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GLOBAL PRYM-TORELLI THEOREM FOR DOUBLE
COVERINGS OF ELLIPTIC CURVES

ATSUSHI IKEDA

ABSTRACT. The Prym variety for a branched double covering of a nonsingular
projective curve is defined as a polarized abelian variety. We prove that any
double covering of an elliptic curve which has more than 4 branch points is
recovered from its Prym variety.

1. INTRODUCTION

Let C and C' be nonsingular projective curves, and let ¢ : C' — C’ be a double
covering branched at 2n points. In [I4] the Prym variety P(¢) for the double
covering ¢ is defined as a polarized abelian variety of dimension d = ¢’ — 1 + n,
where ¢’ is the genus of C'. Let R = R, 2, be the moduli space of such coverings,
and let A = A, be the moduli space of polarized abelian varieties of dimension d.
Then the construction of the Prym variety defines the Prym map P : R — A, and
the Prym-Torelli problem asks whether the Prym map is injective. If ¢’ = 0, then
it is injective by the classical Torelli theorem for hyperelliptic curves. We consider
the case ¢’ > 0 and dimR < dim A, where we note that dimR = 3¢’ — 3 + 2n
and dim A = w. The generically injectivity for the Prym map has been
proved in most cases.

Theorem 1.1. The Prym map is generically injective in the following cases;

(1) (Friedman and Smith [7], Kanev [9]) n =0 and dim R < dim A,
(2) (Marcucci and Pirola [11]) ¢' > 1, n > 0 and dimR < dim A — 1,
(3) (Naranjo and Ortega [17]) ¢’ > 1, n >0 and dimR =dim A — 1,
(4) (Marcucci and Naranjo [10]) ¢’ =1, n > 0 and dim R < dim A.

The Prym varieties for unramified coverings have been intensively studied be-
cause they are principally polarized abelian varieties. For ramified coverings, Na-
garaj and Ramanan [15] proved the above Theorem [[1] ([2) for n = 2, and then
Marcucci and Pirola [11] proved it for any n > 0. When ¢’ > 1 and dim R = dim A,
there are only two cases (¢, n) = (6,0),(3,2). If (¢’,n) = (6,0) then the Prym map
is generically finite of degree 27 ([6]), and if (¢',n) = (3,2) then it is generically
finite of degree 3 ([15], []).

Although the Prym map is not injective for many cases in Theorem [LT] ([5], [16],
[15], [18]), we prove the injectivity when ¢’ = 1. The following is the main result
of this paper, which improves Theorem [L.T](4]).
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Theorem 1.2 (Theorem B)). If ¢ = 1, n > 0 and dimR < dim A, then the
Prym map s injective.

To prove this theorem we use the Gauss map for the polarization divisor, which
is a standard approach to Torelli problems. Let £ be an ample invertible sheaf
which represents the polarization of the Prym variety P = P(¢). For a member
D € |L|, we consider the Gauss map

Up: D\ Dgyg — P! = Grass (d — 1, H'(P,Q3)Y).

It is not difficult to show that there exists a member Dy € |L£| such that the
branch divisor of Wp, recovers the original covering ¢ : C' — C” in a similar way
as Andreotti’s proof [I] of Torelli theorem for hyperelliptic curves. The essential
part of our proof is to distinguish the special member Dy € |£|. We study the
restriction Wplgsiz : Bs |L] \ Dging — P4=! of the Gauss map to the base locus of
the linear system |£|. Although Wp, is difficult to compute, the restriction Wp|gsz|
is rather simple for any member D € |£|. By using the image of Vpl|ps|z and
the branch divisor of ¥ p|gs|z|, we can specify the member Dy € |£| which has the
desired property.

In Section 2] we summarize some basic properties of bielliptic curves and their
Prym varieties. In Section [3], we explain the strategy of the proof of Theorem [I.2 by
using the key Propositions in Section[@l In Section [ we explicitly describe the base
locus of the linear system of polarization divisors. In Section [5, we show that the
restricted Gauss map Vp|gg|c| is the same map as the restriction of the Gauss map
for the theta divisor on Jacobian variety of C. By giving a simple description for
)\ D|BS| |, We prove some properties on the branch divisor of ¥ D\BS| ¢/ In Section [G]
we present key Propositions, which are consequences of the results in Section

In this paper, we work over an algebraically closed field k of characteristic # 2.

2. PROPERTIES OF BIELLIPTIC CURVES AND PRYM VARIETIES

Let C' be a nonsingular projective curve of genus g over k, and let ¢ be an
involution on C'. In this paper, we call the pair (C, o) a bielliptic curve of genus g,
if g > 1 and the quotient £ = C'/o is a nonsingular curve of genus 1. We denote
by ¢ : C'— E the quotient morphism. First we note the following.

Lemma 2.1 ([16] (3.3)). Let (C,0) be a bielliptic curve of genus g. If g > 3, then
C is not a hyperelliptic curve.

Let N : J(C) — J(FE) be the norm map of ¢, which is a homomorphism on their
Jacobian varieties.

Lemma 2.2 ([I4]). Let ¢ : C — E be the covering defined from a bielliptic curve
(C,0).

(1) ¢* : Pic" (E) — Pic” (O) is injective.

(2) The kernel P of the norm map N : J(C) — J(E) is reduced and connected.
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By Lemma[2.2] the kernel P of the norm map N is an abelian variety of dimension
n =g — 1. Let PV be the dual abelian variety of P, and let Ap : P — PV be the
polarization isogeny which is defined as the restriction of the principal polarization
on the Jacobian variety J(C'). Then the polarized abelian variety (P, Ap) is called
the Prym variety for the covering ¢ : C' — E. We denote by K(P) C P the kernel
of the polarization Ap : P — PY. An ample invertible sheaf £ on P represents the
the polarization Ap, if the polarization isogeny Ap is given by

Ap: P(k) — PY(k) = Pic® (P); o > L LY,
where ¢, : P — P denotes the translation by x € P(k).

Lemma 2.3 ([I4]). Let (P, A\p) be the Prym variety defined from a bielliptic curve
(C,0), and let L be an ample invertible sheaf which represents Ap.
(1) K(P)=¢*J(E)y C J(C), where J(E)y denotes the set of points of order
2 on J(E).
(2) degAp =4 and h°(P, L) = 2.

3. PROOF OF MAIN THEOREM
The main result of this paper is the following.

Theorem 3.1. If g > 3, then the isomorphism class of a bielliptic curve of genus
g 1s determined by the isomorphism class of its Prym variety.

Let (P,Ap) be the Prym variety of dimension n > 3 defined from a bielliptic
curve (C, o) of genus g = n+ 1. We will recover the data (E,e; + - + €2,,7)
from the polarized abelian variety (P, Ap), where & = C'/o is the quotient curve,
e1 + -+ + eo, is the branch divisor of the covering ¢ : C — E, and 7 € Pic (F)
is the invertible sheaf with ¢*n = Ql,. We remark that n®? = OE(el + o+ ean),
and 7 is the invertible sheaf which determlnes the double covering with the branch
divisor e; + - - - + €g,.

Proof of Theorem[3.1. Let £ be an ample invertible sheaf on P which represents
the the polarization Ap. We denote by K(P) the Kernel of A\p : P — PY. By
Lemma 23] we have 1K (P) = 4 and h°(P, L) = 2. We define the subset I, in the
linear pencil |£| by

I, ={D € |L||t,(D) =D C P for some z € K(P)\ {0}},

where t, is the translation by x € P(k). By Lemma 4.8 II, is a set of 6 members
for any representative £ of the polarization Ap. For a member D € |L|\ Il., we
consider the Gauss map

Up: D\ Dgye — P"! = Grass(n — 1, H(P, Qp)Y),

where Wp(z) is defined by the inclusion T,(D) C T,(P) = H(P,QL)Y of the
tangent spaces at the point x € D\ Dgne C P. We set Up = Bs|L| \ Dsing,
where Bs|L| C P denotes the set of base points of the pencil |£|. Let X}, =
Up(Up) € P"! be the Zariski closure of Up(Up) € P*!, and let vp : Xp —
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X}, be the normalization. By Lemma [6.1, Up is a nonsingular variety, hence
there is a unique morphism ¢¥p : Up — Xp such that Up|y, = vp oyyp. We
consider the closed subset Zp = ©p(Ram (¢¥p)) C Xp, where Ram (¢p) C Up
denotes the ramification divisor of 1)p. By Proposition [6.2] Zp has a canonical
decomposition Zp = Ule Zp.i, and there is a unique hyperplane Hp; C P"! such
that vp(Zp,;) C Hp; for any 1 < i < 2n. Then the effective divisor v Hp; — Zp;
on X p has 2 irreducible components for general D € |£|\Il., and these components
coincide for special D € |L£|\ IIz. We define the subset I/, in the linear pencil | L]
by

U, ={D e |L|\ . | v,Hp; — Zp, is irreducible for 1 < i < 2n}.

By Lemmal6.3], IT, is a set of 4 members for any representative £ of the polarization
Ap. For a member D € 1T/, we consider the dual variety (X},)V C (P"1)Y of X}, C
P"~! and the dual variety Hy,, C (P"")" of Hp; C P"~'. By Proposition [6.4]
H}, ; is a point on (X},)", and we have an isomorphism

(Eyer+ -+ e,n) = (Xp) ', Hpy + -+ + Hp g, O@rn-1)v (1) (x1,)v)-

4. PENCIL OF POLARIZATION DIVISORS

Let (C,0) be a bielliptic curve of genus g =n+ 1 > 3. For 6 € Pic" (C), we set
the divisor W5 C J(C') by

Ws(k) = {L € Pic® (C) = J(C)(k) | h°(C,L ® 6) > 0}.
We remark that the singular locus of Wy is given by
Wi sing(k) = {L € Pic” (O) | h(C, L ® §) > 1},

and dim Wi e = n — 3 ([2, Proposition 8]), because C' is not a hyperelliptic curve
by Lemma 2.1l Let A¢ : J(C') — J(C)¥ be the homomorphism defined by

Aot J(C)(k) = J(C)"(k) = Pic" (J(C)); x — [;0c(Ws) ® Oc(~Ws)],

which does not depend on the choice of § € Pic" (C). Let ¢, : C' — J(C) be the
morphism defined by

tg: C(k) — Pic’ (C) = J(C)(k); ¢ — [Oc(d - q)].
for ¢ € C(k).
Lemma 4.1.
= 1,050y (Ws — Wiip)] € Pic’ (C)
for any q € C(k) and z € Pic® (C).
Proof. The statement means that (—1)o A is the inverse of the homomorphism ¢ :

J(C)Y — J(C) defined by the pull-buck ¢ : Pic? (J(C)) — Pic® (C) of invertible
sheaves. It is well-known ([I3 Lemma 6.9]). O
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Let P be the kernel of the Norm map N : J(C) — J(FE), and let Ds C P the
fiber of the restriction of the norm map Ny, : W5 — J(E) at 0 € J(E). We
denote by L5 = Op(Ds) = Oy (Ws)|p the restriction of O ) (Ws) to P. Since
Wy is the theta divisor of J(C'), the ample invertible sheaf L; represents the the
polarization Ap.

Lemma 4.2. Dy 45 C P is a member of the linear system |Ls| for any s €
Pic’ (E).
Proof. By Lemma [4.1]
¢*s = 1[0 50y (Ws — Wisyge5)] € Pic? (C)
for s € Pic’ (E) and ¢ € C(k). We set s' € Pic’ (J(E))
(

*

(
)) by s = 5,5, where
Lo(q) : E = J(E) is the isomorphism determined by te(q) (¢
*s' = [Oc)(Ws — Wsyges)] € Pic” (J(C)%
because ¢*s = L;N*S, and ¢ : Pic’(J(C)) — Pic” (C) is an isomorphism. Since
(N*s")|p = 0 € Pic” (P), we have
Op(Dsy¢es) = Osi0)(Wsiges)|lp = Oycy(Ws)|p = Ls.

q)) = 0. Then we have

O

We denote by C'¥) the i-th symmetric products of C. For § € Pic” (C), we define
the morphism 3% : C"=%) x E® — J(C) by

Be: C 2 (k) x EO(k) — J(C)(k) = Pic® (C);

(@44 Guosispr + -+ pi) — Oc(nz_:%q]) ® qb*OE(zi:pj) ® 4.
j=1 j=1

We remark that W = Image (35), and we set
i _ JImage(85) (1<2i<n),
BJ - .
0 (20 > n).
Lemma 4.3. B} \ Wiging # 0 and Bf C Wi ging.
Proof. Let B! be the image of the morphism 8 : C*=2 x E — C™ defined by

Bl CA(R)x E(k) = C™(E); (u+- -+ o2, (Q) — @14+ -+ qnot+q+0(q).

Since C'is not a hyperelliptic curve, we have dim (85) ™' (Wsging) =n—2 <n—1=
dim B*, hence B} = S)(B"') € Wj sing.

To prove the second statement, we assume that n > 4, because B? = () for n = 3.
Let F ¢ C™% x E® be the fiber of the composition

9 E® 5, 5oy X, (E)

at n—N(0) € J(F)(k), where n € Pic" (E) denotes the unique invertible sheaf on £
with ¢*n = QL. Weset U = (C) x E@)\ (FU(C" x Ag)), where Ap ¢ E®
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denotes the image of the diagonal in E'x E. Fory = (q1++ -+ gn_4, 0(q) + (7)) €
U(k), there are points ¢', 7" € C'(k) such that

{oE@s(qf)) > @ Op(—d(aq1) — - — G(gn-a) — 6(q) — 26(r)),
Op(d(r") =@ Op(—d(@1) — - — 6(gn-a) — 26(q) — &(7)).
Then we have
Q(—q = — aa—q—0(q) =7 —o(r))
o' Oc(—q1 — = qna —q—0(q) =1 —0(r))

)

~Oc(o(q) + 4+ 0(qus) + ¢ +0(d)+1r+0(r))

20c(o(q1) + -+ 0(qn-a) +q+0(q) +1" +a(r")).
We remark that ¢(q) # ¢(q¢') and ¢(q) # ¢(r), because y ¢ F andy ¢ C"4 x Ap.
Hence we have h°(C,Q4(—q1 — -+ —qna—q—0(q) —r—0o(r))) > 1 and Bi(y) €
Wiging: Since U C (B2)"H(Wisging) is a dense subset of C"=% x E®) we have
Cr x E@ = (62)7H (W ging)- O
Lemma 4.4. For s € Pic’ (E), Ds = D5 y-s C P if and only if s = 0 or s =
n—N(9).
Proof. For L € P(k) C Pic” (C), we have 0 = ¢*N(L) = L + o*L € Pic’ (C).
Hence we have Ds = Ds4-,—n(s)), because
L € Ds(k) <= h°(C, L&) > 0 <= h°(C,0*L®c*d) > 0 <= h°(C, L' ®5*6) > 0

= W0, @ L©®0*0Y) > 0= L € Digyj_g5(k) = Dstgrn-neoy (k).
We assume that Ds = Ds 45 for s # 0 € Pic’ (E). Let [ Cr=2xC — J(C)
be the morphism defined by
asyges : C7(E) x O(k) — Pic® (C) = J(C)(k);
@+ a0d) > Ocls + -+ aa +20) 88 675"
Then the set Ds \ (Wssing U By U Image (as44+5)) is not empty, because
dim Dj N (Ws ging U By U Image (a14+5)) < n — 1 = dim D.
For L € Ds(k)\ (Wssing U B} UImage (a1 4+5)), there is 7+ - - +r, € C™ (k) such
that L@I®¢*s = Oc(r1+---+1y), because L € Ds(k) = Dsipres(k) C Wipges(k).
Since L € Ws(k) \ Wiging(k), we have h°(C, QL @ LY ®6Y) = h°(C,L®4) = 1. Let
@+t q, € C™W(k)and ¢ +---+ ¢, € C™ (k) be the effective divisors defined
by
L@ O0c(qi+-+aqn), QL @6 =0a(d+--+4q,).
Let ¢(u;) € E(k) be the point determined by s = [Og(¢(r;) — ¢(u;))]. Then
L®dé®O0c(o(r;)) = Oc(ri+ -+ +ry —1 +u +0(w)).
Ifo(r;) ¢{q,...,q,}, then
R(C,L ®6 @ Oc(o(ry))) = h2(C, 0L @ LY @ §Y @ Oc(—o(ry))) +1 =1,
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hence
G+ to(r)=ri4 g =i u+o(ug).

Since s # 0, we have o (r;) = r; for some j # i, and L € B}(k). It is a contradiction
to L ¢ B}(k), hence o(r;) € {q},...,q,} for any 1 < i < n. Here the condition
L ¢ Image (a514+s) implies that §{ry,...,r,} =n and

LY@ 0®¢*s 2 Oc(o(r) +-+0a(rn) =0c(g)+-+¢,) =LY ®6".
Hence we have ¢*s = [QL] —§ — %6 = ¢*(n — N(J)), and s = n — N(5) by
Lemma 2.2 O

Let Bs C J(C') be the subset
Bi= [\ Wises.

sePic? (E)
Lemma 4.5. Bs \ Wigng = B; \ W sing-

Proof. If L € Bj(k), then L ® § = Oc(qs + -+ + gna + q¢ + 0(q)) for some
qi, - Gn_2,q € C(k). For s € Pic’(E), there is a point ¢’ € C(k) such that
s = [Op(6(d) — 6(@))]. Since L© 5@ ¢*s = Oclay + - + Guos + ¢ + 0(¢)), we
have h°(C, L ® 6 ® ¢*s) > 0 and L € Wi 4s(k). Hence the inclusion Bj C Bs
holds.

For L € Bs(k) \ Wsging(k), there is a unique 7 + -+ + 7, € C™ (k) such that
QLRLY®6Y = Oc(ri+---+1,), because h°(C, QL@ LY ®6Y) = h°(C, L®§) = 1.
Let ¥ C Pic’ (E) be the finite subset defined by

Y = {s e Pic (E) | L® ¢*s € BA(AM)),

where A = {o(r1),...,0(r,)} € C and A™ c C™. For s € Pic’ (E) \ (X U {0}),
there is a divisor q; +- -+ ¢, € C™ (k) such that L® 6 ® ¢*s = Oc(q1 + - -+ qn),
because L € Bs(k) C Wii4-5(k). Since s ¢ ¥, we may assume that ¢, ¢ A. The
condition o(g,) & {r1,...,r,} implies that h°(C, QL @ LV ® " @ Oc(—0(q,))) =0
and h°(C, L ® § ® Oc(o(q,))) = 1. Let ¢(q') € E(k) be the point determined by
5 = [O8(6(g,) — 6(¢')))- Then

L®0®O0c(o(qn) = Oc(qr+ -+ qua + ¢ +0(q)).
Since s # 0, we have 0(q,) € {q1,...,qn1} and L € Bj(k). O
Lemma 4.6. The map
Pic’ (E) — |Ls]; s — Dsyges

is a double covering, and the base locus Bs|Ls| of the linear system |Ls| is Bs N P,
which is of dimension n — 2.

Proof. The map is well-defined by Lemma 4.2l Since dim |Ls| = 1, it is a double
covering by Lemma [£.4l Hence we have

Bs|Ls|= (] Dssgrs=DBsNP.

s€Pic® (E)
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By Lemma 3] B} is irreducible of dimension n — 1. Since the restriction of the
Norm map N|p; : B} — J(E) is surjective, we have dim B} N P = n — 2, hence
dim Bs N P =n — 2 by Lemma [4.5] 0J

Lemma 4.7. Let £ be an ample invertible sheaf which represents the polarization
Ap on P, then there is § € Pic" (C) such that N(0) =n and L = Ls.

Proof. For any &' € Pic" (C), we have L&LY, € Pic” (P), because Ly gives the same
polarization as Ap. Then £ = t*Ls = Ly, for some z € P(k). Let s € Pic’ (E)
be a point with 2s =n — N(§' 4+ ). For 6 = ' + = + ¢*s, we have N(0) = n and
L=Ls O

For an ample invertible sheaf £ which represents the polarization \p, we set a
subset in the linear system |L£| by

I, ={D € |L]| | t.(D) = D for some x € K(P)\ {0}},
where K (P) is the kernel of the polarization Ap.
Lemma 4.8. §ll; = 6.

Proof. By Lemma (7] there is § € Pic" (C) such that N(§) = n and £ = L.
For any D € |Ls|, by Lemma [0 there is s € Pic” (E) such that D = Dsge,. If
Dsi 45 € 11z, then by Lemmal[23] thereist € J(E)y\{0} such that ty«¢(Dsiges) =
Dstgs. Since tgei(Dsygrs) = Dyyopr(s—r) and t # 0, by Lemma 4], we have

S+ ¢ (s—t)=04+¢"s+ ¢ (n—N(0+ ¢*s)) =0 — ¢"s,
hence ¢t = 2s by Lemma It means that
g, ={Dssges € [Ls| [ s € J(E)s \ J(E)2}-
Since §(J(E)4 \ J(E)2) = 12 and Ds;prs = Ds_4+5, we have flI, = 6. O

5. GAUSS MAPS

5.1. Gauss map for Jacobian and Gauss map for Prym. Let
\IIJ(C)76 : W5 \ Wé,sing — P<H0<C, Qé)v) = Grass (n, H0<C, Qé)v)

be the Gauss map for the subvariety W5 C J(C). For L € Wi(k) \ Wsging(k),
the tangent space T7(Ws) of W at L defines the image V¥ ;) s(L) by the natural
identifications

Ty (Ws) € Tr(J(C)) = (e (L) = H(J(C), Q)" = H(C, Q)"

Lemma 5.1. For L € Ws(k) \ Wsging(k), the image Wy 5(L) of the Gauss map
1s identified with the canonical divisor
7 R ol qi +eeet Q;L € |QlC| = Grass (1a HO(Ca QlC’)) = P(HO(C? QlC’)V)a

where the effective divisors q1 + -+ -+ qn, and q; + - - - + ¢, are uniquely determined
by LRSI Oc(qr+-++¢q) and Q- @ LY @6 2 Oc(¢) + -+ q,).

Proof. 1t is a special case of Proposition (4.2) in [3, Chapter IV]. O
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Lemma 5.2. Let K € |Q}]| be an effective canonical divisor. If ¢y +o(q1) < K for
some q1 € C(k), then K =37 (q; + 0(q;)) for some qq, ..., q, € C(k).

Proof. When

2n—2m—1
K= Z g +o(a) +q+ Z
for 1 <m <n —1, we show that o(q) € {ri,... ,’T’Qn_gm_l}. First we assume that

1 <m < n-—2. Since C is not a hyperelliptic curve, by Clifford’s theorem, we
have

m+2 > h°(C, OC(Z(qi+a(qi))+q+a(q))) > hO(E, OE(Z ?(q:)+9(q))) = m+1

and
m

m+1> h(C, OC(Z(qi +a(q:) = (B, Op( Z¢ @) =
hence h(C, Oc(321, (¢ + (@) + g+ o(q))) = m+1 and 2°(C, Oc (322, (4
o(g;)))) = m. Since o(q) is not a base point of |Oc (37" (i +0(q:)) +q+0(q))| =
¢* 0>~ ¢(q:) + #(q))|, we have

+

m

m = h"(C, Oc( Z G:i+0(6:)+a)) < h°(C,0c(Y (a:t+0(@) +a+0(9) =m+1,

=1

hence
2n—2m—1 2n—2m—1
W(C,0c( Y ri—0a())=h"(C,0c( Y r))=n—m-1.
j=1 Jj=1

It implies that o(q) < 22" *m=1y; We consider the case m = n — 1. Let 1 €
Pic" (E) be the invertible sheaf with ¢*n = QL. There is a point ¢ € C(k) such
that Z;:ll &(q:) + o(q') € In|l. Then Oc(q+11) = Oc(q +0(q')). Since C' is not a
hyperelliptic curve, we have ¢+ = ¢ + 0(¢') and o(q) = r;. O

By the injective homomorphism
H°(E,n) — H"(C,¢"n) = H°(C,Q),
we have the closed immersion
v P(HY(E,n)") — P(H(C,Q¢)").
Lemma 5.3. For L € Bs(k) \ Wisging(k),
U0)s(L) € (P(H(E,n)")) C P(H(C,Q¢)").

Proof. For L € Bs(k)\ Wsging(k), by Lemma[5.1], the image ¥ ;) s(L) of the Gauss
map is given by

Gttt g+ g €0 2 PHY(C,QH)Y),
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where the effective divisors ¢; + - - - + ¢, and ¢} + - - - + ¢, are uniquely determined
by L&®d = Oclqs + -+ ¢) and Qf @ LY ® 0¥ = Oc(¢, + -+ + ¢,,). Since
L € Bs(k), by Lemma .5, o(¢;) = ¢; for some ¢ # j. By Lemma 5.2] we have
Vy(0)s(L) € (P(H(E,m)")). O

Let
Wps: Ds\ Dsging — P(HY(P,Qp)") = Grass (n — 1, H*(P,Qp)")

be the Gauss map for the subvariety Ds C P. For L € Ds(k)\Ds ging(k), the tangent
space 11, (Ds) of Ds at L defines the image Wps(L) by the natural identifications

T1.(Ds) € Ty (P) = (Qp(L))" = HY(P,Qp)".

For L € P(k), the tangent space Tp(P) of P at L is naturally identified with the
orthogonal subspace

Ve = (¢"HO(E, Qp))* € HY(C,Q8)" = T, (J(C))

to ¢*HY(E,Q}) C HY(C,Q4), and it corresponds to the ramification divisor
Ram (¢) € |Q4] of the covering ¢ : C'— E. We define the finite set X5 by

Ys={B8Y(r1+---+r,) €JC)|ri+ - +r, <Ram(¢)}.
Lemma 5.4. Dsgng = (Wiging U 2s) N Ds.

Proof. If L € Ds(k) N\ Wsging(k), then L € Dsgng(k). If L € Ds(k) \ Wsging(k),
then by Lemma [5.1]

L e Dé,sing(k) e TL(W(;) = TL(P) C TL(J(C)) <— L e Xs.

Lemma 5.5. (Bs N P)\ Wsging = (Bs N P) \ Dy ging-

Proof. By Lemma 5], (Bs \ Wssing) N X5 = (Bj \ Wssing) N s, and it is empty
because Ram (¢) is reduced. Hence by Lemma [5.74]

Wissing N Bs N P = Wi ging N Bs N D5 = D5 ging N Bs = Dy ging N Bs N P.

We denote by
m: P(HY(C,Q0)") \ {Vp} — P(H (P, Qp)");
[V c H(C, Q)Y — [V N Ve CVp = HYP,Qp)Y]

the projection, where Vp = (¢*HO(E, QL))+ C H°(C, QL)Y is the image of the
dual of the restriction

H(C, Q) = HY(J(C), Q¢ — H(P,Qp).
Lemma 5.6. Vps(L) =m0V ¢ 5(L) for L € Ds(k) \ Dsging(F).
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Proof. For L € Ds(k) \ Dsgsing(k), the tangent spaces at L satisfies
TL(P)NTL(Ws) =T(Ds) C Tp(J(C)),

because P N W5 = Ds C J(C). Since T,(P) C Tr(J(C)) is identified with Vp C
HO(C, Q)Y by Ti(J(C)) = H(C,Q)Y, we have Wps(L) =70 W 05(L). O

By Lemma [5.3] we have the morphism
Vst Bs \ Waging — P(H(E,n)")
satisfying ¢ o \IIJJB(CM =Y 05

Lemma 5.7. The restriction \pr,5|(3mp)\D&smg of the Gauss map Vps is identified
with the restriction \115(0)76‘(36013)\[)6’81.”% of ‘I’?(C),a by the isomorphism

mouv: P(HY(E,n)Y) — P(H(P,Qp)Y).
Proof. Since the composition
HO(EJ?) — HO(C> QlC) = HO(‘](C)>Q1J(C)) - HO(Pa Q};),
is an isomorphism, it is a consequence of Lemma and Lemma O

5.2. Description for the restricted Gauss maps. Let 75 : B2 x E — J(E)
be the morphism defined by

35 EOD(k) x E(k) — Pic® (E);
P14+ +Pn2,p)— Op(pr+ -+ po2+2p) ® (N((S))v'

Let X5 € E™2) x E be the fiber of 75 at 0 € J(E), and let Y5 C C" 2 x E be
the fiber of the composition

(n—2) w§
o2 x g N pee2) o p By g (R

at 0 € J(E). We denote by s : Y5 — X; the induced morphism by ¢~ x idp.
Let v5: X5 — |n] 2 P(HY(E,n)") be the morphism defined by

vs s Xs(k) = [nl; (01 + -+ poa,p) = P14+ Paa P+ v (),
where t,_n(5) (p) € E(k) is the point determined by
[Op(ty-ne)(P)] = [Or(p)] +n— N(6) € Pic (E).
We remark that 8}(Ys) = Bf N P C J(C), and we set
}/50 = (ﬁ;)_l((B(% N P) \ D(S,sing) = (5;)_1((36 N P) \ D(S,sing)-
Lemma 5.8. The diagram

1
Ve 5 (BsN P)\ Dssing
s | Y U505

18 commutative.
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Proof. Let L € Pic’ (C) be the invertible sheaf which represents the point £} (y) €
J(C) fory = (@1 + - +au—2, 6(q)) € Y7 (k). Then g1+ +guat+q+a(q) € C™ (k)
is the unique effective divisor with L = Oc(q1 4+« + g2+ g+ 0(q)) ® §¥. Since
vs o ¥s(y) = ¢(qr) + -+ + (an—2) + ¢(q) + ty-ns) (6(q)) € [nl,
we have
@+ o(q)+ -+ Guos+ 0(qu2) +q+0(q) +r+0o(r) € Q]

where r € C(k) is given by ¢(r) = t,—n(5)(4(q)). Then o(q1) + - -+ 0(gn—2) + 7+
o(r) € C™(k) is the unique effective divisor with O¢(o(q1) + -+ + 0(gu_z) + 7 +
o(r)) 2 Q6 ® LY ® 6%, and by Lemma BI], %) (L) is equal to vs o ¢s(y), O

Lemma 5.9. X; and Ys are nonsingular projective varieties.
Proof. We fix a point py € E(k). Let vs,, : ™2 — J(E) be the morphism
defined by

Yopo : BV 72 (k) — Pic” (E) = J(E)(k);

Prtcc A+ Paa— Op(pr+ -+ Paa +2po) ® (N(9))".
Then 15 : Y5 — X; is the base change of ¢=2 . C(»=2) — E(=2) by the étale
covering of degree 4;

pro

, 2 x, X E
pr ) U e O L (=2)8) © two
cr=2  — E0-2 s J(E),

¢(n—2) Y8,p0
where (=2) gy 0 tp, : £ — J(E) is given by
(=2)() © tpy + E(k) — Pic® (E) = J(E)(k); p — Op(2po — 2p).
0J

Lemma 5.10. 3} ve Y5 — (Bs N P) \ Dsging is an isomorphism. In particular,
(Bs N P) \ Dsging is a nonsingular variety.

Proof. By Lemma [5.5], the image 35 (Yy) = (Bs N P) \ Dsging is a closed subset in
Ws \ Wi sing- We show that 3; ve 1 Y5 — Ws \ Wsging is a closed immersion. Let
pl: 02 x E — C™ be the morphism given in the proof of Lemma Since
Bt =pYo Bl and B : C™ — J(C) induces the isomorphism

B3+ CN(B9)™ Wising) — W \ Wsing,
it is enough to show that the finite morphism
B (CUD X )\ (B5) 7 (Wasing) — C™ N\ (B3) ™ (Wising)
is a closed immersion. We remark that it is injective by Lemma (A3l For y =

(@1 + -+ G2, (a0) € (CO2 x E)\ (8)7 (Wiang). we prove that the homo-
morphism

T,(C"2 x E) — T,y (C™)
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on the tangent spaces is injective. If ¢(qo) ¢ {d(q1), ..., d(gn_2)}, then the point
Y =(@+ +qu2q+0(q) € C" (k) x C?(k) is not contained in the ram-
ification divisor of the natural covering C"=2 x C? — C™_ Since the morphism
E(k) = CP(k); 6(q) — q+a(q)

is a closed immersion, the homomorphism

T,(C"2 x E) = T, (C"? x C?) = T,y (C™)
is injective. We consider the case when y = (¢1 + -+ + ¢u_2-i + 190, #(qo)) and
Q% ¢ {q1,--.,quo—i} for some ¢ > 1. First we assume that o(q) = ¢qo. Then
by Lemma 3] we have i = 1. The point § = (¢1 + - - + ¢u_3,9,?(q0)) €
C=3) x C x FE is not contained in the ramification divisor of the natural cov-
ering C"3) x C x E — O 2 x E, and the point §' = (q; + -+ + ¢n_3,3q) €
C(=3) % C®) is not contained in the ramification divisor of the natural covering
C=3) x 0B — O™ Since the morphism

C(k) x E(k) = C®(k); (¢, 0(q)) — ¢ + ¢+ 0(q)
is a closed immersion, the homomorphism

T,(C"2 x B) = Ty (O™ x O x E) «— Ty(C"™ x ) = T,y (C™)

is injective. We assume that o(go) # ¢o. Then by Lemma 3] we have o(q) ¢
{q1, - qn-2-i}. The point § = (q1 + -+ + g2 + iqo, q0) € C" 2 x C is not
contained in the ramification divisor of the covering idgpm-2 x ¢ : C"72 x C' —
C=2) x E, and the point §' = (¢1 + -+ qu_s—i + (i + 1)qo, 0(q0)) € C™ ™V x C'is
not contained in the ramification divisor of the natural covering C"~1 x C' — C™.
Since the morphism

C"=2(k) x C(k) — C™ Y (k) x C(k);

(Gt A+ hga) — (Gt + oo+ ¢,0(q)

is a closed immersion, the homomorphism
T,(C"2 x E) 2 T5(C" x C) — Ty(C"™ x C) 2 T, (C™)
is injective. 0
Let X = \1153(0)76((35 N P)\ Dsging) be the Zariski closure of the image of the

restricted Gauss map \If?(c)vékgmp)\[)&smg in P(H°(E,n)Y).
Lemma 5.11. v5(Xs) = Xj.
Proof. By Lemma [5.8], we have

U0y 5((Bs N P)\ Dsging) = vs(05(Y5)) C vs(Xs),

hence X} = vs(¢s(Yy)) C vs(Xs) and Yy C (vs o vs)H(X}). Since Yy is dense in
Y5, we have Y5 C (vs o vs) ™1 (X}) and v5(Xs) = (vs o vs)(Ys) C X O

Lemma 5.12. If N(§) —n ¢ J(E)2 \ {0}, then vs : X5 — X} is the normalization
of X5.
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Proof. We set morphisms af : % x B — E®_ s E0=3) x B — E™ and
v B4 x @ — B by
OéZsFiE("?’() ()—>E("(),
(pr+ -+ Dz, p) — D1+ F D3+ 20+ LN (D),
a(;;E("i*() (k)—>E("(),
P14+ + D3, p) — D1+ + Doz + 20+ tne)—n (D),
u(;:E("?’() (k)—>E("(),
(P14 F Pz, p) — p1+ - F Pus + D+ ty-ne) (D) + tNe)—n(D)
and
v2: Bk x ED(k) — EM(k);
(P14 Fpn-s, P+ P) = prt e Paca P+ byne) (P) TP+ ty-nio) (P)-
By the natural inclusion X} C |n| € E™, the subset
U = X} \ (Image (o ) U Image (o ) U Image (us) U Image (v5)),

is open dense in X}, where we consider as Image (v3) = 0 if n = 3. We show that
the morphism

vs : vy {(U) — E™ \ (Image (a; ) UTmage (aj ) U Tmage (115) U Tmage (7))
is a closed immersion. For u = p; + -+ + p, € U(k), we assume that
PFityne@) Spit-+pn and Pty ne(@) <pit+-Fpn

for some p # p' € E(k). Since u ¢ Image (12), we have

ty-n@(p) =P or p=t, ne )
and furthermore u ¢ Image () implies that

ty-ne(p)=p and p=t, ne (),
hence N(§) —n € J(E); \ {0}. This means that vs : v;'(U) — U is bijective if
N(§) —n ¢ J(E)2 \ {0}. In the following, we prove that the homomorphism

T (B x B) — Ty (E™)
on the tangent spaces is injective for # € v; ' (U). Let 75 : E™2 x B —
E™=2) % E® be the morphism defined by
75 : B (k) x E(k) — E™ (k) x E®(k);
(P14 -+ DPn-2,p) — D1+ -+ P2, P+ ty-n) (D).

If N(6) —n ¢ J(E)2 \ {0}, then the morphism 75 is a closed immersion. For
z € v;'(U), the image s(x) is not contained in the ramification divisor of the
natural covering E"=2 x E® — E® because vs(x) ¢ Image (o)) U Image (o ).
Hence the homomorphism

T(ET? % B) < Ty (B™ x B®) 2 T,y (E™)
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is invective. By Lemma [5.9] the finite birational morphism v : X5 — Xj gives the
normalization of Xj. O

Remark 5.13. If N(0) —n € J(E)2\ {0}, then vs : X5 — X is a covering of degree
2.

5.3. The branch locus of the restricted Gauss maps. Let Rs C Y be the
divisor defined by

Rs(k) ={(q1 + - - + qu—2,p) € Ys5(k) | pi = o(p;) for some i # j}.
Lemma 5.14. 3} (R;) C W ging.-
Proof. Tt is a consequence of Lemma [£.3] because 33 (R;) C B2. O
Let S5, C Y5 be the divisor defined by

Ssr(k) ={(q1 + -+ + qn2,p) € Ys(k) [ 1 + -+ + G2 = 7}

for r € Ram (¢). Then the ramification divisor of 15 : Vs — X; is
Ram (¢5) = Rs U | ) Sio-
reRam (¢)
Lemma 5.15. 35(Ss,) € Wising, and moreover 53(Ss,) N Wi sing = 0 if n = 3.
Proof. Let W, C J(C) be the subvariety defined by
W(%T(k) = {L € Pic" (O) | h°(C, L ® Oc(—1) ® 6) > 1},

and let 75, C J(C) be the image of the morphism

C" I (k) x E(k) — Pic® (C) = J(C)(k);

(@1 4+ + dns, (@) ¥ Oc(@ + -+ gug + 7 +q +0(q)) ® 6",
Since C'is not a hyperelliptic curve, by Martens’ theorem [12], Theorem 1], we have
dim Wy, <n —4 and Ty, € Wy, hence dim T, = n—2. We remark that Wy, =0
in the case when n = 3. Since (3}(Ss,.) = Ts, N P is the fiber of the composition
Ty, C J(C) 2 J(E)

at 0 € J(F), we have dim 8}(Ss,) = n — 3. Let Ta, C T5, be the image of the
morphism

C (k) x BE(k) — Pic® (C) = J(C)(k);

(it +Gna,0q) — Oclqr+ -+ qua+2r+q+o(q)®5.

Since 2r = r + o(r), we have Tso, C B? C Wigng by Lemma For L €

(T5. (k) N Wi ging(K)) \ Ts.2-(k), there is (q1 + - + gu_3,8(q)) € C" 3 (k) x E(k)
such that L = Oc(q1 + -+ qn-s +7+q+0(q)) ®6Y and r & {q1, ..., qu—3}. If

Gt g Tir€lQol—a = —gus—1r—q—0(q)] = @ (L®J)"|

and r ¢ {q1,...,q,_;}, then by Lemma[5.2] the number i is odd. By the same way,
any member in the linear system |Q4(—¢) — - —¢,_; —ir)| = |L ® §| has an odd
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multiplicity at r. It implies that h°(C, L& Oc(—r) ®d) = h°(C, L® ) > 1. Hence
we have
Té,r N W(S,sing = T6,27’ ) (T6,r N Wél,r)
When n = 3, it implies that Ts, N Wi gne = 0. When n > 4,
5;(56,7“) N W(S,sing = (T5727’ N P) U (ﬁ;(s&r) N Wél,r)

is a proper closed subset of 8}(Ss,) = Ts, N P, because dim (T2, N P) < n —4
and dim W(;{T, <n-—4. O

Let Zs, = 15(Ss,) be the image of S;, by 15 : Y5 — X;. Then

Zsr(k) ={(pr+ -+ Pu2,p) € X5 [ ¢(r) <p1+- + po2}.

Lemma 5.16. If n > 4, then Zs, is irreducible. If n = 3, then X5 = E, and
Zsr C X5 is a J(Xs)a-orbit by the natural action of J(Xs) on the curve X of
genus 1.

Proof. Let s, : E"2 — J(E) be the morphism given in the proof of Lemma [5.9
for fixed py € E(k), and let 7, : E3) — E(=2) be the morphism defined by

i E"Y(k) — B (k) put- 4 pag = i+ pass + 9(r).
If n > 4, then Zs, is a P""“-bundle over E by the base change

pr
Z&,T’ > X6 —>2 E

\J O] e O b (=2)5(E) © tyo
EC=3 — p0=2 s J(E)

ir 75,;}0
of the P"~*-bundle 7;,, 0 i, : ™3 — J(E), hence Zs, is irreducible. If n = 3,
then pr, : X;—F is an isomorphism, and
Zsr = {p € E(k) | Op(¢(r) +2p) = N(5)}
is an orbit of J(F)q-action. O
We denote by Ram (¢)5) C Yy the ramification divisor of 1§ = s]ye : Y5 — X.

Lemma 5.17.
YsRam (¥5) = | Zsa

réRam (¢)

Proof. Since Ram (¢5) = Rs U, cram (¢) S5, by Lemmalb.14, we have Ram (¢§) =
UreRam(d)) S5 NYy. By Lemma BI85, S5, NYyY # 0 for n > 3, and S5, N Yy = S;,
for n = 3. Since s is a finite morphism, ¢5(Ss, NYy) is of dimension n — 3. By
Lemma [5.16] we have ¢3(Ss, NY?) = ¥5(Ss,) = Zs. O

Let H, C P(H°(E,n)") be the hyperplane corresponding to the subspace
HY(E,n® Op(—¢(r))) C H(E,n).
Lemma 5.18. H, is the unique hyperplane with the property vs(Zs,) C H,.
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Proof. The inclusion vs5(Zs,) C H, is obvious. We prove the uniqueness of the
hyperplane H,. Let z = (p1 + -+ + pp—s + ¢(1),p) € Zs,(k) be satisfying p; #
ty—n() (p;) for i # j. We take a point p’ € E(k) \ {p} such that Og(2p) = Or(2p)
and Og(p' —p) Zn@ N(§)Y. Then 2/ = (p1 + -+ + pu_z + ¢(r),p) is contained
in Zs,(k), and v5(2) # vs(2’). It implies the uniqueness in the case when n = 3.
When n > 4, we show that v5(Z;,) C H, is a non-linear hypersurface in H,. Let
[ C H, be the line containing the two points vs(z), vs(z') € vs(Zs,). Then the line
| C P(H°(E,n)") corresponds to the linear pencil

n(=p1 = = pa—z — 6(r))| C |n| = P(H(E,n)").
For a point py € E(k), there is a unique point pj € E(k) such that py + pf, €
n(=p1 =+ = Pu—s — ¢(r))|. If Or(2p0) Z Op(2p), Op(2p;y) # Or(2p) and

P00 & {tn-n©)(P1), - - ty=ns) (Pr—3)s tn)—n(P1), - - -, EN ()= (Pn—3) },

then the point py + - - 4+ pr—3 + ¢(7) + po + Py € |n| on the line [ is not contained
in V(;(Z(g,r). O

Lemma 5.19. The pull-back of the divisor H, by vs : Xs — P(H°(E,n)Y) is
v;H, = Zs5, + Ms, + Mg,
where M;,, and Mg, are irreducible divisors on Xs defined by
Ms (k) = {(p1 + -+ po-2,p) € Xs(k) | p = 6(r)},
M;, (k) = {(p1 + - -+ Pn—2.p) € X5(k) | p = tn)—n(&(1))}.
Proof. Let I, be an irreducible divisor on E™ defined by
L(k) = {pi+ - +pn € (k) [pr+ -+ po > 6(r)},
and let Z,, M,, M’ be irreducible divisors on E"~? x E defined by
Zp(k) ={(p1 + -+ pn-2,p) € E"D (k) X E(k) [ p1+ -+ pa2 > ¢(r)},
My (k) = {(p1 + -+ +pp-2,p) € E@2 (k) x E(k) | p = 6(r)},
My (k) = {(p1 + -+ +pp-2,p) € E@ (k) x E(k) | p = tn)-n(6(r))}.
Then the pull-back of the divisor I, by the morphism
E"I(k) x E(k) — E™(k);
(1t +Pn-2,p) 1t F a2+ P+ N ()

is the divisor Z, + M, + M/ on E™=2) x E. Since the restriction of I, to |n| ¢ E™
is the divisor H, on P(H°(E,n)Y) = ||, the pull-back v H, is the restriction of
Z, + M, + M’ to X;. O

Corollary 5.20. v; H,—Zs, is an irreducible divisor on X5 if and only if N(§) = 7.

We consider the dual variety (®,(E))Y C P(H°(E,n)Y) of the image of the
closed immersion @y, : E — P(H°(E,n)).
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Lemma 5.21. The projective curve ®,(E) C P(H(E,n)) is reflexive. In partic-
ular, @1 (E) = (P (E))")Y € P(H(E,n)).

Proof. It 1 < i < n, then h°(E,n ® Op(—ip)) = n — i for any p € FE(k). If
n = 3, then h°(E,n ® Og(—=3p)) = 0 for general p € E(k). Hence h°(E,n ®
Op(—2p)) > h°(E,n® Og(—3p)) for general p € E(k). Then there is a hyperplane
H C P(H"(E,n)) which intersects ®,(E) at ®,(p) with the multiplicity 2. By
18, (3.5)], @), (E) C P(H°(E,n)) is reflexive, because the characteristic of the base
field k is not equal to 2. O

Lemma 5.22. If N(§) = n, then the dual variety of X} C P(H°(E,n)Y) is
O (E) C P(HY(E,n)).

Proof. By Lemma [5.21] we show that the dual variety of ®,(E) is Xj. For L €
(Bs N P)\ Dsging C Pic? (C), there is a unique effective divisor ¢, + -+ + qn_g +
q+o(q) € C™(k) such that

L®0=0c(gi+ -+ guot+qg+o0(q)).
Since L € P(k), we have
n=N(0) =[0p(d(q1) + - + dlan—2) +2¢(q))],
hence
Qe® LY 6" = ¢"ne LY @6 = Oc(o(q) + -+ 0(gu2) +0(q) +q)
and W 5(L) € P(H'(E,n)") is defined by the effective divisor

O(a1) + -+ + d(gu—2) +26(q) € |n| = P(H*(E,n)").

It means that the hyperplane in P(H°(E,n)) corresponding \Iff?(c)’ s(L) is tangent
to the image ®,(£). Hence we have

U Jic).s((Bs N P)\ Dssing) C (@1y(E))"
Since (P, (£))Y and q/?(c)’(;((Bg N P) \ Dsgng) are irreducible hypersurfaces in
P(H°(E,n)"), we have Xj = (2, (E))". O
6. KEY PROPOSITIONS

Let £ be an ample invertible sheaf on P which represents the the polarization

Ap.
Lemma 6.1. Up = Bs|L|\ Dsing is nonsingular for any D € |L|.

Proof. Since D = D; for some ¢ € Pic" (C), it is a consequence of Lemma and
Lemma [5.100 0O

Let
Up: D\ Dgyg — P" ! = Grass(n — 1, H(P,Qp))
be the Gauss map for D € |L|, and let vp : Xp — X}, be the normalization
of X}, = Up(Up) € P* 1. Then by Lemma B, there is a unique morphism
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Yp : Up — Xp such that ¥p|y, = vpotp. Let Zp = p(Ram (¢pp)) C Xp be
the Zariski closure of the image of the ramification divisor of ¥p.

Proposition 6.2. Let D C P be a member in |L| \ Iz, where 11, C |L] is the
subset in Lemma [{.8

(1) If n =3, then Xp is a nonsingular projective curve of genus 1, and Zp is
a disjoint union of 6 orbits Zpa,...,Zpg by the J(Xp)2-action.

(2) Ifn >4, then Zp has 2n irreducible components Zp 1, ..., Zp.on.

(3) For any subset Zp; C Zp in (1) and (2), there is a unique hyperplane
HDJ' c P! such that VD(ZD,i) C HDJ'.

Proof. By Lemma (7] there is § € Pic" (C) such that N(§) = n and £ = L.
By Lemma .6, there is s € Pic’ (F) such that D = Ds, 4. By the proof of
Lemma A8 D ¢ 1l implies s ¢ J(E)s \ J(E)2. By Lemma 57, the Gauss
map Uply, : Up — P! is identified with U5, 5, .. [v, : Up — P(H(E,n)").
Since N(§ + ¢*s) —n = 2s ¢ J(E)y \ {0}, by Lemma [E.I1 and Lemma [(5.12]
the normalization of Xj, ;.. = X, is given by vsyges 1 Xoigrs — X5, 40, and by
Lemma 5.8 and Lemma B.I0, ¢p : Up — Xp is identified with 9§, 4., 1 V5, 4 —
Xs+gvs- Hence the statements (1), (2) and (3) are consequence of Lemma [5.16]
Lemma B.I7 and Lemma, O

We define the subset II/. in the linear pencil |£| by
U, ={D e |L|\llz| viHp;— Zp, is irreducible for 1 < i < 2n}.
Lemma 6.3. {Il, = 4.

Proof. We use the same identification for Gauss maps as in the proof of Proposi-
tion Then by Corollary .20,

D = Dsyges €, <= N(0 + ¢*s) =n <= s € J(E)a,
and by Lemma (4.4 we have {II, = §J(C), = 4. O

Let e; 4 - - - 4 eg, be the branch divisor of the original covering ¢ : C' — E, and
let n € Pic (F) be the invertible sheaf with ¢*n = QF,.

Proposition 6.4. For any member D € 11, there is an isomorphism
(E,er+ -+ ean,n) = (Xp)' s Hpy 4+ 4 Hp g, Opnry (1] (xp,)v),

where Hp),; € (P" 1V s the point corresponding to the hyperplane Hp;, and
(Xp)Y C (P 1Y is the dual variety of X, C P"1.

Proof. We use the same identification for Gauss maps as in the proof of Proposi-
tion 6.2 When D € II),, we may assume that D = Ds and N(§) = n by Corol-
lary Then the point Hp; is identified with the point H,” = &, (¢(r)) for
r € Ram (¢), and (X},)" is identified with (X§)", which coincides with ®,(E) C
P(H°(E,n)) by Lemma [5.221 O
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Remark 6.5. For a member D € 1T/, the Gauss map ¥p : D\ Dgpe — P! is of
degree 2", and X}, + Zf:l Hp; is the branch divisor of ¥p. But for D ¢ I the
Gauss map V¥p is not easy to compute.
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