An analogous terminology holds for

BA

C D

f

h

k

g

Diagram 1.1

diagrams of arbitrary shape.
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(4) 1X is the only arrow from X to X that plays the role of an identity for the
composition. Indeed, if 1′X ∈ C(X,X) is another such morphism, then

1X = 1X ◦ 1′X = 1′X .

(5) Axiom (3) guarantees that each C-morphism has a unique domain and a
unique codomain.

Now we state the second definition:

Definition 1.2.4. (The second definition of categories.) Alternatively, a cat-
egory is a sextuple C= 〈Cobj, Cmor, s, t, id, ◦〉, where:

• Cobj, Cmor are the classes of objects and morphisms of C, respectively;

• s, t : Cmor
−→−→ Cobj are two functions assigning, to every morphism f , its

source and target, respectively;

• ◦ : Cmor × Cmor −→ Cmor is a partial function called the composition, which
assigns, to any pair of morphisms f, g with t(f) = s(g), their composite mor-
phism g ◦ f = gf ;

• id : Cobj −→ Cmor is a function which assigns to each object X a morphism
idX or 1X .

These data are subject to the following axioms:

(1) Source and target are respected by composition:

s(g ◦ f) = s(f) and t(g ◦ f) = t(g).

(2) Source and target are respected by identities:

s(1X) = X = t(1X).

(3) Composition is associative; that is, whenever t(f) = s(g) and t(g) = s(h) we
have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

(4) Composition satisfies the left and right unit laws; if s(f) = X and t(f) = Y ,
then

1Y ◦ f = f = f ◦ 1X .

Remark 1.2.5. Each of Definitions 1.2.2 and 1.2.4 has its own advantages when
working in different theories. For example:

• Definition 1.2.2 works best when introducing the notion of “monoidal cat-
egory”, a topic we will be introducing in Section 1.4. Monoidal categories
provide the foundations for Chapter 2. It is also interesting to note that the
(ordinary) study of enriched categories utilizes the language of monoidal cat-
egories. There, too, Defintion 1.2.2 generalizes quite nicely to the notion of
“enriched category” (e.g., see Chapter 6 of [12]).
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• In contrast, Definition 1.2.4 generalizes elegantly and straightforwardly to the
notion of internal category, to be introduced in Section 1.3. Internal categories
are one of the mainstream approaches to the development of the theory of
double categories. Double categories will be introduced in Chapter 4 and they
provide us with the necessary language to be used in the main formalism of
this thesis.

Notation 1.2.6. We will be using capital letters A,B,C,X, Y, Z, ... for objects and
small letters f, g, h, k, ... for morphisms in a category. We will be using calligraphic
letters A,B, C, D, ... to denote categories in general, and boldface upright letters
for named categories (such as Set, Grph, etc.). More specific notations for different
situations will come in the sequel.

Next, let us take a look at “size issues”:

Definition 1.2.7. A category C is also called a large category. On the other
hand, C is called a small category whenever Cobj is a set.

Remark 1.2.8. (1) When Cobj is a set, then Cmor must be a set, so that the small
category C must also be a set.

(2) Obviously, every small category is at the same time a large category, but not
the converse. Large categories that are not small are called properly large
categories.

Definition 1.2.9. A very large category C is defined in the same way as (the
first definition of) a category except that instead of requiring Cobj to be a class and
C(X, Y ) to be a set for all X, Y , we require them all to be conglomerates.

Remark 1.2.10. (1) Since conglomerates are closed under union, we find out
that Cmor must also be a conglomerate for the very large category C.

(2) Again, clear from the definition is the fact that every (large or small) category
is at the same time a very large category, but the converse statement is false
in general. Very large categories that are not large are called properly very
large categories.

Proposition 1.2.11. Sets and functions between them constitute a (properly large)
category, which is denoted by Set.

Other examples of categories are:

• the empty category 0 with no objects and no arrows;

• the category 1 with one object and one (identity) arrow;

• the category 2 with two objects, two identity arrows, and one non-identity
arrow:

• −−−−−−→ •

(the identities are not shown);
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• every set might be seen as a discrete category, i.e., a category in which all
morphisms are identities;

• monoids are categories with only one object, and the arrows are all from that
single object to itself;

• topological spaces and continuous mappings constitute a category denoted by
Top;

• groups and group homomorphisms make a category Grp;

• Vectk, the category of vector spaces and linear transformations over a field k;

• Aut, the category of all deterministic Moore automata and simulations be-
tween them;

• Grph, the category of graphs and graph homomorphisms;

• Mon, the category of monoids and homomorphisms between them;

• Pos, the category of posets and monotone mappings; and

• Rel, the category of sets and binary relations between them.

The duality principle

Quoting Mac Lane [32], “categorical duality is the process ‘Reverse all arrows’ ”.
Below, we explain this more.

Definition 1.2.12. Let S be a statement about (large/very large) categories. The
dual of S is formed by making the following replacements throughout in S:

• “domain” by “codomain” and vice versa;

• “h = gf” by “h = fg” for any arrows f, g, h;

• arrows and composites are reversed; and

• logic (and, or, not, then,...) is unchanged.

The result is Table 1.1.

Remark 1.2.13. Note that the dual of the dual is the original statement: (Sd)d = S.
If a statement involves a diagram, the dual statement involves that diagram with
all arrows reversed.

The dual of each of the axioms for a category is also an axiom. Hence in any
proof of a theorem about an arbitrary category from the axioms, replacing each
statement by its dual gives a valid proof (of the dual conclusion). This is the duality
principle:
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Statement S Dual Statement Sd

f : X −→ Y f : Y −→ X

A = Dom(f) A = Cod(f)

i = 1A i = 1A

h = gf h = fg

f is monic f is epic

g is an isomorphism g is an isomorphism

P is initial P is terminal

etc. etc.

Table 1.1

Proposition 1.2.14. The duality principle. If a statement S about a (large/very
large) category is a consequence of the axioms, so is the dual statement Sd.

The duality principle provides a very useful tool in complicated situations. Hav-
ing proved a theorem, we immediately gain a dual theorem by applying the duality
principle. No proof of the dual theorem is needed to be given.

Definition 1.2.15. A statement (or property) S is called self-dual if Sd = S.

For example, “being an identity morphism” is a self-dual property.

Definition 1.2.16. For any (large/very large) category C, the dual (or opposite)
(large/very large) category of C is the (large/very large) category Cop with the
same objects as of C but with the arrows of C reversed; that is,

Cop(X, Y ) = C(Y,X)

for every X, Y , and

g ◦op f = f ◦ g

for every f, g.

It is easy to see that Cop is indeed a (large/very large) category.

Proposition 1.2.17. For every (large/very large) category C, (Cop)op = C.

Because of the way dual categories are defined, every statement SCop(X) con-
cerning an object X in the category Cop can be translated into a logically equivalent
statement SdC(X) concerning the object X in the cateogry C. Obviously, in general,
SdC(X) is not equivalent to SC(X).
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Functors

Up to now, all of our arguments have been about objects and arrows within a
single category. Now we define a “morphism” from one category to another.

Definition 1.2.18. A (covariant) functor F from a category C to a category D,
denoted by
F : C−→ D, consists of the following:

• a function
F0 : Cobj −→ Cobj;

often, by some abuse of notation, the image of X ∈ Cobj is written F (X) or
just FX;

• for every pair X, Y of objects of C, a function

F1 : C(X, Y ) −→ D(F0(X), F0(Y ));

again by abuse of notation, the image of f ∈ C(X, Y ) is often written F (f)
or just Ff .

These data are subject to the following axioms:

(1) Preservation of composition. For every pair f ∈ C(X, Y ), g ∈ C(Y, Z),

F (g ◦ f) = F (g) ◦ F (f),

where the left hand side composition is in C whereas the right hand side
composition is in D.

(2) Preservation of identities. For every X ∈ C,

F (1X) = 1F (X).

Definition 1.2.19. Given two functors F = 〈F0, F1〉 : A−→ B and
G = 〈G0, G1〉 : B−→ C, their composition is defined as

G ◦ F def

= 〈G0 ◦ F0, G1 ◦ F1〉 : A−→ C.

This composition is obviously associative. The identity functor

1C
def

=
〈
1Cobj

, 1Cmor

〉
: C−→ C

is clearly an identity for the above composition law. Therefore:

Proposition 1.2.20. Small categories and functors between them form a (properly
large) category, which is denoted by Cat.

Proposition 1.2.21. Large categories and functors between them form a (properly
very large) category, which is denoted by CAT.
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Notation 1.2.22. We sometimes use the simplified notations FA and Ff rather
than F (A) and F (f). Also, we sometimes denote the action on both objects and
morphisms by

F (A
f−−→ B) = FA

Ff−−−→ FB.

Besides identity functors introduced above, there are some other important ex-
amples of functors, including:

• the constant functor: for any categories A,B and any B-object B, there is
a functor KB : A−→ B with value B, defined by

KB(A
f−−→ A′) = B

1B−−→ B;

• the forgetful functor or the underlying set functor: let C be a construct
over Set, that is, a category of structured sets (such as groups, rings, etc.)
and structure-preserving maps (group homomorphisms, ring homomorphisms,
etc.); then there is a functor U : C −→ Set, where in each case U(A) is the
underlying set of A ∈ C, and U(f) is the underlying function of f ∈ C.

Let us now investigate some properties of functors.

Proposition 1.2.23. All functors F : C−→ D preserve isomorphisms; i.e.,

whenever C
f−−→ C ′ is a C-isomorphism, Ff is a D-isomorphism.

Definition 1.2.24. (1) A functor F : C−→ D is called an isomorphism (func-
tor) provided that F is an isomorphism arrow in either Cat or CAT. This
means that there exists another functor G : B−→ A satisfying

GF = 1C and FG = 1D.

We may denote the situation by F : C∼= D.

(2) The categories C, D are said to be isomorphic provided that they are isomor-
phic objects in Cat or in CAT. In other words, if there exists an isomorphism
functor F : C∼= D.

Definition 1.2.25. Let F = 〈F0, F1〉 : C−→ D be a functor.

(1) F is called faithful provided that all the restrictions

F1

∣∣
C(X,X′) : C(X,X ′) −→ D(F0(X), F0(X ′))

are injective functions.

(2) F is called full provided that all the above restrictions are surjective functions.

(3) F is called injective on objects provided that F0 is an injective function.

(4) F is called a embedding provided that F1 is injective; i.e., F is injective on
morphisms.
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(5) F is called a full embedding provided that F is full and an embedding.

Proposition 1.2.26. A functor is:

(1) an embedding if and only if it is faithful and injective on objects;

(2) a full embedding if and only if it is full, faithful, and injective on objects;

(3) an isomorphism if and only if it is full, faithful, and bijective on objects.

Now, we introduce the notion of “self-duality” for categories.

Definition 1.2.27. A category C is called self-dual whenever C is isomorphic to
Cop.

For example, Rel is self-dual but Set and Pos are not.

Remark 1.2.28. Note that this concept may be defined slightly differently else-
where (using equivalence of categories instead of isomorphism), but we have chosen
Definition 1.2.27 so that it fits the purposes of the present work.

Next, we turn to “contravariant” functors.

Definition 1.2.29. A contravariant functor F : C−→ D is defined in the same
way as a covariant functor except that the axiom of preservation of composition
changes here to:

F (g ◦ f) = F (f) ◦ F (g).

In the present work we will be dealing with both covariant and contravariant
functors. By default, functors will be assumed to be covariant unless stated other-
wise.

It turns out that every contravariant functor may be translated into (two) co-
variant analogues. The process is described below.

Definition 1.2.30. For every category C, the reverser functor RC : C−→ Cop

is defined as
RC(X

f−−→ Y )
def

= X
fop

←−−− Y.

It is clear that for every category C, RC is a (contravariant) isomorphism functor:

RCop ◦ RC = 1C and RC ◦ RCop = 1Cop .

Now we can easily change contravariant functors into their covariant analogues,
using the reversers:

Proposition 1.2.31. Every contravariant functor F : C−→ D can be regarded as
either of the following covariant functors:

F ◦ RCop : Cop −→ D,

or
RD ◦ F : C−→ Dop.
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In the light of Proposition 1.2.31, we frequently substitute contravariant functors
C−→ Dwith either Cop −→ D or C−→ Dop. However, there are some exceptions
to this rule. For an important example, see Definition 4.3.2.

Notation 1.2.32. Let F : A−→ B be a (covariant) functor. We denote the com-
posite functor

Aop RAop−−−−−→ A
F−−−→ B

RB−−−−→ Bop

by F op : Aop −→ Bop. Notice that F op is a covariant functor. In the literature, it
is called the dual (or opposite) functor to F .

Remark 1.2.33. Obviously, (F op)op = F . To form the dual of a categorical state-
ment that involves functors, we make the same statement, but with each category
and each functor replaced by its dual. Then, we translate this back into a statement
about the original categories and functors.

Proposition 1.2.34. (1) Each of the following properties of functors is self-dual:
“isomorphism”, “embedding”, “faithful”, “full”, “isomorphism-dense”, and
“equivalence”.

(2) The notion of “self-dual category” introduced in Definition 1.2.27 is self-dual
in the sense of Definition 1.2.12.

Subcategories

Definition 1.2.35. (1) A category C is said to be a subcategory of a (large/very
large) category D provided that the following conditions are satisfied:

(a) Cobj ⊆ Dobj;

(b) for each C,C ′ ∈ Cobj, we have C(C,C ′) ⊆ D(C,C ′);

(c) for each C-object C, the D-identity on C is the C-identity on C;

(d) the composition law in C is the restriction of the composition law in D

to the morphisms of C.

(2) C is called a full subcategory of D if, in addition to the above, for each
C,C ′ ∈ Cobj, we have C(C,C ′) = D(C,C ′).

As an important example, Cat is a full subcategory of CAT. More examples
will come in the sequel.

Remark 1.2.36. (1) From the above definition it follows that a full subcategory
of a category D can be specified by merely specifying its object class within
D.

(2) The conditions (a), (b), and (c) of part (1) of the above definition do not imply
(c).
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(3) If F : A−→ B is a full functor or is injective on objects, then the image of
A under F (i.e. the category formed by F0(Obj(A)) and F1(Mor(A))) is a
subcategory of B. However, for arbitrary functors G : C−→ D, the image of
C under F need not be a subcategory of D.

For every subcategory C of a (large/very large) category D there is an associated
inclusion functor E : C ↪→ D. Each such inclusion is (a) an embedding, and (b)
a full functor if and only if C is a full subcategory of D. As the next proposition
shows, inclusions of subcateogries are (up to isomorphism) precisely the embedding
functors.

Proposition 1.2.37. A functor F : A−→ B is a (full) embedding if and only if
there exists a (full) subcategory C of B with inclusion functor E : C−→ B and an
isomorphism G : A−→ C with F = EG.

Reflective and coreflective subcategories

Definition 1.2.38. Let C be a subcategory of D, and let D be a D object.

(1) An C-reflection (or C-reflection arrow) for D is a D-morphism D
r−→ C

from D to a C-object C with the following universal property:

for any D-morphism D
f−−→ C ′ into some C-object C ′, there exists a unique

C-morphism f ′ : C −→ C ′ such that

f = f ′r.

(2) C is called a reflective subcategory D provided that each D-object has a
C-reflection.

Proposition 1.2.39. Reflections are essentially unique, i.e.,

(1) if r1 : D −→ C1 and r2 : D −→ C2 are C-reflections for D, then there exists
a C-isomorphism k : C1 −→ C2 such that

r2 = kr1;

(2) if r1 : D −→ C1 is a C-reflection for D and k : C1 −→ C2 is a C-isomorphism,
then kr1 : D −→ C2 is a C-reflection for D.

Reflections yield the following important proposition:

Proposition 1.2.40. Let C be a reflective subcategory of D, and for each D-object
D let rD : D −→ CD be a C-reflection arrow. Then there exists an unique functor
R : D−→ C such that the following conditions are met:

(1) ∀D ∈ D, R(D) = CD;

(2) for each D-morphism f : D −→ D′, the diagram
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R(D)D

D′ R(D′)

rD

f

rD′

R(f)

commutes.

Definition 1.2.41. A functor R : D−→ C constructed according to the above
proposition is called a reflector for C.

The dual of the concept reflective subcateogry is coreflective subcategory. That
is:

Definition 1.2.42. A is a coreflective subcategory of B whenever Aop is a
reflective subcategory of Bop.

Thus, dualizing the descriptions given in 1.2.38, 1.2.39, 1.2.40, and 1.2.41 gives
a taste of coreflections, coreflective subcategories, and coreflector functors.

Natural transformations

Definition 1.2.43. Consider two functors F,G : C −→−→ D. A natural transfor-

mation µ : F
•−−−→ G from F to G is a class of D-morphisms 〈µX : FX −→

GX〉X∈C, indexed by the C-objects, and such that for every morphism f : X −→ Y
Diagram 1.2 commutes.

GXFX

FY GY

µX

Ff

µY

Gf

Diagram 1.2

Proposition 1.2.44. Let A be a small category and B a category. The functors
from A to B and the natural transformarions between them constitute a category.
That category is small if B is small.

The above-defined category is called the functor category from A to B and is
denoted by BA.

Definition 1.2.45. Let F,G : A−→ B be functors.
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(1) A natural transformation µ : F
•−−→ G whose components µA are isomorphisms

is called a natural isomorphism.

(2) F and G are said to be naturally isomorphic (denoted by F ∼= G) provided
that there exists a natural isomorphism from F to G.

As a trivial example, an identity natural transformation from a functor to itself
is automatically a natural isomorphism.

Proposition 1.2.46. (1) If A is a reflective subcategory of B, then any two re-
flectors for A are naturally isomorphic.

(2) A dual statement holds for coreflective subcategories.

Proposition 1.2.47. A functor A
F−−→ B is an equivalence if and only if there

exists a functor B
G−−→ A such that 1A

∼= GF and FG ∼= 1B.

From the above result it is clear that every isomorphism of two categories is
automatically an equivalence between them.

Bifunctors and endofunctors

Definition 1.2.48. A bifunctor or functor of two variables is a functor F :
C1 × C2 −→ D whose domain is the product of two categories C1, C2. In such case,
then, F is called a bifunctor from C1 and C2 to D, and the situation is also denoted
by

F (−,−) : C1 × C2 −→ D,

where the first placeholder “(−)” accepts objects and morphisms from C1, while the
second placeholder does the same with C2.

Remark 1.2.49. Given a bifunctor F as above, fixation of one of its variables yields
another (ordinary) functor. That is, assuming a fixed C1-object C1, we can derive
another functor

F ′
def

= F (C1,−) : C2 −→ D,

F ′(A
f−−→ B)

def

= F (C1, A)
F (1C1

,f)
−−−−−−→ F (C1, B).

Similarly, fixation of any C2-object C2 yields another functor

F ′′
def

= F (−, C2) : C1 −→ D.

Famous examples of bifunctors include the following:

• The product bifunctor

(−)× (−) : C× C−→ C,

taking any 〈A,B〉 to A×B, and any 〈h, k〉 to h× k.
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• The coproduct bifunctor

(−) t (−) : C× C−→ C,

taking any 〈A,B〉 to A tB, and any 〈h, k〉 to h t k.

• The hom functor
hom(−,−) : Cop × C−→ Set

on any small category C; this bifunctor takes any pair of objects 〈A,B〉 to
their “hom-set” C(A,B), and its action on morphisms is defined by formulas

hom(1A, f)(g)
def

= f ◦ g, ∀g ∈ C,

and
hom(f, 1A)(gop)

def

= g ◦ f, ∀gop ∈ Cop.

The restriction hom(A,−) : C−→ Set is called the covariant hom functor
for every fixed A ∈ Cop, while the restriction hom(−, A) : Cop −→ Set is
called the contravariant hom functor for every fixed A ∈ C. Specifically,
when C= Set, hom(A,B) is the exponential BA, i.e., the set of maps from A
to B.

Furthermore, we will introduce two other famous bifunctors in Chapter 2: the
tensor product and the internal hom. These two are fundamental to the theory of
monoidal categories, and, in particular, ∗-autonomous categories.

Definition 1.2.50. Let C be a category. An endofunctor on C is a functor

F : C−→ C

from C to itself.

Endofunctors constitute the basis for the topic of universal dialgebra which we
will introduce in Chapter 3.

Cartesian closed categories

Definition 1.2.51. A category C is called cartesian closed if it has finite products,
and for each C-object A the functor (−)×A : C−→ C is left adjoint (to some other
functor).

Notation 1.2.52. The right adjoint for the above functor is denoted by
(−)A : C−→ C, and is called the exponential. We call the objects BA power
objects. For every B ∈ C, the member BA × A −→ B of the counit of the
adjunction is denoted by evB and is called the evaluation (at B).

There is a natural isomorphism between the morphisms from a binary product

B × A f−−→ C and the morphisms to an exponential object B
g−−→ CA. There is a

famous terminolgy for this bijective correspondence in the literature:
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Notation 1.2.53. Let B,C be any two C-objects. The bijection

C(B × A,C)
∼=−−→ C(B,CA)

is called currying, while its inverse is called decurrying (or uncurrying). Beware,
however, that the terms “currying” and “decurrying” are used in the even broader
context of monoidal categories. We will be dealing with this issue in Chapter 2.

Binary products and pullbacks in CAT

Because of later usage in the study of (large) double cateogries, products and
pullbacks in CAT deserve special attention. In this last part of the first section of the
current chapter, we take a look at the precise formulations of products and pullbacks
in CAT, the properly very large category of all large categories and functors between
them.

Remark 1.2.54. Since Cat is a full subcategory of CAT, the formulations to be
given here apply to Cat as well.

CAT has binary products as well as pullbacks. The precise formulation of these
two constructions goes as follows.

Binary products. For large categories A,B, their product is a triple 〈A×B, π1, π2〉,
where

• A×B is the large category consisting of:

– objects: all pairs 〈X, Y 〉 with X ∈ Obj(A) and Y ∈ Obj(B),

– morphisms: all pairs 〈f, g〉 : 〈X, Y 〉 −→ 〈X ′, Y ′〉, with X
f−−→ X ′ in A,

and Y
g−−→ Y ′ in B,

– composition: performed componentwise:

〈h, k〉 ◦ 〈f, g〉 = 〈hf, kg〉 ,

and

– identities: pairs 〈1X , 1Y 〉 of an A-identity 1X together with a B-identity
1Y ;

• π1 and π2 are the first and second projection functors, respectively.

The above product possesses a universal property, as described below.
The universality of binary product. For every diagram

A
F←−− C

G−−→ B

in CAT, there exists a unique functor (F,G) : C−→ A×B making Diagram 1.3
commute.
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C

A A×B B

F

(F,G)

G

π2π1

Diagram 1.3

The functor (F,G) takes every C-object C to the pair (F,G)(C) = 〈FC,GC〉;
also, it sends every C-arrow C

f−−→ C ′ to

(F,G)(f)
def

= 〈Ff,Gf〉 : 〈FC,GC〉 −→ 〈FC ′, GC ′〉 .

Pullbacks. Given any diagram

A
H−−→ C

K←−− B

in CAT, its pullback is the triple

〈A×C B, π1, π2〉 ,

where

• A×C B is the large category consisting of:

– objects: all pairs 〈X, Y 〉 with X ∈ Obj(A) and Y ∈ Obj(B) such that
HX = KY ,

– morphisms: all pairs 〈f, g〉 : 〈X, Y 〉 −→ 〈X ′, Y ′〉, with X
f−−→ X ′ in A,

and Y
g−−→ Y ′ in B, such that Hf = Kg,

– composition: performed componentwise; for consecutive pairs of

(A×C B)-morphisms 〈X1, Y1〉
〈f,g〉−−−−→ 〈X2, Y2〉 and 〈X2, Y2〉

〈h,k〉−−−−→ 〈X3, Y3〉
we have

H(hf) = H(h)H(f) = K(k)K(g) = K(kg);

hence we have
〈h, k〉 ◦ 〈f, g〉 = 〈hf, kg〉

as a valid composition for A×C B;

– identities: pairs 〈1X , 1Y 〉 of an A-identity 1X together with a B-identity
1Y ; again, we have F (1X) = G(1Y );

• π1 and π2 are the first and second projection functors, respectively.

The above pullback possesses a universal property, as described below.

The universality of pullback. For every commutative square
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BQ

A C

G

F

H

K

in CAT, there exists a unique functor (F,G) : Q −→ A×B making Diagram 1.4
commute. The functor (F,G) takes every Q-object Q to the pair (F,G)(Q) =

〈FQ,GQ〉; also, it sends every Q-arrow Q
f−−→ Q′ to

(F,G)(f)
def

= 〈Ff,Gf〉 : 〈FQ,GQ〉 −→ 〈FQ′, GQ′〉 .

BA×C B

A C

Q

π2

K

H

π1

(F,G)

G

F

Diagram 1.4

1.3 Internal categories

In this section, we intend to generalize the very notion of “category” to that of
internal category. Recall from Remark 1.2.5 that, of the two equivalent definitions
of categories we introduced, the second definition (i.e., Definition 1.2.4) is preferred
when studying internal categories. According to that definition, a category C has a
class Cobj of objects and a class Cmor of morphisms, together with two mappings

s, t : Cmor
−→−→ Cobj,

which map an arrow, respectively, to its source and target.

Now suppose that we are given a category E. By “defining an internal category
in E” we mean a process of “emulating” the formalism of Definition 1.2.4 by using
objects and morphisms taken from the category E. The result of this process is,



24 CHAPTER 1. INTRODUCTION

then, a structure D that behaves much like an ordinary category. In order to achieve
this goal, the category Emust possess certain objects and morphisms; in particular,
besides other things, it must have an “object of objects”, an “object of morphisms”,
two parallel “source” and “target” morphisms from the former object to the latter,
and finally, pullbacks to be built on the source and target morphisms.

Since we will be frequently working with pullbacks, especially with arrows be-
tween pullbacks, it is necessary to be able to view the notion of pullback as a bi-
functor. But this requires that we introduce the notion of slice category [34] firstly.

Definition 1.3.1. Let C be any (large/very large) category, and let A be a C-
object. The (large/very large) slice category C/A is defined as the category
with the following data:

• Objects. The objects of C/A are C-morphisms with codomain A.

• Morphisms. Given C/A-objects B
f−−→ A and C

g−−→ A, a C/A-morphism is
a commutative triangle of C:

A

CB

g

h

f

We write h : f −→ g.

• Composition. Composition is defined by pasting the triangles together, so
the composition k ◦ h from C is also the composite in C/A.

• Identities. For any B
f−−→ A, the identity arrow 1B : B −→ B in C is also

the identity arrow 1f : f −→ f in C/A.

Now we turn to pullbacks.

Proposition 1.3.2. Let E be a (large/very large) category, and let A be an E-object.
Then, for any diagram

B
f−−→ A

g←−− C

in E, the triple 〈P, π1, π2〉 is a pullback in E if and only if 〈P, π1, π2〉 is the (binary)
product of f, g in the slice category E/A.

Proposition 1.3.2 tells us that a pullback diagram in a category is essentially the
same thing as the binary product of the corresponding arrows in the corresponding
slice category. Therefore, we obtain the following useful result.

Proposition 1.3.3. Suppose a (large/very large) category E with pullbacks. Given
any E-object A, there exists a bifunctor

(−)×A (−) : (E/A)× (E/A) −→ E/A
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CB ×A C

B A

π2

π1

f

g
δ

Diagram 1.5

taking any pair of E/A-objects
〈
B

f−−→ A,C
g−−→ A

〉
to the E/A-object B×A C

δ−−→
A, where δ is the diagonal of the pullback diagram 〈B ×A C, π1, π2〉 (see Diagram
1.5).

Moreover, the above functor sends any pair of E/A-morphisms
〈
B

h−→ B′, C
k−−→ C ′

〉
to the E/A morphism h ×A k, that is, the unique arrow making Diagram 1.6 com-
mute.

C

B ×A C

B

B′ ×A C ′

C ′B′

A

A

1A

π2π1

h k

π′2π′1

g
f

g′f ′

δ

δ′

h×Ak

Diagram 1.6

Now that we are equipped with the above results, we can give the main definition
of this section. The material below is mainly from Chapter 8 of [11].

Definition 1.3.4. Let E be a (large/very large) category with pullbacks. By an
internal category in E we mean a sextuple D = 〈A,B, s, t, i, ./〉 consisting of:

(1) an object A ∈ Eobj, called the object of objects,

(2) an object B ∈ Eobj, called the object of arrows,

(3) two morphisms s, t : B −→−→ A in Emor, called, respectively, source and target,
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(4) an arrow i : A −→ B in Emor, called identity,

(5) an arrow ./: B ×A B −→ B in Emor, called composition, where the pullback
〈B ×A B, π1, π2〉 is that of t, s (Diagram 1.7).

BB ×A B

B A

π2

s

t

π1

Diagram 1.7

These data must satisfy the following axioms:

A1 si = 1A = ti (existence of “identity arrows”);

A2 tπ2 = t ◦ ./ and sπ1 = s ◦ ./ (match-up of the target and source of
composable pairs);

A3 ./ ◦ (is, 1B) = 1B = ./ ◦ (1B, it) (identity property for identity arrows, see
Remark 1.3.5 below), where the notation (f, g) denotes the unique arrow to
the pullback;

A4 ./ ◦ (1B×A ./) = ./ ◦ (./ ×A1B) (associativity, see Remark 1.3.6 below).

Remark 1.3.5. For Axiom A3, the equations

tis = s1B and t1B = sit

imply existence of the arrows (is, 1B) and (1B, it), respectively.

Remark 1.3.6. For Axiom A4, we have two isomorphic objects of “composable
pairs”, namely B ×A (B ×A B) and (B ×A B) ×A B. The former is seen as the
pullback of t, sπ1, while the latter is seen as the pullback of tπ2, s. Viewing the
pullback (−)×A (−) as a bifunctor (Proposition 1.3.3), we find the following arrows
in E:

1B×A ./: B ×A (B ×A B) −→ B ×A B,
./ ×A1B : (B ×A B)×A B −→ B ×A B.

1.4 Monoidal Categories

In Section 1.2 we gave two equivalent definitions for categories. Then, we noted
in Remark 1.2.5 that each of those definitions is used in some parts of the current
work. Here we want to use the first one (Definition 1.2.2) as a ‘pattern’ and enter the
topic of monoidal categories based on that. The material of this section is mainly
from [12].
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Definition 1.4.1. A monoidal category V consists of:

(1) a category V;

(2) a bifunctor (−)� (−) : V× V−→ V, called the tensor product. We write
A�B for the image under � of the pair 〈A,B〉;

(3) an object I ∈ V, called the unit;

(4) for every triple A,B,C of objects an assoicator isomorphism

aABC : (A�B)� C
∼=−−→ A� (B � C)

natural in A,B,C;

(5) for every object A, a left unitor isomorphism

lA : I � A
∼=−−→ A

natural in A;

(6) for every object A, a right unitor isomorphism

rA : A� I
∼=−−→ A

natural in A.

These data must satisfy the following requirements:

(1) Diagram 1.8 is commutative for every quadruple of objectsA,B,C,D (associativity
coherence);

(A�B)� (C �D)((A�B)� C)�D

(A� (B � C))�D

A� ((B � C)�D) A� (B � (C �D))

aA,B,C�D

aA�B,C,D

aABC�1

aA,B�C,D

1�aBCD

Diagram 1.8

(2) Diagram 1.9 is commutative for every pair A,B (unit coherence).

Remark 1.4.2. Usually, the tensor product is denoted by “⊗” in the literature.
However, as we will be dealing with two kinds of tensors in the sequel (one for a
base monoidal category V and one for the Chu construction over V), for the sake
of clarity of expressions, we prefer to preserve “⊗” exclusively for the tensor product
of the Chu construction and use “�” for monoidal categories in general.
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(A� I)�B

A�B

A� (I �B)

rA�1

1�lB

aAIB

Diagram 1.9

(B � A)� C(A�B)� C

A� (B � C)

(B � C)� A B � (C � A)

B � (A� C)

aBAC

1�sAC

sAB�1

aABC

sA,B�C

aBCA

Diagram 1.10

Definition 1.4.3. With the notation as above, a monoidal category is symmetric
when, moreover, an isomorphism

sAB : A�B
∼=−−→ B � A

is given for every pair A,B of objects, natural in A,B. These isomorphisms must
be such that:

(1) Diagram 1.10 is commutative for every triple A,B,C of objects (associativity
coherence with symmetry);

(2) Diagram 1.11 is commutative for every object A (unit coherence with sym-
metry);

A� I

A

I � A

rA

lA

sAI

Diagram 1.11

(3) Diagram 1.12 is commutative for every pair A,B (the symmetry axiom).
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B � A

A�B A�B

sAB sBA

Diagram 1.12

Definition 1.4.4. With the notation as above, a monoidal category V is called
biclosed when for each object B ∈ V, both functors

(−)�B : V−→ V , B � (−) : V−→ V

have right adjoints.

Definition 1.4.5. A biclosed symmetric monoidal category is called a closed sym-
metric monoidal category (CSMC).

Since in a symmetric monoidal category both functors (−)�B and B� (−) are
naturally isomorphic, thus one obviously has:

Proposition 1.4.6. The following are equivalent for a symmetric monoidal category
V:

(a) V is a CSMC;

(b) for each object B ∈ V, the functor (−)�B : V−→ V has a right adjoint;

(c) for each object B ∈ V, the functor B � (−) : V−→ V has a right adjoint.

The following is an important example of a CSMC.

Definition 1.4.7. A category V is cartesian closed when it admits all finite
products and, for every object B ∈ V, the functor (−)× B : V−→ V has a right
adjoint, generally written (−)B : V−→ V.

Proposition 1.4.8. Every cartesian closed category is a CSMC, with the cartesian
product as the tensor product.

Proof. Existence of the required natural isomorphisms and the various coherence
conditions follows immediately from the universal property of the product. The
tensor unit is just the terminal object. �

Notation 1.4.9. When V is a CSMC, we write

B( (−) : V−→ V

C 7→ B( C

for the right adjoint to the functor (−)�B. In particular, the isomorphisms

V(B,B) ∼= V(I �B,B) ∼= V(I, B( B)
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yield a “unit” morphism uB : I −→ B( B, corresponding with the identity on B.
In an analogous way the isomorphisms

V(C,C) ∼= V(C � I, C) ∼= V(C, I ( C)

yield a morphism
iC : C −→ I ( C

corresponding with the identity on C. It is also useful to consider the (counit)
“evaluation morphisms”

evAB : (A( B)� A −→ B

corresponding by adjunction with the identity on A ( B, and the “composition
morphisms”

cABC : (A( B)� (B( C) −→ A( C

corresponding by adjunction with the composite of Diagram 1.13:

(A( B)� (B( C)� A

(A( B)� A� (B( C)

B � (B( C)

(B( C)�B

C

∼=

evAB�1

∼=

evBC

Diagram 1.13

Proposition 1.4.10. On a CSMCV we get a bifunctor

(−)( (−) : Vop × V−→ V

〈A,B〉 7→ A( B

called the internal hom bifunctor on V, whose composite with the hom functor
V(I,−) : V−→ Set is just

Vop × V−→ Set

〈A,B〉 7→ V(A,B).
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Proof. Given f : A −→ A′ in V, the arrow f ( B : (A′ ( B) −→ (A ( B)
corresponds by adjunction with the composite

(A′( B)� A
1�f−−→ (A′( B)� A′

evA′B−−−→ B.

It is routine to check the bi-functoriality of (−)( (−).
On the other hand, the isomorphisms

V(I, B( C) ∼= V(I �B,C) ∼= V(B,C)

prove the second assertion. �

Proposition 1.4.11. In a closed symmetric monoidal category V:

(1) the morphisms uB : I −→ B( B are natural in B;

(2) the morphisms iC : C −→ I ( C are isomorphisms;

(3) the morphisms iC are natural in C;

(4) for all A,B,C,D ∈ V, Diagrams 1.14 and 1.15 commute.

(A( C)� (C ( D)((A( B)� (B( C))� (C ( D)

(A( B)� ((B( C)� (C ( D))

(A( B)� (B( D) A( D

cACD

cABC�1

a(A(B)(B(C)(C(D)

1�cBCD

cABD

Diagram 1.14

A( B (A( B)� (B( B)

(A( B)� II � (A( B)

(A( A)� (A( B) cABB

1�uB
rA(BlA(BuA�1

cAAB

Diagram 1.15

Proof. The inverse of the morphism is the composite

I ( C
r−1
I(C−−−→ (I ( C)� I

evIC−−→ C.

The rest of the proof is routine computations. �
There are also two other important concepts when dealing with monoidal cate-

gories: namely “monoidal functor” and “monoidal transformation” [29, 65].
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Definition 1.4.12. Let 〈V,�V, IV〉 and 〈W,�W, IW〉 be monoidal categories. A
lax monoidal functor (or weak monoidal functor) between them is:

(1) a functor

F : V−→ W;

(2) a morphism

ε : IW−→ F (IV);

(3) a natural transformation

µXY : F (X)�WF (Y )
•−→ F (X �V Y )

for all X, Y ∈ V, satisfying the following conditions:

(a) (Associativity) For all objects X, Y, Z ∈ V Diagram 1.16 commutes.
In this diagram, aV and aW denote the associators of the respective monoidal categories.

F (X)�W (F (Y )�WF (Z))(F (X)�WF (Y ))�WF (Z)

F (X �V Y )�WF (Z)

F ((X �V Y )�VZ) F (X �V (Y �VZ))

F (X)�WF (Y �VZ)

1�WµY Z

aW
F (X),F (Y ),F (Z)

µXY �W1

µX�VY,Z

F (aV
XY Z)

µX,Y�VZ

Diagram 1.16

(b) (Unitality) For allX ∈ V, Diagrams 1.17 and 1.18 commute, where lV, lW, rV, rW

denote the left and right unitors of the two monoidal categories, respectively.

F (IV)�WF (X)IW�WF (X)

F (X) F (IV�VX)

ε�W1

lW
F (X)

F (lVX)

µIV,X

Diagram 1.17
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F (X)�WF (IV)F (X)�W IW

F (X) F (X �V IV)

1�Wε

rW
F (X)

F (rVX)

µX,IV

Diagram 1.18

Definition 1.4.13. If ε and all µXY in Definition 1.4.12 are isomorphisms, then F
is called a monoidal functor.

Definition 1.4.14. A monoidal transformation between monoidal functors is a
natural transformation that respects the extra structure in an obvious way.

This way, we arrive at the end of Chapter 1. In the next chapter we will introduce
the Chu construction.
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Chapter 2

The Chu Construction

In Section 1.1 we pointed to the historical roots of the Chu construction. Now,
we introduce the precise formalism of the Chu construction in this chapter.

We start with ∗-autonomous categories; next, we will introduce the general form
of the Chu construction. We will show that for every CSMC such as V, categories
V, Vop are the coreflective and reflective subcategories of Chu(V,Γ), respectively
(see Proposition 2.2.3). Additionally, we will prove that if V is bicomplete then so
is Chu(V,Γ) for any Γ ∈ V (Proposition 2.2.4).

Next, we will focus on the Chu construction on sets (Section 2.3) and will study
some of its important properties. Particularly, we will point to extensional, separa-
ble, and biextensional Chu spaces (Subsection 2.3.1); we will show that Chu(Set,Γ)
is balanced (Proposition 2.3.12); we will introduce the multiplicative as well as ad-
ditive connectives of linear logic by the Chu construction (Subsection 2.3.2); we will
have a look at “realizations” in Chu (Subsection 2.3.3); and finally, we will study
endofunctors on Chu (Subsection 2.3.4) and will show that from every endofunctor
F : Set −→ Set, one can obtain an endofunctor F̂ : Chu −→ Chu (at least in two
ways).

2.1 ∗-Autonomous categories

Now we are at the position to introduce the notion of “∗-autonomous category”
[7, 66]. There are two equivalent definitions for it; we choose one and prove the
other as an equivalent property for such categories.

Definition 2.1.1. Let V be a CSMC. V is said to be ∗-autonomous (read “star-
autonomous”) if it has a dualizing object: an object ⊥ such that the canonical
morphism

d : A −→ (A(⊥)(⊥,

which is the transpose of the evaluation map

evA,⊥ : (A(⊥)� A −→⊥,

is an isomorphism for all A.

35
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Proposition 2.1.2. A closed symmetric monoidal category V is ∗-autonomous if
and only if it is equipped with a full and faithful functor

(−)∗ : Vop −→ V

such that there is a natural isomorphism

V(A�B,C∗) ∼= V(A, (B � C)∗).

The functor (−)∗ is called the dualization functor, and A∗ is said to be the dual
of A for any object A.

Proof. (=⇒) Define the dualization functor as the internal hom to the dualizing
object:

(−)∗
def

= (−)(⊥ .

Then the morphism dA is natural in A, so that there is a natural isomorphism

d : 1V
•−→ (−)∗∗.

We also have

V(A�B,C∗) = V(A�B,C (⊥)
∼= V((A�B)� C,⊥)
∼= V(A� (B � C),⊥)
∼= V(A, (B � C)(⊥)

= V(A, (B � C)∗).

This yields the desired result.

(⇐=) Conversely, define the object ⊥ as the dual of the tensor unit:

⊥def

= I∗.

�

From Proposition 2.1.2 it follows that:

Corollary 2.1.3. Every ∗-autonomous category is self-dual.

Proposition 2.1.4. The following hold for every pair of objects A,B in a ∗-autonomous
category V:

A( B ∼= (A�B∗)∗ and A�B ∼= (A( B∗)∗.

Proof. We know that there is an adjunction

(−)� A a A( (−)

for every A ∈ V. Thus, to prove the left hand side isomorphism, it suffices to show
that the functor

G
def

= (A� (−)∗)∗ : V−→ V
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is right adjoint to F
def

= (−)�A : V−→ V. By Proposition 2.1.2 we find the natural
isomorphisms

V(FB,C) ∼= V(B ⊗ A,C) ∼= V(B � A,C∗∗) ∼= V(B, (A� C∗)∗) ∼= V(B,GC)

for all A,B,C. Therefore, F a G, and by uniqueness,

(A� (−)∗)∗ ∼= A( (−).

The other isomorphism is dual to the first one. �

Remark 2.1.5. For a ∗-autonomous category V, whenever there is a natural iso-
morphism

(A�B)∗ ∼= A∗ �B∗,

the category V is called a compact closed category. Putting A = I, B =⊥ in the
above isomorphisms we find out that in compact closed categories we always have
⊥∼= I, i.e., the tensor unit is the same thing as the dualizing object. A standard
example is FinVectk, the category of finite-dimensional vector spaces over some field
k together with the usual tensor product, in which the field k itself plays the roles
of the tensor unit and the dualizing object simultaneously. This type of categories
will be of little interest in the present work.

Definition 2.1.6. Conversely, if a ∗-autonomous category V is not compact closed,
then the tensor product induces another bifunctor

(−)� (−) :V× V−→ V

A�B def

= (A∗ �B∗)∗

called the par operation, making V into a linearly distributive category. From
the definition of par it is clear that � is a symmetric operation: A � B ∼= B � A.
For more information on linearly distributive categories, the reader is referred to
[64] and the references therein. In the present thesis, it is this type of ∗-autonomous
categories that we mainly work with; more precisely, we will be working with the
Chu construction (see Sections 2.2 and 2.3).

Note that the par operation is often (but not always) denoted by some special
symbol in the literature, namely an upside-down ampersand “

&

”, which is borrowed
from linear logic. However, this symbol is difficult to work with–both in handwriting
and in typesetting–and so we do not use it here.

Remark 2.1.7. It is noteworthy that in a ∗-autonomous category, seen as a linearly
distributive category, we have two different monoidal structures 〈�, I〉 and 〈�,⊥〉.

Another important aspect of ∗-autonomous categories is their internal logic. The
internal logic of ∗-autonomous categories is the multiplicative fragment of classical
linear logic; conversely, ∗-autonomous categories are the categorical semantics of
classical linear logic (Proposition 1.5 in [55]). In the sequel, we will have brief looks
at the basic operations of classical linear logic based on an important family of
∗-autonomous categories: the categories of the form Chu(Set,Γ) (see 2.3.2). For
more information on topics of internal logic and categorical semantics, see [35].
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2.2 The Chu construction

The Chu construction is a general method for constructing a ∗-autonomous cat-
egory from a given CSMC [8, 9, 68]. It is named after Po-Hsiang Chu, a stu-
dent of Michael Barr, who introduced the construction in his master’s thesis at
McGill University. The formalism has been extensively studied by Pratt and others
([17, 45, 46, 47, 48, 49, 61]) for its potential applications in theoretical computer
science.

Definition 2.2.1. Let V be a CSMC with pullbacks, and let Γ be an object of
V. We define a category Chu(V,Γ), called the Chu construction (or the Chu
category) over 〈V,Γ〉 with the following data:

• Objects: triples A = 〈A, r,X〉, called Chu objects or Chu spaces, where
A,X are V-objects, and r : A�X −→ Γ is a morphism of V.

• Morphisms: pairs f = 〈f+, f−〉 : 〈A, r,X〉 −→ 〈B, s, Y 〉, called Chu mor-
phisms or Chu transforms, where f+ : A −→ B and f− : Y −→ X are
V-morphisms making Diagram 2.1 commute. This is called the adjointness
condition for f+, f−.

A�XA� Y

B � Y Γ

1A�f−

f+�1Y

s

r

Diagram 2.1

• For objects A = 〈A, r,X〉 ,B = 〈B, s, Y 〉 ,C = 〈C, t, Z〉 and morphisms f : A −→ B, g : B −→ C,
the composition of f and g is defined as

g ◦ f def

=
〈
g+ ◦ f+, f− ◦ g−

〉
,

which satisfies the adjointness condition and, hence, is a Chu transform. To
see this, observe that in Diagram 2.2, all the triangles and inner quadrilaterals
commute and consequently, the outer quadrilateral commutes.

• Identity morphisms for every A = 〈A, r,X〉 are defined the obvious way:

1A
def

= 〈1A, 1X〉 .

• Finally, one can readily verify that the composition so defined is associative
(up to natural isomorphism).

Now we show the ∗-autonomous structure of the Chu construction:
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Γ

A�XA� Y

B � Y

B � Z C � Z

A� Z

r

1A�f−

f+�1Y

1B�g−

g+�1Z

s

t

1A�g−

f+�1Z

1A � f−g−

g+f+ � 1Z

Diagram 2.2

Proposition 2.2.2. Let 〈V,�, I〉 be a CSMC with pullbacks, and let Γ be an object
of V.Then the Chu construction Chu(V,Γ) is ∗-autonomous. In particular, it is
self-dual.

Proof. There is an evident self-duality

(−)∗ : Chu(V,Γ)op −→ Chu(V,Γ)

which takes an object A = 〈A, r,X〉 to

A∗
def

= 〈X, r̆, A〉 ,

where r̆
def

= (X �A
sXA∼= A�X

r−→ Γ) is the “transpose” of r. On morphisms, it takes
a pair f = 〈f+, f−〉 to f ∗

def

= 〈f−, f+〉. Now it immediately follows that

Chu(V,Γ)op Chu(V,Γ)
(−)∗

((−)∗)op

is an isomorphism of categories.

Next, we define a tensor and an internal hom on Chu(V,Γ) and show that these
make the Chu construction into a CSMC. Then, using the self-duality functor (−)∗

defined above, we deduce the ∗-autonomous structure of Chu(V,Γ).

Define the Chu object

I
def

= 〈I, λ,Γ〉 ,
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where λ : I � Γ ∼= Γ is an instance of the left unitor isomorphism. Also, denote the
dual of I by

⊥def

= I∗ = 〈Γ, ρ, I〉 ,

where ρ : Γ� I ∼= Γ is the transpose of λ.
For Chu objects A = 〈A, r,X〉 ,B = 〈B, s, Y 〉, define the V-object H as the

following pullback:

BAH

XY ΓA�Y
ṙ

ṡ

where the exponentials are used to denote the internal homs in V, ṙ is the result
of currying r to X → ΓA and then exponentiating by Y , and similarly for ṡ. There
is a map

m : H � (A� Y ) −→ Γ

obtained by decurrying either leg of the above pullback; so, define

K
def

= A� Y.

Now define the internal hom A( B
def

= 〈H,m,K〉.
To form the tensor product A⊗ B, we use the formula

A⊗ B ∼= (A( B∗)∗

as was stated and proved in Proposition 2.1.4. Therefore we define

A⊗ B
def

=
〈
A�B, t, Y A ×ΓA�B XB

〉
,

where the third component is a pullback, and the pairing t is obvious. There are
three things to be checked:

(1) the presence of a canonical isomorphism

Chu(V,Γ)(A⊗ B,C) ∼= Chu(V,Γ)(A,B( C)

for every A,B,C;

(2) verifying that I is indeed the tensor unit:

A⊗ C ∼= I⊗ A ∼= A

(3) verifying that ⊥ is indeed the dualizing object:

A∗ ∼= A(⊥.
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�

Proposition 2.2.3. The category V is a coreflective subcategory of Chu(V,Γ),
while Vop is a reflective subcategory of Chu(V,Γ).

Proof. There is a strong monoidal functor

i : V−→ Chu(V,Γ)

taking every V-object C to
〈
C, r,ΓC

〉
, where r = (C�ΓC ∼= ΓC �C

evCΓ−−−→ Γ. (Note
that this does NOT take Γ to the dualizing object ⊥ in Chu(V,Γ), unless of course
the canonical morphism I → ΓΓ is an isomorphism.) This embedding admits a right
adjoint

p : Chu(V,Γ) −→ V

given by the obvious projection, which is also strong monoidal. The unit of the ad-
junction is an isomorphism, hence V is a coreflective (full) subcategory of Chu(V,Γ).

On the other hand, Chu(V,Γ) is self-dual, hence Vop also embeds as a full
subcategory of Chu(V,Γ), this time reflectively. �

Another fundamental property of the Chu construction is expressed the next
proposition:

Proposition 2.2.4. If V is bicomplete, then so is Chu(V,Γ). The formula for the
colimits is the obvious one:

Colim
j
〈Aj, rj : Aj �Xj −→ Γ, Xj〉 =

〈
Colim

j
Aj, r, Lim

j
Xj

〉
where r is the decurrying of

Lim
j

(Xj → ΓAj) ∼= (Lim
j
Xj → ΓColimj Aj),

and the formula for limits is obtained by dualizing the formula for colimits in Chu(V,Γ).

Proof. Given bicomplete V, it suffices to show that the above formula indeed gives
the colimits in Chu(V,Γ). By self-duality of Chu(V,Γ), then, a dual formula for
limits follows automatically.

Let D : J −→ Chu(V,Γ) be an arbitrary diagram in Chu(V,Γ), where J

is a small category, and let 〈Aj, rj, Xj〉
fjk−−→ 〈Ak, rk, Xk〉 be a family of arrows in

D(J) for indices j, k. We have two families of V-morphisms
〈
f+
jk : Aj → Ak

〉
and〈

f−jk : Xk → Xj

〉
. Take the colimit 〈C, cj : Aj → C〉 of the former and the limit

〈L, lj : L→ Xj〉 of the latter. Since C is the colimit of Aj,
〈
ΓC ,Γcj

〉
is the limit of

ΓAj . For every j, the V-arrow rj : Aj � Xj → Γ has a transpose r̃j : Xj → ΓAj .
Thus, 〈L, r̃jlj〉 is a cone over ΓAj and hence, there exists a unique arrow s : L→ ΓC

such that the following square commutes:
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ΓCL

Xj ΓAj

s

lj

r̃j

Γcj

Define the V-morphism r : C � L → Γ as the adjoint transpose of s, and form
the Chu object C

def

= 〈C, r, L〉. Transpose the above square to obtain the following
commutative square:

C � LAj � L

Aj �Xj Γ

cj�1

1�lj

rj

r

which proves the adjointness condition for the pair 〈cj, lj〉. Whence, we have a Chu
morphism 〈cj, lj〉 : 〈Aj, rj, Xj〉 −→ C for all j. On the other hand, for every j, k the
following hold:

cj = ck f
+
jk and lj = f−jk lk.

Therefore,

〈cj, lj〉 =
〈
ck f

+
jk, f

−
jk lk

〉
= 〈ck, lk〉 ◦

〈
f+
jk, f

−
jk

〉
= 〈ck, lk〉 ◦ fjk

and 〈C, 〈cj, lj〉〉 is a cocone under D(J) in Chu(V,Γ). It is straightforward to check
the universality of this cocone. We have thus found the desired colimit diagram for
D(J). �

2.3 The Chu construction on the category of sets

The category Set of sets and functions is well-known in mathematics. Regarding
its properties, one may deduce that Set is a very good candidate for serving as the
base category V in the Chu construction. Thus, we introduce:

Notation 2.3.1. Putting V= Set in Definition 2.2.1 and considering a nonempty
set Γ, we arrive at a category

Chu(Set,Γ),

which we denote by ChuΓ. Whenever Γ is clear from the context, we will omit it
and denote our category by Chu.

Therefore, Chu is a ∗-autonomous category with the following data:
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• objects: Chu spaces A = 〈A, r,X〉 with A,X sets, and r : A×X → Γ a map;

• morphisms: Chu transforms f = 〈f+, f−〉 with f+, f− maps satisfying the
adjointness condition.

It is useful to mention that for Chu spaces A = 〈A, r,X〉 ,B = 〈B, s, Y 〉 and a Chu
transform f : A −→ B, the (diagrammatic) adjointness condition

A×XA× Y

B × Y Γ

1A×f−

f+×1Y

s

r

can be restated in terms of memberships as:

∀a ∈ A,∀y ∈ Y : r
(
a, f−(y)

)
= s

(
f+(a), y

)
,

which is sometimes more convenient to use.

From Propositions 2.2.3 and 2.2.4 we deduce:

Corollary 2.3.2. For every nonempty set Γ, the category Set is a coreflective (full)
subcategory of ChuΓ, while Setop is a reflective subcategory of ChuΓ.

Corollary 2.3.3. For every nonempty set Γ, the category ChuΓ is bicomplete. The
formula for colimits in ChuΓ is

Colim
j
〈Aj, rj, Xj〉 =

〈∐
j

Aj, r,
∏
j

Xj

〉
,

where
∐
,
∏

denote the coproduct and product in Set, respectively, and r is the
decurrying of

Lim
j

(xj → ΓAj) ∼= (
∏
j

Xj → Γ
∐

j Aj).

A dual formula exists for the case of limits, also.

Proof. Set is bicomplete, and ChuΓ becomes bicomplete by Proposition 2.2.4. �

There are interesting applications of Chu spaces in the literature. For example,
Abramsky [1] views the Hilbert space of quantum mechanics as a Chu space. Also,
Papadopoulos and Syropoulos [42] study fuzzy sets and fuzzy relational structures
as Chu spaces.
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2.3.1 Extensional, separable, and biextensional Chu spaces

Fix some nonempty set Γ. In this subsection we discuss some additional prop-
erties of Chu = ChuΓ.

Definition 2.3.4. For a Chu space A = 〈A, r,X〉, the set A is called the carrier
of A while the set X is called the cocarrier of A. Also, the map r : A×X → Γ is
called the matrix of A. For arbitrary a ∈ A, x ∈ X we have the functions

r(a,−) : X −→ Γ

and
r(−, x) : A −→ Γ

with obvious formulas, which are called a row and a column (of r), respectively.

In other words, r is a matrix whose rows are indexed by elements of A, whose
columns are indexed by elements of X, and whose entries are Γ-elements. It is
interesting to note that this way, the dual Chu space of A is A∗ = 〈X, r̆, A〉, where
the matrix r̆ : X × A → Γ is just the matrix transpose of r defined by the formula
r̆(x, a)

def

= r(a, x). Especially, note that A∗∗ = A, that is, the dualization functor on
Chu is an involution. Hence the name “transpose” is justified.

Definition 2.3.5. A Chu space A = 〈A, r,X〉 is called extensional if for every
x, y ∈ X,

r(−, x) = r(−, y) implies x = y

(i.e., no repeated columns in r). Dually, A is called separable if for every a, b ∈ A,

r(a,−) = r(b,−) implies a = b

(i.e., no repeated rows). Also, A is called biextensional if it is both extensional
and separable.

Notation 2.3.6. We write eChuΓ, sChuΓ,bChuΓ for the full subcategories of
ChuΓ determined by the extensional, separable, and biextensional Chu spaces, re-
spectively.

Definition 2.3.7. For a given Chu space A = 〈A, r,X〉, we define the equivalence
relations ∼A on A and ∼X on X as follows:

a ∼A b ⇐⇒ ∀x ∈ X r(a, x) = r(b, x)

x ∼X y ⇐⇒ ∀a ∈ A r(a, x) = r(a, y)

These are evidently equivalence relations. A is exactly when ∼X is the identity.
Likewise, A is separable exactly when ∼A is the identity. Finally, A is biextensional
exactly when both relations are the identities. There are Chu transforms

〈qA, 1X〉 : 〈A, r,X〉 −→ 〈A/∼A, r
′, X〉

r′([a], x) = r(a, x)
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and

〈1A, qX〉 : 〈A, r,X〉 −→ 〈A, r′′,X/∼X〉
r′′(a, [x]) = r(a, x)

and

〈qA, qX〉 : 〈A, r,X〉 −→ 〈A/∼A, r
′′′,X/∼X〉

r′′′([a], [x]) = r(a, x)

where qA, qX are the quotient maps for ∼A,∼X , respectively. The Chu space

〈A/∼A, r
′′′,X/∼X〉

is called the biextensional collapse of A. We denote this Chu space by the low-
ercase letter a.

Proposition 2.3.8. Every Chu transform f = 〈f+, f−〉 : A −→ B between Chu
spaces A = 〈A, r,X〉 ,B = 〈B, s, Y 〉 induces a Chu transform

f̃ =
〈
f̃+, f̃−

〉
: a −→ b

in a canonical manner.

Proof. What we have to show is that there is a pair of functions f̃+ : A/∼A → B/∼B

and f̃− : Y/∼Y → X/∼X that satisfy the adjointness condition. This pair of functions
can be found via the following.

For a ∈ A, define f̃+([a])
def

= [f+(a)]; also, for y ∈ Y define f̃−([y])
def

= [f−(y)]. We
claim that these two definitions are well-defined. We prove our claim for the first
one, and the proof for the second one will be similar.

Assume [a] = [a′] for some a, a′ ∈ A; then we have

∀x ∈ X r(a, x) = r(a′, x).

Now let y ∈ Y be arbitrary. Thus, f−(y) ∈ X and

r(a, f−(y)) = r(a′, f−(y));

but from the adjointness condition for the Chu morphism f ,

s(f+(a), y) = r(a, f−(y)) = r(a′, f−(y)) = s(f+(a′), y),

and since y was arbitrary, we have

[f+(a)] = [f+(a′)]

or
f̃+([a]) = f̃+([a′]),



46 CHAPTER 2. THE CHU CONSTRUCTION

and we are done.

It remains to show the adjointness of f̃+, f̃−:

∀[a] ∈ A/∼A ∀[y] ∈ Y/∼Y : r′′′
(

[a], f̃−([y])
)

= r′′′
(
[a], [f−(y)]

)
= r(a, f−(y))

= s(f+(a), y)

= s′′′
(
[f+(a)], [y]

)
= s′′′

(
f̃+([a]), [y]

)
,

and the proof is complete. �

Corollary 2.3.9. Biextensional collapses and biextensional morphisms form a cat-
egory.

This category is denoted by chu (the “small Chu”), and the functor indeuced by
Proposition 2.3.8 is denoted by biext : Chu −→ chu (the biextensional collapse
functor).

Next, we have [18]:

Proposition 2.3.10. Suppose f, g : A⇒ B are Chu transforms. Then

(1) if A is extensional, then f+ = g+ implies f− = g−;

(2) if B is separable, then f− = g− implies f+ = g+;

(3) if A,B are biextensional, then f+ = g+ if and only if f− = g−.

Thus, the forward and backward components in a morphism determine each
other uniquely in the category bChu. [Bif]

Proof. Let us write A = 〈A, r,X〉 and B = 〈B, s, Y 〉. First we show (1). Suppose
A is extensional and f+ = g+. Then, for all y ∈ Y and all a ∈ A we have

r(a, f−(y)) = s(f+(a), y) = s(g+(a), y) = r(a, g−(y)).

Hence f−(y) = g−(y) by extensionality of A. Now (2) follows by dualization, and
(1) and (2) together imply (3). �

In the next step we take a look at monics and epics [18]:

Proposition 2.3.11. We have:

(1) A morphism f : A −→ B in Chu is monic if and only if f+ is injective and
f− is surjective.

(2) A morphism f : A −→ B in eChu is monic if and only if f+ is injective.

(3) A morphism f : A −→ B in bChu is monic if and only if f+ is injective.
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(4) Suppose f : 〈A, r,X〉 −→ 〈B, s, Y 〉 is a morphism in Chu and 〈B, s, Y 〉 is
extensional. If f+ is surjective, then f− is injective.

(5) A morphism f : A −→ B in Chu is epic if and only if f+ is surjective and f−

is injective.

(6) A morphism f : A −→ B in sChu is epic if and only if f+ is surjective.

(7) A morphism f : A −→ B in bChu is epic if and only if f+ is surjective.

(8) Suppose f : 〈A, r,X〉 −→ 〈B, s, Y 〉 is a morphism in Chu and 〈A, r,X〉 is
separable. If f− is injective, then f+ is surjective.

Proof. (1) The “If” part is obvious. We check the “Only If” part. Suppose
f : A −→ B is such that for any pair of morphisms gi : C −→ A, i = 1, 2, if
fg1 = fg2, then g1 = g2. We show that f+ is injective and f− is surjective. Assume
A = 〈A, r,X〉 ,B = 〈B, s, Y 〉.

Firstly, we show that f− is surjective. Suppose otherwise. Choose two setsX1, X2

of the same cardinality as the cardinality of X\f−(Y ), in a way that f−(Y ), X1, X2

be pairwise disjoint. Put Z
def

= f−(Y ) ∪ X1 ∪ X2. For i = 1, 2, choose a bijection
ki : X\f−(Y ) → Xi and let k̂i

def

= 1f−(Y ) ∪ ki : X → Z be the joint extension of the
identity 1f−(Y ) and of ki. For a ∈ A, z ∈ Z, let

t(a, z)
def

=


r(a, z) if z ∈ f−(Y )
r(a, k−1

1 (z)) if z ∈ X1

r(a, k−1
2 (z)) if z ∈ X2

Let C
def

= 〈A, t, Z〉. Then 〈1A, k̂i〉, i = 1, 2 are Chu morphisms from C to A. Indeed,

r(1A(a), z) = r(a, z) = t(a, k̂i(z))

if z ∈ f−(Y ), and

r(1A(a), z) = r(a, z) = t(a, ki(z)) = t(a, k̂i(z))

also, if z ∈ X\f−(Y ). Moreover, 〈1A, k̂i〉 yield the same composition with f because
k̂1, k̂2 behave the same on the image set f−(Y ). Now f being monic implies that
k1 = k2, a contradiction since X\f−(Y ) 6= ∅. Hence f−(Y ) = X. Note that for
this construction to work, C cannot be required to be extensional.

The proof for the injectivity of f+ is the same as the “Only If” part for item (2),
given next.

(2) and (3) “If”. Let f : A −→ B be a Chu transform and f+ be injective.
Consider two arrows gi : C −→ A, i = 1, 2, which yield the same compositions with
f . Then g+

1 = g+
2 since f+ is injective. By Proposition 2.3.10 we have g−1 = g−2 .

Whence, f is monic.
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“Only If”. Let f : A −→ B be monic and write A = 〈A, r,X〉 ,B = 〈B, s, Y 〉.
Assume a1, a2 ∈ A are such that f+(a1) = f+(a2) = b. Construct a Chu space
C

def

= 〈C, t, Z〉 as follows. Let C = {c} be a singleton, and Z = Γ. Also, let
t(c, σ) = σ for every σ ∈ Γ. Clearly, C is biextensional.

Now define gi : C −→ A, i = 1, 2 as follows. Let g+
i (c)

def

= ai. For x ∈ X, put
g−i (x)

def

= r(ai, x) ∈ Γ = Z. Then, g1, g2 : C −→−→ A are Chu transforms. Clearly,

f+g+
1 = f+g+

2 . We claim that g−1 f
− = g−2 f

−, also. Indeed, if y ∈ Y and x = f−(y),
then

g−1 (x) = r(a1, x) = s(b, y) = r(a2, x) = g−2 (x).

Hence, g1, g2 : C −→−→ A yield the same compositions with f . Since f is monic, it

follows that g+
1 = g+

2 . Thus, a1 = a2, and f+ is injective.

Let y, y′ ∈ Y with f−(y) = f−(y′) = x, say. Choose any b ∈ B and then a ∈ A
with f+(a) = b. Then, s(b, y) = r(a, x) = s(b, y′). Then, y = y′ by extensionality.

Parts (5)–(8) are duals to parts (1)–(4), respectively. �

We also have the following remarkable property:

Proposition 2.3.12. The category Chu is balanced.

Proof. Let A = 〈A, r,X〉 , B = 〈B, s, Y 〉, and let f : A −→ B be a monic epic Chu
transform. By Proposition 2.3.11 parts (1), (5) we find that f+ must be an injective
surjective map, i.e., a bijective map. Similarly, f− must be bijective.

Consider the pair of functions g
def

= 〈(f+)−1, (f−)−1〉. We claim that g is a Chu
transform. If either of B or X is empty then our claim holds trivially. Thus, assume
that B 6= ∅, X 6= ∅. Let b ∈ B, x ∈ X. Since both f+ and f− are bijective, there
exist unique elements a ∈ A, y ∈ Y with

b = f+(a) and x = f−(y).

From the adjointness condition for f we have

r(a, f−(y)) = s(f+(a), y),

or
r((f+)−1

(
f+(a)

)
, f−(y)) = s(f+(a), (f−)−1

(
f−(y)

)
.

Since b, x were arbitrary, we find

∀b ∈ B, ∀x ∈ X r((f+)−1(b), x) = s(b, (f−)−1(x).

Therefore, g = 〈(f+)−1, (f−)−1〉 : B −→ A is a Chu transform satisfying

gf = 1A, fg = 1B.

�
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2.3.2 Linear logic in Chu

Barr proposed the Chu construction Chu(V,Γ) as a source of constructive mod-
els of linear logic [7, 45]. The case V= Set is particularly important for its combi-
nation of simplicity and generality. The latter case was first treated by Lafont and
Streicher [45]. Here, we list a number of ChuΓ endofunctors that yield the main
operations used in linear logic. We have already defined most of them in the previ-
ous sections. Below, A = 〈A, r,X〉 ,B = 〈B, s, Y 〉 , ... are Chu spaces and f, g, ... are
Chu transforms.

a. Multiplicative connectives:

These include the duality, tensor, linear implication, and par operations, together
with their special objects, namely the tensor unit and perp.

a1. Duality. The duality functor

(−)∗ : Chuop −→ Chu,

which is sometimes referred to as the perp functor and denoted by (−)⊥, gives the
dualization operation A∗, which is “involutive”: A∗∗ = A.

a2. Tensor. From Proposition 2.2.2, the tensor product on Chu is found to be

(−)⊗ (−) : Chu×Chu −→ Chu

A⊗ B =
〈
A×B, t, Y A ×ΓA×B XB

〉
where the cocarrier is the pullback depicted in Diagram 2.3, and the matrix t is

XBY A ×ΓA×B XB

Y A ΓA×B
šA

řB

Diagram 2.3

defined the obvious way:

t : (A×B)× (Y A ×ΓA×B XB) −→ Γ

〈〈a, b〉 , 〈ϕ, ψ〉〉 7→ s(b, ϕ(a)) = r(a, ψ(b))

On the other hand, its effect on morphisms f : A −→ A′, g : B −→ B′ can be de-
scribed as:

f ⊗ g : A⊗ B −→ A′ ⊗ B′,
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with

(f ⊗ g)+ : A×B −→ A′ ×B′

(f ⊗ g)+ = f+ × g+,

and

(f ⊗ g)− : Y ′
A′ ×ΓA′×B′ X ′

B′ −→ Y A ×ΓA×B XB

〈h′, k′〉 7→
〈
g−h′f+, f−k′g+

〉
.

a3. Tensor unit. The tensor unit is

I = 〈{•}, λ,Γ〉

with {•} the singleton, and λ(•, c) = c for every c ∈ Γ.

a4. Linear implication. This is exactly the internal hom bifunctor

(−)( (−) : Chuop ×Chu −→ Chu.

Using the equation A( B = (A⊗ B∗)∗ (equation since the dualization on Chu is
actually an involution), we find

A( B =
〈
BA ×ΓA×Y XY , u, A× Y

〉
,

with

u : (BA ×ΓA×Y XY )× (A× Y ) −→ Γ

〈〈ϕ, ψ〉 , 〈a, y〉〉 7→ s(ϕ(a), y) = r(a, ψ(y)).

On the other hand, for f : A −→ A′, g : B −→ B′ we have:

f ( g : A′( B −→ A( B′,

with

(f ( g)+ : BA′ ×ΓA′×Y X ′
Y −→ B′

A ×ΓA×Y ′ XY ′

〈h, k〉 7→
〈
g+hf+, f−kg−

〉
,

and
(f ( g)− : A′ × Y ′ −→ A× Y

(f ( g)− = f+ × g−.

a5. Dualizing object. The dualizing object is

⊥= I∗ = 〈Γ, ρ, {•}〉
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with ρ(c, •) = c for all c ∈ Γ.

a6. Par. The par bifunctor � is the De Morgan dual to ⊗:

(−)� (−) : Chu×Chu −→ Chu.

On objects,

A� B = (A∗ ⊗ B∗)∗

=
〈
BX ×ΓX×Y AY , v,X × Y

〉
where

v : (BX ×ΓX×Y AY )× (X × Y ) −→ Γ

〈〈ϕ, ψ〉 , 〈x, y〉〉 7→ r(ψ(y), x) = s(ϕ(x), y).

On morphisms f : A −→ A′, g : B −→ B′,

f � g : A� B −→ A′ � B′,

with

(f � g)+ : BX ×ΓX×Y AY −→ B′
X′ ×ΓX′×Y ′ A′

Y ′

〈h, k〉 7→
〈
g+hf−, f+kg−

〉
,

and
(f � g)− : X ′ × Y ′ −→ X × Y

(f � g)− = f− × g−.

b. Additive connectives

These include the plus and with connectives, together with their respective units.

b1. Plus. Plus is the binary coproduct bifunctor

(−)⊕ (−) : Chu×Chu −→ Chu

(−)⊕ (−)
def

= Colim(−,−).

On objects:
A⊕ B = 〈A tB, p,X × Y 〉 ,

where A tB is the coproduct (disjoint union) of the sets A,B; also

p : (A tB)× (X × Y ) −→ Γ

p(m, 〈x, y〉) =

{
r(a, x) if m ∈ A,
s(b, y) if m ∈ B.

On morphisms f : A −→ A′, g : B −→ B′,

f ⊕ g : A⊕ B −→ A′ ⊕ B′
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(f ⊕ g)+ = f+ t g+,

(f ⊕ g)− = f− × g−.

b2. Plus unit. Defined as:
0

def

= 〈∅, !, {•}〉 ,
where ! is the unique empty matrix. 0 has the property that

0⊕ A ∼= A⊕ 0 ∼= A.

b3. With. This is the binary product bifunctor

(−)&(−) : Chu×Chu −→ Chu

(−)&(−)
def

= Lim(−,−),

which is the De Morgan dual to plus:

(−)&(−) = ((−)∗ ⊕ (−)∗)∗, (−)⊕ (−) = ((−)∗&(−)∗)∗.

On objects we have
A&B = 〈A×B,w,X t Y 〉

so that
w : (A×B)× (X t Y ) −→ Γ

w(〈a, b〉 , n) =

{
r(a, n) if n ∈ X,
s(b, n) if n ∈ Y.

On morphisms f : A −→ A′, g : B −→ B′,

f&g : A&B −→ A′&B′

(f&g)+ = f+ × g+,

(f&g)− = f− t g−.

b4. With unit. Defined as

> def

= 0∗ = 〈{•}, !,∅〉 ,

where ! is again the unique empty matrix. We have

>&A ∼= A&> ∼= A.

c. Other connectives

Although Chu is not cartesian closed, one can still define some sort of “expo-
nential” on cartesian closed retractions of this category. The exponential serves
syntactically to “loosen up” formulas so that they can be “duplicated” or “deleted”.
For more information on this subject, see [45].
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2.3.3 Realizations

The notion of realization we intend here is the strong version defined by Pultr
and Trnková [45].

Definition 2.3.13. A Chu space 〈A, r,X〉 is called normal whenever X ⊆ ΓA

and r(a, x) = x(a) for every a ∈ A, x ∈ X. For normal Chu spaces, the matrix r is
clearly understood from the context and therefore, the normal Chu space 〈A, r,X〉 is
abbreviated as 〈A,X〉. A normal Chu transform is a Chu transform between two
normal Chu spaces. Normal spaces and normal transforms form a full subcategory
nChuΓ of ChuΓ.

Definition 2.3.14. A functor F : C−→ D is a representation of objects C ∈
C by objects F (C) ∈ D when F is a full embedding (see Definition 1.2.25 and
Proposition 1.2.26).

Definition 2.3.15. A representation F is a realization when in addition,

UDF = UC,

where UC : C −→ Set and UD : D −→ Set are the corresponding underlying-set
functors.

The above realization in called a Chu realization when D = Chu, and is called
a normal Chu realization if D = nChu (where nChu abbreviates nChuΓ).

Remark 2.3.16. It is clear that every realization is a concrete functor (see Chapter
1).

Pratt [45, 47] discusses many normal Chu realizations including the realizations
of sets, pointed sets, preorders, topological spaces, semilattices, distributive lattices,
Boolean algebras, etc. Because of their importance in illuminating the power of the
Chu construction, we sketch two examples here, namely the cases of sets and topo-
logical spaces.

Using the conventions 0 = ∅, n = {0, 1, ..., n− 1} we have:

Theorem 2.3.17. Set is normally realized in nChu2.

This realization is in fact trivial: any set A is realized as the (normal) Chu
space A = 〈A, !,∅〉, and any function f : A → B is realized as the (normal) Chu
transform f = 〈f, !〉 : A −→ B, where “!” is the unique map ! : ∅ → ∅, doing the
double duty of the empty matrix (in A,B) as well as the empty map (in f). Note
that the composition Set→ nChu2 ↪→ Chu2 yields the (strong monoidal) functor
i introduced in Proposition 2.2.3.

Theorem 2.3.18. A topological space can be viewed as an extensional normal Chu
space in nChu2, whose columns are closed under arbitrary union and finite in-
tersection. The normal Chu transforms between topological spaces are exactly the
continuous functions between the corresponding topological spaces.
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Theorem 2.3.18 tells us that normal Chu spaces and transforms (in nChu2)
can in fact be regarded as some generalization of topological spaces and continuous
functions, a generalization in which the conditions of open sets being closed under
arbitrary unions and finite intersections are removed.

Also:

Theorem 2.3.19. Assuming the Generalized Continuum Hypothesis, ChuΓ is real-
izable in ChuΓ′ if and only if |Γ| ≤ |Γ′|.

Another notable realization in Pratt’s work is the normal Chu realization of
relational structures:

Theorem 2.3.20. Any full subcategory C of the category of n-ary relational struc-
tures and their homomorphisms is realized in Chu2n.

Consequently, for example, we have the next corollary:

Corollary 2.3.21. (1) The category Grp of groups and group homomorphisms is
realized in Chu23 = Chu8.

(2) The category TopGrp of topological groups and continuous group homomor-
phisms is realized in Chu24 = Chu16.

Also we have:

Theorem 2.3.22. The following functor realizes the category Vectk of vector spaces
over a field k in the category Chu|k|, where |k| denotes the underlying set of k:

F : Vectk −→ Chu|k|(
V

T−→ W
)
7→
(
〈V, eV , V ∗〉

〈T,T ∗〉−−−→ 〈W, eW ,W ∗〉
)
,

in which T ∗ : W ∗ → V ∗ is the dual map to T in Vectk, and the map eV (the
evaluation) is defined as eV (v1, v

∗
2)

def

= v∗2(v1) ∈ k for v1 ∈ V, v∗2 ∈ V ∗.

Finally, we mention a remarkable result Pratt has given in [...]:

Theorem 2.3.23. Every small concrete category C embeds fully in Chu|C|, where
|C| is the number of arrows of C.

2.3.4 Chu endofunctors

Because of their fundamental roles in universal dialgebra (Chapter 3) and later
in the DLC construction (Chapter 4), Chu endofunctors deserve special attention.
This subsection is meant to provide for a minimum necessary treatment of the issue.

First of all, following Proposition 2.2.3, we introduce a notation that will play a
key role in the current thesis:
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Notation 2.3.24. Let V be a CSMC, and let F : Chu(V,Γ) −→ Chu(V,Γ)
be an endofunctor on Chu(V,Γ). Also, let p1 : Chu(V,Γ) −→ V and p2 :
Chu(V,Γ) −→ Vop be the projection functors deduced in the proof of Proposi-
tion 2.2.3. We use the following notations in the sequel:

F+ def

= p1 ◦ F : Chu(V,Γ) −→ V,

F−
def

= p2 ◦ F : Chu(V,Γ) −→ Vop.

In particular, when V= Set, we have the functors F+ : ChuΓ −→ Set and
F− : ChuΓ −→ Setop for any given Chu endofunctor F .

Secondly, we introduce an important notion in the next definition:

Definition 2.3.25. Let F : Set −→ Set be an endofunctor on Set. Let Γ be
a nonempty set. An uplifting of F is a Chu endofunctor F̂ : ChuΓ −→ ChuΓ

that makes Diagram 2.4 commute. In the diagram, the functor p1 is the same as in
Notation 2.3.24.

ChuΓChuΓ

Set Set

F̂

p1

F

p1

Diagram 2.4

In other words, for an uplifting F̂ we have F̂+ def

= p1 ◦ F̂ = F ◦ p1. The following
theorem demonstrates the usefulness of the notion of uplifting.

Theorem 2.3.26. Assume a nonempty set Γ. Then, every endofunctor F : Set −→
Set can be uplifted to a Chu endofunctor

F̂ : ChuΓ −→ ChuΓ.

Moreover, this uplifting can be done at least in two different ways.

Proof. Fix a nonempty Γ. Consider the endofunctor
F : Set −→ Set. We construct two distinct upliftings F̂1, F̂2 of F .

The first construction. Define

F̂1 : ChuΓ −→ ChuΓ

〈A, r,X〉 7→ 〈F (A), !,∅〉(
A
〈f+,f−〉
−−−−−→ B

)
7→
(
F (A)

〈F (f+),!〉
−−−−−→ F (B)

)
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F̂1 is a well-defined functor because:

∀ 〈A, r,X〉 ∈ Chu, F̂1(1〈A,r,X〉) = F̂1(〈1A, 1X〉)
= 〈F (1A), !〉
=
〈
1F (A), 1∅

〉
= 1〈F (A),!,∅〉;

also, for all consecutive arrows · f−→ · g−→ · in Chu,

F̂1(g ◦ f) = F̂1(
〈
g+f+, f−g−

〉
)

=
〈
F (g+f+), !

〉
=
〈
F (g+) ◦ F (f+), !◦!

〉
=
〈
F (g+), !

〉
◦
〈
F (f+), !

〉
= F̂1(g) ◦ F̂1(f).

Now, for any Chu space A = 〈A, r,X〉,

F̂+
1 (A) = p1 ◦ F̂1(A) = p1(〈F (A), !,∅〉) = F (A) = F ◦ p1(A);

and for any Chu transform f ,

F̂+
1 (f) = p1 ◦ F̂1(f) = p1(

〈
F (f+), !

〉
) = F (f+) = F ◦ p1(f).

Therefore, F̂1 is an uplifting of F .

The second construction. Since Γ is nonempty, there is some element c ∈ Γ. Let
{•} denote the singleton. Define

F̂2 : ChuΓ −→ ChuΓ

〈A, r,X〉 7→ 〈F (A), kc, {•}〉 , s.t. kc(a, •) = c, ∀a ∈ A(
A
〈f+,f−〉
−−−−−→ B

)
7→
(
F (A)

〈F (f+),1{•}〉−−−−−−−−→ F (B)

)
Again, F̂2 is a well-defined functor: firstly, for every Chu transform f , the pair

F (f) =
〈
F (f+), 1{•}

〉
obviously satisfies the adjointness condition, and so, is a valid

Chu morphism; also,

∀ 〈A, r,X〉 ∈ Chu, F̂2(1〈A,r,X〉) = F̂2(〈1A, 1X〉)
=
〈
F (1A), 1{•}

〉
=
〈
1F (A), 1{•}

〉
= 1〈F (A),kc,{•}〉;

on the other hand, for all consecutive arrows · f−→ · g−→ · in Chu,

F̂2(g ◦ f) = F̂2(
〈
g+f+, f−g−

〉
)
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=
〈
F (g+f+), 1{•}

〉
=
〈
F (g+) ◦ F (f+), 1{•} ◦ 1{•}

〉
=
〈
F (g+), 1{•}

〉
◦
〈
F (f+), 1{•}

〉
= F̂2(g) ◦ F̂2(f).

Now, for any Chu space A = 〈A, r,X〉,

F̂+
2 (A) = p1 ◦ F̂2(A) = p1(〈F (A), kc, {•}〉) = F (A) = F ◦ p1(A);

and for any Chu transform f ,

F̂+
2 (f) = p1 ◦ F̂2(f) = p1(

〈
F (f+), 1{•}

〉
) = F (f+) = F ◦ p1(f).

Therefore, F̂2 is another uplifting of F .

Finally, it is clear that F̂1 6= F̂2, and we are done. �

Remark 2.3.27. In general, a set endofunctor F : Set −→ Set may have many
upliftings, quite different in structure and behavior. As a remarkable example,
consider the endofunctor (−) × A : Set −→ Set for some fixed set A with at least
two distinct elements. This functor has at least the following upliftings:

• either of the constructions given in the proof of Theorem 2.3.26;

• the functor (−)⊗ 〈A, r,X〉 for some nontrivial X, r; and

• the functor (−)& 〈A, r,X〉, again, for some nontrivial X, r.

In addition to the notion of uplifting, it is good to point to the following notion:

Definition 2.3.28. Let F : Set −→ Set and G : Set −→ Set be endofunctors
on Set. Let Γ be a nonempty set. A bi-uplifting of F,G is a Chu endofunctor
H : ChuΓ −→ ChuΓ that makes both squares in Diagram 2.5 commute. In the
diagram, the functors p1, p2 are the same as in Notation 2.3.24.

ChuΓ

ChuΓSet

Set

Setop

Setop

H

p1

F

p1

p2

Gop

p2

Diagram 2.5
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Every bi-uplifting H of set functors F,G is clearly an uplifting of F , also. On
the other hand, as an example of a non-trivial bi-uplifting when Γ = 2 and F = G
with F a given set functor, see Definition 13 of [41] (termed “F-lifting” therein). In
general, characterization of bi-upliftings for arbitrary Γ and arbitrary pairs of set
functors F,G may be an interesting subject of study by itself.

In the next chapter, we will introduce the basics of universal dialgebra, with
special attention to the theory of universal dialgebra on the Chu construction.



Chapter 3

Universal Dialgebra

In Section 1.1 of Chapter 1 we discussed the historical origins of universal dialge-
bra. Now we proceed towards its formalism. Our approach here slightly generalizes
that of [56]; that is, we study universal dialgbera not on Set but on a given (bicom-
plete) category C. We will study isomorphisms and bisimulations in CFG (Section
3.2); and we will take a look at limits and colimits in the latter category (Section
3.3). After that, we will pay attention to the problem of dualization (Section 3.4)
which we mentioned in Chapter 1. Finally, we will specifically focus on universal
dialgebra on Chu (Section 3.5).

3.1 Basic notions

Many of the familiar structures in mathematics can be expressed in terms of “F -
algebras” and/or “G-coalgebras”, in which F,G are set functors. As a few examples:

• a semigroup 〈A, ∗ : A2 −→ A〉 may be viewed as an F -algebra of the form
〈A, ∗ : FA −→ A〉 in which F = (−)2 : Set −→ Set;

• a partial function 〈B, p : B −→ B t {•}〉 may be viewed as a G-coalgebra of
the form 〈B, p : B −→ GB〉 where G = (−) t {•} : Set −→ Set.

On the other hand, the above examples can also be viewed as “〈F,G〉-dialgebras”
such that F,G are again set functors (assuming G = 1Set for the first example and
F = 1Set for the second). As a non-trivial example of 〈F,G〉-dialgebras, one may
take a field

〈k,+, 0,−(−),×, 1, (−)−1〉.
This is an 〈F,G〉-dialgebra for some non-identity set functors F,G.

In addition to the above, one may think of generalized 〈F,G〉-dialgebras for
endofunctors

F,G : C −→−→ C,

where C is an arbitrary category. In the following, we study such formalisms.

Definition 3.1.1. Let C be a category. Let F,G : C −→−→ C be two endofunctors
on C. An 〈F,G〉-dialgebra A is a pair 〈A,α〉 consisting of a C-object A, together
with a C-morphism α : FA −→ GA. Whenever the functors F,G are clear from
the context, we may simply refer to A as a “dialgebra”.

59
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Definition 3.1.2. Let A = 〈A,α〉 ,B = 〈B, β〉 be two 〈F,G〉-dialgebras. An
〈F,G〉-dialgebra homomorphism h : A −→ B is a C-arrow h : A −→ B making
Diagram 3.1 commute.

GAFA

FB GB

A

B

α

Fh

β

Ghh

Diagram 3.1

Remark 3.1.3. The arrow h : A −→ B is called the stem of the arrow h : A −→ B,
or equivalently, one may say that the homomorphism h stems from h (via F,G).
Yet another equivalent statement is that h yields a homomorphism h (via F,G).
We use boldface characters to represent the corresponding homomorphisms of the
stems.

Identity homomorphisms are 〈F,G〉-dialgebra homomorphisms and, given two
dialgebra homomorphisms f : A −→ B and g : B −→ C, the composition g ◦ f :
A −→ C yields a dialgebra homomorphism g ◦ f : A −→ C (Diagram 3.2). This
composition is clearly associative, also. Therefore:

FCFBFA

GA GB GC

CBA

FgFf

α

Gf Gg

γβ

gf

Diagram 3.2

Proposition 3.1.4. Given endofunctors F,G : C −→−→ C on some category C,
〈F,G〉-dialgebras together with 〈F,G〉-dialgebra homomorphisms form a category.

Notation 3.1.5. This category is denoted by CFG . We may refer to C as the
base category for CFG . To simplify notation for special cases, let CF

def

= CF1C
and

CG
def

= C
1C

G .

Remark 3.1.6. CF is essentially the same thing as the category of F -algebras over
Cwhile CG is just the category of G-coalgebras over C. This way, universal algebra
and universal coalgebra may be viewed as two special cases of universal dialgebra.
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The reader may refer to [10, 33, 40, 44, 56] for various examples of categories
of dialgebras. For algebras and coalgebras, references [13, 16, 24, 27, 28, 53] are
suggested. Also, Abramsky [2] gives an interesting example of connections between
coalgebras and the Chu construction. Chang and Keisler [14] point to the connec-
tion between universal algebra and model theory. Pavlović and Pratt [43] introduce
the continuum R of real numbers as a final coalgebra (i.e. as a terminal object
in the category of coalgebras). Gumm [25] studies functors for coalgebras. Moss
[37] studies coalgebraic logic. Palmigiano [40] introduces abstract logics as dialge-
bras. Martins et al [33] suggest dialgebras as appropriate models for computational
processes which are combinations of “algebraic construction” and “coalgebraic ob-
servation”. Finally, Rodrigues [52] develops a dialgebraic theory over the category
Rel (the category of sets and binary relations).

3.2 Isomorphisms and bisimulations

In this section, C is a fixed category and F,G are two fixed C-endofunctors.

Definition 3.2.1. A dialgebra homomorphism h : A −→ B is called a dialgebra
isomorphism if it is an isomorphism arrow in the category CFG .

The following proposition shows that the existence of an inverse homomorphism
is equivalent to the existence of an inverse for the stem.

Proposition 3.2.2. (1) If h is an isomorphism in CFG , then its stem h : A −→ B
is an isomorphism in C.

(2) Conversely, if h has an inverse k : B −→ A, then k yields a dialgebra homo-
morphism k : B −→ A such that k = h−1. That is, h is a dialgebra isomor-
phism.

Therefore, a dialgebra homomorphism is a dialgebra isomorphism if and only if
its stem is an isomorphism arrow in the corresponding base category.

Proof. (1) is obvious. We only prove (2):

Consider

GAFA

FB GB

A

B

α

β

h k Fh Fk Gh Gk

We have hk = 1B, kh = 1A; thus

G(k)β = G(k)βF (h)F (k)

= G(k)G(h)αF (k)
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= αF (k).

Therefore, k : B −→ A is a homomorphism, and clearly, k = h−1. �

Definition 3.2.3. A homomorphism h : A −→ B is called a (dialgebra) monomor-
phism if it is a monic arrow in CFG , i.e., if for every dialgebra C = 〈C, γ〉 and all
homomorphisms f ,g : C −→−→ A,

hf = hg implies f = g.

Dually, h is said to be an(a) (dialgebra) epimorphism whenever h is an epic arrow
in CFG .

Proposition 3.2.4. (1) Every dialgebra homomorphism stemming from a monic
arrow is monic.

(2) Dually, every dialgebra homomorphism stemming from an epic arrow is epic.

Proof. (1) For a homomorphism h with monic stem h, the equality hf = hg for
some homomorphisms f ,g implies hf = hg, hence f = g, and consequently f = g.
�

Remark 3.2.5. Contrary to the case of Proposition 3.2.2, the converse statements
for Proposition 3.2.4 are false: there are counterexamples monomorphisms (epimor-
phisms) h for which the stem h is not a monic (epic) arrow in the base category C.
For instance, take the category Ring = SetR of rings, where R is the correponding
endofunctor. Here we have an epimorphism i : 〈Z,RZ→ Z〉 −→ 〈Q,RQ→ Q〉;
however, its stem is the inclusion map i : Z ↪→ Q which is obviously not surjective
(hence not epic) in Set.

Definition 3.2.6. A homomorphism h : A −→ B is called a (dialgebra) section
provided that it is a section arrow in CFG , i.e., if there exists a homomorphism
k : B −→ A with kh = 1A.

Dually, h is a (dialgebra) retraction if it is a retraction arrow in CFG , that is,
if there exists k with hk = 1B.

Proposition 3.2.7. (1) If h is a section (retraction) in CFG , then its stem h :
A −→ B is also a section (retraction) in C.

(2) If k : B −→ A is a C-arrow that makes h a section (retraction), and if a
homomorphism k : B −→ A stems from k, then the homomorphism h is a
section (retraction) as well.

Definition 3.2.8. A dialgebra A = 〈A,α〉 is called a subdialgebra of a dialgebra
B = 〈B, β〉 if there exists a homomorphism m : A −→ B that stems from a monic
m : A � B. By Proposition 3.2.4 (1) we know that such m must be a dialgebra
monomorphism.

Dually, B is called a quotient dialgebra of A provided that there exists a
homomorphism q : A −→ B such that its stem q : A � B is epic. Again, from
Proposition 3.2.4 (2) we know that such q is necessarily a dialgebra epimorphism.
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Now we turn to the fundamental concept of “bisimulation” for dialgebras. In
[56], the concept was defined and investigated for the case C = Set. Here, we
generalize the concept for categories with finite products, possibly non-cartesian-
closed cases. Before proceeding we need a categorical definition of the concept of
“reltion”. The following material is a generalization of what can be found in [12].

Definition 3.2.9. Let C be a category. By a relation between objects A,B ∈ C

we mean an object R ∈ C together with a pair of arrows

A
π1←−− R

π2−−→ B,

which form a monomorphic pair of arrows, that is, given an object X and
parallel arrows f, g : X −→−→ R,

f = g iff πif = πig, i = 1, 2.

For every object X ∈ C we write

RX
def

= {〈π1x, π2x〉 | x ∈ C(X,R)} ⊆ C(X,A)× C(X,B)

which is a relation in the usual sense (i.e. set-theoretic), and call it the correspond-
ing relation between C(X,A) and C(X,B). Also, by a relation on A we mean a
relation between A and itself.

Recall that an ordinary (set-thoretic) relation R between sets A,B was defined
as a subset R ⊆ A×B of the (cartesian) product of A and B. In category-theoretic
terms, this might be expressed as an injective arrow R� A×B in the category Set.
The following proposition generalizes this idea to categories with finite products:

Proposition 3.2.10. Let C be a category with finite products, and let A,B ∈ C.
Then, every relation 〈R, π1, π2〉 between A,B can be viewed as a monic arrow

ϕ : R� A×B

and vice versa.

Proof. (=⇒) Let A
p1←−− A × B

p2−−→ B be the product of A and B. Then by
universality of the product, there exists a unique arrow ϕ : R −→ A×B such that

πi = piϕ, i = 1, 2.

To see ϕ being monic, assume parallel arrows f, g : X −→−→ R with ϕf = ϕg. Then

piϕf = piϕg,

or
πif = πig

for i = 1, 2. But since πi are a monomorphic pair of arrows, we have f = g.
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(⇐=) Conversely, assume that the product 〈A×B, p1, p2〉 and a mono ϕ : R�
A × B are given. Define πi

def

= piϕ for each i. For any parallel pair f, g : X −→−→ R,
the equalities πif = πig, ∀i imply

piϕf = piϕg, ∀i.

Since 〈A×B, p1, p2〉 is itself a relation betweenA,B, (because p1, p2 form a monomor-
phic family), we must have

ϕf = ϕg.

By hypothesis, ϕ is monic; thus f = g. �

Given a relation 〈R, π1, π2〉 on an object A of some category C, it is now possible
to require the classical properties on the various relations RX on the sets C(X,R).

Definition 3.2.11. By an equivalence relation on an object A of a category Cwe
mean a relation 〈R, π1, π2〉 on A such that for every object X ∈ C, the corresponding
relation RX on the set C(X,A) is an equivalence relation. More generally, the
relation R is reflexive (resp. symmetric, transitive, antisymmetric, etc.)
when each corresponding realtion RX is so.

In Set, given an equivalence relation R ⊆ A×A, one can take the quotient of A
by R, arriving at a diagram

R
π1−−→−−→
π2

A
q−→ A/R.

The coequalizer of πi is the quotient of A by the equivalence relation generated by
the pairs 〈π1(x), π2(x)〉 , x ∈ R, which is q. On the other hand, q(a) = q(a′) iff
〈a, a′〉 ∈ R, which indicates that 〈π1, π2〉 is the kernel pair of q.

Definition 3.2.12. An equivalence relation 〈R, π1, π2〉 on an object A of a category
C is effective when the coequalizer q of 〈π1, π2〉 exists, and, 〈π1, π2〉 is the kernel
pair of q.

For more on categorical equivalence relations, see [12].

Now we return to dialgebras and bisimulations:

Definition 3.2.13. Let A = 〈A,α〉 ,B = 〈B, β〉 be two dialgebras in CFG . An
〈F,G〉-bisimulation between A and B is a dialgebra R = 〈R, ρ : FR→ GR〉,
where 〈R, π1, π2〉 is a relation between A,B, such that both π1 : R −→ A and
π2 : R −→ B are dialgebra homomorphisms. In other words, Diagram 3.3 com-
mutes.
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FBFR

GR GB

FA

GA

Fπ2

ρ

Gπ2

βα

Fπ1

Gπ1

Diagram 3.3

We omit the functors F,G and use the term bisimulation whenever F and
G are clear from the context. Also, an 〈F,G〉-bisimulation on A is an 〈F,G〉-
bisimulation between A and itself. Finally, an 〈F,G〉-bisimulation equivalnce on
A is a bisimulation on A that is also an equivalence relation on A.

Next, another important concept is introduced. Following McLarty [34]:

Definition 3.2.14. Suppose that C has finite products, and take any arrow f :
A −→ B. The graph arrow of f , denoted by Grf , is the arrow that makes Dia-
gram 3.4 commute.

A

A×B BA

Grf
1A f

p1 p2

Diagram 3.4

Proposition 3.2.15. Grf as defined above is an equalizer for fp1 and p2.

Proof. We have

fp1Grf = f1a = f = p2Grf .

Also, for any other γ : C −→ A×B with fp1γ = p2γ, consider the composition

p1γ : C −→ A.

We have {
p1(Grfp1γ) = (p1Grf )p1γ = p1γ,
p2(Grfp1γ) = fp1γ = p2γ,

and then by universality of the product A×B,

Grfp1γ = γ.
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Finally, suppose that there is some other arrow θ : C −→ A with Grfθ = γ. Then

θ = p1Grfθ = p1γ,

so p1γ is the unique arrow with the above property. This completes the proof. �

Corollary 3.2.16. The graph arrow Grf defined above is always monic.

Consequently, by Proposition 3.2.10:

Corollary 3.2.17. For any f , the graph arrow Grf : A � A × B is a relation
〈A, 1A, f〉 between A,B.

In addition, we have:

Proposition 3.2.18. For any A with a product with itself, the diagonal 4A : A�
A× A equals the graph arrow of 1A:

4A = Gr1A .

Now, equipped with all the above, we state and prove the following theorem,
which generalizes Theorem 9 in [56].

Theorem 3.2.19. Assume that C has finite products, and let A = 〈A,α〉 ,B =
〈B, β〉 be two 〈F,G〉-dialgebras in CFG . Then an arrow f : A −→ B yields a dialgebra
homomorphism if and only if its graph arrow Grf induces an 〈F,G〉-bisimulation.

Proof. By Corollary 3.2.17 we know that for any arrow f : A −→ B, the graph
arrow Grf is equivalent to a relation 〈A, 1A, f〉 between A,B. Since 1A is always a
dialgebra homomorphism, it obviously follows that f yields a homomorphism if and
only if 〈A, 1A, f〉 yields a bisimulation between A,B. �

Corollary 3.2.20. Let A = 〈A,α〉 be a dialgebra. The diagonal 4A of A yields a
bisimulation equivalence on A.

Proof. Use Proposition 3.2.18 together with Theorem 3.2.19. �

3.3 Limits and colimits

Now let Cbe a bicomplete category. In this section, a study of limits and colimits
in the category CFG is undertaken. The ultimate goal is to prove that CFG has all
limits that are preserved by G, and all colimits that are preserved by F .

Recall that in the category theory literature, especially in the study of limits and
colimits, a functor d : D−→ C is sometimes called a diagram, with the category
D being called the scheme of d [3]. Now we sate another closely-related definition
[56].
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Definition 3.3.1. By the type of a limit or colimit, we mean the isomorphism
class, in the category Grph of graphs and graph homomorphisms, of the base graph
of the limit or colimit, respectively. A functor H : C−→ C is said to preserve
a type D of limit (colimit), if for every diagram d : D −→ C with limit (colimit)
〈L, {fv | v ∈ V (D)}〉,

〈H(L), {H(fv) | v ∈ V (D)}〉

is the limit (colimit) of the diagram H ◦ d : D −→ C.

Let U : CFG −→ Cbe the forgetful functor from the category of 〈F,G〉-dialgebras
to C. For every dialgebra A = 〈A,α〉, U(A) = A and, for every dialgebra homo-
morphism h, U(h) = h. For this functor we consider the following definition.

Definition 3.3.2. The functor U is said to create a type D limit (colimit) if
for every diagram d : D −→ CFG , its limit (colimit) is constructed by first taking the
limit (colimit) of U ◦ d : D −→ C in C, and then supplying it in a unique way with
an 〈F,G〉-dialgebra structure.

Theorem 3.3.3. Assume that C is bicomplete. Then:

(1) The forgetful functor U : CFG −→ C creates and preserves all types of limits
that the functor G : C−→ C preserves.

(2) The forgetful functor U : CFG −→ C creates and preserves all types of colimits
that the functor F : C−→ C preserves.

Proof. We only prove part (1). Part (2) is automatically proved by dualization.

Let D = 〈V (D), E(D)〉 be a graph and d : D −→ CFG a diagram in CFG . Suppose
that G preserves limits of type D. Consider the diagram U ◦ d : D −→ C. Since C

is complete, Ud has a limit 〈L, {lv : L→ Ud(v) | v ∈ V (D)}〉 in C, such that for all
e : v1 −→ v2 in E(D), the following diagram commutes:

L

Ud(v1) Ud(v2)

lv1 lv2

Ud(e)

and such that, for all other cones 〈M, {fv : M → Ud(v) | v ∈ V (D)}〉 with analogous
commutativity conditions as above, there exists a unique morphism f : M −→ L
such that the following triangle commutes for all v ∈ V (D):

Ud(v)

M L

fv lv

f

Now consider the diagram
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FL

FUd(v1) FUd(v2)

GL

GUd(v1) GUd(v2)

F (lv1 ) F (lv2 )

F (Ud(e))

F (lv1 ) F (lv2 )

F (Ud(e))

δd(v1) δd(v2)

Since G preserves limits of type D, the cone 〈G(L), {G(lv) | v ∈ V (D)}〉 is a limiting
cone in C. Therefore, since

GUd(e)δd(v1)F (lv1) = δv2FUd(e)F (lv1)

= δv2F (lv2),

there exists a unique map λ : FL −→ GL, such that the following diagram commutes
in C:

FL

FUd(v1) FUd(v2)

GL

GUd(v1) GUd(v2)

F (lv1 ) F (lv2 )

F (lv1 ) F (lv2 )
δd(v1) δd(v2)

λ

F (Ud(e))

F (Ud(e))

Clearly, L
def

= 〈L, λ〉 is a dialgebra and, for all v ∈ V (D), lv : L −→ d(v) is a
dialgebra homomorphism.

To show that 〈L, {lv | v ∈ V (D)}〉 is a limiting cone in CFG , consider any other
cone 〈M = 〈M,µ〉 , {fv | v ∈ V (D)}〉 in CFG . Since 〈L, {lv | v ∈ V (D)}〉 is a limiting
cone in C, there exists a unique arrow f : UM −→ L in C such that for all v ∈ V (D)

Ufv = lvf.

It suffices to show that f yields a dialgebra homomorphism f : M −→ L. For all v
we have:

FLFUM

GUM GL GUd(v)

Ff

Gf

µ

Glv

λ
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G(lv)λF (f) = δd(v)F (lv)F (f)

= δd(v)F (lvf)

= δd(v)F (U(fv))

= G(U(fv))µ

= G(lvf)µ

= G(lv)G(f)µ;

whence, by the universal arrow property of 〈GL, {Glv | v ∈ V (D)}〉, it now follows
that λF (f) = G(f)µ. �

Following the lines of the proof of Theorem 3.3.3, the next theorem may also be
proved.

Theorem 3.3.4. Assume that C is bicomplete. Let D be a graph, and d : D −→ CFG
be a diagram in CFG .

(1) If the functor G preserves weak limits of type D, then the limit 〈L, {lv | v ∈ V (D)}〉
of Ud : D −→ C in C may be endowed with a dialgebra structure L = 〈L, λ〉,
such that Diagram 3.5 commutes in CFG , for all e : v1 −→ v2 in E(D).

L

d(v1) d(v2)

lv1 lv2

d(e)

Diagram 3.5

(2) If the functor F preserves weak colimits of type D, then the colimit 〈C, {cv | v ∈ V (D)}〉
of Ud : D −→ C in C may be endowed with a dialgebra structure C = 〈C, κ〉,
such that Diagram 3.6 commutes in CFG , for all e : v1 −→ v2 in E(D).

C

d(v1) d(v2)

cv1 cv2

d(e)

Diagram 3.6

The following theorem exhibits some of the fruitful interaction of the notion of
bisimulation with the weak preservation of limits by the functor G.
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Theorem 3.3.5. Assume that C is bicomplete. Let A = 〈A,α〉 ,B = 〈B, β〉 ,C =
〈C, γ〉 be 〈F,G〉-dialgebras, and f : A −→ C,g : B −→ C be dialgebra homomor-
phisms in CFG . If G preserves weak pullbacks, then the pullback of f : A −→ C, g :
B −→ C in C yields a bisimulation from A to B in CFG .

Proof. Let f : A −→ C and g : B −→ C be homomorphisms. Consider the pull-
back diagram in C:

BA×C B

A C

π2

f

π1 g

Then, since G preserves weak pullbacks, by Theorem 3.3.4 (1), there exists an
arrow π : F (A ×C B) −→ G(A ×C B) such that both π1 : 〈A×C B, π〉 −→ A and
π2 : 〈A×C B, π〉 −→ B are homomorphisms. �

3.4 The problem of dualization

As we discussed earlier (see 1.1), there is a problem concerning the dualization
of dialgebras. We explain this more here. Firstly, we give a statement of the problem:

Statement of the problem. Let F,G be endofunctors on C. Can the results in
CFG be translated into corresponding ones in CGF ?

To answer the above question, we pay attention to the fact that there is a formal
relationship between the category of F -coalgebras and the category of F op-algebras
[27]:

Proposition 3.4.1. Let C be any category. Then the category CF of F -coalgebras
arises formally as the category ((Cop)F

op
)op.

This fact can be generalized to arbitrary dialgebras:

Proposition 3.4.2. Let C be any category. Then the category CGF of 〈G,F 〉-
dialgebras arises formally as the category ((Cop)F

op

Gop)op.

Therefore, whenever C is non-self-dual (e.g. when C= Set), our problem seems
to have no simple answer (also, see [26]). However, self-dual bases provide us with
an advantage:

Proposition 3.4.3. Let C be self-dual (see Definition 1.2.27), and let F,G be end-
ofunctors on C. Then

CGF
∼= (CFG)op.

In other words, we have a (contravariant) isomorphism of categories of dialgebras
whenever the base category is isomorphic to its dual.
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3.5 Universal dialgebra on the Chu construction

Eventually, we fix C= Chu = ChuΓ for some fixed nonempty set Γ, and study
some specific properties of the category ChuFG for some fixed endofunctors F,G.
One pleasant thing about Chu is that it is bicomplete (and also, balanced). There-
fore, all the statements proven in the previous sections apply to it. Below we give
more detailed statements regarding the above.

First of all, let us take a look at the detailed structure of a relation between two
Chu spaces. For Chu spaces A = 〈A, r,X〉 ,B = 〈B, s, Y 〉, the categorical product
A&B has the form 〈A×B,w,X t Y 〉, as was discussed before. Now, the following
corollary to Proposition 3.2.10 characterizes the relations between Chu spaces.

Corollary 3.5.1. Let A = 〈A, r,X〉 ,B = 〈B, s, Y 〉 be Chu spaces. Then every
relation 〈R, π1, π2〉 between A,B can be viewed as a monic arrow ϕ : R� A&B and
vice versa. For R = 〈C, t, Z〉 and monic ϕ : R� A&B, the function ϕ+ : C → A×B
is injective while ϕ− : X t Y → Z is surjective.

Proof. Use Propositions 3.2.10 and 2.3.11. �

Next, the graph arrow of Chu transforms:

Proposition 3.5.2. Let A = 〈A, r,X〉 ,B = 〈B, s, Y 〉 be Chu spaces. For every Chu
transform f : A −→ B we have

Grf =
〈
Grf+ ,

[
1X , f

−]〉 ,
where Grf and Grf+ denote the graph arrows of f and f+ in the categories Chu and
Set, respectively, and [1X , f

−] denotes the unique arrow that makes the following
diagram commute. In this diagram, the top arrows are the obvious inclusions:

X t YX

X

Y

[1X ,f−]

1X f−

Proof. This easily follows from the properties of the graph arrow in Diagram 3.4.
�

Now we turn to limits and colimits. Following Theorem 3.3.3:

Corollary 3.5.3. (1) The forgetful functor U : ChuFG −→ Chu creates and pre-
serves all types of limits that the functor G preserves.

(2) The forgetful functor U : ChuFG −→ Chu creates and preserves all types of
colimits that the functor F preserves.
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In the same manner, one can deduce corollaries from Theorems 3.3.4 and 3.3.5
when C= Chu.

Finally, we state the analog of Proposition 3.4.3:

Proposition 3.5.4. We have

ChuGF
∼= (ChuFG)op.



Chapter 4

The Double Category of Paired
Dialgebras on Chu

As we mentioned in Chapter 1, the theory of universal dialgebra was first devel-
oped over the category Set [56]. There are a number of possible stages of expanding
the theory in various ways. In the first stage of expansion, the base category Set
might well be generalized to some other bicomplete category. What we did in the
previous chapter was taking a few steps just in that direction. More precisely, we
observed how the category Chu can serve as a substitute for Set.

In the second stage, one may try to generalize the concept of “universal dialge-
bra” itself to an even broader framework. Here, equipped with all the eesential tools
having been developed in the previous chapters, we are to enter that second stage,
which constitues the main part of the current thesis.

In this chapter we introduce double categories firstly (Section 4.1). Then, we will
introduce the main formalism of the present thesis, i.e., the DLCΓ,Σ construction
(Section 4.2), and we will show that the construction is well-defined. Lastly, we will
investigate some of the basic properties of the formalism (Section 4.3).

4.1 Double categories

Our “second-stage” generalization of universal dialgebra utilizes the language of
double categories. Double categories were introduced by C. Ehresmann and have
been further developed by several people since then (see [21] and the references
therein). The notion of double category might be seen as a “two-dimensional” gener-
alization of the very notion of category. That is to say, whereas in ordinary cateogries
we used to deal with objects (“zero-dimensional points”, diagrammatically) and
morphisms (“one-dimensional arrows”), in double categories we have objects (the
so-called “0-cells”), horizontal morphisms (“horizontal 1-cells”), vertical morphisms
(“vertical 1-cells”), and 2-cells. This way, then, ordianry categories can be seen as
special cases of double categories when some of the double-categorical structure is
trivialized. It is worth noting that there also exist other two-dimensional general-
izations of ordinary categories, namely 2-categories and bicategories. We intend to
mention the fact that double categories–together with their “weak” versions–include

73
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2-categories and bicategories as special cases (see Remark 4.1.6).

It is important to know that development of a theory of double categories can be
done in various ways. The usual method is to introduce them as internal categories
either in CAT or in Cat. This is exactly the approach we take in the present work.
However, there is another approach in the literature that develops the theory based
on the theory of indexed categories (see [22]); last but not least, some authors be-
lieve that double categories are worth an independent treatment, directly founded
on basic category theory [22].

In Section 1.3 we introduced internal categories. Now, we proceed as the follow-
ing. The material in this section is borrowed from [4, 19, 20, 21, 22, 38, 39, 54, 60, 67].

Definition 4.1.1. (1) A (large) double category is an internal category D =
〈A,B,s, t, i, ./〉 in CAT.

(2) Likewise, a small double category is an internal category in Cat.

(3) A double category is said to be properly large if it is not small.

Remark 4.1.2. The following explanations may help the reader obtain a better
understanding of the notion of double category. A double category

D = 〈A,B,s, t, i, ./〉

consists of an “object of objects” A, an “object of arrows” B, a “source” s, a “tar-
get” t, an “identity” i, and a “composition” ./. Then, as D is internal to CAT, it
follows that A and B are themselves categories, and s, t, i, ./ are themselves func-
tors.

Therefore, B itself has a class of objects Bobj and a class of morphisms Bmor,
together with source and target maps

b0, b1 : Bmor
−→−→ Bobj,

and similarly for A:

a0,a1 : Amor
−→−→ Aobj.

Also, each of the functors s = 〈s0,s1〉 and t = 〈t0, t1〉 consists of a map on objects
and a map on morphisms. Diagram 4.1 depicts all of these maps together.



4.1. DOUBLE CATEGORIES 75

BobjBmor

Amor Aobj

b0

b1

a1

a0

s1 t1 s0 t0

Diagram 4.1

In this diagram, the following commutativity conditions hold:

aks1 = s0bk, k = 0, 1; (∗)
akt1 = t0bk, k = 0, 1. (∗∗)

On the other hand, each of i, ./ is itself composed of a function on objects as
well as a function on arrows. That is, we have functions

i0 : Aobj −→ Bobj,

i1 : Amor −→ Bmor,

and also
./0: (B×A B)obj −→ Bobj,

./1: (B×A B)mor −→ Bmor.

Let the compositions in A,B be denoted by ◦A, ◦B, respectively. Then, by functo-
riality of s, t we have for any c,d ∈ Bmor,

smor(d ◦B c) = smor(d) ◦A smor(c),

tmor(d ◦B c) = tmor(d) ◦A tmor(c).

From the functoriality of a0,a1, b0, b1 we find

bki1 = i0ak, k = 0, 1.

Also, the functoriality of ./ amounts to

bk ./1 (d, c) =./0 (bk(d), bk(c), k = 0, 1

for c,d ∈ Bmor, and

./1 (d ◦B c, f ◦B e) =./1 (d, f)◦B ./1 (c, e),

for c,d, e, f ∈ Bmor, whenever all the above compositions are defined.

Now we analyze the subject from a different viewpoint. What the above formal-
ism actually gives us is four classes of “things”. We interpret these “things” in the
following manner:
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X we regard Aobj as the class of 0-cells;

X we regard Amor as the class of horizontal 1-cells;

X we regard Bobj as the class of vertical 1-cells; and

X we regard Bmor as the class of 2-cells.

Let us look at what a 2-cell in Bmor looks like. It has a source and target in
Amor, so it has a “source horizontal 1-cell” and a “target horizontal 1-cell”; but it
also has a source and target in Bobj, thus it has a “source vertical 1-cell” and a
“target vertical 1-cell”. The commutativity conditions (∗) and (∗∗) of Diagram 4.1
tell us that the corners of the adjacent 1-cells match up. The result looks like the
cell structure sketched in Diagram 4.2. Notice that the horizontal and vertical
arrows in that diagram are depicted by different shapes of arrowheads, in order to
distinguish between the horizontal and vertical 1-cells.

target vertical 1-cell
∈ Bobj

source horizontal 1-cell
∈ Amor

source vertical 1-cell
∈ Bobj

target horizontal 1-cell
∈ Amor

0-cell
∈ Aobj

0-cell
∈ Aobj

0-cell
∈ Aobj

0-cell
∈ Aobj

2-cell
∈ Bmor

Diagram 4.2 The cell structure

Now let us see what kinds of compositions we have here. There are two things
that are going on here. First of all, the fact that B and A are themselves cate-
gories means that each of them is equipped with a composition, namely ◦B and ◦A.
The composition ◦B composes the adjacent 2-cells along the vertical 1-cells, while
the composition ◦A composes the adjacent horizontal 1-cells along the 0-cells. The
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commutativity conditions (∗) and (∗∗) of Diagram 4.1 ensure that these two com-
positions are compatible with each other. The result is the horizontal composition
sketched in Diagram 4.3.

•••

•••

gf

kh

c d

•

• •

•
g ◦A f

k ◦A h

d ◦B c

Diagram 4.3

On the other hand, we have the internal composition bifunctor ./= 〈./0, ./1〉.
This internal composition provides a way for vertical composition of stacked cell
structures, as sketched in Diagram 4.4.

••

••

••

u

v

u′

v′

c

d

•

• •

•

u ./0 v

u′ ./0 v
′c ./1 d

Diagram 4.4

Remark 4.1.3. Notice that we have adopted different notational conventions for
horizontal and vertical compositions; namely, we have used the “pasting order” for
./ (so that c ./ d abbreviates ./ (c,d)), while we have used the usual “algebraic
order” for ◦A, ◦B.

Now, these horizontal and vertical compositions must satisfy the previously-
mentioned equations (Remark 4.1.2). For example, for 2-cells c,d, e, f in Diagram
4.5 we have

(d ◦B c) ./ (f ◦B e) = (c ./ e) ◦B (d ./ f).
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•••

•••

•••

c d

e f

Diagram 4.5

Next, we pay attention to further structures that “emerge” from our formalism
of double categories.

Proposition 4.1.4. The A-objects (i.e. the 0-cells) together with the B-objects (i.e.
the vertical 1-cells) form a category.

Proof. For every B-object u, seen as an arrow between two A-objects, the domain
and codomain are given by sobj(u) and sobj(u), respectively. Also, consecutive B-
objects u, v compose as u ./0 v. Identity morphisms are given by i0 : Aobj −→ Bobj.
Finally, the composition ./0 is associative. �

By similar reasoning one can prove:

Proposition 4.1.5. The class of A-morphisms (i.e. the horizontal 1-cells) together
with the class of B-morphisms (i.e. the 2-cells) form a category, for which the
composition is given by ./1.

Remark 4.1.6. It is worth noting here that if all the vertical 1-cells happen to
be identities (i.e., if A is a discrete category), then the double cateogry reduces to
what is called a 2-category in the literature. Also, if all the horizontal 1-cells are
identities, then the result will be another 2-category. Thus, every double category
yields two different 2-categories as special cases. For more on 2-cateogries and their
relationships to double categories and other closely-related concepts (such as their
respective “weak” versions), the reader is referred to [15, 31, 57, 58, 62].

Next, we give another important definition.

Definition 4.1.7. The transpose of a double category D = 〈A,B,s, t, i, ./〉 is the
double category

DT def

= 〈A′,B′,s′, t′, i′, ./′〉,

where A′ is the category introduced in Proposition 4.1.4, and B′ is the category
introduced in Proposition 4.1.5; the source functor s′ is given as the pair 〈a0, b0〉
while t′ is defined as 〈a1, b1〉; the functor i′ is made of the identity functions of
A,B, and finally, the composition bifunctor ./′ comes from the compositions of the
categories A,B.
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In other words, DT is the double category which consists of the same 0-cells, 1-
cells, and 2-cells as of D, but in which the roles of horizontal and vertical categories
are interchanged.

Remark 4.1.8. It follows immediately that by transposing the transposed category
DT we return to the original cateogry D:

(DT)T = D.

Definition 4.1.9. Let D be a double category, and let Diagram 4.6 be a cell struc-
ture in D.

NM

M ′ N ′

f

g

vu
c

Diagram 4.6

The boundary of the 2-cell c is defined as the 4-tuple f
u v

g

 ,

and the situation is denoted by  f
u c v

g

 .

Definition 4.1.10. A double category D is said to be flat if its 2-cells are completely
determined by their boundaries. In such case, then, for a cell structure like Diagram
4.6 we write:

c =

 f
u v

g

 .

Definition 4.1.11. Let D = 〈A,B,s, t, i, ./〉 be a double category. The horizontal
dual of D, denoted by D↔, is defined as

D↔ def

= 〈Aop,Bop,s↔, t↔, i↔, ./↔〉,

for which we have
A

op
obj = Aobj, B

op
obj = Bobj;
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∀f : (f ∈ Amor iff f op ∈ Aop
mor),

∀c : (c ∈ Bmor iff cop ∈ Bop
mor);

s↔0
def

= s0,

∀cop ∈ Bop
mor : s↔1 (cop)

def

= (s1(c))op;

t↔0
def

= t0,

∀cop ∈ Bop
mor : t↔1 (cop)

def

= (t1(c))op;

i↔0
def

= i0,

∀f op ∈ Aop
mor : i↔1 (f op)

def

= (i1(f))op;

./↔0
def

= ./0,

∀cop,dop ∈ Bop
mor : cop./↔1 d

op def

= (c./1d)op.

Definition 4.1.12. Let D = 〈A,B,s, t, i, ./〉 be a double category. The vertical
dual of D, denoted by Dl, is defined as

Dl def

= ((DT)↔)T.

Remark 4.1.13. Therefore, the vertical dual Dl will have the following data:

Dl = 〈A,Bl,sl, tl, il, ./l〉,

where Bl is the category consisting of a class of objects Blobj and a class of mor-
phisms Blmor such that

Blobj
def

= (A′)op
mor

where A′ was given in Definition 4.1.7, and

∀v : (vl ∈ Blobj iff v ∈ Bobj)

∀vl ∈ Blobj : sl(vl) = t(v),

∀vl ∈ Blobj : tl(vl) = s(v),

∀X ∈ Aobj : il(X) = (i(X))l,

∀
〈
vl, wl

〉
∈ Blobj ×Aobj

Blobj : vl ./
l
0 w
l = (w ./0 v)l.

Also,
Blmor = (B′)op

mor,

where B′ was given in Definition 4.1.7, and

∀c : ((vl
cl

=⇒ wl) ∈ Blmor iff (v
c

=⇒ w) ∈ Bmor),
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∀cl ∈ Blmor : sl(cl) = t(c),

∀cl ∈ Blmor : tl(cl) = s(c),

∀f ∈ Amor : il(f) = (i(f))l;

further, for every composable arrows cl,dl in Bl there is a horizontal composition
as

dl ◦Bl cl = (d ◦B c)l;

finally, for every 〈cl,dl〉 ∈ Blmor ×Amor B
l

mor there is a vertical composition given
by

cl ./l dl = (d ./ c)l.

Definition 4.1.14. Let D = 〈A,B,s, t, i, ./〉 be a double category. The central
dual of D, denoted by D�, is defined as

D� def

= (D↔)l.

Remark 4.1.15. Let D8 denote the dihedral group of order 8, corresponding to the
symmetry group of a square [5, 50]; that is

D8
def

= 〈a, b | a4 = b2 = e, bab = a−1〉,

where a, b are two generators and e is the identity element of the group. As stated
in [22], for any double category D, the group D8 acts on D. In particular, we have

D� = (D↔)l = (Dl)↔;

that is, horizontal dualization commutes with vertical dualization. Other useful
relations are

(D↔)T = (DT)
l
; (DT)↔ = (Dl)T

;

(D↔)↔ = (Dl)l = (D�)� = (DT)T = D.

Remark 4.1.16. It is sometimes better to view the notion of double category to-
gether with its transpose, its horizontal, vertical, and central duals in the following
schematic way. This viewpoint has the advantage that it respects, and clearly man-
ifests, the two-dimensional nature of the cell structures in double categories.

Let D = 〈A,B,s, t, i, ./〉 be a double category, and DT = 〈A′,B′,s′, t′, i′, ./′〉
be its transpose. We know that

Bmor = B′mor,

that is, every 2-cell c ∈ Bmor is at the same time a 2-cell in B′mor and vice versa.
Therefore, we can depict c as an inclined double-arrow in the cell structure of Dia-
gram 4.7. In this diagram, the inclined double-arrow represents the 2-cell c both as
a member of Bmor within D (i.e., as an arrow from the leftmost vertical arrow to
the rightmost vertical arrow) and as a member of B′mor within DT (i.e., as an arrow
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••

• •

c

Diagram 4.7

from the uppermost horizontal arrow to the lowermost horizontal arrow). This way,
the 2-cell c is truly regarded as a “two-dimensional arrow” capable of doing two
different duties in two different dimensions.

Consequently, the cell structures in D together with those in its horizontal, verti-
cal, and central duals can easily be depicted as the following (Diagram 4.8). (There

••

• •

• •

••

• •

••

••

• •

D D↔

Dl D�

Diagram 4.8

are also four other cell structures, with the vertical and horizontal 1-cells inter-
changed, corresponding to the transposes of each of the above cell structures.)

Next, we take a look at horizontal isomorphisms.

Definition 4.1.17. Let the following be a cell structure in a double category
D = 〈A,B,s, t, i, ./〉:

YX

X ′ Y ′

f

g

vu c
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Then, the 2-cell c is called a horizontal isomorphism from u to v if

c : u ∼= v

is an isomorphism in B, with inverse c−1. Note that it follows from this definition
and from the functoriality of s, t that:

(1) both of the horizontal 1-cells f, g must be isomorphisms in A, with inverses
f−1, g−1, respectively; and

(2) the boundary of c−1 shall be
(

f−1

u v
g−1

)
.

In such case, then, the 2-cell

(
f−1

u c−1 v
g−1

)
is called the horizontal inverse to the

2-cell
(

f
u c v

g

)
.

Remark 4.1.18. For flat double categories, the above situation simplifies to:

c =

 f
u v

g

 ; c−1 =

 f−1

u v
g−1

 .

Definition 4.1.19. (1) For the double category D as above, the 2-cell c is called
a vertical isomorphism from f to g if c is a horizontal isomorphism in DT.

(2) For the double category D as above, the 2-cell c is called a a central isomor-
phism from 〈u, f〉 to 〈v, g〉 if c is both a horizontal isomorphism from u to
v and a vertical isomorphism from f to g.

Remark 4.1.20. There are also other kinds of isomorphisms and equivalences de-
finable in double categories. See for example [22].

Now we introduce another fundamental concept:

Definition 4.1.21. Let D = 〈A,B,s, t, i, ./〉 and E = 〈X,Y,p,q,j,~〉 be two
double categories. A double functor F : D −→ E consists of the following data:

F
def

=
〈
F0,F1

〉
,

where F0 : A−→ X and F1 : B−→ Y are functors that make Diagram 4.9 com-
mute. In this diagram, 〈B×A B, π1, π2〉 is the pullback of t,s, while 〈Y×X Y, π′1, π

′
2〉

is the pullback of q,p; also,

(F1π1,F1π2) : B×A B−→ Y×X Y

is the unique arrow according to the universality of 〈Y×X Y, π′1, π
′
2〉.

Remark 4.1.22. A double functor F : D −→ E is sometimes called a double dia-
gram in E, especially when working with limits and colimits. The double diagram
F is said to be small whenever D is a small double category.



84CHAPTER 4. THE DOUBLE CATEGORYOF PAIRED DIALGEBRAS ON CHU

Y

B Y

B

Y×X Y

A

B×A B

X

Y

B

B

Y

./ ~

π1
π2

π′1
π′2

t
s

q
p

i j

F1

F1

F1

F1

F0

(F1π1,F1π2)

Diagram 4.9

Definition 4.1.23. (1) Let D = 〈A,B,s, t, i, ./〉 be a double category. The dou-
ble functor

IdD
def

= 〈1A, 1B〉
is called the identity double functor on D.

(2) We define a composition for double functors; that is, for consecutive F, G:

G◦F def

=
〈
G0F0, G1F1

〉
.

It is immediate that G◦F satisfies the commutativity conditions of Diagram
4.9, and, hence, is well-defined.

(3) A double functor F : D −→ E is called an isomorphism double functor if
there exists another double functor G : E −→ D such that

F◦ G= IdE, G◦F= IdD.

In such case, we may denote the isomorphism situation by F : D ∼= E.

(4) A constant double functor K=
〈
K0,K1

〉
: D −→ E is a double functor in

which both K0,K1 are constant functors.

Proposition 4.1.24. A double functor F=
〈
F0,F1

〉
is an isomorphism if and only

if F0,F1 are isomorphisms as ordinary functors.
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Proof. The “Only if” side is obvious. We prove the “If” side. Assume that D,E
are double categories and F =

〈
F0,F1

〉
: D −→ E is a double functor from D to

E such that both F0,F1 are (ordinary) isomorphism functors. Thus, F0,F1 have
corresponding inverses, namely (F0)−1, (F1)−1. It suffices to show that the pair

F−1 def

=
〈
(F0)−1, (F1)−1

〉
actually forms a double functor from E to D. Referring to Diagram 4.9, we do the
following observation: by replacing all F0,F1 with (F0)−1, (F1)−1, the unique arrow
(F1π1,F1π2) : B×A B−→ Y×X Y finds an inverse(

(F1)−1π′1, (F
1)−1π′2

)
: Y×X Y−→ B×A B.

Consequently, the whole diagram again commutes, and therefore, F−1 : E −→ D is
a well-defined double functor. �

Definition 4.1.25. Let F : D −→ E be a double functor between double categories
D = 〈A,B,s, t, i, ./〉 and E = 〈X,Y,p,q,j,~〉. The transpose of F is the double
functor FT : DT −→ ET defined canonically. That is,

FT def

=
〈
(FT)0, (FT)1

〉
: 〈A′,B′,s′, t′, i′, ./′〉 −→ 〈X′,Y′,p′,q′,j′,~′〉,

with functors (FT)0 : A′ −→ X′ and (FT)1 : B′ −→ Y′ defined as the following:

∀C ∈ A′obj : (FT)0(C)
def

= F0(C);

∀u ∈ A′mor : (FT)0(u)
def

= F1(u);

∀f ∈ B′obj : (FT)1(f)
def

= F0(f);

∀c ∈ B′mor : (FT)1(c)
def

= F1(c).

It is easy to check the commutativity conditions of 4.9 for FT. For example,
the equation (FT)0s′ = p′(FT)1 follows from the definition of s′,p′ and from the
functoriality of F0,F1, and so on.

Now we introduce a concept from group theory [5, 50].

Definition 4.1.26. The Klein four-group is the group defined as

V4
def

= 〈a, b | a2 = b2 = [a, b] = e〉,

where a, b are two generators, and [a, b]
def

= aba−1b−1 is the commutator of a, b. The
underlying set of V4 has four elements (hence the name “four-group”):

V4 = {e, a, b, ab}.

V4 is abelian, a subgroup of the dihedral group D8, and the smallest non-cyclic
group. Also, geometrically, V4 is the symmetry group of a rhombus and of a rectangle
which are not squares, the four elements of the symmetry group being identity,
vertical reflection, horizontal reflection, and 180° rotation (Diagram 4.10).
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••

Diagram 4.10

We need the group V4 for the next definition:

Definition 4.1.27. A double category D is said to be Klein-invariant or V4-
invariant if there exist the following isomorphism double functors:

(−)# : D↔ ∼= D,
(−)? : Dl ∼= D.

(−)# and (−)? are called the horizontal self-duality and the vertical self-
duality of D, respectively.

Remark 4.1.28. It follows immediately that for every Klein-invariant double cat-
egory D we have

D ∼= D↔ ∼= Dl ∼= D�,

where the composite isomorphism

(−)}
def

= (−)# ◦ (−)? = (−)? ◦ (−)# : D� ∼= D

is called the central self-duality of D.

There is another useful definition (which is not used in the present work but may
be useful for future development):

Definition 4.1.29. (1) A double category D is said to be self-transpose if

DT ∼= D.

(2) D is said to be strictly self-transpose if

DT = D.

Next, we turn to transformations between double functors [22].
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Definition 4.1.30. Let F, G : D −→−→ E be double functors from D = 〈A,B,s, t, i, ./〉
to E = 〈X,Y,p,q,j,~〉. A horizontal (natural) transformation h : FV G

assigns

(1) a family of X-morphisms (horizontal 1-cells) hC : F0(C) −→ G0(C) for each
A-object (0-cell) C,

(2) a family of Y-morphisms (2-cells)

(
hC

F1(u) hu G1(u)
h′C

)
for each B-object (vertical

1-cell) u : C ⇀ C ′,

so that the following preservation and naturality conditions hold:

(HT1)

(
hC

F1(i(C)) hu G1(i(C))
h′C

)
=

(
hC

j(F0(C)) hu j(G0(C))
h′C

)
for every C ∈ A;

(HT2) hu./v = hu ~ hv for all u, v ∈ Bobj;

(HT3) hv ◦F1(c) = G1(c) ◦ hu for every
(

f
u c v
g

)
in D (Diagram 4.11).

•••

•••

G1(v)F1(v)F1(u) hvF1(c)

•••

•••

G1(v)G1(u)F1(u) G1(c)hu

Diagram 4.11

Remark 4.1.31. It follows that the arrows hC : F0C −→ G0C give a natural
transformation F0 •−−→ G0.

Remark 4.1.32. If E is flat, then (HT1) and (HT2) are trivially satisfied while
(HT3) reduces to ordinary naturality. A horizontal transformation h : FV G

reduces thus to a natural transformation 〈hC : F0C −→ G0C〉C such that, for every
vertical 1-cell u : C ⇀ C ′ in D, the boundary hC

F1u G1u
h′C


determines a unique 2-cell.
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Horizontal transformations compose canonically:

Definition 4.1.33. Given h = 〈〈hC〉C , 〈hu〉u〉FV Gand k = 〈〈kC〉C , 〈ku〉u〉 GV H,
their (horizontal) composition is defined as

k ◦ h def

= 〈〈kC ◦ hC〉C , 〈ku ◦ hu〉u〉 : FV H.

Likewise, one can define identity horizontal (natural) transformations, horizon-
tal natural isomorphisms, etc.

Next, we take a look at (horizontal) limits and colimits.

Definition 4.1.34. Let F : D −→ E be a double diagram in E (see Remark 4.1.22).
Also, let K : D −→ E be a constant double functor.

(1) A horizontal natural source for Fis a horizontal transformation h : KV F.

(2) A horizontal natural sink for F is a horizontal transformation h : FV K.

(3) A horizontal limit for F is a horizontal natural source L
l

V F which is

universal in the sense that for any other horizontal natural source K
k

V F,
there exists a unique horizontal transformation h : KV L such that

k = l ◦ h.

(4) A horizontal colimit for F is a horizontal natural sink F
c

V C which is

universal in the sense that for any other horizontal natural sink F
k

V K, there
exists a unique horizontal transformation h : CV K such that

k = h ◦ c.

This way, we can have (binary) horizontal products and coproducts, horizontal
pullbacks and pushouts, etc.

4.2 The main formalism

First of all, we introduce an auxiliary category, which will be used in the sequel.

Definition 4.2.1. Consider the category Chu = ChuΓ for some fixed nonempty
Γ. By the fluid category on Chu, denoted by FluidChu, we mean the category
which consists of the following data:

• Objects: all dialgebras of the form 〈A, FA α−−→ GA〉, where A ∈ Chu is a
Chu space, F and G are Chu endofunctors, and α is a Chu transform. More
precisely, we take

(FluidChu)obj

def

=
•⋃
F,G

(
ChuFG

)
obj
,

where the right hand side is the disjoint union of classes.
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• Morphisms: if 〈A, α〉 , 〈B, β〉 are two objects with 〈A, α〉 ∈ ChuF
1

G1 and

〈B, β〉 ∈ ChuF
2

G2 for endofunctors F 1, F 2, G1, G2, then

– for A 6= B, there are no morphisms between 〈A, α〉 , 〈B, β〉;
– but for A = B, the morphisms are pairs of the form
〈ϕ, ψ〉 : 〈A, α〉 −→ 〈B, β〉, where

ϕ : F 1A −→ F 2A, ψ : G1A −→ G2A

are Chu transforms that make Diagram 4.12 commute.

G1AF 1A

F 2A G2A

A

A

α

ϕ

β

ψ1A

Diagram 4.12

The pair 〈ϕ, ψ〉 is called a local transformation from 〈F 1, G1〉 to 〈F 2, G2〉.

• Composition: the pairs 〈ϕ, ψ〉 : 〈A, α1〉 −→ 〈A, α2〉 and 〈ϕ′, ψ′〉 : 〈A, α2〉 −→
〈A, α3〉 compose componentwise:

〈ϕ′, ψ′〉 ◦ 〈ϕ, ψ〉 def

= 〈ϕ′ϕ, ψ′ψ〉 .

• Identities: pairs 〈1FA, 1GA〉 for each object
〈
A, FA

α−−→ GA
〉

.

The category FluidChu is intended to serve as one of the resources for our main
formalism:

Definition 4.2.2. Consider the category Chu = ChuΓ for some fixed nonempty
set Γ. Also, let Σ ∈ Set be a fixed set (possibly empty). The (properly large) double
category DLCΓ,Σ is defined by the following data:

DLCΓ,Σ
def

= 〈A,B,s, t, i, ./〉,

such that categories A,B and functors s, t, i, ./ are defined as below:

a. The category A. The category A (the “object of objects”) is defined as the
following:

a.1. Objects of A. The A-objects (the 0-cells) are pairs

P
def

= 〈D,S〉



90CHAPTER 4. THE DOUBLE CATEGORYOF PAIRED DIALGEBRAS ON CHU

such that
a.1.1. D = [ AB ] is a pair called a dialgebra column, where A = 〈A, α〉 is an
〈F,G〉-dialgebra in ChuFG for endofunctors F,G, while B = 〈B, β〉 is a 〈K,H〉-
dialgebra in ChuKH for endofunctors K,H;
a.1.2. S = 〈S+, S−〉 is a pair of functions

S+ : Σ −→ F+A tK+B,

S− : Σ −→ G−A tH−B;

S is called a super-matrix. Furthermore, the functorial profile of P is defined
as

ΦP
def

=

[
F G
K H

]
.

a.2. Morphisms of A. For 0-cells P1 = 〈D1,S1〉 and P2 = 〈D2,S2〉, if ΦP1 6= ΦP2 ,
then there are no A-morphisms between them; but if ΦP1 = ΦP2 = [ F G

K H ] with

Dj =

[
Aj

Bj

]
, Aj ∈ ChuFG, Bj ∈ ChuKH , j = 1, 2,

the A-morphisms (the horizontal 1-cells) are pairs of the form

h : P1 −→ P2,

where h =
[
f
g

]
is a pair such that f : A1 −→ A2 is an 〈F,G〉-dialgebra homo-

morphism in ChuFG while g : B2 −→ B1 is a 〈K,H〉-dialgebra homomorphism in
ChuKH , and Diagram 4.13 commutes, in which the left and right diamonds are called
the Positive and Negative Horizontal Super-adjointness conditions, or briefly
PHS and NHS, respectively (in this diagram, also, f, g are the stems of f ,g, re-
spectively).

Σ

F+A1 tK+B1

F+A2 tK+B1

F+A2 tK+B2

G−A1 tH−B1

G−A1 tH−B2

G−A2 tH−B2

PHS NHS

S+
1F+ft1

S+
21tK+g

S−1 1tH−g

S−2 G−ft1

Diagram 4.13

a.3. Composition in A. For horizontal 1-cells h,k with h =
[
f1
g1

]
,k =

[
f2
g2

]
,

their composition is given by

k ◦ h def

=

[
f2f1

g1g2

]
,
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with composition in each row being done in the corresponding category. The above
composition satisfies the positive and negative super-adjointness conditions and,
hence, is well-defined (see Step 1 of the proof of Proposition 4.2.3 below).

a.4. Identities in A. For a 0-cell P = 〈D,S〉,

1P
def

=

[
1A

1B

]
,

where 1A, 1B are the identity dialgebra homomorphisms on A,B, respectively.

b. The category B. The category B (the “object of arrows”) is defined as the
following. Before proceeding we introduce an auxiliary category:

b.1. The auxiliary category A′. Consider the category A′ consisting of the
following data:

• A′-objects: the same as objects of A:

A′obj
def

= Aobj.

• A′-morphisms: for 0-cells P1 = 〈D1,S1〉 and P2 = 〈D2,S2〉 with

Di =
[
Ai

Bi

]
,Ai = 〈A, αi〉 ∈ ChuF

i

Gi ,Bi = 〈B, βi〉 ∈ ChuK
i

Hi , i = 1, 2, the
morphisms are pairs of the form

v
def

=

[
〈µ, ν〉
〈θ, ζ〉

]
: P1 ⇀ P2,

where 〈µ, ν〉 : 〈A, α1〉 −→ 〈A, α2〉 and 〈θ, ζ〉 : 〈B, β1〉 −→ 〈B, β2〉 are arrows in
FluidChu, such that Diagram 4.14 commutes (the left and right triangles are
called the Positive and Negative Vertical Super-adjointness conditions,
or briefly PVS and NVS, respectively).

Σ

F 1+
A tK1+

B

F 2+
A tK2+

B G2−A tH2−B

G1−A tH1−B

PVS NVS

S1+

µ+tθ+

S2+

S1−

ν−tζ−

S2−

Diagram 4.14



92CHAPTER 4. THE DOUBLE CATEGORYOF PAIRED DIALGEBRAS ON CHU

• A′-composition: A′-morphisms compose componentwise: for v = [ l
m ] : P1 ⇀

P2 and w =
[

l′

m′

]
: P2 ⇀ P3,

w ◦ v def

=

[
l′l

m′m

]
: P1 ⇀ P3.

• A′-identities: The identities are defined componentwise; for an object P = 〈D,S〉,

1′P
def

=

[
〈1FA, 1GA〉
〈1KB, 1HB〉

]
;

that is, 1′P is defined as a pair of identity FluidChu-arrows (the notation 1′P is
used in order to avoid confusion with the identity 1P defined in part (a.4) in
the above).

Also, the above composition is associative because of associativity of FluidChu-
arrows. Therefore, A′ is indeed a category.

b.2. Objects of B. The B-objects (the vertical 1-cells) are exactly the A′-
morphisms defined above:

Bobj
def

= A′mor.

b.3. Morphisms of B. For A-objects

Pi
j =

〈
Di
j,S

i
j

〉
, Di

j =

[
Ai
j

Bi
j

]
, Ai

j =
〈
Aj, α

i
j

〉
∈ ChuF

i

Gi ,

Bi
j =

〈
Bj, β

i
j

〉
∈ ChuK

i

Hi , i, j ∈ {1, 2},

for A-morphisms

hi =

[
f i

gi

]
: Pi

1 −→ Pi
2, i ∈ {1, 2},

and for B-objects

vj =

[
〈µj, νj〉
〈θj, ζj〉

]
: P1

j ⇀ P2
j , j ∈ {1, 2},

the B-morphisms (the 2-cells), also called the cubicles, are of the form

c
def

=

 h1

v1 v2

h2

 : v1 =⇒ v2,

provided that the following four parallelograms commute (Diagram 4.15):
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F 1A1 G1A1

F 1A2 G1A2

F 2A1 G2A1

F 2A2 G2A2

K1B1 H1B1

K1B2 H1B2

K2B1 H2B1

K2B2 H2B2

µ1 ν1

µ2 ν2

θ1 ζ1

θ2 ζ2

F 1f1 G1f1

F 2f2 G2f2

K1g1 H1g1

K2g2 H2g2

Diagram 4.15

Notice the fact that the above conditions imply the commutativity of both of
the cubes in the following diagram (Diagram 4.16).

F 1A1 G1A1

F 1A2 G1B2

F 2A1 G2A1

F 2A2 G2A2

K1B1 H1B1

K1B2 H1B2

K2B1 H2B1

K2B2 H2B2

µ1

ν1

α2
1

ν2

θ1

ζ1

β2
1 ζ2

F 1f1 G1f1

F 2f2 G2f2

K1g1 H1g1

K2g2 H2g2

α1
1

α1
2

α2
2

µ2

β1
1

β1
2

β2
2

θ2

Diagram 4.16

Also, notice that the above definition means that we are defining a flat double
category since every 2-cell is completely determined by its boundary (see Definitions
4.1.9 and 4.1.10).

b.4. Composition in B. For cubicles h1

v1 v2

h2

 : v1 =⇒ v2 and

 k1

v2 v3

k2

 : v2 =⇒ v3

the composition is defined as k1

v2 v3

k2

 ◦
 h1

v1 v2

h2

 def

=

 k1h1

v1 v3

k2h2

 : v1 =⇒ v3.

b.5. Identities in B. For every vertical 1-cell v : 〈D1,S1〉⇀ 〈D2,S2〉, the identity
2-cell is defiend as

1v
def

=

 1D1

v v

1D2

 .
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c. The internal source and target functors. The functors s, t : B −→−→ A are
defined as the following:

c.1. Internal source and target on B-objects. For a B-object v : P1 ⇀ P2,

s(v)
def

= P1; t(v)
def

= P2.

c.1. Internal source and target on B-morphisms. For a B-morphism

c =
(

h1

v1 v2

h2

)
: v1 =⇒ v2 with vj : P1

j ⇀ P2
j , j = 1, 2 and hi : Pi

1 −→ Pi
2, i = 1, 2,

s(c)
def

= h1; t(c)
def

= h2.

d. The internal identity functor. The functor i : A−→ B is defined as the
following:

d.1. Internal identity on A-objects. For P = 〈D,S〉,

i(P )
def

= 1′P,

where 1′P was defined in part (b.1).

d.2. Internal identity on A-morphisms. For h : P1 −→ P2,

i(h)
def

=

 h

1′P1
1′P2

h

 : 1′P1
=⇒ 1′P2

.

e. The internal composition bifunctor. For the pullback of Diagram 4.17, the

BB×A B

B A

π2

s

t

π1

Diagram 4.17

composition bifunctor

./: B×A B−→ B

is defined as the following:

e.1. Internal composition on objects. Considering a pair

〈v,w〉 ∈ Obj(B×A B), v =

[
l

m

]
: P1 ⇀ P2, w =

[
l′

m′

]
: P2 ⇀ P3,
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and abbreviating ./ (v,w) as v ./ w, we define

v ./ w
def

= w ◦A′ v =

[
l′l

m′m

]
: P1 ⇀ P3,

where ◦A′ is composition in the category A′ (see parts (b.1), (b.2)).

e.1. Internal composition on morphisms. Considering a pair

〈c,d〉 ∈ Mor(B×A B)

with

c =

 h1

v1 v2

h2

 : v1 =⇒ v2, vj : P1
j ⇀ P2

j , j = 1, 2,

d =

 h2

w1 w2

h3

 : w1 =⇒ w2, wj : P2
j ⇀ P3

j , j = 1, 2,

we define

c ./ d
def

=

 h1

v1 ./ w1 v2 ./ w2

h3

 : v1 ./ w1 =⇒ v2 ./ w2.

Whenever Γ,Σ are clear from the context, we denote the double category DLCΓ,Σ

by DLC. The initialism “DLC” stands for “the properly large flat Double category
of paired Dialgebras and dialgebra homomorphisms, paired Local transformations,
and Cubicles on Chu”.

We need to show that Definition 4.2.2 is well-defined.

Proposition 4.2.3. DLC as defined in Definition 4.2.2 is well-defined.

Proof. We prove this through the following steps:

Step 1. Composition in A is well-defined.

The composition of h =

[
A1

f−→A2

B2

g−−→B1

]
and h′ =

[
A2

f ′−−→A3

B3

g′−−→B2

]
was given by

h′ ◦Ah =

[
A1

f ′f−−→A3

B3

gg′−−−→B1

]
.

Well-definedness of the above composition is proved by the commutativity of the
following diagrams (Diagrams 4.18, 4.19). The former diagram guarantees the PHS
condition to hold for h′ ◦Ah, while the latter verifies NHS.
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Σ

F+A1 tK+B1F+A2 tK+B1

F+A2 tK+B2

F+A3 tK+B2 F+A3 tK+B3

F+A3 tK+B1

S+
1

F+ft1K+B1

1F+A2
tK+g

F+f ′t1K+B2

1F+A3
tK+g′

S+
2

S+
3

F+f ′t1K+B1

1F+A3
tK+g

F+(f ′f) t 1K+B1

1F+A3
tK+(gg′)

Diagram 4.18

Step 2. The identity and associativity propoerties hold for A-morphisms. Given

Pj = 〈Dj,Sj〉 , Dj =
[
Aj

Bj

]
, j = 1, 2, it is clear that 1Pj

=
[

1Aj

1Bj

]
, j = 1, 2 are

actually the identity morphisms on Pj since

h ◦ 1P1 =

[
f ◦ 1A1

g ◦ 1B1

]
=

[
f
g

]
=

[
1A2 ◦ f
1B2 ◦ g

]
= 1P2 ◦ h

for every h =
[
f
g

]
: P1 −→ P2.

With a similar line of reasoning, as f ,g are dialgebra homomorphisms for every
h =

[
f
g

]
∈ A, the associativity of A-morphisms is verified.

Step 3. Composition in A′ is well-defined.
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Σ

G−A3 tH−B3G−A2 tH−B3

G−A2 tH−B2

G−A1 tH−B2 G−A1 tH−B1

G−A1 tH−B3

S−3

G−f ′t1H−B3

1G−A2
tH−g′

G−ft1H−B2

1G−A1
tH−g

S−2

S−1

G−ft1H−B3

1G−A1
tH−g′

G−(ff ′) t 1H−B3

1G−A1
tH−(g′g)

Diagram 4.19

The composition of v =
[
〈µ,ν〉
〈θ,ζ〉

]
: P1 ⇀ P2 and w =

[
〈µ′,ν′〉
〈θ′,ζ′〉

]
: P2 ⇀ P3 was

given by

w ◦A′ v =

[
〈µ′µ, ν ′ν〉
〈θ′θ, ζ ′ζ〉

]
.

Well-definedness of this composition is proved by the commutativity of Diagram
4.20. In the diagram, the left half guarantees the PVS condition to hold for w ◦A′ v
while right half verifies NVS.

Step 4. B-morphisms are well-defined.

To show that the cubicles are well-defined, we observe that for the cubicle

c =
(

h1

v1 v2

h2

)
defined in part (b.2) of Definition 4.2.2, the horizontal and verti-

cal super-adjointness conditions, PHS, NHS, PVS, and NVS are compatible with
each other. In other words, Diagram 4.21 commutes. In this diagram, the upper-
left, upper-right, lower-left, and lower-right diamonds are PHS1, NHS1, PHS2, and
NHS2, respectively (the superscripts refer to the corresponding horizontal 1-cells).

Also, the front and rear parallelograms with common segment
Σ
‖
Σ

are PVS1, NVS1, PVS2,

and NVS2, respectively (the subscripts referring to the corresponding vertical 1-
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Σ

Σ

Σ

F 1+
A tK1+

B

F 2+
A tK2+

B

F 3+
A tK3+

B

G2−A tH2−B

G1−A tH1−B

G3−A tH3−B

S1+

µ+tθ+

S2+

S1−

ν−tζ−

S2−

S3+
S3−

(µ′)+t(θ′)+ (ν′)−t(ζ′)−

(µ
′µ

)
+
t

(θ
′θ

)
+

(ν
′ ν

)−
t

(ζ
′ ζ

)−

Diagram 4.20

cells). Finally, the commutativity of the front and rear lateral parallelograms follows
immediately from the commutativity of Diagram 4.15. Whence, the whole shape
commutes, and consequently, cubicle c is a well-defined arrow from v1 to v2.

Step 5. Axiom A1 of Definition 1.3.4 holds for DLC as an internal category in
CAT.

Consider the functors si : A−→ A and ti : A−→ A. For every A-object

P = 〈D,S〉, D =

〈A, FA α−−→ GA
〉〈

B, KB
β−−→ HB

〉
we have

si(P) = s

[
〈1FA, 1GA〉
〈1KB, 1HB〉

]
= P,

ti(P) = t

[
〈1FA, 1GA〉
〈1KB, 1HB〉

]
= P.

Also, for every A-morphism h : P1 −→ P2,

si(h) = s

 h

1′P1
1′P2

h

 = h,

ti(h) = t

 h

1′P1
1′P2

h

 = h.

Therefore,
si = ti = 1A.
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Σ

Σ

F 1+
A1 tK1+

B1

F 2+
A1 tK2+

B1

F 1+
A2 tK1+

B2

F 2+
A2 tK2+

B2

F 1+
A2 tK1+

B1

F 2+
A2 tK2+

B1

G1−A1 tH1−B1

G2−A1 tH2−B1

G1−A2 tH1−B2

G2−A2 tH2−B2

G1−A1 tH1−B2

G2−A1 tH2−B2

S1
1

+

S1
2

+

S1
1
−

S1
2
−

S2
1

+

S2
2

+

S2
1
−

S2
2
−

F 1+
f1t1

µ+
1 tθ

+
1

1tK1+
g1

1tH1−g1

ν−1 tζ
−
1

G1−f1t1

F 2+
f2t1

1tK2+
g2

1tH2−g2

G2−f2t1

µ+
2 tθ

+
2µ+

2 tθ
+
1

ν−2 tζ
−
2 ν−1 tζ

−
2

Diagram 4.21

Step 6. Axiom A2 of Definition 1.3.4 holds for DLC as an internal category in
CAT.

For any pair 〈v,w〉 ∈ (B×A B)obj with v : P1 ⇀ P2 and w : P2 ⇀ P3 we have

tπ2(v,w) = t(w) = P3 = t(v ./ w),

sπ1(v,w) = s(v) = P1 = s(v ./ w).

On the other hand, for a pair 〈c,d〉 ∈ (B×A B)mor with v1
c

=⇒ v2 and v2
d

=⇒ v3,

tπ2(c,d) = t(d) = v3 = t(c ./ d),

sπ1(c,d) = s(c) = v1 = s(c ./ d).

So,

tπ2 = t ./ and sπ1 = s ./,

as desired.

Step 7. Axiom A3 of Definition 1.3.4 holds for DLC as an internal category in
CAT.
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Let v : P1 ⇀ P2 be a B-object with

Pi =
〈
Di,Si

〉
, Di =


〈
A, F iA

αi

−−→ GiA
〉〈

B, KiB
βi

−−→ H iB

〉 , i = 1, 2.

Then, s(v) = P1 and t(v) = P2, thus

is(v) = 1′P1 =

[
〈1F 1A, 1G1A〉
〈1K1B, 1H1B〉

]
: P1 ⇀ P1,

it(v) = 1′P2 =

[
〈1F 2A, 1G2A〉
〈1K2B, 1H2B〉

]
: P2 ⇀ P2.

Whence, [
〈1F 1A, 1G1A〉
〈1K1B, 1H1B〉

]
./ v = v,

v ./

[
〈1F 2A, 1G2A〉
〈1K2B, 1H2B〉

]
= v.

These imply that we have the following agreement of functors on every B-object v:

./ ◦(is, 1B)(v) = 1B(v) =./ ◦(1B, it)(v). (∗)

On the other hand, assume a B-morphism c =
(

h1

v1 v2

h2

)
between B-objects

vj : P1
j ⇀ P2

j , j = 1, 2,

together with A-morphisms

hi : Pi
1 −→ Pi

2, i = 1, 2

such that
s(c) = h1, t(c) = h2.

We have

is(c) = i(h1) =

 h1

1′
P1

1
1′
P1

2

h1

 ,

it(c) = i(h2) =

 h2

1′
P2

1
1′
P2

2

h2

 .

Therefore,  h1

1′
P1

1
1′
P1

2

h1

 ./ c =

 h1

1′
P1

1
1′
P1

2

h1

 ./

 h1

v1 v2

h2


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=

 h1

v1 v2

h2


= c;

c ./

 h2

1′
P2

1
1′
P2

2

h2

 =

 h1

v1 v2

h2

 ./

 h2

1′
P2

1
1′
P2

2

h2


=

 h1

v1 v2

h2


= c.

These imply that we have the following agreement of functors on every B-morphism
c:

./ ◦(is, 1B)(c) = 1B(c) =./ ◦(1B, it)(c). (∗∗)

Now, results (∗), (∗∗) imply

./ ◦(is, 1B) = 1B =./ ◦(1B, it).

Step 8. Axiom A4 of Definition 1.3.4 holds for DLC as an internal category in
CAT.

Finally, we verify the internal associativity. Consider the bifunctors

1B×A ./ : B×A (B×A B) −→ B×A B,

./ ×A1B : (B×A B)×A B−→ B×A B,

where the pullback B×A (B×A B) is that of t,sπ1, while the pullback (B×A B)×A B

is that of tπ2,s (see Propositions 1.3.2 and 1.3.3). Assume that

v =

[
l1
l′1

]
, w =

[
m1

m′1

]
, x =

[
n1

n′1

]
are B-objects such that

〈x, 〈w,v〉〉 ∈ B×A (B×A B).

This means
t(x) = sπ1(w,v) = s(w),

and
t(w) = s(v).
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But these two conditions together are equivalent to stating that

〈〈x,w〉 ,v〉 ∈ (B×A B)×A B;

therefore,

./ ◦(1B×A ./)(x, 〈v,w〉) = x ./ (w ./ v)

=

[
n1

n′1

]
./

[
l1m1

l′1m
′
1

]
=

[
l1m1n1

l′1m
′
1n
′
1

]
=

[
m1n1

m′1n
′
1

]
./

[
l1
l′1

]
= (x ./ w) ./ v

=./ ◦(./ ×A1B)(〈x,w〉 ,v).

Similarly, for B-morphisms c,d, e it can shown that

〈c, 〈d, e〉〉 ∈ B×A (B×A B) iff 〈〈c,d〉 , e〉 ∈ (B×A B)×A B.

Now let

c =

 h1

v w

h2

 , d =

 h2

v′ w′

h3

 , e =

 h3

v′′ w′′

h4


so that 〈c, 〈d, e〉〉 is a morphism in B×A (B×A B). Then

./ ◦(1B×A ./)(c, 〈d, e〉) = c ./ (d ./ e)

=

 h1

v w

h2

 ./

 h2

v′ ./ v′′ w′ ./ w′′

h4


=

 h1

v ./ (v′ ./ v′′) w ./ (w′ ./ w′′)
h4


=

 h1

(v ./ v′) ./ v′′ (w ./ w′) ./ w′′

h4


=

 h1

v ./ v′ w ./ w′

h3

 ./

 h3

v′′ w′′

h4


= (c ./ d) ./ e

=./ ◦(./ ×A1B)(〈c,d〉 , e).

From the above results on objects and morphisms we conclude:

./ ◦(1B×A ./) =./ ◦(./ ×A1B),

and the proof is complete. �



4.3. SOME OF THE BASIC PROPERTIES 103

Remark 4.2.4. At this point, it is interesting to take a look at the transpose double
category DLCT. It consists of the following data:

DLCT = 〈A′,B′,s′, t′, i′, ./′〉,

where A′ is exactly the auxiliary category defined in part (b.1) of Definition 4.2.2;
objects of B′ are A-morphisms h =

[
f
g

]
, morphisms of B′ are the B-morphisms (i.e.

the cubicles)–this time viewed as arrows between A-morphisms–and the functors
s′, t′, i′, ./′ are determined according to Definition 4.1.7.

4.3 Some of the basic properties

Now we state and prove some basic properties of DLC. First and foremost, we
have the fundamental property of Klein-invariance. We prove this as a corollary of
Theorems 4.3.1 and 4.3.8; in these theorems, respectively, we explicitly construct
the isomorphism double functors (−)# : DLC↔ ∼= DLC and (−)? : DLCl ∼= DLC.
The Klein-invariance of DLC follows immediately afterwards. Next, we will take a
look at (binary) horizontal products and coproducts in DLC.

4.3.1 Klein-invariance

Theorem 4.3.1. For every set Σ and every nonempty set Γ, the double category
DLCΓ,Σ is horizontally self-dual.

Proof. Assume an arbitrary set Σ and an arbitrary nonempty set Γ. Consider the
double category DLC = DLCΓ,Σ. Observe that for DLC = 〈A,B,s, t, i, ./〉, the
double category DLC↔ consists of the following data:

DLC↔ = 〈Aop,Bop,s↔, t↔, i↔, ./↔〉.

Now we define
(−)# def

=
〈

(−)#0

, (−)#1
〉

: DLC↔ −→ DLC,

where (−)#0
, (−)#1

are functors we define below. Firstly,

(−)#0

: Aop −→ A

has the following data:

• on Aop-objects: for any P = 〈D,S〉 with D = [ AB ] we define

P#0 def

=

〈[
B
A

]
,S

〉
,

in which we have identified the isomorphic coproducts

F+A tK+B ∼= K+B t F+A
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and also
G−A tH−B ∼= H−B tG−A,

so that the super-matrix S = 〈Σ S+

−−−→ F+A t K+B, Σ
S−−−−→ G−A t H−B〉

remains the same;

• on Aop-morphisms: for any hop : P2 −→ P1, where h =
[
f
g

]
: P1 −→ P2 is an

A-morphism, we define

(hop)#0 def

=

[
g
f

]
: P#0

2 −→ P#0

1 .

Note that (hop)#0
satisfies the PHS and NHS conditions (in fact, the cor-

responding commutative diagram for (hop)#0
is a “vertical flip” of Diagram

4.13), hence it is a well-defined A-morphism.

On the other hand, (−)#1
: Bop −→ B is such that:

• on Bop-objects: for any v =
[
〈µ,ν〉
〈θ,ζ〉

]
: P1 ⇀ P2 we define

v#1 def

=

[
〈θ, ζ〉
〈µ, ν〉

]
: (P1)#0

⇀ (P2)#0

which satisfies the PVS and NVS conditions (with commutativity diagrams
the same as Diagram 4.14), and is thus a well-defined B-object;

• on Bop-morphisms: for any cop : v2 =⇒ v1 where

c =

 h1

v1 v2

h2

 : v1 =⇒ v2

is a B-morphism, we define

(cop)#1 def

=

 ((h1)op)#0

v2 v1

((h2)op)#0

 : v2 =⇒ v1,

which clearly satisfies the commutativity conditions of Diagram 4.15 and is,
therefore, well-defined.

Now, from the definition of s↔, the following holds for every Bop-object

v =
[
〈µ,ν〉
〈θ,ζ〉

]
: P1 ⇀ P2:

(s↔obj(v))#0

= (sobj(v))#0

= (P1)#0

= sobj(v
#1

). (1)

Also, for every Bop-morphism cop =
(

h1

v1 v2

h2

)op

: v2 =⇒ v1,

(s↔mor(c
op))#0

= ((smor(c))op)#0

= ((h1)op)#0

= smor((c
op)#1

). (2)



4.3. SOME OF THE BASIC PROPERTIES 105

Equations (1) and (2) together imply

(s↔(−))#0

= s((−)#1

). (3)

Likewise, one can deduce

(t↔(−))#0

= t((−)#1

). (4)

Next, from the definition of i↔, for every Aop-object P we have

(i↔obj(P))#1

= (iobj(P))#1

= (1′P)#1

= 1′
P#0 . (5)

Also, for every Aop-morphism hop : P2 −→ P1 where h =
[
f
g

]
: P1 −→ P2,

(i↔mor(h
op))#1

= ((imor(h))op)#1

=

 h

1′P1
1′P2

h

op#1

=

 (hop)#0

1′P2
1′P1

(hop)#0

 = imor((h
op)#0

). (6)

Equations (5) and (6) together imply

(i↔(−))#1

= i((−)#0

). (7)

Now consider Diagram 4.22. In this diagram, ρ1, ρ2 are the projections for
Bop ×Aop Bop, making the left hand side diamond commute. Now, in addition,
from (3), (4), and (7) we know that, respectively, the lower-right parallelogram, the
lower-left parallelogram, and the bottom rectangle all commute. Therefore, we have
the following equations:

t◦ (−)#1 ◦ ρ1 = (−)#0 ◦ t↔ ◦ ρ1

= (−)#0 ◦ s↔ ◦ ρ2

= s ◦ (−)#1 ◦ ρ2.

So, by universality of the pullback 〈B×A B, π1, π2〉, there exists a unique arrow(
(−)#1 ◦ ρ1, (−)#1 ◦ ρ2

)
: Bop ×Aop Bop −→ B×A B

making the upper-left and upper-right parallelograms commute. Now, in order to
prove the double functoriality of (−)#, it remains to prove the commutativity of the
top rectangle.

On objects we have

(v ./↔0 w)#1

= (v ./0 w)#1

= v#1

./0 w
#1
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B

Bop B

Bop

B×A B

Aop

Bop ×Aop Bop

A

B

Bop

Bop

B

./↔ ./

ρ1
ρ2

π1
π2

t↔

s↔
t

s

i↔ i

(−)#1

(−)#1

(−)#1

(−)#1

(−)#0

(
(−)#1◦ρ1,(−)#1◦ρ2

)

Diagram 4.22

=./0 ◦
(

(−)#1 ◦ ρ1, (−)#1 ◦ ρ2

)
(v,w);

on morphisms,

(cop ./↔1 dop)#1

= ((c ./1 d)op)#1

= (cop)#1

./1 (dop)#1

=./1 ◦
(

(−)#1 ◦ ρ1, (−)#1 ◦ ρ2

)
(cop,dop).

These complete the proof of commutativity of Diagram 4.22. Thus, (−)# is actually
a double functor.

The final step of the proof is to show that (−)# is an isomorphism. For this,
according to Proposition 4.1.24, it suffices to show that both (−)#0

and (−)#1
are

isomorphisms (as ordinary functors). More precisely, we show that the opposite
functors

(−)(#0)op

: A−→ Aop and (−)(#1)op

: B−→ Bop

are inverses to (−)#0
and (−)#1

, respectively.

For any Aop-object P = 〈D,S〉 with D = [ AB ],

(P#0

)(#0)op

=

〈[
B
A

]
,S

〉(#0)op

=

〈[
A
B

]
,S

〉
= P;
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thus, on Aop-objects, ((−)#0
)(#0)op

= 1Aop . Similarly, on A-objects, ((−)(#0)op
)#0

=
1A.

On the other hand, for any Aop-morphism hop : P2 −→ P1, where h =
[
f
g

]
:

P1 −→ P2 is an A-morphism,

((hop)#0

)(#0)op

=

[
g
f

](#0)op

=

[
f
g

]op

= hop;

that is, on Aop-morphisms, ((−)#0
)(#0)op

= 1Aop . Similarly, on A-morphisms,
((−)(#0)op

)#0
= 1A. We conclude from all the above that (−)#0

is an isomorphism.

For the case of (−)#1
the reasoning goes as the following: for any Bop-object

v =
[
〈µ,ν〉
〈θ,ζ〉

]
,

(v#1

)(#1)op

=

[
〈θ, ζ〉
〈µ, ν〉

](#1)op

=

[
〈µ, ν〉
〈θ, ζ〉

]
= v.

On the other hand, for any Bop-morphism cop where c =
(

h1

v1 v2

h2

)
is a B-

morphism,

((cop)#1

)(#1)op

=

 ((h1)op)#0

v2 v1

((h2)op)#0

(#1)op

=

 h1

v1 v2

h2

op

= cop,

so, ((−)#1
)(#1)op

= 1Bop . By a similar argument, ((−)(#1)op
)#1

= 1B. Consequently,
(−)#1

, too, is an isomorphism. This completes the proof of the horizontal self-duality
of (−)#. �

For the vertical self-duality a different line of reasoning is to be taken. First of
all, recall that the ∗-autonomous structure of Chu includes a (covariantly written)
self-duality functor

(−)∗ : Chuop −→ Chu

that sends every Chu space A = 〈A, r,X〉 to the Chu space A∗ = 〈X, r̆, A〉, and sends
every f op = 〈f+, f−〉op

: B −→ A to the Chu transform (f op)∗ = 〈f−, f+〉 : B∗ −→
A∗. To be able to work with 〈F,G〉-dialgebras, we need a contravariant version of
the above self-duality. Therefore, we define:

Definition 4.3.2. The contravariant self-duality functor (̃−) is defined as

(̃−)
def

= ( RChu)∗ : Chu −→ Chu,

for which the reverser R(−) was introduced in Definition 1.2.30.

Further, we expand the above definition to dialgebras:
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Definition 4.3.3. Let F,G be two Chu endofunctors, and let A =
〈
A, FA

α−−→ GA
〉

be an 〈F,G〉-dialgebra. Then we define

Ã
def

=
〈
A, ã : G̃A −→ F̃A

〉
,

where F̃A abbreviates (̃FA), and so on.

Proposition 4.3.4. Let 〈A, α〉 , 〈B, β〉 ∈ ChuFG. A Chu transform h : A −→ B
yields an 〈F,G〉-dialgebra homomorphism h : A −→ B if and only if h yields an〈
G̃, F̃

〉
-dialgebra homomorphism h̃ : B̃ −→ Ã. Moreover, ChuFG

∼= ChuG̃
F̃

.

Proof. In Diagram 4.23, the commutativity of the left square is equivalent to the
commutativity of the right one.

GAFA

FB GB

F̃A G̃A

G̃BF̃B

α

Fh

β

Gh

α̃

F̃h

β̃

G̃h

Diagram 4.23

It is obvious that (̃(̃A)) = A for every A and (̃(̃h)) = h for every h. So, the map

sending every A ∈ ChuFG to Ã ∈ ChuG̃
F̃

, together with the map which sends

every 〈F,G〉-dialgebra homomorphism h to the 〈G̃, F̃ 〉-dialgebra homomorphism h̃,

constitute an isomorphism functor ChuFG
∼= ChuG̃

F̃
. �

Even more—by some abuse of notation—we expand the definition of (̃−) to the
case of the category A:

Definition 4.3.5. For every A-object P = 〈D,S〉 with D = [ AB ] ,S = 〈S+, S−〉 we
define

P̃
def

=

〈[
Ã

B̃

]
, S̃

〉
,

where S̃
def

= 〈S−, S+〉. Also, for every A-morphism h =
[
f
g

]
: P1 −→ P2, we define

h̃
def

=

[
f̃
g̃

]
: P̃2 −→ P̃1.

It is evident that h̃ satisfies the PHS and NHS conditions (the corresponding

commutative diagram for h̃ is a “180° rotation” of Diagram 4.13), thus it is a

well-defined A-morphism. This way, (̃−) : A−→ A can be seen as an endofunctor.
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Proposition 4.3.6. The endofunctor (̃−) : A−→ A is a (contravariant self-duality)
isomorphism.

Proof. By definition, for every P ∈ A,
(̃
P̃
)

= P; also, for every h ∈ A we have(̃
h̃
)

= h.

�

Proposition 4.3.7. The endofunctor (̃−) : Chu −→ Chu induces a (contravariant
self-duality) isomorphism on FluidChu.

Proof. Let an endofunctor 〈−,−〉 : FluidChu −→ FluidChu be defined as the
following: for every dialgebra A ∈ FluidChu,

A
def

= Ã;

on the other hand, for every FluidChu-morphism 〈ϕ, ψ〉 : A1 −→ A2 we define

〈ϕ, ψ〉 def

= 〈ψ̃, ϕ̃〉 : Ã2 −→ Ã1.

(Notice the reversal of the order of the letters ϕ, ψ.) Now it is evident that for every
〈ϕ, ψ〉,

(〈ϕ, ψ〉) = 〈ϕ, ψ〉,
as desired. �

Now, equipped with all the above, we are ready to state and prove our next
theorem:

Theorem 4.3.8. For every set Σ and every nonempty set Γ, the double category
DLCΓ,Σ is vertically self-dual.

Proof. Assume that an arbitrary set Σ and an arbitrary nonempty set Γ are given.
Consider the double category DLC = DLCΓ,Σ. Observe that the double category
DLCl consists of the following data:

DLCl = 〈A,Bl,sl, tl, il, ./l〉.

Now we define:
(−)?

def

=
〈

(−)?
0

, (−)?
1
〉

: DLCl −→ DLC,

where
(−)?

0 def

= (̃−) : A−→ A,

and the functor (−)?
1

: Bl −→ B is defined as the following:

• for any Bl-object vl : P2 ⇀ P1 where v =
[
〈µ,ν〉
〈θ,ζ〉

]
: P1 ⇀ P2 is a B-object

(equivalently, an A′-morphism),

(vl)?
1 def

=

[
〈µ, ν〉
〈θ, ζ〉

]
=

[
〈ν̃, µ̃〉〈
ζ̃ , θ̃
〉]

: P̃2 ⇀ P̃1,

which satisfies the PVS and NVS conditions (with commutativity diagram
being a “180° rotation” of Diagram 4.14), and is thus a well-defined B-object;
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• for any Bl-morphism v
l
1

cl
=⇒ v

l
2 where c =

(
h1

v1 v2

h2

)
: v1 =⇒ v2 is a B-

morphism,

(cl)?
1 def

=

 h̃2

(v
l
1)?

1
(v
l
2)?

1

h̃1

 : (v
l
1)?

1

=⇒ (v
l
2)?

1

,

which satisfies the commutativity conditions of Diagram 15 and is therefore,
well-defined.

Now, from the definition of sl, the following holds for every Bl-object vl : P2 ⇀ P1

where v =
[
〈µ,ν〉
〈θ,ζ〉

]
:

(
s
l
0(vl)

)?0

= t̃0(v) = P̃2 = s0

(
(vl)?

1
)

; (1)

also, for every Bl-morphism v
l
1

cl
=⇒ v

l
2 where c =

(
h1

v1 v2

h2

)
,

(
s
l
1(cl)

)?0

= t̃1(c) = h̃2 = s1

(
(cl)?

1
)
. (2)

Equations (1) and (2) together imply(
sl(−)

)?0

= s
(

(−)?
1
)
. (3)

Likewise, one can deduce (
tl(−)

)?0

= t
(

(−)?
1
)
. (4)

Next, from the definition of il, for every A-object P we have(
i
l
0(P)

)?1

=
(

(i0(P))l
)?1

=
(

(1′P)
l
)?1

= 1′
P?0 ; (5)

also, for every A-morphism h =
[
f
g

]
: P1 −→ P2,(

i
l
0(h)

)?1

=
(

(i0(h))l
)?1

=


 h

1′P1
1′P2

h

l

?1

=

 h̃

1′
P?0

1

1′
P?0

2

h̃


= i1

(
h?

0
)
. (6)
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B

Bl B

Bl

B×A B

A

Bl ×A Bl

A

B

Bl

Bl

B

./l ./

σ1
σ2

π1
π2

tl

sl
t

s

il i

(−)?
1

(−)?
1

(−)?
1

(−)?
1

(−)?
0

(
(−)?

1◦σ1,(−)?
1◦σ2

)

Diagram 4.24

Equations (5) and (6) together imply(
il(−)

)?1

= i
(

(−)?
0
)
. (7)

Now we consider Diagram 4.24. In this diagram, σ1, σ2 are the projections for
Bl ×A Bl, making the left hand side diamond commute. Now, in addition, from
(3), (4), and (7) we know that, respectively, the lower-right parallelogram, the lower-
left parallelogram, and the bottom rectangle all commute. Therefore, we have the
following equations:

t◦ (−)?
1 ◦ σ1 = (−)?

0 ◦ tl ◦ σ1

= (−)?
0 ◦ sl ◦ σ2

= s ◦ (−)?
1 ◦ σ2.

So, by universality of the pullback 〈B×A B, π1, π2〉, there exists a unique arrow(
(−)?

1 ◦ σ1, (−)?
1 ◦ σ2

)
: Bl ×A Bl −→ B×A B

making the upper-left and the upper-right parallelograms commute. Now, in order
to prove the double functoriality of (−)?, it remains to show the commutativity of
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the top rectangle.

On objects we have(
vl ./

l
0 w

l
)?1

=
(
(w ./0 v)l

)?1

=
(
vl
)?1

./0

(
wl
)?1

=./0 ◦
(

(−)?
1 ◦ σ1, (−)?

1 ◦ σ2

) (
vl,wl

)
;

for morphisms,(
cl ./

l
1 d
l
)?1

=
(
(d ./1 c)l

)?1

=
(
cl
)?1

./1

(
dl
)?1

=./1 ◦
(

(−)?
1 ◦ σ1, (−)?

1 ◦ σ2

) (
cl,dl

)
.

These complete the proof of commutativity of Diagram 4.24, and (−)? is actually a
double functor (from DLCl to DLC).

The final step of the proof is to show that (−)? is an isomorphism. For this,
according to Proposition 4.1.24, it suffices to show that both (−)?

0
and (−)?

1
are

isomorphisms as ordinary functors. By Proposition 4.3.6 we already know that the

functor (−)?
0

= (̃−) : A−→ A is inverse to itself. On the other hand, we show that
the functor

(−)?
1l

: B−→ Bl,

which is defined below, is inverse to (−)?
1
.

We define (−)?
1l

as the functor which sends every B-object

v =
[
〈µ,ν〉
〈θ,ζ〉

]
: P1 ⇀ P2 to the Bl-object

v?
1l def

=
((
vl
)?1)l

=

[
〈µ, ν〉
〈θ, ζ〉

]l
=

[
〈ν̃, µ̃〉〈
ζ̃ , θ̃
〉]l

: P̃1 ⇀ P̃2,

and which sends every B-morphism c =
(

h1

v1 v2

h2

)
: v1 =⇒ v2 to the Bl-morphism

c?
1l def

=
((
cl
)?1)l

=


h̃2(

v
l
1

)?1 (
v
l
2

)?1

h̃1


l

:
(
v
l
1

)?1

=⇒
(
v
l
2

)?1

.

Now, for any B-object v =
[
〈µ,ν〉
〈θ,ζ〉

]
,

(
v?

1l
)?1

=

(((
vl
)?1)l)?1



4.3. SOME OF THE BASIC PROPERTIES 113

=

([
〈µ, ν〉
〈θ, ζ〉

]l)?1

=

[
(〈µ, ν〉)
(〈θ, ζ〉)

]

=

[
〈µ, ν〉
〈θ, ζ〉

]
= v; (8)

also, using (8), we have for any Bl-object vl =
[
〈µ,ν〉
〈θ,ζ〉

]l
,

((
vl
)?1)?1l

=

((((
vl
)?1)l)?1

)l
= vl. (9)

On the other hand, for any B-morphism c =
(

h1

v1 v2

h2

)
: v1 =⇒ v2,

(
c?

1l
)?1

=

(((
cl
)?1)l)?1

=




h̃2(
v
l
1

)?1 (
v
l
2

)?1

h̃1


l

?1

=


(̃h̃1)(((

v
l
1

)?1
)l)?1 (((

v
l
2

)?1
)l)?1

(̃h̃2)


=

 h1

v1 v2

h2


= c; (10)

also, using (10), we have for any Bl-morphism cl =
(

h1

v1 v2

h2

)l
: v
l
1 =⇒ v

l
2,

((
cl
)?1)?1l

=

((((
cl
)?1)l)?1

)l
= cl. (11)

Now, Equations (8), (10) together imply(
(−)?

1l
)?1

= 1B.
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Likewise, Equations (9), (11) together imply(
(−)?

1
)?1l

= 1Bl .

Consequently, (−)?
1
, too, is an isomorphism. This completes the proof of the vertical

self-duality of (−)?. �

Theorems 4.3.1 and 4.3.8 together yield one of the fundamental features of DLC:

Corollary 4.3.9. For every set Σ and every nonempty set Γ, the double category
DLCΓ,Σ is Klein-invariant.

Corollary 4.3.9 is so important that it deserves special attention. What it tells
is that we have the following four isomorphic double categories:

DLC ∼= DLC↔ ∼= DLCl ∼= DLC�.

This means that whenever one proves a result in any of the above four double
categories, that result automatically yields three other analogous results in the same
double category by horizontal, vertical, and central self-dualizations, respectively.
This situation is comparable to (and is a generalization of) the self-duality of Chu.

4.3.2 Binary horizontal products and coproducts

In this subsection we have both negative and positive results. We start with
negative results.

Proposition 4.3.10. Assume a nonempty set Γ and a (possibly empty) set Σ. Then:

(1) there exist 0-cells P1,P2 in DLCΓ,Σ such that for any two vertical 1-cells
v1 : P1 ⇀ P′1 and v2 : P2 ⇀ P′2 there exist no horizontal binary product and
no horizontal binary coproduct;

(2) there exist 0-cells P1,P2 in DLCΓ,Σ such that for any two vertical 1-cells
v1 : P′1 ⇀ P1 and v2 : P′2 ⇀ P2 there exist no horizontal binary product and
no horizontal binary coproduct.

Proof. (1) Consider any two 0-cells P1,P2 with different functorial profiles

ΦP1 6= ΦP2 ,

and consider vertical 1-cells v1 : P1 ⇀ P′1, v2 : P2 ⇀ P′2 for some P′1,P
′
2. Also,

assume that
w : Q ⇀ Q′

is the horizontal product of v1,v2. This implies that the 0-cell Q must be the
(ordinary) product of P1,P2. On the other hand, we know that at least one of the
following holds:

ΦQ 6= ΦP1 or ΦQ 6= ΦP2 .
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Assume, for example, ΦQ 6= ΦP1 . But this means that there can be no horizontal
1-cells from Q to P1; thus, we have no projection from Q to P1, and consequently,
no projection 2-cell from w to v1. Therefore, Q cannot be a product of P1,P2, and
w cannot be a horizontal product of v1,v2. Contradiction.

A similar argument works for the coproduct of v1,v2, as well.

(2) For this part, just apply the vertical self-duality of DLC on part (1). �

In addition, when Σ 6= ∅, the situation is even worse:

Proposition 4.3.11. Assume nonempty sets Γ,Σ. Then, in the double category
DLCΓ,Σ:

(1) there exist 0-cells P1,P2 with ΦP1 = ΦP2, such that for any pair of 0-cells
P′1,P

′
2 with ΦP′1

= ΦP′2
and vertical 1-cells v1 : P1 ⇀ P′1,v2 : P2 ⇀ P′2 no

horizontal binary product exists;

(2) there exist 0-cells Q1,Q2 with ΦQ1 = ΦQ2, such that for any pair of 0-cells
Q′1,Q

′
2 with ΦQ′1

= ΦQ′2
and vertical 1-cells w1 : Q1 ⇀ Q′1,w2 : Q2 ⇀ Q′2 no

horizontal binary coproduct exists;

(3) there exist 0-cells P1,P2 with ΦP1 = ΦP2, such that for any pair of 0-cells
P′1,P

′
2 with ΦP′1

= ΦP′2
and vertical 1-cells v1 : P′1 ⇀ P1,v2 : P′2 ⇀ P2 no

horizontal binary product exists;

(4) there exist 0-cells Q1,Q2 with ΦQ1 = ΦQ2, such that for any pair of 0-cells
Q′1,Q

′
2 with ΦQ′1

= ΦQ′2
and vertical 1-cells w1 : Q′1 ⇀ Q1,w2 : Q′2 ⇀ Q2 no

horizontal binary coproduct exists.

Proof. We only prove part (1); parts (2), (3), and (4) are automatically proved by
horizontal, vertical, and central self-dualities, respectively.

Assume nonempty sets Γ,Σ, and consider the double category

DLCΓ,Σ = 〈A,B,s, t, i, ./〉.

Consider ChuΓ-objects Ai = 〈Ai, ri, Xi〉 , Bi = 〈Bi, si, Yi〉 , i = 1, 2 with nonempty
carriers Ai, Bi. Also, consider four ChuΓ-endofunctors F,G,H,K such that for
every Chu space C = 〈C, t, Z〉 with a nonempty carrier C,

F+C 6= ∅, G+C 6= ∅, H+C 6= ∅, K+C 6= ∅

(for example, take F = G = H = K = 1ChuΓ
). Assume that〈

Ai, FAi
αi−−→ GAi

〉
,
〈
Bi, KBi

βi−−→ HBi
〉
, i = 1, 2

are dialgebras.
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Fix m ∈ Σ. Define 0-cell P1 as

P1
def

=

〈〈A1, FA1
α1−−→ GA1

〉〈
B1, KB1

β1−−→ HB1

〉 , 〈S+
1 , S

−
1

〉〉
such that

S+
1 : Σ −→ F+A1 tK+B1

S+
1 (m) ∈ F+A1.

Also, define 0-cell P2 as

P2
def

=

〈〈A2, FA2
α2−−→ GA2

〉〈
B2, KB2

β2−−→ HB2

〉 , 〈S+
2 , S

−
2

〉〉
such that

S+
2 : Σ −→ F+A2 tK+B2

S+
2 (m) ∈ K+B2.

Now, consider any pair of 0-cells P′1,P
′
1 with ΦP′1

= ΦP′2
, together with vertical

1-cells
v1 : P1 ⇀ P′1, v2 : P2 ⇀ P′2.

We claim that there are no horizontal products of v1,v2.

We prove the claim by contradiction. Assume there exists some vertical 1-cell
u : P ⇀ P′ together with, say, cubicles

v1
c1⇐= u

c2=⇒ v2,

ci =


[
fi
gi

]
u vi[

f ′i
g′i

]
 , i = 1, 2

that possess the universal property of horizontal product. Then,

P1

[
f1
g1

]
←−−−− P

[
f2
g2

]
−−−−→ P2 (∗)

must be a (product) diagram in A. Let P =
〈[
〈C,γ〉
〈D,δ〉

]
, 〈T+, T−〉

〉
. Then, the above

diagram implies that for the horizontal 1-cells
[
f1
g1

]
and

[
f2
g2

]
we must have the

following positive horizontal super-adjointness conditions PHS1 and PHS2, respec-
tively:

Σ

F+C tK+DF+A1 tK+D

F+A1 tK+B1

F+A2 tK+D

F+A2 tK+B2

PHS1 PHS2T+

F+f1t1

S+
1

1tK+g1

F+f2t1

S+
2

1tK+g2
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Since S+
1 (m) ∈ F+A1, we obtain from PHS1 that

(1 tK+g1) ◦ S+
1 (m) ∈ F+A1,

or

(F+f1 t 1) ◦ T+(m) ∈ F+A1. (1)

Now if T+(m) ∈ K+D, it follows that (F+f1t 1) ◦T+(m) ∈ K+D which contradicts
(1) because the coproduct F+A1 tK+D is the disjoint union of the sets F+A1 and
K+D. Therefore, we must have

T+(m) ∈ F+C. (2)

On the other hand, considering PHS2, we find from S+
2 (m) ∈ K+B2 that

(1 tK+g2) ◦ S+
2 (m) ∈ K+D,

or

(F+f2 t 1) ◦ T+(m) ∈ K+D. (3)

But Equation (2) says that T+(m) ∈ F+C, thus

(F+f2 t 1) ◦ T+(m) ∈ F+A2, (4)

which clearly contradicts (3). Consequently, there can be no such product diagram
as (∗), and we are done. �

Finally, we have a positive result for the case Σ = ∅.

Proposition 4.3.12. Assume a nonempty set Γ, and let Σ = ∅. Assume that
P1,P2,P

′
1,P

′
2 are 0-cells in the double category DLCΓ,∅ such that

ΦP1 = ΦP2 =

[
F G
K H

]
,

ΦP′1
= ΦP′2

=

[
F ′ G′

K ′ H ′

]
.

Then, for every pair of vertical 1-cells v1 : P1 ⇀ P′1,v2 : P2 ⇀ P′2 we have the
following:

(1) If the endofunctors F,G, F ′, G′ preserve binary products and the endofunctors
H,K,H ′, K ′ preserve binary coproducts, then there exists a horizontal product
for v1,v2; that is, there exists a vertical 1-cell w : Q ⇀ Q′ for some Q,Q′,
together with cubicles

v1
p1⇐= w

p2
=⇒ v2

with the following universal property: for any other vertical 1-cell u and any
diagram

v1
d1⇐= u

d2=⇒ v2,

there exists a unique cubicle d : u =⇒ w such that

dk = pk ◦ d, k = 1, 2.
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(2) If the endofunctors F,G, F ′, G′ preserve binary coproducts and the endofunc-
tors H,K,H ′, K ′ preserve binary products, then there exists a horizontal co-
product for v1,v2; that is, there exists a vertical 1-cell w : Q ⇀ Q′ for some
Q,Q′, together with cubicles

v1
c1=⇒ w

c2⇐= v2

with the following universal property: for any other vertical 1-cell u and any
diagram

v1
d1=⇒ u

d2⇐= v2,

there exists a unique cubicle d : w =⇒ u such that

dk = d ◦ ck, k = 1, 2.

Proof. We only prove part (1); part (2) is automatically proved by horizontal self-
duality.

Note that since Σ = ∅, the positive and negative horizontal super-adjointness
conditions are trivially satisfied for all horizontal 1-cells, and the positive and nega-
tive vertical super-adjointness conditions are trivially satisfied for all vertical 1-cells.
Thus, whenever we define either a horizontal 1-cell or a vertical 1-cell, there will be
no need to worry about any of the conditions PHS, NHS, PVS, or NVS.

Assume that Pk =
〈[

αk:FAk−→GAk
βk:KBk−→HBk

]
,Sk
〉

and P′k =
〈[

α′k:F ′Ak−→G′Ak

β′k:K′Bk−→H′Bk

]
,S′k

〉
for

k = 1, 2, where each of Sk,S
′
k is a pair of empty functions. Since F,G, F ′, G′ preserve

binary products, using Corollary 3.5.3, we find that there exist product dialgebras

α = α1&α2 : FA1&FA2 −→ GA1&GA2 in ChuFG

and

α′ = α′1&α′2 : F ′A1&F ′A2 −→ G′A1&G′A2 in ChuF
′

G′ .

These products are equipped with projection dialgebra homomorphisms

α1
π1←−− α

π2−−→ α2 and α′1
π′1←−− α′

π′2−−→ α′2.

On the other hand, since H,K,H ′, K ′ preserve binary coproducts, again using Corol-
lary 3.5.3, we obtain coproduct dialgebras

β = β1 ⊕ β2 : KB1 ⊕KB2 −→ HB1 ⊕HB2 in ChuKH

and

β′ = β′1 ⊕ β′2 : K ′B1 ⊕K ′B2 −→ H ′B1 ⊕H ′B2 in ChuK
′

H′ .

These too, are equipped with some injection dialgebra homomorphisms

β1
i1−−→ β

i2←−− β2 and β′1
i′1−−→ β′

i′2←−− β′2.
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Let T = 〈!+, !−〉 and T′ = 〈!′+, !′−〉 where

!+ : ∅ −→ F+(A1&A2) tK+(B1 ⊕ B2),

!− : ∅ −→ G−(A1&A2) tH−(B1 ⊕ B2),

!′
+

: ∅ −→ F ′
+

(A1&A2) tK ′+(B1 ⊕ B2),

!′
−

: ∅ −→ G′
−

(A1&A2) tH ′−(B1 ⊕ B2)

are all empty functions. Define

Q
def

=

〈[
α
β

]
,T

〉
;

Q′
def

=

〈[
α′

β′

]
,T′
〉

;

qk
def

=

[
πk
ik

]
: Q −→ Pk, k = 1, 2;

q′k
def

=

[
π′k
i′k

]
: Q′ −→ P′k, k = 1, 2.

Now, for any pair of vertical 1-cells v1 : P1 ⇀ P′1,v2 : P2 ⇀ P′2 with

vk =

[
〈µk, νk〉
〈θk, ζk〉

]
, k = 1, 2,

define

w
def

=

[
〈µ1&µ2, ν1&ν2〉
〈θ1 ⊕ θ2, ζ1 ⊕ ζ2〉

]
: Q ⇀ Q′.

Also, define the cubicles

pk
def

=

 qk
w vk

q′k

 : w =⇒ vk, k = 1, 2,

We claim that the triple 〈w,p1,p2〉 is a horizontal product for v1,v2.

To see this, let

v1
d1⇐= u

d2=⇒ v2

be a double diagram in DLCΓ,∅, such that u : R ⇀ R′ is a vertical 1-cell between
0-cells

R =

〈[
γ
δ

]
,U

〉
, R′ =

〈[
γ′

δ′

]
,U′
〉
,

for some dialgebras γ, δ, γ′, δ′, and pairs of empty functions U,U′, and such that

dk =

 hk
u vk

h′k

 , k = 1, 2,
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with

hk =

[
γ

fk−−→ αk
δ

gk←−− βk

]
, k = 1, 2;

h′k =

γ′ f ′k−−→ α′k

δ′
g′k←−− β′k

 , k = 1, 2.

Then, by universalities of dialgebras α, β, α′, β′, there exist unique dialgebra homo-
morphisms

ϕ : γ −→ α,

ψ : β −→ δ,

ϕ′ : γ′ −→ α′,

ψ′ : β′ −→ δ′

satisfying the following equations for k = 1, 2:

fk = πkϕ,

gk = ψik,

f ′k = π′kϕ
′,

g′k = ψ′i′k.

Therefore, we have a unique cubicle

d
def

=


[
ϕ
ψ

]
u w[

ϕ′

ψ′

]
 : u =⇒ w

which satisfies
dk = pk ◦ d, k = 1, 2.

�

In the next chapter, we will outline some of the themes for future development
of the formalism presented in the current chapter.



Chapter 5

Conclusion and Suggestions for
Future Work

In the final chapter of this work, we sum up what has been presented so far,
and give some guidelines for future theoretical developments as well as for future
practical implementations of the new formalism.

5.1 Conclusion

In the previous chapters, we took the initial steps of developing what may be
called “DLC theory” or “cubicle theory”. First of all, we introduced the prelimi-
nary concepts and definitions, including the essentials of basic category theory and
internal categories in Chapter 1. Then, in Chapter 2, we did the same for monoidal
categories and ∗-autonomous categories. We then proceeded towards the Chu con-
struction, we focused on Chu = Chu(Set,Γ), and we gave a number of its important
properties. We observed the bicompleteness of the Chu construction in general and
of Chu in particular; we dealt with extensional, separable, and biextensional Chu
spaces, and we proved that Chu is balanced.

Next, we paid attention to linear logic in Chu. We gave exact formulations for
multiplicative as well as additive connectives of linear logic in Chu. Multiplicative
connectives consist of dualization, tensor, linear implication, and par operations,
together with the tensor unit and the dualizing object. On the other hand, additive
connectives consist of plus and with operations (which are exactly the categorical
binary coproduct and binary product, respectively), together with the plus unit and
the with unit.

The issue of realization was our next subject of discussion. There, we quoted
some remarkable results indicating the vast potentials of the Chu construction to
realize concrete mathematics: Set and Top are realized in Chu2, Grp is realized
in Chu8, TopGrp is realized in Chu16, n-ary relational structures in general are
realized in Chu2n , Vectk is realized in Chu|k|, and so on.

In the final subsection of Chapter 2, we focused on Chu endofunctors, establishing
a general method for uplifting arbitrary set functors to Chu functors. Also, we
mentioned bi-uplifting as a generalization of the notion of uplifting.

In Chapter 3, we turned to universal dialgebra. We gave the basic notions of the
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theory for a general (bicomplete) base category C, and we stated and proved some
of the fundamental properties of the categories of the form CFG .

In Chapter 4, we firstly introduced double categories as categories internal to
CAT. Next, we introduced the main formalism of the present work, namely the DLC
construction; we proved its well-definedness, and we studied a number of its basic
properties. The most important property was Klein-invariance, which we likened to
a two-dimensional generalization of the self-duality of the Chu construction. Also, we
observed that although horizontal products and coproducts do not exist in DLC in
many situations, they do exist at least when certain conditions are met (concerning
the functorial profiles and the supermatrices).

With all the above, we finished the present work. Now it is time to point to
some opportunities for future work.

5.2 Future development

For this, the following suggestions are given.

Horizontal and vertical limits/colimits in general

A very special kind of limits/colimits was studied in this work, namely binary
horizontal products and coproducts. The study may well be continued to cover
arbitrary horizontal as well as vertical limits/colimits in DLC.

Other kinds of double-categorical constructions

Other double-categorical concepts are to be developed in DLC, also. These
include:

• various subcategories of DLC;

• “exponentials” (see [22]);

• “comma double categories ([ibid]);

• “double isomorphisms” and “sesqui-isomorphisms” ([ibid]);

• “double limits/colimits” ([ibid]);

• various “forgetful” and “free functors”;

• “double adjunctions” and “free monads” ([19]);

• “Kan extensions” ([32, 23, 30]) and “Kan lifts” ([63]) in DLC;

• etc.

Certainly, there are other theoretical as well as practical aspects that may be
suggested for future development of cubicle theory; however, the author prefers to
postpone mentioning them to other occasions.
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[23] M. Grandis and R. Paré. Kan extensions in double categories (on weak double
categories. III). Theory Appl. Categ., 20:No. 8, 152–185, 2008. Available at:
http://www.emis.de/journals/TAC/volumes/20/8/20-08abs.html.

[24] G. Grätzer. Universal Algebra. Springer, 2nd edition, 2008. ISBN: 978-0-387-
77486-2.

[25] H. P. Gumm. Functors for coalgebras. Algebra Universalis, 45(2-3):135–
147, 2001. Conference on Lattices and Universal Algebra (Szeged, 1998).
Aavailable at: https://www.mathematik.uni-marburg.de/%7Egumm/Papers/
Functor.pdf.

http://www.math.uwaterloo.ca/%7Esnburris/htdocs/ualg.html
http://www.cheng.staff.shef.ac.uk/guidebook/
http://dx.doi.org/10.1109/LICS.1999.782619
http://dx.doi.org/10.2168/LMCS-6(1:3)2010
https://arxiv.org/abs/1105.6206v2
https://arxiv.org/abs/1105.6206v2
http://dx.doi.org/10.2140/agt.2008.8.1855
http://dx.doi.org/10.2140/agt.2010.10.1933
http://www.numdam.org/item?id=CTGDC_1999__40_3_162_0
http://www.numdam.org/item?id=CTGDC_1999__40_3_162_0
http://www.emis.de/journals/TAC/volumes/20/8/20-08abs.html
https://www.mathematik.uni-marburg.de/%7Egumm/Papers/Functor.pdf
https://www.mathematik.uni-marburg.de/%7Egumm/Papers/Functor.pdf


BIBLIOGRAPHY 125

[26] H. P. Gumm. Universal coalgebras and their logics. Arab. J. Sci. Eng. ASJE.
Math., 34(1D):105–130, 2009. Available at: www.mathematik.uni-marburg.

de/%7Egumm/Papers/UniCoalgLogic.pdf.

[27] J. Hughes. A Study of Categories of Algebras and Coalgebras. PhD thesis,
Carnegie Mellon University, May 2001. Avaliable at: https://www.andrew.

cmu.edu/user/awodey/students/hughes.pdf.

[28] B. Jacobs. Introduction to Coalgebra, Towards Mathematics of States and Ob-
servations. Cambridge University Press, 2016. Online ISBN: 9781316823187,
DOI: https://doi.org/10.1017/CBO9781316823187, Draft copy available at:
www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf.

[29] G. M. Kelly. Doctrinal adjunction, pages 257–280. Springer-Verlag, 1974. Lec-
ture Notes in Mathematics 420.

[30] S. R. Koudenburg. On pointwise Kan extensions in double categories. Theory
Appl. Categ., 29:No. 27, 781–818, 2014. Available at: http://www.emis.de/

journals/TAC/volumes/29/27/29-27abs.html.

[31] T. Leinster. Basic Bicategories. Draft available at: https://arxiv.org/abs/

math/9810017, 1998.

[32] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1st
edition, 1971. ISBN: 3-540-90035-7.

[33] Martins M., Madeira, A. and L. S. Barbosa. Models as arrows: the role of
dialgebras. Computability in Europe, 2011. Available at: http://haslab.

uminho.pt/madeira/publications/models-arrows-role-dialgebras.

[34] C. McLarty. Elementary Categories, Elementary Toposes. Oxford University
Press, 1st edition, 1992. ISBN: 0-19-851473-5.

[35] P.-A. Melliès. Categorical semantics of linear logic. In Interactive models of
computation and program behaviour, number 27 in Panoramas et Synthèses.
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