
ON THE QUASICONFORMAL EQUIVALENCE OF

DYNAMICAL CANTOR SETS

HIROSHIGE SHIGA

Abstract. The complement of a Cantor set in the complex plane is
itself regarded as a Riemann surface of infinite type. The problem of
this paper is the quasiconformal equivalence of such Riemann surfaces.
Particularly, we are interested in Riemann surfaces given by Cantor
sets which are created through dynamical methods. We discuss the
quasiconformal equivalence for the complements of Cantor Julia sets
of rational functions and random Cantor sets. We also consider the
Teichmüller distance between random Cantor sets.

1. Introduction

Let E be a Cantor set in the Riemann sphere Ĉ, that is, a totally dis-

connected perfect set in Ĉ. The standard middle one-third Cantor set C
is a typical example. We consider the complement XE := Ĉ \ E of the
Cantor set E. It is an open Riemann surface with uncountable boundary
components. We are interested in the quasiconformal equivalence of such
Riemann surfaces. In the previous paper [11], we show that the complement
of the limit set of a Schottky group is quasiconformally equivalent to XC , the
complement of C ([11] Theorem 6.2). In this paper, we discuss the quasicon-
formal equivalence for the complements of Cantor Julia sets of hyperbolic
rational functions and random Cantor sets (see §2 for the terminologies).
We establish the following theorems.

Theorem I. Let f be a rational function of degree d > 1 and J be the Julia
set of f . Suppose that f is hyperbolic and J is a Cantor set. Then, the
complement XJ of J is quasiconformally equivalent to XC.

As for random Cantor sets, we obtain the followings.

Theorem II. Let ω = (qn)∞n=1 and ω̃ = (q̃n)∞n=1 be sequences with δ-lower
bound. We put

(1.1) d(ω, ω̃) = sup
n∈N

max

{∣∣∣∣log
1− q̃n
1− qn

∣∣∣∣ , |q̃n − qn|} .
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(1) If d(ω, ω̃) <∞, then there exists an exp(C(δ)d(ω, ω̃))-quasiconformal

mapping ϕ on Ĉ such that ϕ(E(ω)) = E(ω̃), where C(δ) > 0 is a
constant depending only on δ;

(2) if limn→∞ log 1−q̃n
1−qn = 0, then E(ω̃) is asymptotically conformal to

E(ω), that is, there exists a quasiconformal mapping ϕ on Ĉ with
ϕ(E(ω)) = E(ω̃) such that for any ε > 0, ϕ|Uε is (1+ε)-quasiconformal
on a neighborhood Uε of E(ω).

From above results and a result [11] Theorem 6.2, immediately we obtain;

Corollary 1.1. Let E be a Cantor set which is a Julia set of a rational
function satisfying the conditions in Theorem I. Then, the complement of
the limit set of a Schottky group G is quasiconformally equivalent to XE.

As consequences of Theorem II (1), we obtain;

Corollary 1.2. Let E(ω) be a random Cantor set for ω = (qn)∞n=1. Sup-
pose that ω has lower and upper bounds. Then, XE(ω) is quasiconformally
equivalent to XC.

We have also the following.

Corollary 1.3. Let E be a Cantor set as in Corollaries 1.1 or 1.2. Then, the
Cantor set E is quasiconformally removable, that is, every quasiconformal
mapping on the complement of E is extended to a quasiconformal mapping
on the Riemann sphere.

It is known ([7] V. 11F. Theorem) that the random Cantor set E(ω) for
ω is of capacity zero if and only if

∞∏
n=1

(1− qn)2−n
= 0.(1.2)

Hence if {qn}∞n=1 rapidly converges to one as it satisfies (1.2), then XE(ω) is
not quasiconformally equivalent to XC because the positivity of the capacity
of closed sets in the plane is preserved by quasiconformal mappings (cf. [7]
III. Theorem 8 H). In fact, we can say more:

Theorem III. If ω does not have an upper bound, then XE(ω) is not qua-
siconformally equivalent to XC.

The proof of Theorem II gives the following.

Corollary 1.4. Let ω and ω̃ be sequences satisfying the same conditions as
in Theorem II (2). Then, the Hausdorff dimension of E(ω̃) is the same as
that of E(ω).
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its brilliant support to his research.



QUASICONFORMAL EQUIVALENCE 3

2. Preliminaries

2.1. Complex dynamics. We begin with a small and brief introduction
of complex dynamics. We may refer textbooks on the topic, e. g. [5] for a
general theory of complex dynamics.

Let f be a rational function of degree d > 1 on C. We denote by fn the

n times iterations of f . The Fatou set F of f is the set of points in Ĉ which
have neighborhoods where {fn}∞n=1 is a normal family. The complement of
F , which is denoted by J , is called the Julia set of f .

A rational function f is called hyperbolic if it is expanding near J . More
precisely, if J 63 ∞, then f is hyperbolic if there exist a constant A > 1 and
a smooth metric σ(z)|dz| in a neighborhood U of J such that

σ(f(z))|f ′(z)| ≥ Aσ(z), z ∈ J

(see [5] V. 2). If ∞ ∈ J , the hyperbolicity of f is defined by conjugation of
Möbius transformations as usual.

The hyperbolicity is also characterized in terms of the Euclidean metric
and the dynamical behavior of rational functions as well.

Proposition 2.1 ([5] V. 2. Lemma 2.1 and Theorem 2.2). A rational func-
tion f is hyperbolic if and only if every critical point belongs to F and is
attracted to an attracting cycle. If ∞ 6∈ J , then the hyperbolicity of f is
equivalent to the existence of m ≥ 1 such that |(fm)′| > 1 on J .

2.2. Random Cantor sets. (cf. [7] I. 6). Let ω = (qn)∞n=1 = (q1, q2, . . . )
be a sequence of real numbers with 0 < qn < 1 for each n ∈ N. We construct
a Cantor set E(ω) for ω inductively as follows.

First, we remove an open interval J1 of length q1 from E0 := I = [0, 1]
so that I \ J1 consists of two closed intervals I1

1 , I
2
1 of the same length. We

put E1 = ∪2
i=1I

i
1. We remove an open interval of length |Ii1|q2 from each

Ii1 so that the remainder E2 consists of four closed intervals of the same
length, where |J | is the length of an interval J . Inductively, we define Ek+1

from Ek = ∪2k
i=1I

i
k by removing an open interval of length |Iik|qk+1 from each

closed interval Iik of Ek so that Ek+1 consists of 2k+1 closed intervals of the
same length. The random Cantor set E(ω) for ω is defined by

E(ω) = ∩∞k=1Ek.

It is a generalization of the standard middle one-third Cantor set C. In fact,
C = E(ω0) for ω0 = (1

3)∞n=1 = (1
3 ,

1
3 , . . . ).

We say that a sequence ω = (qn)∞n=1 as above is of (δ-)lower bound if
there exists a δ > 0 such that qn ≥ δ for any n ∈ N. We also say that a
sequence ω has a (δ-)upper bound if qn ≤ 1− δ for any n ∈ N.

2.3. Hausdorff dimension. Let E be a subset of C and α > 0. We con-
sider a countable open covering {Ui}i∈N of E with diam(Ui) < r for a given
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r > 0. Then, we set

Λrα(E) := inf

{∑
i∈N

(diam(Ui))
α

}
,

where the infimum is taken over all countable open covering {Ui}i∈N with
diam(Ui) < r. We put

Λα(E) = lim
r→0

Λrα(E)

and the Hausdorff dimension dimH(E) of E by

dimH(E) = inf{α | Λα(E) = 0}.

2.4. The quasiconformal equivalence of open Riemann surfaces. We
say that two Riemann surfaces R1, R2 are quasiconformally equivalent if
there exists a quasiconformal homeomorphism between them. We also say
that they are quasiconformally equivalent near the ideal boundary if there
exist compact subset Kj of Rj (j = 1, 2) and quasiconformal homeomor-
phism ϕ from R1 \K1 onto R2 \K2.

It is obvious that if R1, R2 are quasiconformally equivalent, then they are
quasiconformally equivalent near the ideal boundary. On the other hand,
we have shown that the converse is not true in general. In fact, we have con-
structed two Riemann surfaces which are not quasiconformally equivalent
while they are homeomorphic to each other and quasiconformally equivalent
near the ideal boundary ([11] Example 3.1). We also give a sufficient condi-
tion for Riemann surfaces to be quasiconformally equivalent ([11] Theorem
5.1).

Proposition 2.2. Let R1, R2 be open Riemann surfaces which are homeo-
morphic to each other and quasiconformally equivalent near the ideal bound-
ary. If the genus of R1 is finite, then R1 and R2 are quasiconformally
equivalent.

3. Proof of Theorem I

Let f be a hyperbolic rational function with the Cantor Julia set J . We
show that XJ is quasiconformally equivalent to XC . By Proposition 2.2, it
suffices to show that there exists a compact subset K of F such that F \K is
quasiconformally equivalent to the complement of a compact subset of XC .

Considering the conjugation by Möbius transformations, we may assume
that J does not contain ∞. Since J is a Cantor set, the Fatou set F is
connected. Furthermore, it follows from Proposition 2.1 that F contains
an attracting fixed point z0 of f . Then, we may find a simply connected
neighborhood Ω0 of z0 such that f(Ω0) ⊂ Ω0. We may take Ω0 so that the
boundary ∂Ω0 is a smooth Jordan curve and it does not contain the forward
orbits of critical points of f .

For each k ∈ N, let Ωk be a connected component of f−k(Ω0) containing
z0. We may assume that Ω1 is bounded by at least two Jordan curves. Then,
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each Ωk is bounded by mutually disjoint finitely many smooth Jordan curves
and we have

z0 ∈ Ω0 ⊂ Ω0 ⊂ Ω1 ⊂ Ω1 · · · ⊂ Ωk ⊂ Ωk+1 ⊂ . . .
and

F = ∪∞k=0Ωk.

Since f is hyperbolic, the Julia set J does not contain critical points.
Moreover, there exists a simply connected neighborhood Vz of each z ∈ J
such that f |Vz is injective on Vz (Proposition 2.1). Hence, from compactness
of J there exist disks V1, . . . , Vn for some n ∈ N such that J ⊂ ∪nj=1Vj and

f |Vj is injective (1 ≤ j ≤ n). Then, we show;

Lemma 3.1. There exists k0 ∈ N such that for any k ≥ k0, each connected
component of Ωk+1 \ Ωk is contained in some Vj (1 ≤ j ≤ n).

Proof. Since f(Ωk+1 \Ωk) = Ωk \Ωk−1 and Ωk+1 ⊃ Ωk, we see that if every
connected component of Ωk0+1 \ Ωk0 is contained in some Vj , then so is for
k ≥ k0. Hence, we may find such a k0 to show the statement of the lemma.

Suppose that for any k ∈ N, there exists a connected component ∆k of
Ωk+1\Ωk such that ∆k is not contained in any Vj (j = 1, 2, . . . , n). Thus, for
sufficiently large k, ∆k is contained in ∪nj=1Vj but it is not contained in any

Vj . By taking a subsequence if necessary, we may assume that ∆k ∩ Vj 6= ∅
and ∆k ∩ Vj′ 6= ∅ for some j, j′ ∈ {1, 2, . . . , n}. Let x be an accumulation
point of {∆k}∞k=1. Then, x has to be in J because F = ∪∞k=1Ωk.

The Julia set J is totally disconnected. Hence, if a sequence {xkm}∞m=1

(xkm ∈ ∆km) converges to x, then {∆km}∞m=1 also converges to {x}. In other
words, for any neighborhood U of x, there exists m0 ∈ N such that for any
m ≥ m0, ∆km is contained in U . However, x ∈ J is in some Vj0 because
J ⊂ ∪nj=1Vj . Therefore, ∆km is contained in Vj0 if m is sufficiently large.
Thus, we have a contradiction. �

We take k0 ∈ N in the above lemma. Let ω1, ω2, . . . , ω` be the set of
connected components of Ωk0+1\Ωk0 . Each ωj is bounded by a finite number,
say L(j)+1, of mutually disjoint simple closed curves. We may assume that
L(j) > 1 (j = 1, 2, . . . `). Note that the number of boundary components of
∂Ωk0∩∂Ωk0+1 is equal to `. It is because ∂(Ωk0+1\Ωk0) consists of mutually

disjoint simple closed curves in Ĉ, and Ωk0 is compact.
For any k > k0 and for a connected component ∆ of Ωk+1 \ Ωk, we have

fk−k0(∆) ⊂ Ωk0+1 \Ωk0 and fk−k0 is conformal in ∆ since ∆ is contained in
some Vj . Hence, ∆ is conformally equivalent to ωJ for some J ∈ {1, 2, . . . , `}.
Therefore, if k > k0, then Ωk+1 \Ωk contains at most ` conformally different
connected components.

Now, we consider the middle one-third Cantor set C and XC := Ĉ\C. It is
not hard to see thatXC admits a pants decomposition {Pi,j}i∈Z\{0},j∈{1,...,2|i|−1}
as in Figure 1. In fact, we may take all Pi,j so that they are conformally
equivalent to each other. Let PN (N ∈ N) be a subdomain of XC consisting



6 HIROSHIGE SHIGA

P1,1P−1,1

P2,1

P2,2

P−2,1

P−2,2

P1

P2

Figure 1. The middle one-third Cantor set

of Pi,j for i = 1, . . . , N and j = 1, . . . , 2i−1. We see that PN is bounded by
2N + 1 mutually disjoint simple closed curves.

Let N0 ∈ N be the largest number with 2N0 + 1 ≤ `. We put

K := PN0 ∪
`0
j=1 PN0+1,j ,

where `0 = ` − 2N0 − 1. Then, K is a compact subset of XC bounded by `
simple closed curves. We denote by C1, . . . , C`, where C1 ⊂ ∂P1,1. We may
take a subdomain G1 of XC so that G1 \K is quasiconformally equivalent
to Ωk0+1 \ Ωk0 as follows.

We take the largest number L1 with 2L1 ≤ L(1). Then,

G1,1 :=
(
∪L1
i=1 ∪j=1,...,2|i| P−i,j

)
∪
(
∪j=1,...,L(1)−2L1P−L1−1,j

)
is a closed subdomain of XC with L(1) + 1 boundary curves. Hence, G1,1

is quasiconformally equivalent to ω1 since both of them are planar domains
bounded by the same number of closed curves.

Similarly, we may construct subdomains G1,2, . . . , G1,` such that ∂G1,j ∩
∂K = Cj and each G1,j is quasiconformally equivalent to ωj (j = 1, 2, . . . , `).
Combining K with G1,1, . . . , G1,`, we obtain a desired subdomain G1.
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By using the same argument as above, we have a subdomainG2 ofXC such
that G1 ⊂ G2 and G2 \G1 is quasiconformally equivalent to Ωk0+2 \Ωk0+1.
Moreover, we may use this argument inductively and we obtain a exhaustion
{Gi}∞i=1 of XC such that

K ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gi ⊂ Gi+1 ⊂ . . . , XC = ∪∞i=1Gi,

and Gi+1 \Gi are quasiconformally equivalent to Ωk0+i+1 \ Ωk0+i.
Now, we note the following.

Proposition 3.1. Let R1, R2 be Riemann surfaces. We consider simple

closed curves αi in Ri with Ri \αi = S
(i)
1 ∪S

(i)
2 , where S

(i)
1 and S

(i)
2 are mu-

tually disjoint subsurface of Ri (i = 1, 2). Suppose that there exist quasicon-

formal mappings fj : S
(1)
j → S

(2)
j (j = 1, 2) such that f1(α1) = f2(α1) = α2.

Then, there exists a quasiconformal mapping f : R1 → R2. Moreover, the
maximal dilatation of f depends only on those of f1, f2 and the local behavior
of those mappings near α1.

We may apply this proposition to domains Gi+1 \Gi and Ωk0+i+1 \Ωk0+i

(i = 1, 2, . . . ). Noting that there only finitely many conformal equivalence
classes in those domains, we verify that XC \ K = ∪i∈N(Gi+1 \ Gi) and
F \ Ωk0+1 = ∪i∈N(Ωk0+i+1 \ Ωk0+i) are quasiconformally equivalent. �

4. Proof of Theorem II

Proof of (1). We divide the proof into several steps.

Step 1 : Analyzing random Cantor sets. Let ω = (qn)∞n=1 and ω̃ =

(q̃n)∞n=1 be sequences with δ-lower bound. We take Ek = ∪2k
i=1I

i
k and Ẽk =

∪2k
i=1Ĩ

i
k as in §2.2 for ω and ω̃, respectively. In fact, Iik (resp. Ĩik) is located

at the left of Ii+1
k (resp. Ĩi+1

k ) for i = 1, 2, . . . , 2k − 1. The set [0, 1] \
Ek (resp. [0, 1] \ Ẽk) consists of 2k − 1 open intervals J1

k , . . . , J
2k−1
k (resp.

J̃1
k , . . . , J̃

2k−1
k ). Each J ik (resp. J̃ ik) is located between Iik and Ii+1

k (resp. Ĩik
and Ĩi+1

k ).
Because of the construction, we have

|Iik+1| =
1

2
(1− qk)|Iik|.

Therefore, we have

(4.1) |Iik| = 2−k
k∏
j=1

(1− qj).

Next, we estimate the length of J ik.

In construction Ek+1 from Ek, we obtain open intervals I2i−1
k+1 , I2i

k+1 and

the closed interval J2i−1
k+1 such that Iik = I2i−1

k+1 ∪ J
2i−1
k+1 ∪ I

2i
k+1 for each i, k

(Figure 2).
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Ii
kJi−1

k Ji
k

I2i
k+1 I2i+1

k+1

Ek

J2i−1
k+1 J2i

k+1 J2i+1
k+1

Ek+1

Figure 2.

If i is odd, we have

(4.2) |J ik+1| = |Iik|qk+1 =
2qk+1

1− qk+1
|I1
k+1| ≥ 2δ|I1

k+1|,

as qk+1 ≥ δ.
If i is even, then i = 2`m for an integer ` with 1 ≤ ` ≤ k and an

odd number m. Since J ik+1 is located between Iik+1 and Ii+1
k+1, we see that

J ik+1 = J
i/2
k = J2`−1m

k . Repeating this argument, we have J ik+1 = Jmk−`+1.
Since m is odd, we conclude from (4.2) that

|J ik+1| = |Jmk−`+1| = 2−k+`qk−`+1

k−∏̀
j=1

(1− qj)

≥ 2−k+1δ
k∏
j=1

(1− qj) ≥ 4δ|I1
k+1|(4.3)

as qk−`+1 ≥ δ.
Thus, we obtain the following from (4.2) and (4.3).
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Lemma 4.1. Let Iik and J ik+1 be the same ones as above for a sequence
ω = (qn)∞n=1 with δ-lower bound. Then,

(4.4) |J ik+1| ≥ 2δ|I1
k+1|

hold for i = 1, 2, . . . , 2k+1 − 1.

Step 2: Constructing a pants decomposition. We draw a circle Cik
centered at the midpoint of Iik with radius 1

2(1 + δ)|I1
k | for each k ∈ N and

1 ≤ i ≤ 2k. From (4.4), we see that Cik ∩ C
j
k = ∅ if i 6= j. Since

1

2
· δ|I1

k+1| <
1

2
· δ|I1

k |,

we also see that Cik+1 ∩ C
j
k = ∅. Therefore, ∪∞k=1 ∪2k

i=1 C
i
k gives a pants

decomposition for XE(ω).

We draw circles C̃ik for ω̃ by the same way. Then, we also see that

∪∞k=1 ∪2k
i=1 C̃

i
k gives a pants decomposition for XE(ω̃).

Step 3: Analyzing a pair of pants. We denote by P ik a pair of pants

bounded by Cik, C
2i−1
k+1 and C2i

k+1. We consider the complex structure of

P ik so that we may assume that the center of Cik is the origin with radius
1
2(1 + δ)|I1

k |. Then, the centers of C2i−1
k+1 and C2i

k+1 are

−1

2
qk+1|I1

k | −
1

4
(1 + δ) (1− qk+1)|I1

k |

and
1

2
qk+1|I1

k |+
1

4
(1 + δ) (1− qk+1)|I1

k |,

respectively.
By applying an affine map z 7→ αz + β for some α > 0, β ∈ R to P ik so

that the circle Cik is sent a circle centered at the origin with radius 1 + δ.

We denote the circle by Ck,1. Then, the circle C2i−1
k+1 is sent a circle Ck,2

centered at

−xk := −qk+1 −
1

2
(1 + δ) (1− qk+1) = −1

2
{(1 + δ) + (1− δ) qk+1}

with radius

rk :=
1

2
(1 + δ) (1− qk+1)

and C2i
k+1 is sent a circle Ck,3 centered at xk with radius rk. We may con-

formally identify P ik with a pair of pants Pk bounded by Ck,1, Ck,2 and Ck,3.

Similarly, we consider a pair of pants P̃ ik bounded by C̃ik, C̃
2i−1
k+1 and C̃2i

k+1,

and apply an affine map to the pair of pants P̃ ik so that the circle C̃ik is
mapped a circle centered at the origin with radius 1 + δ, which is the same

circle as the image of Cik above. We denote by C̃k,i the image of C̃ik (i =

1, 2, 3). We may conformally identify P̃ ik with a pair of pants P̃k bounded
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by C̃k,1, C̃k,2 and C̃k,3, where C̃k,1 is the same circle as Ck,1, C̃k,2 is centered
at

−x̃k := −1

2
{(1 + δ) + (1− δ) q̃k+1}

wirh radius

r̃k :=
1

2
(1 + δ) (1− q̃k+1)

and C̃k,3 is centered at x̃k with radius r̃k.

Step 4 : Constructing intermediate pairs of pants. By applying

z 7→ (xk/x̃k)z to P̃k, we obtain a pair of pants P̂k. The pair of pants

P̂k is bounded by Ĉk,1, Ĉk,2 and Ĉk,3. Each Ĉk,i is corresponding to C̃k,i
(i = 1, 2, 3). Note that for each i, the center of Ĉk,i is xk, the same as that

of Ck,i, and P̂k is conformally equivalent to P̃k. The radius of Ĉk,1 is

(1 + δ) · xk
x̃k

= (1 + δ)
(1 + δ) + (1− δ) qk+1

(1 + δ) + (1− δ) q̃k+1
,

and the radius of Ĉk,2, Ĉk,3 is

r̂k :=
1

2
(1 + δ) (1− q̃k+1) (1 + δ)

(1 + δ) + (1− δ) qk+1

(1 + δ) + (1− δ) q̃k+1
.

Now, we take an intermediate pair of pants P ′k bounded by Ĉk,1, Ck,2 and
Ck,3.

Step 5 : Making quasiconformal mappings, I. In the following the
argument, we use a notation d(ϕ) for a quasiconformal mapping ϕ as

d(ϕ) = logK(ϕ),

where K(ϕ) is the maximal dilatation of ϕ.
We suppose that qk+1 ≥ q̃k+1. Then, we have

r̂k ≥ rk =
1

2
(1 + δ) (1− qk+1).

In other words, the radius of Ĉk,2, Ĉk,3 is not smaller than that of Ck,2, Ck,3.
Let Ck,+ be a circle centered at xk with radius

R̃k := (1 + δ)
xk
x̃k
− xk,

so that Ck,+ is tangent with Ĉk,1.

We consider two circular annuli Ak,+ bounded by Ck,+ and Ĉk,3, A′k,+
bounded by Ck,+ and Ck,3. Here, we use the following well-known fact.

Lemma 4.2. For annuli Ai = {0 < ri < |z| < Ri < ∞} (i = 1, 2), there
exists a quasiconformal mapping ϕ : A1 → A2 such that

ϕ(r1e
iθ) = r2e

iθ

ϕ(R1E
iθ) = R2e

iθ
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and
K(ϕ) = ed(ϕ),

where

d(ϕ) =

∣∣∣∣log
logR1 − log r1

logR2 − log r2

∣∣∣∣ .
It follows from Lemma 4.2 that there exists a quasiconformal mapping

ϕk,+ : Ak,+ → A′k,+ such that

d(ϕk,+) = log
log R̃k − log rk

log R̃k − log r̂k
,

(4.5) ϕk,+(z) = z,

for any z ∈ Ck,+ and

(4.6) arg(ϕk,+(z)− xk) = arg(z − xk)

for z ∈ Ĉk,3.
Since

log
c− a
c− b

= log

(
1 +

b− a
c− b

)
≤ b− a
c− b

for 0 < a ≤ b < c, we obtain

(4.7) d(ϕk,+) ≤ log r̂k − log rk

log R̃k − log r̂k
.

Moreover, we have

log R̃k − log r̂k = log
(1 + δ)− (1− δ)q̃k+1

(1 + δ)− (1 + δ)q̃k+1
(4.8)

≥ log
(1 + δ)− (1− δ)δ
(1 + δ)− (1 + δ)δ

> 0,

and

log r̂k − log rk = log
1− q̃k+1

1− qk+1
+ log

(1 + δ) + (1− δ)qk+1

(1 + δ) + (1− δ)q̃k+1
.(4.9)

We also see that

log
(1+δ)+(1−δ)qk+1

(1+δ)+(1−δ)q̃k+1
(4.10)

= log
{

1 +
(1−δ)(qk+1−q̃k+1)
(1+δ)+(1−δ)q̃k+1

}
≤ (1−δ)(qk+1−q̃k+1)

(1+δ)+(1−δ)q̃k+1

≤ qk+1 − q̃k+1,

because
(1 + δ) + (1− δ) q̃k+1 > 1− δ > 0.

From (4.7)–(4.10), we obtain

d(ϕk,+) ≤
(

log (1+δ)−(1−δ)δ
(1+δ)−(1+δ)δ

)−1
(4.11)

×
{

log
1−q̃k+1

1−qk+1
+ (qk+1 − q̃k+1)

}
≤ C(δ)d(ω, ω̃)
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for some constant C(δ) > 0 depending only on δ.
We may do the same operation, symmetrically; we take a circle Ck,−

centered at −xk of radius R̃k and consider two annuli Ak,− and A′k,−. The

annulus Ak,− is bounded by Ck,− and Ĉk,2, and A′k,− is bounded by Ck,−
and Ck,2. Then, we obtain a quasiconformal mapping ϕk,− : Ak,− → A′k,−
such that

(4.12) ϕk,−(z) = z

for z ∈ Ck,− and

(4.13) arg(ϕk,−(z) + xk) = arg(z + xk).

for z ∈ Ĉk,2. Moreover, the mapping satisfies an inequality,

(4.14) d(ϕk,−) ≤ C(δ)d(ω, ω̃).

We define a homeomorphism ϕk : P̂k → P ′k by

ϕk(z) =


ϕk,+(z), z ∈ Ak,+
ϕk,−(z), z ∈ Ak,−
z, otherwise.

The homeomorhpism ϕk is quasiconformal except circles Ck,+, Ck,−. Hence,

it has to be quasiconformal on P̂k with

(4.15) d(ϕk) ≤ C(δ)d(ω, ω̃).

Step 6 : Making quasiconformal mappings, II. In this step, we make
a quasiconformal mapping from P ′k to Pk. Recall that P ′k is a pair of pants

bounded by Ĉk,1, Ck,2 and Ck,3, and Pk is bounded by Ck,1, Ck,2 and Ck,3.
Let Ck,0 be a circle centered at the origin of radius xk + rk, so that Ck,0

is tangent with Ck,2, Ck,3. We consider circular annuli B′k bounded by Ck,0
and Ĉk,1, and Bk bounded by Ck,0 and Ck,1. It follows from Lemma 4.2 that
there exists a quasiconformal mapping ψk,0 : B′k → Bk such that

d(ψk,0) = log
log(1 + δ)xkx̃k − log(xk + rk)

log(1 + δ)− log(xk + rk)

and ψk,0|C0 is the identity.
As in Step 5, we have

d(ψk,0) ≤ log xk − log x̃k
log(1 + δ)− log(xk + rk)

.

Now, we see that

log (1 + δ)− log(xk + rk) = log
1 + δ

1 + δ(1− qk+1)
(4.16)

≥ log
1 + δ

1 + δ(1− δ)
> 0,
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and

log xk − log x̃k = log

(
1 + (1− δ) qk+1 − q̃k+1

(1 + δ) + (1− δ)q̃k+1

)
(4.17)

≤ (1− δ) qk+1 − q̃k+1

(1 + δ) + (1− δ)q̃k+1

≤ qk+1 − q̃k+1.

From (4.16) and (4.17), we have

(4.18) d(ψk,0) ≤
(

log
1 + δ

1 + δ(1− δ)

)−1

(qk+1 − q̃k+1).

We define a homeomorphism ψk : P ′k → Pk by

ψk(z) =

{
ψk,0(z), z ∈ B′k
z, otherwise.

Then, as in Step 5, we see that ψk is quasiconformal on P ′k with

(4.19) d(ψk) ≤ C(δ)d(ω, ω̃).

In the case where qk+1 ≤ q̃k+1, the same argument still works in Steps 5
and 6; we obtain the same results.

Step 7 : Making a global quasiconformal mapping. In Steps 5 and

6, we have made quasiconformal mappings ϕk : P̂k → P ′k and ψk : P ′k → Pk.
Thus, Φk := ψk ◦ ϕk : P̂k → Pk gives a quasiconformal mapping with

d(Φk) ≤ C(δ)d(ω, ω̃)

for each k ∈ N.
Because of the boundary behaviors (4.5), (4.6), (4.12) and (4.13), we see

that those mappings give a quasiconformal mapping Φ from XE(ω) onto
XE(ω̃) with

d(Φ) ≤ C(δ)d(ω, ω̃).

Furthermore, from our construction of the mapping, we see that Φ(H) = H.

Therefore, Φ is extended to a quasiconformal self-mapping of Ĉ as desired.
�

Proof of (2). Take any ε > 0. Since, log 1−q̃n
1−qn → 0 as n→∞, we also see

that qn → q̃n → 0. Viewing (4.11) and (4.18), we verify that there exists an
N ∈ N such that

d(ϕk) <
1

2
log(1 + ε) and d(ψk) <

1

2
log(1 + ε),

if k > N . Hence, if k > N , then

(4.20) d(Φk) = d(ψk ◦ φk) ≤ d(ψk) + d(ϕk) < log(1 + ε).

Since the pants decompositions in Step 2 of the proof (1) give exhaustions

XE(ω) and XE(ω̃), (4.20) implies the maximal dilatation K(Φ) = ed(Φ) is less
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than (1 + ε) on the outside of a sufficiently large compact subset of XE(ω).
Therefore, Φ : XE(ω) → XE(ω̃) is asymptotically conformal. �

5. Proof of Theorem III

Suppose that there exists a K-quasiconformal map from XC to XE(ω). Let
d > 0 be the smallest hyperbolic length in all simple closed curves in XC .
By Wolpert’s formula (cf. [10], [12]), the hyperbolic length of any simple
closed curve in XE(ω) is not less than K−1d.

Let ε > 0 be an arbitrary small constant. Since sup{qn | n ∈ N} = 1,
there exist a sequence {nk}∞k=1 in N and N0 ∈ N such that

1− ε < qnk
< 1,

if k > N0.
Now we look at I1

qk−1 of Eqk−1 for k > N0. Then, I1
qk
⊂ Eqk is an interval

of length 1
2(1−qk)|I1

qk−1| < 1
2ε|I

1
qk−1|. Therefore, we may take an annulus Ak

in XE(ω) bounded by two concentrated circles C1
k , C

2
k such that the radius of

C1
k is 1

4ε|I
1
qk−1| and that of C2

k is (1
2−

1
4ε)|I

1
qk−1|. If we take ε > 0 sufficiently

small, then the length of the core curve of Ak with respect to the hyperbolic
metric on Ak becomes smaller than K−1d. Since Ak ⊂ XE(ω), the length
of the core curve of Ak with respect to the hyperbolic metric of XE(ω) is
not greater than the length with respect to the hyperbolic metric of Ak.
Thus, we find a closed curve in XE(ω) whose length is less that K−1d. It is
a contradiction and we complete the proof of the theorem.

6. Proofs of Corollaries

Proof of Corollary 1.1. Let Λ be the limit set of the Schottky group G.
We have shown ([11] Theorem 6.2) that XΛ is quasiconformally equivalent to
XC . Hence, it follows from Theorem I thatXE is quasiconformally equivalent
to XΛ as desired. �

Proof of Corollary 1.2. Since C = E(ω0) for ω0 = (1
3)∞n=1, the statement

follows immediately from Theorem II (1). �

Proof of Corollary 1.3. Let ϕ : XΛ → XE be a quasiconformal map given

by Corollary 1.1. Take any quasiconformal map ψ on XE to Ĉ. Then, Φ :=
ψ ◦ϕ be a quasiconformal map on XΛ. It is known that any quasiconformal

map on XΛ is extended to a quasiconformal map on Ĉ (cf. [9]). Hence, both

ϕ and Φ are extended to Ĉ and so is ψ = Φ ◦ ϕ−1. �

Proof of Corollary 1.4. Let Ψ : C → C be the quasiconformal mapping

given in §4. We put D = dimH(E(ω)) and D̃ = dimH(E(ω̃)). We use the
argument in the proof of Theorem II (2).

For any ε > 0, there exists N ∈ N such that

K(Φk) < 1 + ε
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if k > N , where Φk is the quasiconformal mapping given in §4. Therefore,

Φ|UN
is a (1 + ε)-quasiconformal mapping on UN := E(ω) ∪

⋃
k>N

⋃2k

i=1 P
i
k.

Here, we use the following result by Astala [3].

Proposition 6.1. Let Ω,Ω′ be planar domains and f : Ω→ Ω′ K-quasiconformal
mapping. Suppose that E ⊂ Ω is a compact subset of Ω. Then,

(6.1) dimH(f(E)) ≤ 2KdimH(E)

2 + (K − 1)dimH(E)
.

It follows from (6.1) that

dimH(E(ω̃)) ≤ 2(1− ε)dimH(E(ω))

2 + εdimH(E(ω))
.

Since ε > 0 could be an arbitrary small, we obtain

dimH(E(ω̃)) ≤ dimH(E(ω)).

By considering Φ−1, we get the reverse inequality for dimH(E(ω)) and
dimH(E(ω̃)). Thus, we conclude that dimH(E(ω)) = dimH(E(ω̃)) as de-
sired. �

7. Examples

Example 7.1. Let fc(z) = z2 + c. Suppose that c is not in the Mandelbrot
set. Then, it is well known that fc is hyperbolic and the Julia set Jfc is a
Cantor set. Thus, fc satisfies the condition of Theorem I.

Example 7.2. Let B0(z) be a Blaschke product of degree d > 1. Suppose
that B0 has an attracting fixed point on the unit circle T := {|z| = 1}. Since
the Julia set JB0 of B0 is included in T , it has to be a Cantor set. It is
also easy to see that B0 is hyperbolic. Thus, B0 satisfies the condition on
Theorem I.

In Theorem II, we have estimated the maximal dilatations for sequences
with lower bound. In next example, we may estimate the maximal dilatation
for sequences without lower bound.

Example 7.3. For 0 < a < 1 and a fixed L ∈ N, we put qn = an and
q̃n = an+L and we consider E(ω), E(ω̃) for ω = (qn)∞n=1, ω̃ = (q̃n)∞n=1. By
using the same idea as in the proof of Theorem II, we claim that there exists
an exp(Ca−L)-quasiconformal mapping ϕ : C → C with ϕ(E(ω)) = E(ω̃),
where C > 0 is a constant independent of ω and ω̃.

Proof of the claim. We use the same notations for E(ω) and E(ω̃) as
those in the proof of Theorem II. Then,

Ek = ∪2k

i=1I
i
k, [0, 1] = Ek ∪

2k−1⋃
i=1

J ik
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and for i = 1, 2, . . . , 2k,

|Iik| =
(

1

2

)k k∏
j=1

(1− aj).

If i is odd, then

|J ik+1| = ak+1|I1
k | ≥ 2ak+1|I1

k+1|.
If i = 2`m (1 ≤ ` ≤ k;m is odd), then we have

|J ik+1| = |Jmk−`+1| ≥ 4ak+1|I1
k+1|.

Thus, we conclude that

(7.1) |J ik+1| ≥ 2ak+1|I1
k+1|,

for i = 1, 2, . . . 2k+1 − 1.
We draw a circle Cik centered at the midpoint of Iik with radius 1

2(1+ak)|I1
k |

for each k ∈ N and 1 ≤ i ≤ 2k. From (7.1), we see that Cik ∩C
j
k = ∅ if i 6= j.

Therefore, ∪∞k=1 ∪2k
i=1 C

i
k gives a pants decomposition of XE(ω). We also

draw circles C̃ik for ω̃ by the same way. Then, ∪∞k=1 ∪2k
i=1 C̃

i
k gives a pants

decomposition of XE(ω̃).

We denote by P ik a pair of pants bounded by Cik, C
2i−1
k+1 and C2i

k+1. As in

Step 3 of the proof of Theorem II, we may identify P ik with a pair of pants
Pk bounded by Ck,1, Ck,2 and Ck,3, where Ck,1 is a circle centered at the

origin with radius 1 + ak, Ck,2 is centered at

−xk := −ak+1 − 1

2
(1 + ak+1)(1− ak+1)

with radius

rk :=
1

2
(1 + ak+1)(1− ak+1)

and Ck,3 is centered at xk with radius rk.

Similarly, we take a pair of pants P̃ ik bounded by C̃ik, C̃
2i−1
k+1 and C̃2i

k+1,

which is conformally equivalent to a pair of pants P̃k bounded by C̃k,1, C̃k,2
and C̃k,3, where C̃k,1 is the same circle as Ck,1, C̃k,2 is centered at

−x̃k := −− ak+L+1 − 1

2
(1 + ak+L+1)(1− ak+L+1)

wirh radius

r̃k :=
1

2
(1 + ak+L+1)(1− ak+L+1)

and C̃k,3 is centered at x̃k with radius r̃k.

We also take an intermediate pair of pants, P̂k similar to that of the proof
of Theorem II. Then, by using exactly the same method, we may construct

a exp(Ca−L)-quasiconformal mapping from P ik onto P̃ ik, where C > 0 is a
constant independent of k and i. Since the calculation is a bit long but the
same as in §4, we may leave it to the reader.
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By gluing those quasiconformal mappings together, we get an exp(Ca−L)-
quasiconformal mapping ϕ : C→ C with ϕ(E(ω)) = E(ω̃) as desired. �

Cantor Julia sets of Blaschke products with parabolic fixed points.
We showed ([11] Example 3.2) that a Cantor set which is the limit set of

an extended Schottky group is not quasiconformally equivalent to the limit
set of a Schottky group. We discuss the same thing for Cantor sets defined
by non-hyperbolic rational functions.

Let B1(z) be a Blaschke product with a parabolic fixed point on the unit
circle T . Suppose that there exists only one attracting petal at the parabolic
fixed point. Then, we see that the Julia set JB1 is a Cantor set on T (see
[5] IV. 2. Example). However, B1 is not hyperbolic since it has a parabolic
fixed point.

It follows from Theorem I that two Riemann surfaces XJfc for Example
7.1 and XJB0

for Example 7.2 are quasiconformally equivalent. While the
Julia set JB1 of B1 is also a Cantor set, it is not hyperbolic. Therefore, we
cannot apply Theorem I for B1.

Now, we consider the Martin compactification of the complement. For a
general theory of the Martin compactification, we may refer to [6]. Here, we
note the following.

Proposition 7.1. Let B be a hyperbolic Blaschke product of degree d > 1.
Suppose that the Julia set JB is a Cantor set in T . Then, the Martin

compactification of XJB is homeomorphic to Ĉ.

Hence, the same statements as in Proposition 7.1 hold for XJ0 := Ĉ \ J0

and the quasiconformal map ϕ on XJ0 is extended to a homeomorphism of
the Martin compactification of XJ0 .

Next, we consider the Martin compactification of XJ1 , especially the set
of the Martin boundary over the parabolic fixed point of B1. If the set
contains at least two points, then it follows from Proposition 7.1 that there
exists no quasiconformal map from XJ0 to XJ1 .

Indeed, in [9] we observe the Martin compactification of the complement
of the limit set of an extended Schottky group and show that the set of
the Martin boundary over a parabolic fixed point consists of more than two
points. It is a key fact to show that the limit set of the extended Schottky
group is not quasiconformally equivalent to that of a Schottky group ([11]).
However, by using an argument of Benedicks ([4]) (see also Segawa [8]) on
the Martin compactification, we may show the following.

Lemma 7.1. In the Martin compactification of XJ1, there is exactly one
minimal point over the parabolic fixed point of B1.

Remark 7.1. In the Martin compactification of a Riemann surface, the set
corresponding to a topological boundary component of the Riemann surface
is connected and the minimal points in the set are regarded as extreme
points of a convex set. Thus, if the set over a boundary component on the



18 HIROSHIGE SHIGA

Martin compactification contains only one minimal point, then it consists
of only one point, that is, the minimal point.

Proof. To prove the lemma, we use a result by Benedicks.
We denote by Q(t, r) (t ∈ R, r > 0), the square{

x+ iy | |x− t| < r

2
, |y| < r

2

}
.

For a fixed α with 0 < α < 1 and every x ∈ R \ {0}, we consider the
solution of the Dirichlet problem on Q(x, α|x|) \ E with boundary values
one on ∂Q(x, α|x|) and zero on E ∩ Q(x, α|x|). We denote the solution by
βEx . Then, Benedicks showed the following.

Proposition 7.2. On the Martin compactification of Ĉ\E, there exist more
than two points over ∞ if and only if

(7.2)

∫
|x|≥1

βEx (x)

|x|
dx <∞.

Let a ∈ T be the parabolic fixed point B1. We take a Möbius transfor-

mation γ so that γ(T ) = R ∪ {∞} and γ(a) = ∞. For B̂1 := γB1γ
−1, we

see that ∞ is a parabolic fixed point with a unique attracting petal of B̂1,
and J1 := γ(JB1) is contained in R ∪ {∞}.

Since z = ∞ is a parabolic fixed point of B̂1 with only one attracting
pegtal, we may assume that there exists a sufficiently large M > 0 such
that J1 ∩ {Re z < −M} is empty while J1 ∩ {Re z > M} is not empty.
Hence, J1 ∩ Q(x, α|x|) = ∅ if x < 0 and |x| is sufficiently large. Therefore,
βJ1x (x) = 1 for such x. Thus, we have∫

|x|≥1

βJ1x (x)

|x|
dx =∞

and conclude that there exists exactly one point over ∞ from Proposition
7.2. �

Lemma 7.1 implies that we cannot use the argument used for extended
Schottky groups. We exhibit the following conjecture at the end of this
article.

Conjecture. XJ1 is not quasiconformally equivalent to XC .
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