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Abstract

We consider a certain family of CIFSs of the generalized complex continued fractions with
a complex parameter space. We show that for each CIFS of the family, the Hausdorff measure
of the limit set of the CIFS with respect to the Hausdorff dimension is zero and the packing
measure of the limit set of the CIFS with respect to the Hausdorff dimension is positive (main
result). This is a new phenomenon of infinite CIFSs which cannot hold in finite CIFSs. We
prove the main result by showing some estimates for the unique conformal measure of each
CIFS of the family and by using some geometric observations. 1

1 Introduction

Recent studies of fractal geometry have been developed in many directions. One of the most
developed is the study of the limit sets of conformal iterated function systems (for short, CIFSs).
Indeed, the general theory of limit sets of CIFSs with finitely many mappings (for short, finite
CIFSs) has been well studied (see [1], [4]). For example, there exists the formula on the Hausdorff
dimension of the limit sets, and there exist statements which claim that the Hausdorff measure of
the limit set of any finite CIFS with respect to the Hausdorff dimension is positive and finite and
the packing measure of the limit set with respect to the Hausdorff dimension is also positive and
finite (from this, we deduce that the Hausdorff dimension of the limit set of any finite CIFS and
the packing dimension of the limit set are the same in general).

On the other hand, studies of limit sets of conformal iterated function systems with infinitely
many mappings (for short, infinite CIFS) were initiated by Mauldin and Urbański ([4], [5], [6]) and
there are many related results on infinite CIFSs with overlaps by Mihailescu and Urbański ([7],
[8]). Mauldin and Urbański found a formula on the Hausdorff dimension of limit sets generalizing
the above formula on the Hausdorff dimension of limit sets of finite CIFSs. In addition, they found
a condition under which the Hausdorff measure of the limit set of the infinite CIFS with respect
to the Hausdorff dimension is zero.
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Moreover, Mauldin and Urbański constructed an interesting example of an infinite CIFS which
is related to the complex continued fractions in the paper [4]. The construction of the example is the

following. Let X := {z ∈ C | |z− 1/2| ≤ 1/2}. We call Ŝ := {φ̂(m,n)(z) : X → X | (m,n) ∈ Z×N}
the CIFS of complex continued fractions, where Z is the set of the integers, N is the set of the
positive integers and

φ̂(m,n)(z) :=
1

z +m+ ni
(z ∈ X).

Let Ĵ be the limit set of Ŝ (see Definition 2.1) and ĥ be the Hausdorff dimension of Ĵ . For each
s ≥ 0, we denote by Hs the s-dimensional Hausdorff measure and denoted by Ps the s-dimensional
packing measure. For this example, Mauldin and Urbański showed the following theorem.

Theorem 1.1 (D. Mauldin, M. Urbanski (1996)). Let S be the CIFS of complex continued

fractions. Then, we have that Hĥ(Ĵ) = 0 and P ĥ(Ĵ) > 0.

This is an example of infinite CIFS of which the Hausdorff measure of the limit set with respect
to the Hausdorff dimension is zero and the packing measure of the limit set is positive. Note that
this is a new phenomenon of infinite CIFSs which cannot hold in finite CIFSs.

It is interesting for us to ask for an infinite CIFS S, how often we have the situation that
HhS (JS) = 0 and PhS (JS) > 0, where we denote by JS the limit set of S (see Definition 2.1) and
hS the Hausdorff dimension of JS . We considered the generalization of Ŝ in our previous paper [2].
That is, we introduced a family of CIFSs of the generalized complex continued fractions {Sτ}τ∈A0

to present new and interesting examples of infinite CIFSs. Note that {Sτ}τ∈A0 is a family of CIFSs
which has uncountably many elements. The aim of this paper is to generalize Theorem 1.1 and to
show that HhSτ (JSτ ) = 0 and PhSτ (JSτ ) > 0 for each τ ∈ A0 to find new and interesting examples
of infinite CIFSs with the phenomenon which cannot hold in finite CIFSs.

The precise statement is the following. Let

A0 := {τ = u+ iv ∈ C | u ≥ 0 and v ≥ 1}

and X := {z ∈ C | |z − 1/2| ≤ 1/2}. Also, we set Iτ := {m+ nτ ∈ C | m,n ∈ N} for each τ ∈ A0,
where N is the set of the positive integers.

Definition 1.2 (The CIFS of generalized complex continued fractions). For each τ ∈ A0, Sτ :=
{φb : X → X | b ∈ Iτ} is called the CIFS of generalized complex continued fractions. Here,

φb(z) :=
1

z + b
(z ∈ X).

The family {Sτ}τ∈A0
is called the family of CIFSs of generalized complex continued fractions.

For each τ ∈ A0, let Jτ be the limit set of the CIFS Sτ (see Definition 2.1) and let hτ be the
Hausdorff dimension of the limit set Jτ .

We remark that this family of CIFSs is a generalization of Ŝ in some sense. The system Sτ is
related to “generalized” complex continued fractions since each point of the limit set of Sτ is of
the form

1

b1 +
1

b2 +
1

b3 + · · ·
for some sequence (b1, b2, b3, . . .) in Iτ (see Definition 2.1). Note that there are many kinds of
general theories for continued fractions and related iterated function systems ([3], [4], [5], [8]).

We now give the main result of this paper.

Theorem 1.3 (Main result). Let {Sτ}τ∈A0
be the family of CIFSs of generalized complex contin-

ued fractions. Then, for each τ ∈ A0, we have Hhτ (Jτ ) = 0 and Phτ (Jτ ) > 0.

Remark 1.4. It was shown that for each τ ∈ A0, Jτ \Jτ is at most countable and hτ = dimH(Jτ )
([2]). Thus, for each τ ∈ A0, we have Hhτ (Jτ ) = Hhτ (Jτ ) = 0. Also, for each τ ∈ A0, since the set
of attracting fixed points of elements of the semigroup generated by Sτ is dense in Jτ , Theorem 1.1
of [9] implies that Jτ is equal to the Julia set of the rational semigroup generated by {φ−1b | b ∈ Iτ}.
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Remark 1.5. By the general theories of finite CIFSs, the Hausdorff measure of the limit set of
each finite CIFS with respect to the Hausdorff dimension and the packing measure of the limit set
with respect to the Hausdorff dimension is positive and finite. However, Theorem 1.3 indicates that
for each Sτ of the family of CIFSs of generalized complex continued fractions, which consists of
uncountably many elements, the Hausdorff measure of the limit set with respect to the Hausdorff
dimension is zero and the packing measure of the limit set with respect to the Hausdorff dimension
is positive. This is also a new phenomenon which cannot hold in the finite CIFSs.

Ideas and strategies to prove the main result are the following. To prove Hhτ (Jτ ) = 0, we use
some results from the paper [4] and some results from our previous paper [2]. For example, we use
the fact that for each τ ∈ A0, Sτ is hereditarily regular (see Lemma 3.3), that for each τ ∈ A0,
there exists a conformal measure of Sτ (see Proposition 2.7) and that for each τ ∈ A0, 1 < hτ < 2
(see Lemma 3.4).

In order to prove the main results, we show that for each τ ∈ A0, Sτ satisfies the assumption of
Theorem 2.8. That is, by using Lemma 3.5, we need to show that there exists a sequence {rj}∞j=1

in the set of positive real numbers such that

lim sup
j→∞

mτ (B(0, rj))

rhτj
=∞, (1)

where mτ is the conformal measure of Sτ (see Proposition 2.7).
It is worth pointing out that in order to prove the main result, we use some sharp estimates

on the values of the conformal measure. In order to prove the sharp estimates, we have to show
another basic estimate at first (see Lemma 3.2). By the properties of the conformal measure (see
Proposition 2.7) and by Lemma 3.2, we have that there exists K0 ≥ 1 such that for each b ∈ Iτ ,
φb(X) ⊂ B(0,K0|b|−1) and

mτ (φb(X)) ≥
∫
X

|φ′b|hτdmτ ≥ (K−10 |b|−2)hτmτ (X) ≥ K−hτ0 |b|−2hτ . (2)

Moreover, by using properties of the conformal measure (see Proposition 2.7), we have that for all
b, b′ ∈ Iτ with b 6= b′, mτ (φb(X)∩φb′(X)) = 0. Then, for each τ ∈ A0, let Nτ ∈ N be large enough
and for each r > 0, we set Iτ (r) := {b ∈ Iτ | K0r

−1 < |b| ≤ NτK0r
−1}. Note that if b ∈ Iτ (r),

then |b|−1 > K−10 N−1τ r and mτ (φb(X)) & r2hτ .
We next show some basic results on the estimate of |Iτ (r)| (see Lemma 4.2, Proposition 4.3

and Lemma 4.4) by the general theory of linear algebra and elementary geometric observations.
By these results, we show that if r > 0 is small enough, then |Iτ (r)| & r−2 (see inequality (16)).
In addition, by the inequality (2), we deduce that for b ∈ Iτ (r), we have B(0, r) ⊃ B(0,K0|b|−1) ⊃
φb(X) and if r > 0 is small enough, then

mτ (B(0, r)) ≥
∑

b∈Iτ (r)

mτ (φb(X)) &
∑

b∈Iτ (r)

|b|−2hτ &
∑

b∈Iτ (r)

r2hτ = |Iτ (r)| r2hτ & r2hτ−2 (3)

(see inequality (17)). By the inequality (3), we finally show that if r > 0 is small enough,

mτ (B(0, r))

rhτ
& rhτ−2 =

(
1

r

)2−hτ
.

By Lemma 3.4 (that is, 2 > hτ ), we deduce (1).
To prove Phτ (Jτ ) > 0, we need to show for each τ ∈ A0, Sτ satisfies the assumption of Theorem

2.9. That is, we need to show that for each τ ∈ A0, Jτ ∩ Int(X) 6= ∅. By geometric observations
and some properties of φb ∈ Sτ , we obtain that JS ∩ Int(X) 6= ∅.

The rest of the paper is organized as follows. In Section 2, we summarize the theory of CIFSs
without proofs. In Section 3, we give the proofs of some properties of the CIFS of the generalized
complex continued fractions. In Section 4, we prove the main result of this paper.

Acknowledgement. The authors thank Rich Stankewitz for valuable comments. The sec-
ond author is partially supported by JSPS Kakenhi JP 18H03671, JP 19H01790.
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2 Conformal iterated function systems

In this section, we recall general settings of CIFSs ([4], [5]).

Definition 2.1 (Conformal iterated function system). Let X ⊂ Rd be a non-empty compact and
connected set and let I be a finite set or bijective to N. Suppose that I has at least two elements.
We say that S := {φi : X → X | i ∈ I} is a conformal iterated function system (for short, CIFS)
if S satisfies the following conditions.

1. Injectivity: For all i ∈ I, φi : X → X is injective.

2. Uniform Contractivity: There exists c ∈ (0, 1) such that, for all i ∈ I and x, y ∈ X, the
following inequality holds.

|φi(x)− φi(y)| ≤ c|x− y|.

3. Cone Condition: For all x ∈ ∂X, there exists an open cone Con(x, u, α) with a vertex x, a
direction u, an altitude |u| and an angle α such that Con(x, u, α) is a subset of Int(X).

4. Open Set Condition(OSC): For all i, j ∈ I (i 6= j), φi(Int(X)) ⊂ Int(X) and φi(Int(X)) ∩
φj(Int(X)) = ∅. Here, Int(X) denotes the set of interior points of X with respect to the
topology in Rd.

5. Bounded Distortion Property(BDP): There exists K ≥ 1 and an open and connected subset
V ⊂ Rd with X ⊂ V such that for all x, y ∈ V and for all w ∈ I∗ :=

⋃∞
n=1 I

n, the following
inequality holds.

|φ′w(x)| ≤ K · |φ′w(y)|.

Here, for each n ∈ N and w = w1w2 · · ·wn ∈ In, we set φw := φw1
◦ φw2

◦ · · · ◦ φwn and
|φ′w(x)| denotes the norm of the derivative of φw at x ∈ X with respect to the Euclidean
metric on Rd.

6. Conformality: There exists a positive number ε such that for all i ∈ I, φi extends to a
C1+εdiffeomorphism on V and φi is conformal on V , where V is the open and connected
subset introduced in 5.

We set I∗ :=
⋃∞
n=1 I

n. We endow I with the discrete topology, and endow I∞ := IN with the
product topology. Note that I∞ is a Polish space. In addition, if I is a finite set, then I∞ is a
compact metrizable space.

Let S be a CIFS. For each w = w1w2w3 · · · ∈ I∞, we set w|n := w1w2 · · ·wn ∈ In and
φw|n := φw1

◦ φw2
◦ · · · ◦ φwn . Then, we have

⋂
n∈N φw|n(X) is a singleton. We denote it by {xw}.

The coding map π : I∞ → X of S is defined by w 7→ xw. Note that π : I∞ → X is continuous. A
limit set of S is defined by

JS := π(I∞) =
⋃

w∈I∞

⋂
n∈N

φw|n(X).

Note that for all CIFS S, JS is Borel set in X. For each IFS S, we set hS := dimH JS , where
dimH denotes the Hausdorff dimension.

For any CIFS S, we define the pressure function of S as follows.

Definition 2.2 (Pressure function). For each n ∈ N, [0,∞]-valued function ψnS is defined by

ψnS(t) :=
∑
w∈In

(
sup
z∈X
|φ′w(z)|

)t
(t ≥ 0).

We set

PS(t) := lim
n→∞

1

n
logψnS(t) ∈ (−∞,∞].

The function PS : [0,∞)→ (−∞,∞] is called the pressure function of S.

Note that for all t ≥ 0, PS(t) exists because of the following proposition.
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Proposition 2.3 ([4] Lemma 3.2). For all m,n ∈ N and t ≥ 0, we have ψm+n
S (t) ≤ ψmS (t)ψnS(t).

In particular, for all t ≥ 0, logψnS(t) is subadditive with respect to n ∈ N.

We set θS := inf{t ≥ 0 | ψ1
S(t) < ∞}. By using the pressure function, we define properties of

CIFSs.

Definition 2.4 (Regular, Strongly regular, Hereditarily regular). Let S be a CIFS. We say that
S is regular if there exists t ≥ 0 such that PS(t) = 0. We say that S is strongly regular if there
exists t ≥ 0 such that PS(t) ∈ (0,∞). We say that S is hereditarily regular if for all I ′ ⊂ I with
|I \ I ′| < ∞, S′ := {φi : X → X | i ∈ I ′} is regular. Here, for any set A, we denote by |A| the
cardinality of A.

Note that if a CIFS S is hereditarily regular, then S is strong regular and if S is strong regular,
then S is regular.

Definition 2.5. Let S be a CIFS. We write S as {φi}i∈I . Suppose that I is a countable infinite
set. Let z ∈ X and {zi}i∈I′ ⊂ X with I ′ ⊂ I and |I ′| =∞. We say that limi∈I′ zi = z if for each
ε > 0, there exists F ′ ⊂ I ′ with |F ′| <∞ such that if i ∈ I ′ \ F ′, then |zi − z| < ε. We set

XS(∞) := {lim
i∈I′

zi ∈ X | ∃I ′ ⊂ I,∃ {zi}i∈I′ s.t. |I ′| =∞, zi ∈ φi(X) (i ∈ I ′)}.

Equivalently, XS(∞) is the set of accumulation points of sequences in φi(X), i ∈ I, i.e. limits of
infinite sequences from φi(X), i ∈ I.

Mauldin and Urbański showed the following results. Recall that hS := dimH JS , where dimH JS
denotes the Hausdorff dimension of the limit set of S.

Theorem 2.6 ([4] Theorem 3.20). Let I be infinite and let S be a CIFS. Then, the following
conditions are equivalent.

1. S is hereditarily regular.

2. ψ1
S(θS) =∞.

Especially, if S is hereditarily regular, then we have θS < hS .

Proposition 2.7 ([4] Lemma 3.13). Let S be a CIFS. If S is regular, then there exists the unique
Borel probability measure mS on X such that the following properties hold.

1. mS(JS) = 1.

2. For all Borel subset A on X and i ∈ I, mS(φi(A)) =
∫
A
|φ′i|hSdmS .

3. For all i, j ∈ I with i 6= j, mS(φi(X) ∩ φj(X)) = 0.

We call mS the hS-conformal measure of S.

Theorem 2.8 ([4] Theorem 4.9). Let S be a regular CIFS and mS be the hS-conformal measure
of S. We set r0 := dist(X, ∂V ). If there exist a sequence of {zj}∞j=1 in XS(∞) and a sequence
{rj}∞j=1 in (0, r0) such that

lim sup
j→∞

mS(B(zj , rj))

rhSj
=∞,

then we have HhS (JS) = 0.

Theorem 2.9 ([4] Lemma 4.3). Let S be a regular CIFS. If JS ∩ Int(X) 6= ∅, then we have
PhS (JS) > 0.
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3 CIFSs of generalized complex continued fractions

In this section, we prove some properties of the CIFSs of generalized complex continued fractions
([2]). Note that they are important and interesting examples of infinite CIFSs. We introduce some
additional notations. For each τ ∈ A0, we set πτ := πSτ , θτ := θSτ , ψnτ (t) := ψnSτ (t) (t ≥ 0, n ∈ N),
Pτ (t) := PSτ (t) (t ≥ 0) and Xτ (∞) := XSτ (∞).

In order to prove the main result, we need the following lemmas 3.1 ∼ 3.5 which were shown
in [2]. For the readers, we give the proofs.

Lemma 3.1. For all τ ∈ A0, Sτ is a CIFS.

Proof. Let τ ∈ A0. Firstly, we show that for all b ∈ Iτ , φb(X) ⊂ X. Let Y := {z ∈ C| <z ≥ 1} and

let f : Ĉ → Ĉ be the Möbius transformation defined by f(z) := 1/z. Since f(0) = ∞, f(1) = 1,
f(1/2 + i/2) = 2/(1 + i) = (1 − i), we have f(∂X) = ∂Y ∪ {∞}. Moreover, since f(1/2) = 2, we
have f(X) = Y ∪{∞}. Thus, f : X → Y ∪{∞} is a homeomorphism. Let gb : X → Y be the map
defined by gb(z) := z+ b. We deduce that φb = f−1 ◦ gb and φb(X) ⊂ f−1(Y ) ⊂ X. Therefore, we
have proved φb(X) ⊂ X.

We next show that for each τ ∈ A0, Sτ satisfies the conditions of Definition 2.1.
1. Injectivity.

Since each φb is a Möbius transformation, each φb is injective.
2. Uniform Contractivity.

Let b = m + nτ(= m + nu + inv) be an element of Iτ and let z = x + iy and z′ = x′ + iy′ be
elements of X. We have

|z + b|2 = |x+m+ nu+ i(y + nv)|2

= (x+m+ nu)2 + (y + nv)2 ≥ (0 + 1 + 0)2 + (−1/2 + 1)2 =
5

4
.

Therefore, we deduce that |z+b| ≥
√

5/4. We also deduce that |z′+b| ≥
√

5/4. Finally, we obtain
that

|φb(z)− φb(z′)| =
∣∣∣∣ 1

z + b
− 1

z′ + b

∣∣∣∣
=

|z − z′|
|z + b||z′ + b|

≤

(√
4

5

)2

|z − z′| = 4

5
|z − z′|.

Therefore, Sτ is uniformly contractive on X.
3. Cone Condition.

Since X is a closed disk, the Cone Condition is satisfied.
4. Open Set Condition.

Note that Int(X) = {z ∈ C| |z−1/2| < 1/2}. Let τ ∈ A0 and let b ∈ Iτ . Since f(∂X) = ∂Y ∪{∞},
we deduce that for all b ∈ Iτ ,

gb(Int(X)) ⊂ {z = x+ iy ∈ C| x > 1} = f(Int(X)).

Moreover, if b and b′ are distinct elements, then gb(Int(X)) and gb′(Int(X)) are disjoint. Therefore,
we have that for all b ∈ Iτ ,

φb(Int(X)) = f−1 ◦ gb(Int(X)) ⊂ f−1 ◦ f(Int(X)) = Int(X).

And if b and b′ are distinct elements,

φb(Int(X)) ∩ φb′(Int(X)) = f−1(gb(Int(X)) ∩ gb′(Int(X))) = ∅.

Therefore, Sτ satisfies the Open Set Condition of Sτ .
5. Bounded Distortion Property.

Let ε be a positive real number which is less than 1/12 and let V ′ := B(1/2, 1/2 + ε) be the open
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ball with center 1/2 and radius 1/2 + ε. We set τ := u + iv. Then, for all (m,n) ∈ N2 and
z := x+ iy ∈ V ′, we have that

|φ′m+nτ (z)| = 1

|z +m+ nτ |2
=

1

(x+m+ nu)2 + (y + nv)2

≤ 1

(−ε+ 1 + 0)2 + (−1/2− ε+ 1)2

=
1

2ε2 − 3ε+ 5/4
=

1

2(ε− 3/4)2 + 1/8

≤ 1

2(1/12− 3/4)2 + 1/8
=

72

73
< 1

For each z ∈ V ′, we set

z′ :=

(|z − 1/2| − ε) (z − 1/2)

|z − 1/2|
+ 1/2 (z /∈ X)

z (z ∈ X).

Then, we have that |z− z′| ≤ ε and |z′ − 1/2| < 1/2. It implies that z′ ∈ X. Thus, we obtain that
|φb(z)− φb(z′)| ≤ (72/73)|z − z′| < ε and∣∣∣∣φb(z)− 1

2

∣∣∣∣ ≤ |φb(z)− φb(z′)|+ ∣∣∣∣φb(z′)− 1

2

∣∣∣∣ < 1

2
+ ε.

It follows that for all b ∈ Iτ , φb(V
′) ⊂ V ′. In addition, φb is injective on V ′ and φb is holomorphic

on V ′ := B(1/2, 1/2 + ε) since φb is holomorphic on C \ {−b}.
Let b be an element of Iτ and r0 := 1/2 + ε. Let fb be the function defined by

fb(z) :=
(φb(r0z + 1/2)− φb(1/2))

r0φ′b(1/2)
(z ∈ D := {z ∈ C||z| < 1}).

Note that fb is holomorphic on D and fb(0) = 0 and f ′b(0) = 1. By using the Koebe distortion
theorem (For example, see [6, Theorem 4.1.1]), we deduce that for all z ∈ D,

1− |z|
(1 + |z|)3

≤ |fb(z)| ≤
1 + |z|

(1− |z|)3
.

Let r1 := (r0 + 1/2)/2. we deduce that there exist C1 ≥ 1 and C2 ≤ 1 such that for all z ∈
B(0, r1/r0)(⊂ D),

C2 ≤
1− |z|

(1 + |z|)3
and

1 + |z|
(1− |z|)3

≤ C1.

Let C := C1/C2. Then, we have that for all z, z′ ∈ B(0, r1/r0)

|φ′b(r0z + 1/2)|
|φ′b(1/2)|

= |f ′b(z)| ≤
1 + |z|

(1− |z|)3

≤ C1 = CC2 ≤ C
1− |z′|

(1 + |z′|)3

≤ C|f ′b(z′)| ≤ C
|φ′b(r0z′ + 1/2)|
|φ′b(1/2)|

.

It follows that for all z, z′ ∈ B(0, r1/r0), |φ′b(r0z + 1/2)| ≤ C|φ′b(r0z′ + 1/2)|. Finally, let V :=
B(1/2, r1) be the open ball with center 1/2 and radius r1. Then, V is an open and connected
subset of C with X ⊂ V and for all z, z′ ∈ V ,

|φ′b(z)| ≤ C|φ′b(z′)|.

Therefore, Sτ satisfies the Bounded Distortion Property.
6. Conformality.

Let τ ∈ A0 and let b ∈ Iτ . Since φb is holomorphic on C \ {−b}, φb is C2 and conformal on V . By
the above argument, we have φb(V ) ⊂ V .
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For the rest of the paper, let V := B(1/2, r1), where r1 is the number in the proof of Lemma
3.1.

Lemma 3.2 (basic inequality). Let τ ∈ A0. Then, there exists K0 ≥ 1 such that for all K ≥ K0

and b ∈ Iτ , the following properties hold.

1. φb(V ) ⊂ B(0,K|b|−1).

2. For each z ∈ V , K−1|b|−2 ≤ |φ′b(z)| ≤ K|b|−2.

Proof. We use the notations in the proof of Lemma 3.1. Note that r1 ∈ (1/2, 13/24). Let τ ∈ A0

and b ∈ Iτ . Since there exists M ∈ N such that for all z ∈ V = B(1/2, r1) and b ∈ Iτ , we have
that |b| ≤M |b+ z| , we deduce that

|φb(z)| ≤M |b|−1. (4)

Note that by using the BDP, there exists C ≥ 1 such that for each z ∈ V , we have

C−1|φ′b(0)| ≤ |φ′b(z)| ≤ C|φ′b(0)|. (5)

We set K0 := max{C,M}(≥ 1). Let K ≥ K0.
By the inequality (4), we deduce that φb(V ) ⊂ B(0,K|b|−1). By the inequality (5) and the

equality |φ′b(0)| = |b|−2, we deduce that for each z ∈ V , K−1|b|−2 ≤ |φ′b(z)| ≤ K|b|−2. Therefore,
we have proved our lemma.

Lemma 3.3. For all τ ∈ A0, Sτ is a hereditarily regular CIFS with θτ = 1.

Proof. Let τ ∈ A0. For each non-negative integer p, we define K ′(p) := {b = m+nτ ∈ Iτ | (m,n) ∈
N2,m < 2p, n < 2p} and K(p) := K ′(p) \ K ′(p − 1). Note that for each non-negative integer
p, |K ′(p)| = (2p − 1)2. We deduce that for each p ∈ N, |K(p)| = |K ′(p)| − |K ′(p − 1)| =
(2p − 1)2 − (2p−1 − 1)2 = 3 · 4p−1 − 2 · 2p−1 = 2p−1(3 · 2p−1 − 2) and 4p−1 ≤ |K(p)| ≤ 3 · 4p−1.

Let b = m+ nτ = m+ n(u+ iv) ∈ K(p). We consider the following two cases.

(i) If m ≥ 2p−1 then we have

|b|2 = |m+ nu+ inv|2 = (m+ nu)2 + (nv)2

≥ (2p−1 + u)2 + v2 ≥ (2p−1)2 + |τ |2 = 4p−1
(

1 +
|τ |2

4p−1

)
.

(ii) If n ≥ 2p−1 then we have

|b|2 = |m+ nu+ inv|2 = (m+ nu)2 + (nv)2 ≥ n2(u2 + v2) ≥ 4p−1|τ |2.

Then for any t ≥ 0, we have

∑
b∈Iτ

|b|−2t =
∑
p∈N

∑
b∈K(p)

{
|b|2
}−t ≤∑

p∈N
|K(p)|4−t(p−1)

{
min{1 +

|τ |2

4p−1
, |τ |2}

}−t

≤
∑
p∈N

3 · 4(p−1)(1−t)
{

min{1 +
|τ |2

4p−1
, |τ |2}

}−t
.

Hence, we deduce that∑
b∈Iτ

|b|−2t ≤ 3
∑
p∈N

4(p−1)(1−t)
{

min{1 +
|τ |2

4p−1
, |τ |2}

}−t
. (6)

Moreover, by the inequality |τ |2 ≥ 1 and the inequality 1+
|τ |2

4p−1
≥ 1, we deduce that for all p ∈ N,

3 · 4(p−1)(1−t)
{

min{1 +
|τ |2

4p−1
, |τ |2}

}−t
≤ 3 · 4(p−1)(1−t). (7)
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Also, by the inequality |b| ≤ |m|+ |n||τ | ≤ 2p(1 + |τ |), we have∑
b∈Iτ

|b|−2t =
∑
p∈N

∑
b∈K(p)

{
|b|−2

}t ≥∑
p∈N
|K(p)|4−pt(1 + |τ |)−2t.

Thus, we deduce that ∑
b∈Iτ

|b|−2t ≥ 4−1
∑
p∈N

4p(1−t)(1 + |τ |)−2t. (8)

Finally, from Lemma 3.2, the inequality (6) and the inequality (8), it follows that ψ1
τ (1) =∞ and

if t > 1, then ψ1
τ (t) < ∞. Therefore, we deduce that θτ = 1 and by Theorem 2.6, we obtain that

for all τ ∈ A0, Sτ is hereditarily regular. Hence, we have proved our lemma.

Lemma 3.4. Let τ ∈ A0. Then we have 1 < hτ < 2.

Proof. Let τ ∈ A0. By Theorem 2.6 and Lemma 3.3, we have 1 = θτ < hτ . We now show that
hτ < 2. We use the notations in the proof of Proposition 3.1. We have⋃

b∈Iτ

gb(X) ⊂ {z ∈ C | <z ≥ 1 and =z ≥ 0}.

Let U0 be an open ball such that U0 ⊂ {z ∈ C | <z > 1 and =z < 0}. Since U0 ⊂ Y , we deduce
that f−1(U0) ⊂ f−1(Y ) = Int(X). We set X1 := ∪b∈Iτφb(X). Since U0 ∩

⋃
b∈Iτ gb(X) = ∅, we

deduce that f−1(U0) ∩X1 = f−1(U0 ∩
⋃
b∈Iτ gb(X)) = ∅. It follows Int(X) \X1 ⊃ f−1(U0).

Therefore, we deduce that λ2(Int(X)\X1) > 0, where λ2 is the 2-dimensional Lebesgue measure.
By Proposition 4.4 of [4], we obtain that hτ < 2. Hence, we have proved 1 < hτ < 2.

Lemma 3.5. Let τ ∈ A0. Then, we have that Xτ (∞) = {0}.

Proof. We first show that for all τ ∈ A0, 0 ∈ Xτ (∞). We set I ′τ := {m+ τ ∈ Iτ | m ∈ N} ⊂ Iτ and
bm := m + τ ∈ I ′τ . Then, we have that |I ′τ | = ∞ and since 0 ∈ X, φbm(0) ∈ φbm(X). Let ε > 0.
Then, there exists M ∈ N such that M > 1/ε. Let Fτ := {m+ τ ∈ Iτ | m ∈ N,m ≤M} ⊂ I ′τ . We
obtain that |Fτ | <∞ and if bm ∈ I ′τ \ Fτ , then φbm(0) ∈ φbm(X) and

|φbm(0)| =
∣∣∣∣ 1

m+ τ

∣∣∣∣ < 1

m
<

1

M
< ε.

We next show that for each τ ∈ A0, a ∈ Xτ (∞) implies a = 0. Suppose that there exists
a ∈ Xτ (∞) such that a 6= 0. Then, there exist I ′τ ⊂ Iτ and {z′b}b∈I′τ such that |I ′τ | = ∞,
z′b ∈ φb(X) (b ∈ I ′τ ) and lim

b∈I′τ
z′b = a. Let δ := |a|/2 > 0. Then, there exists F ′τ ⊂ I ′τ such that

|F ′τ | <∞ and for all b ∈ I ′τ \ F ′τ , |z′b − a| < δ. In particular, for all b ∈ I ′τ \ F ′τ ,

|z′b| ≥ |a| − |z′b − a| > δ. (9)

Moreover, for each z ∈ X, τ ∈ A0 and b ∈ Iτ , we write z := x+yi, τ := u+ iv and b := m+nτ .
Note that

|z + b|2 = |x+m+ nu+ i(y + nv)|2 = (x+m+ nu)2 + (y + nv)2

≥ (0 +m+ nu)2 + (−1/2 + nv)2 ≥ m2 + (n− 1/2)2.

Let M := 1/δ. By using the above inequality, there exists Nδ ∈ N such that for all m ∈ N, n ∈ N
and x ∈ X, if m ≥ Nδ or n ≥ Nδ, then |z + b| > M = 1/δ. In particular, b ∈ Iτ \ Fτ (Nδ) implies
that for all z ∈ X, |φb(z)| < δ. Here, Fτ (Nδ) := {b := m+ nτ ∈ Iτ | n ≤ Nδ,m ≤ Nδ}.

By the inequality (9) and |Fτ (Nδ)| <∞, this contradicts that there exist b ∈ I ′τ \ (F ′τ ∪Fτ (Nδ))
and z′b ∈ φb(X) such that |z′b| > δ. Therefore, we have proved that for all τ ∈ A0, Xτ (∞) = {0}.
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4 Proof of the main result

In this section, we prove the main result Theorem 1.3. In order to prove Theorem 1.3, we first
show a basic estimate for the conformal measure.

Note that for each τ ∈ A0, there exists the unique hτ -conformal measure mSτ of Sτ by Propo-
sition 2.7 since for each τ ∈ A0, Sτ is hereditarily regular. We set mτ := mSτ .

Lemma 4.1. Let τ ∈ A0 and mτ be the hτ -conformal measure of Sτ . Then, there exists K0 ≥ 1
such that for each b ∈ Iτ , we have φb(X) ⊂ B(0,K0|b|−1) and

mτ (φb(X)) ≥ K−hτ0 |b|−2hτ .

Proof. By Lemma 3.2 with K = K0, we deduce that for all b ∈ Iτ and z ∈ V , φb(V ) ⊂
B(0,K0|b|−1) and K−10 |b|−2 ≤ |φ′b(z)| ≤ K0|b|−2. Therefore, we have φb(X) ⊂ B(0,K0|b|−1)
and

mτ (φb(X)) =

∫
X

|φ′b|hτdmτ ≥ (K−10 |b|−2)hτmτ (X) = K−hτ0 |b|−2hτ .

Thus, we have proved our lemma.

We explain the idea of the proof of Theorem 1.3. Recall that Xτ (∞) = {0}. By Lemma
4.1, for sufficiently small r > 0, b ∈ Iτ and N > 0 with r/N < K0|b|−1 < r, we have φb(X) ⊂
B(0,K0|b|−1) ⊂ B(0, r) and

mτ (B(0, r))

rhτ
≥ mτ (φb(X))

rhτ
≥ K−hτ0 |b|−2hτ

rhτ
≥ K−hτ0

rhτ

(
r

NK0

)2hτ

' rhτ . (10)

This inequality (10) does not satisfy the assumption of Theorem 2.8 unfortunately. However, since
for all b, b′ ∈ Iτ with b 6= b′, mτ (φb(X) ∩ φb′(X)) = 0, we have a sharper estimate on the value of
mτ (B(0, r)). To obtain this estimate, we set

Iτ (r) := {b ∈ Iτ | r/Nτ ≤ K0|b|−1 < r},

where Nτ is the number we introduce later. Then, in the proof of Theorem 1.3, we will show that

mτ (B(0, r))

rhτ
≥

∑
b∈Iτ (r)

mτ (φb(X))

rhτ
≥ |Iτ (r)|K−3hτ0 N−2hττ rhτ . (11)

Note that since Iτ (r) = {b ∈ Iτ | K0r
−1 < |b| ≤ NτK0r

−1}, we have

|Iτ (r)| & r−2 (12)

intuitively since we have a intuition that the number of the points b ∈ Iτ (r) in the slant lattice
Iτ is almost the same as the area of Iτ (r). This estimate will be a key estimate in the proof of
Theorem 1.3. After proving Lemma 4.2, Proposition 4.3 and Lemma 4.4, we will rigorously show
estimate (12), whose precise statement is given by (16) later.

To prove this intuitive estimate (12) rigorously, we introduce the following notations and prove
Lemma 4.2, Proposition 4.3 and Lemma 4.4. We identify C with R2, Iτ with {t(a, b) ∈ R2 | a+ib ∈
Iτ} and N2 with {t(m,n) ∈ R2 | m,n ∈ N}, where for any matrix A, we denote by tA the transpose
of A. For each τ = u+ iv ∈ A0, we set

Eτ :=

(
1 u
0 v

)
and Fτ := tEτEτ =

(
1 u
u |τ |2

)
.

Note that EτN2 = Iτ , since det(Eτ ) = v 6= 0, Eτ is invertible and by direct calculations, there
exist the eigenvalues λ1 > 0 and λ2 > 0 of Fτ with λ1 < λ2. Let v1 ∈ R2 be a eigenvector with
respect to λ1 and v2 ∈ R2 be a eigenvector with respect to λ2. Note that since Fτ is a symmetric
matrix, there exist eigenvectors v1 ∈ R2 and v2 ∈ R2 such that Vτ := (v1, v2) is an orthogonal
matrix.

10



For each R1 > 0 and R2 > 0 with R1/
√
λ1 < R2/

√
λ2, we set

D′1(τ,R1, R2) := {t(x, y) ∈ R2 | R2
1/λ1 < x2 + y2 ≤ R2

2/λ2} and

D′2(R1, R2) := {t(x, y) ∈ R2 | R2
1 < x2 + y2 ≤ R2

2}.

We show the following statement on the annuli D′1(τ,R1, R2) and D′2(R1, R2).

Lemma 4.2. Let τ ∈ A0 and let R1 > 0 and R2 > 0 with R1/
√
λ1 < R2/

√
λ2. Then, we have

that Eτ (D′1(τ,R1, R2)) ⊂ D′2(R1, R2). In particular, we have that

Eτ (N2 ∩D′1(τ,R1, R2)) ⊂ Iτ ∩D′2(R1, R2) and |N2 ∩D′1(τ,R1, R2)| ≤ |Iτ ∩D′2(R1, R2)|.

Proof. By the above observation of Fτ , we deduce that

Fτ = Vτ

(
λ1 0
0 λ2

)
tVτ .

Let t(x, y) ∈ D′1(τ,R1, R2). We set (x′, y′) := (x, y) Vτ and (v, w) := (x, y) tEτ . Note that
since Vτ is an orthogonal matrix, we deduce that (x′)2 + (y′)2 = x2 + y2. Since λ1 < λ2, we have

R2
1 < λ1(x2 + y2) = λ1((x′)2 + (y′)2) < λ1(x′)2 + λ2(y′)2

= (x′, y′)

(
λ1 0
0 λ2

)(
x′

y′

)
= (x, y) Vτ

(
λ1 0
0 λ2

)
tVτ

(
x
y

)
= (x, y) Fτ

(
x
y

)
= (x, y) tEτEτ

(
x
y

)
.

By the above inequality, we deduce that R2
1 < v2 + w2. Also,

R2
2 ≥ λ2(x2 + y2) = λ2((x′)2 + (y′)2) ≥ λ1(x′)2 + λ2(y′)2

= (x′, y′)

(
λ1 0
0 λ2

)(
x′

y′

)
= (x, y) Vτ

(
λ1 0
0 λ2

)
tVτ

(
x
y

)
= (x, y) Fτ

(
x
y

)
= (x, y) tEτEτ

(
x
y

)
.

By the above inequality, we deduce that v2 +w2 ≤ R2
2. Therefore, we have proved our lemma.

For each R > 0, we set I(R) := {t(m,n) ∈ N2 | m2 + n2 ≤ R2}.
We give the following estimate on |I(R)|.

Proposition 4.3. Let R > 0. Then, for each R ≥ 6,

0 <
R2 − 7R+ 7

2
≤ |I(R)| ≤ R2.

Proof. For each a ∈ R, we denote by bac the maximum integer of the set {n ∈ Z | n ≤ a}. Let
R ≥ 6. We set M := b

√
R2 − 1c(≥ 1). For each l = 1, . . . ,M , we set N(l) := b

√
R2 − l2c(≥ 1).

Note that since M ≤
√
R2 − 1 < M + 1, we deduce that√

R2 − 1− 1 < M ≤
√
R2 − 1. (13)

Also, since N(l) ≤
√
R2 − l2 < N(l) + 1, we deduce that√

R2 − l2 − 1 < N(l) ≤
√
R2 − l2. (14)

Therefore, we deduce that |I(R)| =
∑M
l=1N(l).

By the inequalities (13) and (14), we deduce that

|I(R)| ≤
M∑
l=1

√
R2 − l2 ≤ RM ≤ R

√
R2 − 1 ≤ R2.
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We now show that |I(R)| ≥ (R2 − 7R + 7)/2. Since
√
R2 − l2 ≥ R − l for each l = 1, . . . ,M ,

by the inequalities (13) and (14) again, we deduce that

|I(R)| ≥
M∑
l=1

(√
R2 − l2 − 1

)
≥

M∑
l=1

(R− l − 1) = M(R− 1)− M(M + 1)

2

=
M(2R− 3)−M2

2
≥
(√
R2 − 1− 1

)
(2R− 3)− (R2 − 1)

2

≥ (R− 2)(2R− 3)−R2 + 1

2
=
R2 − 7R+ 7

2
.

Thus, we have proved our lemma.

For each τ ∈ A0, we set Nτ :=
√

2λ2/
√
λ1 + 1 (> 2). For each R > 0, we set D1(τ,R) :=

D′1(τ,R,NτR) and D2(τ,R) := D′2(R,NτR). Note that since
√
λ2/
√
λ1 < Nτ , we have that

R/
√
λ1 < (NτR)/

√
λ2.

We estimate |N2 ∩D1(τ,R)| from below as follows.

Lemma 4.4. Let τ ∈ A0. Then, there exist Rτ > 0 and Lτ > 0 such that for all R > Rτ ,

|N2 ∩D1(τ,R)| ≥ LτR2 − 7Nτ

2
√
λ2
R.

Proof. Let τ ∈ A0. We set Lτ := N2
τ /(2λ2)− 1/λ1. Note that since Nτ >

√
2λ2/

√
λ1, we deduce

that Lτ > 0. We set
Rτ := max{(6

√
λ2)/Nτ , 6

√
λ1}(> 0).

Let R ≥ Rτ . Note that NτR/
√
λ2 ≥ 6, R/

√
λ1 ≥ 6 and

N2 ∩D1(τ,R) = I

(
NτR√
λ2

)
\ I
(

R√
λ1

)
. (15)

Also, we have I
(
(NτR)/

√
λ2
)
⊃ I

(
R/
√
λ1
)
. By (15) and Proposition 4.3, we deduce that

|N2 ∩D1(τ,R)| =
∣∣∣∣I (NτR√λ2

)∣∣∣∣− ∣∣∣∣I ( R√
λ1

)∣∣∣∣
≥ 1

2

(
(NτR)2

λ2
− 7

NτR√
λ2

+ 7

)
− R2

λ1
> LτR

2 − 7Nτ

2
√
λ2
R.

Therefore, we have proved our lemma.

By Lemma 4.2, Proposition 4.3 and Lemma 4.4, we now prove the intuitive estimate (12)
rigorously.

Rigorous proof of the estimate (12). Let τ ∈ A0. We set rτ := K0R
−1
τ (> 0) andMτ := (7Nτ )/(2

√
λ2).

We show that for all r ∈ (0, rτ ],

|Iτ (r)| = |{b ∈ Iτ | r/Nτ ≤ K0|b|−1 < r}| ≥ LτK2
0r
−2 −MτK0r

−1. (16)

Let r ∈ (0, rτ ]. We set R := K0r
−1. Note that r ≤ rτ if and only if R ≥ Rτ . Recall that

Iτ (r) := {b ∈ Iτ | r/Nτ ≤ K0|b|−1 < r} and

Iτ (r) = {b ∈ Iτ | K0r
−1 < |b| ≤ NτK0r

−1} = Iτ ∩D′2(K0r
−1, NτK0r

−1).

Recall that R := K0r
−1, D1(τ,R) := D′1(τ,R,NτR) and Mτ := (7Nτ )/(2

√
λ2). By Lemmas 4.2

and 4.4, it follows that

|Iτ (r)| = |Iτ ∩D′2(K0r
−1, NτK0r

−1)| = |Iτ ∩D′2(R,NτR)| ≥ |N2 ∩D′1(τ,R,NτR)|
= |N2 ∩D1(τ,R)| ≥ LτR2 −MτR = LτK

2
0r
−2 −MτK0r

−1.

Thus, we have proved the inequality (16).
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We now give the proof of the main result Theorem 1.3.

Proof of Theorem 1.3. Let τ ∈ A0. Recall that there exists the unique hSτ -conformal measure mτ

of Sτ . We set rτ := K0R
−1
τ (> 0) and Mτ := (7Nτ )/(2

√
λ2).

We first show that for all r ∈ (0, rτ ],

mτ (B(0, r)) ≥ LτK2−3hτ
0 N−2hττ r2hτ−2 −MτK

1−3hτ
0 N−2hττ r2hτ−1. (17)

By Lemma 4.1 and the definition of Iτ (r), we have that for all b ∈ Iτ (r), φb(X) ⊂ B(0,K0|b|−1) ⊂
B(0, r). It follows that ⋃

b∈Iτ (r)

φb(X) ⊂ B(0, r). (18)

In addition, if b, b′ ∈ Iτ with b 6= b′, then mτ (φb(X)∩φb′(X)) = 0 by the definition of the conformal
measure (Proposition 2.7). Thus, by inclusion (18) and Lemma 4.1, it follows that

mτ (B(0, r)) ≥ mτ

 ⋃
b∈Iτ (r)

φb(X)

 =
∑

b∈Iτ (r)

mτ (φb(X)) ≥
∑

b∈Iτ (r)

K−hτ0 |b|−2hτ

≥
∑

b∈Iτ (r)

K−hτ0

(
r

NτK0

)2hτ

= |Iτ (r)|K−3hτ0 N−2hττ r2hτ .

By the inequality (16), we obtain that

mτ (B(0, r)) ≥ LτK2−3hτ
0 N−2hττ r2hτ−2 −MτK

1−3hτ
0 N−2hττ r2hτ−1.

Thus, we have proved inequality (17).
We now show that Hhτ (Jτ ) = 0. For each j ∈ N, we set zj := 0 and rj := rτ/j (∈ (0, rτ ]).

Note that {rj}j∈N is a sequence in the set of positive real numbers and by Lemma 3.5, {zj}j∈N is
a sequence in Xτ (∞). Thus, by the inequality (17), we deduce that for each j ∈ N,

mτ (B(zj , rj))

rhτj
=
mτ (B(0, rj))

rhτj

≥ LτK2−3hτ
0 N−2hττ rhτ−2j −MτK

1−3hτ
0 N−2hττ rhτ−1j

= LτK
2−3hτ
0 N−2hττ rhτ−2τ j2−hτ −MτK

1−3hτ
0 N−2hττ rhτ−1τ

(
1

j

)hτ−1
.

By Lemma 3.4, we have that 2− hτ > 0 and hτ − 1 > 0. It follows that

lim sup
j→∞

mτ (B(zj , rj))

rhτj
=∞.

By Theorem 2.8, we obtain that Hhτ (Jτ ) = 0.
We finally show that Phτ (Jτ ) > 0. Let τ = u+ iv ∈ A0. We set b2 := 2 + τ ∈ Iτ . We use some

notations in Lemma 3.1. For any z = x+ iy ∈ X,

gb2(z) = z + (2 + τ)

= (x+ 2 + u) + i(y + v) ∈ {z ∈ C | <z > 1} = Int(Y ).

Since f(∂X) = ∂Y ∪ {∞} and f : X → Y ∪ {∞} is bijective, we have

φb2(X) = (f−1 ◦ gb2)(X) ⊂ Int(X).

Therefore, we obtain that Jτ ∩ Int(X) 6= ∅. Since Sτ is hereditarily regular and Jτ ∩ Int(X) 6= ∅,
we deduce that Phτ (Jτ ) > 0 by Theorem 2.9.
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