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Sébastien Bubeck
Microsoft Research

Qijia Jiang
Stanford University

Yin Tat Lee ∗

University of Washington
& Microsoft Research

Yuanzhi Li
Stanford University

Aaron Sidford †

Stanford University

June 25, 2019

Abstract

We propose a near-optimal method for highly smooth convex optimization. More precisely,
in the oracle model where one obtains the pth order Taylor expansion of a function at the query

point, we propose a method with rate of convergence Õ(1/k
3p+1

2 ) after k queries to the oracle
for any convex function whose pth order derivative is Lipschitz.

1 Introduction

In this paper we generalize the important phenomenon of acceleration in smooth convex optimiza-
tion [7, 6, 8] to higher orders of smoothness. We consider a pth-order Taylor expansion oracle, that
is given a query point x ∈ R

d it returns a pth order Taylor expansion of the objective function f at
the point x:

fp(y, x) = f(x) +

p∑

i=1

1

i!
∇if(x)[y − x]i.

We propose a new optimization method based on such oracle, see Algorithm 1, which we term
accelerated Taylor descent (ATD). We prove that it attains a nearly optimal rate of convergence
under higher order smoothness (the matching lower bounds were recently proven in [1, 2]), namely

after Õ(k) calls to the oracle it achieves error O(1/k
3p+1

2 ). This improves upon the O(1/kp+1)
derived in [10] (both rates match for p = 1, i.e., the classical acceleration setting), and it matches
the rate given in [5] for p = 2.

Theorem 1.1. Let f denote a convex function whose pth derivative is Lp-Lipschitz and let x∗

denote a minimizer of f . Then ATD satisfies, with cp = 2p−1(p+ 1)
3p+1

2 /(p − 1)!,

f(yk)− f(x∗) ≤ cp · Lp · ‖x∗‖p+1

k
3p+1

2

. (1)

Furthermore each iteration of ATD can be implemented in Õ(1) calls to a pth-order Taylor expansion
oracle. More precisely, given a precision ε > 0, at each iteration k, using at most

30p log2 p+ log2

⌈
Lp‖x∗‖p+1

ε

⌉
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†Research was supported in part by NSF CAREER Award CCF-1844855.
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calls to the pth-order Taylor expansion oracle we find either a point y such that f(y)− f(x∗) ≤ ε,
or we find yk.

Our method is largely inspired by [5], which focuses on p = 2 , and we recall their framework
in Section 2. We then specialize this framework to higher order smoothness in Section 3, where
we derive and analyze ATD. A subtle point of ATD is that an iteration requires more than one
call to the oracle due to the “line-search” [line 4, Algorithm 1]. We prove that Õ(1) calls suffice to
implement an iteration in Section 4.

We note that the independent work [3], currently only available in Russian, derive a similar
result to (1). From our understanding of their work it seems however that they do not work out
the precise complexity of the binary search step (second part of the statement in Theorem 1.1, see
also Section 4). Finally we note that yet another independent work [4] was posted on the arxiv a
couple of days prior to us, with a similar result to Theorem 1.1. Interestingly it seems that their
argument to control the complexity of the binary search is different (at least on the surface) from
ours.

Algorithm 1 Accelerated Taylor Descent

1: Input: convex function f : Rd → R such that ∇pf is Lp-Lipschitz.
2: Set A0 = 0, x0 = y0 = 0
3: for k = 0 to k = K − 1 do

4: Compute a pair λk+1 > 0 and yk+1 ∈ R
d such that

1

2
≤ λk+1

Lp · ‖yk+1 − x̃k‖p−1

(p− 1)!
≤ p

p+ 1
,

where

yk+1 = argmin
y

{
fp(y; x̃k) +

Lp

p!
‖y − x̃k‖p+1

}
,

and

ak+1 =
λk+1 +

√
λ2k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1 , and x̃k =

Ak

Ak+1
yk +

ak+1

Ak+1
xk .

5: Update xk+1 := xk − ak+1∇f(yk+1)
6: end for

7: return yK

Remark 1.2. The definition of ak+1 was chosen such that λk+1Ak+1 = a2k+1. To see this, note
that ak+1 is a solution to a2k+1 − λk+1ak+1 − λk+1Ak = 0, which is equivalent as Ak+1 = Ak + ak.

2 Monteiro-Svaiter acceleration framework

Recall that Nesterov’s accelerated gradient descent [8, 9] produces a sequence of the form:

yk+1 = x̃k − λk+1∇f(x̃k) , (2)

for some step size λk+1 and “momentum” point x̃k. In this section we consider a variant proposed
by Monteiro and Svaiter which replaces the gradient step by a form of “implicit gradient step”,
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namely:
yk+1 ≃ x̃k − λk+1∇f(yk+1) .

The rest of the section is merely a rewriting of [5], with the objective to motivate and prove the
following result:

Theorem 2.1. Let (yk)k≥1 be a sequence of points in R
d and (λk)k≥1 a sequence in R+. Define

(ak)k≥1 such that λkAk = a2k where Ak =
∑k

i=1 ai. Define also for any k ≥ 0, xk = −∑k
i=1 ai∇f(yi)

(in particular x0 = 0) and x̃k :=
ak+1

Ak+1
xk +

Ak

Ak+1
yk. Finally assume that

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ ≤ ‖yk+1 − x̃k‖ . (3)

Then one has for any x ∈ R
d,

f(yk)− f(x) ≤ 2‖x‖2
(∑k

i=1

√
λi

)2 . (4)

Furthermore if one has the following refined guarantee, for some σ ∈ [0, 1],

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ ≤ σ · ‖yk+1 − x̃k‖ , (5)

then one also has
k∑

i=1

Ai

λi
‖yi − x̃i−1‖2 ≤ ‖x∗‖2

1− σ2
. (6)

To illustrate the power of Theorem 2.1, observe that for a L1-smooth function (first-order
smoothness) one has that Nesterov’s accelerated gradient descent (2) directly satisfies (3) pro-
vided that λk+1 = 1

L1
(i.e., the classical step-size for smooth convex optimization). Using (4) this

immediately shows that (2) has a rate of convergence of O(1/k2)
The key to higher-order acceleration will be to show that in fact one can take λk to be an

increasing function of Ak, thanks to a careful use of (6). This will be done in Section 3.
We now embark on the road leading to Theorem 2.1.

2.1 Estimate sequence style analysis

Similarly to the original construction by Nemirovski [7, 6] (and taking inspiration from the conjugate
gradient method) the starting point is to consider a linear combination of past gradients: xk :=
−∑k

i=1 ai∇f(yi), where both the coefficients (ai) and the query points (yi) are yet to be defined.
In the spirit of Nesterov’s estimate sequence analysis, a key observation for such linear combination
of gradients is that it minimizes an approximate lower bound on f :

Lemma 2.2. Let ψ0(x) = 1
2‖x‖2 and define by induction ψk(x) = ψk−1(x) + akf1(x, yk). Then

xk = −∑k
i=1 ai∇f(yi) is the minimizer of ψk, and ψk(x) ≤ Akf(x) +

1
2‖x‖2 where Ak =

∑k
i=1 ai.

The next idea is to produce a ”control sequence” (zk)k≥1 demonstrating that ψk is not too far
below Akf , which in turn would directly yield a convergence rate for zk of order 1/Ak:

Lemma 2.3. Let (zk) be a sequence such that

ψk(xk)−Akf(zk) ≥ 0 . (7)

Then one has for any x,

f(zk) ≤ f(x) +
‖x‖2
2Ak

. (8)
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Proof. One has (recall Lemma 2.2):

Akf(zk) ≤ ψk(xk) ≤ ψk(x) ≤ Akf(x) +
1

2
‖x‖2 .

2.2 A proof by induction

Our goal is now to come up with sequences (ak, yk, zk) satisfying (7). The following lemma, resulting
from elementary calculations, reveals a simple condition to obtain (7) from an induction argument:

Lemma 2.4. One has for any x,

ψk+1(x)−Ak+1f(yk+1)− (ψk(xk)−Akf(zk))

≥ Ak+1∇f(yk+1) ·
(
ak+1

Ak+1
x+

Ak

Ak+1
zk − yk+1

)
+

1

2
‖x− xk‖2 .

Proof. First we note that (the first equality follows from the fact that the Hessian of ψk remains
the identity for any k):

ψk(x) = ψk(xk) +
1

2
‖x− xk‖2, and ψk+1(x) = ψk(xk) +

1

2
‖x− xk‖2 + ak+1f1(x, yk+1) ,

so that

ψk+1(x)− ψk(xk) = ak+1f1(x, yk+1) +
1

2
‖x− xk‖2 . (9)

Now we want to make appear the term Ak+1f(zk+1)−Akf(zk) as a lower bound on the right hand
side of (9) when evaluated at x = xk+1. Using the inequality f1(zk, yk+1) ≤ f(zk) we have:

ak+1f1(x, yk+1) = Ak+1f1(x, yk+1)−Akf1(x, yk+1)

= Ak+1f1(x, yk+1)−Ak∇f(yk+1) · (x− zk)−Akf1(zk, yk+1)

= Ak+1f1

(
x− Ak

Ak+1
(x− zk), yk+1

)
−Akf1(zk, yk+1)

≥ Ak+1f(yk+1)−Akf(zk) +Ak+1∇f(yk+1) ·
(
ak+1

Ak+1
x+

Ak

Ak+1
zk − yk+1

)
,

which concludes the proof.

From Lemma 2.4 we see that it is natural to take for the control sequence zk := yk, so that:

ψk+1(x)−Ak+1f(yk+1)− (ψk(xk)−Akfk(yk)) (10)

≥ Ak+1∇f(yk+1) ·
(
ak+1

Ak+1
x+

Ak

Ak+1
yk − yk+1

)
+

1

2
‖x− xk‖2 . (11)

We would like to pick the query point yk+1 so that (11) is nonnegative when evaluated at x = xk+1

(to satisfy (7)). One difficulty is that xk+1 itself depends on yk+1, so in fact we will pick yk+1 so
that the right side is nonnegative for all x. We write this as follows:
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Lemma 2.5. Denoting λk+1 :=
a2
k+1

Ak+1
and x̃k :=

ak+1

Ak+1
xk +

Ak

Ak+1
yk one has:

ψk+1(xk+1)−Ak+1f(yk+1)− (ψk(xk)−Akf(yk))

≥ Ak+1

2λk+1

(
‖yk+1 − x̃k‖2 − ‖yk+1 − (x̃k − λk+1∇f(yk+1))‖2

)
.

In particular, we have in light of (5)

ψk(xk)−Akf(yk) ≥
1− σ2

2

k∑

i=1

Ai

λi
‖yi − x̃i−1‖2.

Proof. We apply Lemma 2.4 with zk = yk and x = xk+1, and note that (with x̃ :=
ak+1

Ak+1
x+ Ak

Ak+1
yk):

∇f(yk+1) ·
(
ak+1

Ak+1
x+

Ak

Ak+1
yk − yk+1

)
+

1

2Ak+1
‖x− xk‖2

= ∇f(yk+1) · (x̃− yk+1) +
1

2Ak+1

∥∥∥∥
Ak+1

ak+1

(
x̃− Ak

Ak+1
yk

)
− xk

∥∥∥∥
2

= ∇f(yk+1) · (x̃− yk+1) +
Ak+1

2a2k+1

∥∥∥∥x̃−
(
ak+1

Ak

xk +
Ak

Ak+1
yk

)∥∥∥∥
2

.

This yields:

ψk+1(xk+1)−Ak+1f(yk+1)− (ψk(xk)−Akf(yk))

≥ Ak+1 · min
x∈Rd

{
∇f(yk+1) · (x− yk+1) +

1

2λk+1
‖x− x̃k‖2

}
.

It only remains to compute the value of this minimum, which is an easy exercise.

2.3 Proof of Theorem 2.1

For the first conclusion in Theorem 2.1, it suffices to combine Lemma 2.5 with Lemma 2.3, and to
use the following observation:

Lemma 2.6. Let (λk) be a sequence of nonnegative numbers. Define (ak) to be another sequence
of nonnegative numbers such that λkAk = a2k, where Ak =

∑k
i=1 ai. In other words one has

ak =
λk+

√
λ2
k
+4λkAk−1

2 . Furthermore one also has:

√
Ak ≥ 1

2

k∑

i=1

√
λi .

Proof. It suffices to observe that:

ak =
λk +

√
λ2k + 4λkAk−1

2
≥ λk

2
+
√
λkAk−1 ≥

(√
λk
2

+
√
Ak−1

)2

−Ak−1 .

The second conclusion in Theorem 2.1 follows from Lemma 2.5 and Lemma 2.2.
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3 Accelerated Taylor Descent

Nesterov’s accelerated gradient descent (2) (with λk = 1/L1) can be rewritten as:

yk+1 = argmin
y∈Rd

f1(y, x̃k) +
L1

2
‖y − x̃k‖2 .

We naturally propose to use the following generalization for higher-order smoothness, which we
term accelerated Taylor descent (ATD):

yk+1 = argmin
y∈Rd

fp(y, x̃k) +
Lp

p!
‖y − x̃k‖p+1 . (12)

The term ‖ · ‖p+1 is added to ensure that the function being optimized is strictly convex. In
Section 3.1 we first show that ATD satisfies (3) for a special value of λk+1 defined in terms of yk+1.
We point out that there is an intricate issue here, in the sense that yk+1 depends on λk+1 (through
the definition of x̃k), and thus we will have to select the the pair (yk+1, λk+1) simultaneously rather
than sequentially. This is detailed in Section 3.2. Finally in Section 3.3 we use (6) with the special
values of (λi) to derive the rate of convergence from Theorem 1.1.

3.1 ATD and implicit gradient descent with large step size

The following lemma shows that minimizing the pth order Taylor expansion (12) can be viewed as
an implicit gradient step for some “large” step size:

Lemma 3.1. Equation (5) holds true with σ = 1/2 for (12), provided that one has:

1

2
≤ λk+1

Lp · ‖yk+1 − x̃k‖p−1

(p− 1)!
≤ p

p+ 1
. (13)

Proof. Observe that the optimality condition gives:

∇yfp(yk+1, x̃k) +
Lp · (p + 1)

p!
(yk+1 − x̃k)‖yk+1 − x̃k‖p−1 = 0 . (14)

In particular we get:

yk+1 − (x̃k − λk+1∇f(yk+1)) = λk+1∇f(yk+1)−
p!

Lp · (p+ 1) · ‖yk+1 − x̃k‖p−1
∇yfp(yk+1, x̃k) .

By doing a Taylor expansion of the gradient function one obtains:

‖∇f(y)−∇yfp(y, x)‖ ≤ Lp

p!
‖y − x‖p ,

so that we find:

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖

≤ λk+1
Lp

p!
‖yk+1 − x̃k‖p +

∣∣∣∣λk+1 −
p!

Lp · (p+ 1) · ‖yk+1 − x̃k‖p−1

∣∣∣∣ · ‖∇yfp(yk+1, x̃k)‖

≤ ‖yk+1 − x̃k‖
(
λk+1

Lp

p!
‖yk+1 − x̃k‖p−1 +

∣∣∣∣λk+1
Lp · (p + 1) · ‖yk+1 − x̃k‖p−1

p!
− 1

∣∣∣∣
)

= ‖yk+1 − x̃k‖
(
η

p
+

∣∣∣∣η ·
p+ 1

p
− 1

∣∣∣∣
)

where we used (14) in the second last equation and we let η := λk+1
Lp·‖yk+1−x̃k‖

p−1

(p−1)! in the last

equation. The result follows from the assumption 1/2 ≤ η ≤ p/(p+ 1) in (13).
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3.2 A continuity argument

We now claim that there exists a pair (yk+1, λk+1) that satisfies simultaneously (12) and (13). This
is a direct consequence of the following lemma.

Lemma 3.2. Let A ≥ 0, x, y ∈ R
d such that f(x) 6= f(x∗). Define the following functions:

a(λ) =
λ+

√
λ2 + 4λA

2
, x(λ) =

a(λ)

A+ a(λ)
x+

A

A+ a(λ)
y ,

y(z) = argmin
w∈Rd

{
fp(w, z) +

Lp

p!
‖w − z‖p+1

}
, g(λ) = λ‖y(x(λ)) − x(λ)‖p−1 .

Then we have g(R+) = R+.

Proof. First we claim that g(λ) is a continuous function of λ. The only non-trivial part of this
statement is that y(z) is a continuous function of z. The latter statement follows easily from the
strict convexity of the function being optimized, see also Section 4 for more details.

Next we claim that g(0) = 0, and furthermore since f(x) 6= f(x∗) we also have y(x) 6= x which
in turns gives g(+∞) = +∞. This concludes the proof.

3.3 Proof of (1) in Theorem 1.1

Recall from Lemma 2.3 that the rate of convergence of ATD is ‖x∗‖2/(2Ak). We now finally give
an estimate of Ak:

Lemma 3.3. One has, with cp = 2p−1(p + 1)
3p+1

2 /(p − 1)!,

Ak ≥ 1

cp · Lp · ‖x∗‖p−1
k

3p+1
2 .

Proof. Using Lemma 3.1 (and in particular (13)) in (6) we obtain, with Cp = 8 ·
(

Lp

(p−1)!

) 2
p−1

,

k∑

i=1

Ai

λ
p+1
p−1

i

≤ Cp‖x∗‖2 . (15)

Now by reverse Hölder inequality, i.e. ‖fg‖1 ≥ ‖f‖ 1
q
‖g‖ −1

q−1
for q ≥ 1, and invoking this inequality

with q = 1 + p−1
2(p+1) =

3p+1
2(p+1) so that −1

1−q
= −2(p+1)

p−1 , we have

k∑

j=1

√
λj =

k∑

j=1

(Aj)
p−1

2(p+1)




Aj

λ
p+1
p−1

j




− p−1
2(p+1)

≥




k∑

j=1

A
p−1
3p+1

j




3p+1
2(p+1)




k∑

j=1

Aj

λ
p+1
p−1

j




− p−1
2(p+1)

. (16)

Combining (15) and (16) and using by Lemma 2.6 we have for all k ≥ 1 that

Ak ≥ 1

4



∑

j∈[k]

√
λj




2

≥ 1

4(Cp‖x∗‖2)
p−1
p+1




k∑

j=1

A
p−1
3p+1

j




3p+1
p+1

7



Next we apply Lemma 3.4 (see below) with α = p+1
p−1 , Bk = A

p−1
3p+1

k and c = 1

4
p+1
3p+1 (Cp‖x∗‖2)

p−1
3p+1

:

Bk ≥
(

2

p+ 1
· c · k

) p−1
2

,

or in other words, Ak ≥
(

2
p+1 · c · k

) 3p+1
2

, which concludes the proof.

Lemma 3.4. Given a non-decreasing positive sequence Bj such that Bα
k ≥ c ·∑k

j=1Bj. Then, we
have that

Bk ≥
(
α− 1

α
c · k

) 1
α−1

Proof. We extend Bt = B⌈t⌉. Note that

Bα
t = Bα

⌈t⌉ ≥ c ·
⌈t⌉∑

j=1

Bj ≥ c ·
∫ t

0
Bsds.

We can upper bound this integral inequality Bt ≥ Ut where U1 = B1 and

Uα
t = c ·

∫ t

0
Usds.

Taking derivatives on both sides, we have

αUα−1
t

dUt

dt
= c · Ut.

and hence
dUα−1

t

dt
= α−1

α
c. Therefore, we have Bt ≥ Ut = (α−1

α
c · (t − 1) + Bα−1

1 )
1

α−1 . Finally, the
result follows from Bα−1

1 ≥ c.

4 Complexity of the binary search step

In this section, we show how to find λk+1 satisfying equation (13). For k = 0, it is trivial since
x̃0 = 0. From now on, we fix some k > 0. To simplify the notation, we define x̃θ = (1− θ)xk + θyk,
yθ = argminy F (y − x̃θ, x̃θ) with

F (z, x) = fp(x+ z, x) +
Lp

p!
‖z‖p+1,

and zθ = yθ − x̃θ. Note that the λk+1 corresponding to θ is given by λk+1 =
(1−θ)2

θ
Ak. Hence, our

goal is to find θ such that

1

2
≤ ζ(θ) ≤ p

p+ 1
with ζ(θ) =

(1− θ)2

θ

Ak · Lp

(p − 1)!
‖zθ‖p−1.

Note that ζ(0) = +∞ and ζ(1) = 0. Hence, we can use binary search to find θ that is close to θ∗

such that ζ(θ∗) = 7
12 (or any value in (12 ,

p
p+1)). The main difficulty is to show how close θ need to

be so that ζ(θ) ∈ [12 ,
p

p+1 ], or in other words to control the Lipschitz constant of ζ(θ).

To bound the Lipschitz constant of ζ(θ), we need to bound ‖zθ‖ and ‖ d
dθ
zθ‖. First, we give an

upper bound on ‖ d
dθ
zθ‖.
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Lemma 4.1. We have: ∥∥∥∥
d

dθ
zθ

∥∥∥∥ ≤ 5(p + 1)2 · ‖x∗‖.

Proof. To compute the derivative of zθ, we note by optimality condition that

∇zF (zθ, x̃θ) = 0.

Taking derivatives with respect to θ on both sides gives

∇2
zzF (zθ, x̃θ) ·

d

dθ
zθ +∇2

zxF (zθ, x̃θ) ·
d

dθ
x̃θ = 0.

Hence, we have
d

dθ
zθ = −

(
∇2

zzF (zθ, x̃θ)
)−1∇2

zxF (zθ, x̃θ) · (yk − xk). (17)

To bound d
dθ
zθ, it suffices to compute ∇2

zzF (z, x) and ∇2
zxF (z, x).

For ∇2
zzF (z, x), we have

∇2
zzF (z, x) = ∇2

zzfp(x+ z, x) +∇2

[
Lp

p!
‖z‖p+1

]
.

By doing a Taylor expansion of the Hessian function, one obtains:

‖∇2
zzfp(x+ z, x) −∇2f(x+ z)‖ ≤ Lp

(p− 1)!
‖z‖p−1

and hence

∇2
zzF (z, x) � ∇2f(x+ z)− Lp

(p − 1)!
‖z‖p−1I +

Lp(p + 1)

p!
‖z‖p−1I � Lp

p!
‖z‖p−1I

where we used that f is convex and

∇2
[
‖z‖p+1

]
= (p + 1)‖z‖p−1 · I + (p + 1)(p − 1)‖z‖p−3 · zz⊤. (18)

For ∇2
zxF (z, x), we recall that F (z, x) =

∑p
i=0

1
i!D

if(x)[z]i +
Lp

p! ‖z‖p+1, and hence

∇2
zxF (z, x) =

p∑

i=1

1

(i− 1)!
Di+1f(x)[z]i−1

= ∇2
zzF (z, x) +

1

(p− 1)!
Dp+1f(x)[z]p−1 −∇2

[
Lp

p!
‖z‖p+1

]
.

Therefore, we have

(
∇2

zzF (z, x)
)−1 (∇2

zxF (z, x)
)
= I +

(
∇2

zzF (z, x)
)−1

(
Dp+1f(x)[z]p−1

(p − 1)!
−∇2

[
Lp

p!
‖z‖p+1

])
.

and
∥∥∥
(
∇2

zzF (z, x)
)−1 (∇2

zxF (z, x)
)∥∥∥ ≤ 1 +

p!

Lp‖z‖p−1

∥∥∥∥
Dp+1f(x)[z]p−1

(p− 1)!
−∇2

[
Lp

p!
‖z‖p+1

]∥∥∥∥

≤ 1 +
p!

Lp‖z‖p−1

(
Lp

(p − 1)!
‖z‖p−1 +

Lp · (p+ 1)p

p!
· ‖z‖p−1

)

= (p + 1)2

9



where we used (18) and smoothness for the second inequality. Now, (17) and Lemma 4.7 below
show

‖ d
dθ
zθ‖ ≤ (p+ 1)2 · ‖yk − xk‖ ≤ 5(p + 1)2 · ‖x∗‖.

Lemma 4.2. We have that ‖zθ‖ ≤ 12p3‖x∗‖ for all 0 ≤ θ ≤ 1.

Proof. By doing a Taylor expansion of the function f , one obtains:

fp(x̃θ + zθ, x̃θ) ≥ f(x̃θ + zθ)−
Lp

(p + 1)!
‖zθ‖p+1.

Hence, we have that

F (zθ, x̃θ) = fp(x̃θ + zθ, x̃θ) +
Lp

p!
‖zθ‖p+1 ≥ f(x̃θ + zθ) +

Lp · p
(p+ 1)!

‖zθ‖p+1. (19)

Rearranging the term, we have that

‖zθ‖p+1 ≤ (p + 1)!

Lp · p
· (F (zθ, x̃θ)−min

x
f(x)) ≤ (p + 1)!

Lp · p
· (f(x̃θ)−min

x
f(x))

where we used that F (zθ, x̃θ) ≤ F (0, x̃θ) = f(x̃θ).
For θ = 1, we have x̃θ = yk and hence

‖z1‖p+1 ≤ (p+ 1)!

Lp · p
(f(yk)−min

x
f(x)) ≤ (p + 1)!

2p · Ak · Lp
‖x∗‖2

where we used (8) at the end. Using Lemma 4.1 and Young’s inequality, we have

‖zθ‖ ≤
(

(p+ 1)!

2p ·Ak · Lp

) 1
p+1

‖x∗‖
2

p+1 + 5(p + 1)2 · ‖x∗‖

≤ 2

p+ 1
‖x∗‖+ p− 1

p+ 1

(
(p+ 1)!

2p ·Ak · Lp

) 1
p−1

+ 5(p+ 1)2‖x∗‖.

Using Ak ≥ k
3p+1

2

cp·Lp·‖x∗‖p−1 ≥ 1
cp·Lp·‖x∗‖p−1 and cp =

2p−1(p+1)
3p+1

2

(p−1)! , we have

‖zθ‖ ≤
(

2

p+ 1
+
p− 1

p+ 1

(
(p+ 1)! · cp

2p

) 1
p−1

+ 5(p + 1)2

)
‖x∗‖ ≤ 12p3‖x∗‖.

Next, we have a lower bound of ‖zθ‖. We also prove Lipschitzness of θ 7→ f(yθ).

Lemma 4.3. We have

‖zθ‖p ≥
p!

Lp · (p + 2) · (12p3 + 4)‖x∗‖(f(yθ)− f(x∗)) .

Furthermore θ 7→ f(yθ) is Lipschitz, with Lipschitz constant upper bounded by

Lp · (12p3‖x∗‖)p+1 .

10



Proof. By the optimality of zθ, we have that

∇zfp(x̃θ + zθ, x̃θ) +
Lp · (p+ 1)

p!
‖zθ‖p−1zθ = 0.

By doing a Taylor expansion of the gradient function, one obtains:

‖∇zfp(x̃θ + zθ, x̃θ)−∇f(x̃θ + zθ)‖ ≤ Lp

p!
‖zθ‖p.

Hence, we have ‖∇f(x̃θ + zθ)‖ ≤ Lp·(p+2)
p! ‖zθ‖p and

f(yθ) = f(x̃θ + zθ) ≤ f(x∗) +
Lp · (p+ 2)

p!
‖zθ‖p‖x̃θ + zθ − x∗‖.

Since x̃θ is convex combination of xk and yk, Lemma 4.7 shows that ‖x̃θ−x∗‖ ≤ 4‖x∗‖ and Lemma
4.2 shows that ‖zθ‖ ≤ 12p3‖x∗‖. Combining both, we have ‖x̃θ + zθ − x∗‖ ≤ (12p3 + 4)‖x∗‖ and
hence

f(yθ)− f(x∗) ≤ Lp · (p+ 2)

p!
‖zθ‖p · (12p3 + 4)‖x∗‖.

Rearranging gives the first inequality.
For the Lipschitz statement we note that, as above, we have:

f(yθ)− f(yθ′) ≤
Lp · (p+ 2)

p!
‖zθ‖p‖yθ − yθ′‖

≤ Lp · (p+ 2)

p!
· (12p3‖x∗‖)p · (‖x̃θ − x̃θ′‖+ ‖zθ − zθ′‖).

Lemma 4.7 shows that ‖x̃θ − x̃θ′‖ = |θ − θ′| · ‖yk − xk‖ ≤ 5 · ‖x∗‖ · |θ − θ′|. Lemma 4.1 shows that
‖zθ − zθ′‖ ≤ 5(p + 1)2‖x∗‖ · |θ − θ′|. Combining both, we have

f(yθ)− f(yθ′) ≤
Lp · (p+ 2)

p!
· (12p3‖x∗‖)p · (5 + 5(p + 1)2)‖x∗‖ · |θ − θ′|.

We now give a bound on the Lipschitz constant ζ(θ).

Lemma 4.4. Denote

ωp(θ) = 4(12p3)p+1 ·
(
1 +AkLp‖x∗‖p−1 +

Lp‖x∗‖p+1

∆(θ)

)
,

and ∆(θ) = f(yθ)− f(x∗). Then one has
∣∣∣∣
d

dθ
log ζ(θ)

∣∣∣∣ ≤ ωp(θ) ·
(
1 +

1

ζ(θ)
+ ζ(θ)

)
.

Proof. Note that
d

dθ
log ζ(θ) = − 2

1− θ
− 1

θ
+ (p− 1)

zθ · d
dθ
zθ

‖zθ‖2
.

Lemma 4.1 shows that
∣∣∣∣
d

dθ
log ζ(θ)

∣∣∣∣ ≤
2

1− θ
+

1

θ
+ 5(p+ 1)2(p− 1)

‖x∗‖
‖zθ‖

.
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The facts that
1

1− θ
≤ 1 +

θ

(1− θ)2
= 1 +

Ak · Lp

(p − 1)! · ζ(θ)‖zθ‖
p−1

and that
1

θ
≤ 2 +

(1− θ)2

θ
= 2 +

(p− 1)! · ζ(θ)
Ak · Lp · ‖zθ‖p−1

,

yield:
∣∣∣∣
d

dθ
log ζ(θ)

∣∣∣∣ ≤ 4 +
2Ak · Lp

(p− 1)! · ζ(θ)‖zθ‖
p−1 +

(p− 1)! · ζ(θ)
Ak · Lp · ‖zθ‖p−1

+ 5(p + 1)2(p− 1)
‖x∗‖
‖zθ‖

.

It only remains to plug in Lemma 4.2 and Lemma 4.3 as follows: For the second term, we have

2Ak · Lp

(p− 1)! · ζ(θ)‖zθ‖
p−1 ≤ 2Ak · Lp · (12p3‖x∗‖)p−1

ζ(θ)
.

For the third term, we have

(p − 1)! · ζ(θ)
Ak · Lp · ‖zθ‖p−1

≤ (p− 1)! · 12p3‖x∗‖
Ak · Lp · ‖zθ‖p

· ζ(θ)

≤ (p− 1)! · 12p3‖x∗‖
Ak · Lp

Lp · (p+ 2) · (12p3 + 4)‖x∗‖
p! ·∆(θ)

· ζ(θ)

≤ 4 · (12p
3‖x∗‖)2

Ak ·∆(θ)
· ζ(θ).

Using Ak ≥ k
3p+1

2

cp·Lp·‖x∗‖p−1 ≥ 1
cp·Lp·‖x∗‖p−1 and cp =

2p−1(p+1)
3p+1

2

(p−1)! , we have

(p− 1)! · ζ(θ)
Ak · Lp · ‖zθ‖p−1

≤ 2p+1(p+ 1)
3p+1

2

(p− 1)!

Lp · ‖x∗‖p−1 · (12p3‖x∗‖)2
∆(θ)

· ζ(θ)

≤ 2p+1(p+ 1)
3p+1

2 (12p3)2 · Lp · ‖x∗‖p+1

∆(θ)
· ζ(θ)

≤ 4 · (12p3)p+1 · Lp · ‖x∗‖p+1

∆(θ)
· ζ(θ).

For the last term, we have

5(p + 1)2(p − 1)
‖x∗‖
‖zθ‖

≤ 5(p+ 1)2(p− 1)
(12p3‖x∗‖)p−1‖x∗‖

‖zθ‖p

≤ 5(p+ 1)3 · (12p3‖x∗‖)p−1 · Lp · (p+ 2) · (12p3 + 4)‖x∗‖2
p! ·∆(θ)

≤ 4 · (12p3)p+1 · Lp · ‖x∗‖p+1

∆(θ)
.

Combining all terms, we have the result

∣∣∣∣
d

dθ
log ζ(θ)

∣∣∣∣ ≤ 4 +
2Ak · Lp · (12p3‖x∗‖)p−1

ζ(θ)
+ 4 · (12p3)p+1 · Lp · ‖x∗‖p+1

∆(θ)
· (ζ(θ) + 1)

justifying the claimed upper bound.
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The next lemma is a straightforward calculus exercise which allows to us to analyze binary
search with guarantees of the form given in Lemma 4.4.

Lemma 4.5. Let g : [0, 1] → R+ and θ∗ ∈ [0, 1] such that g(θ∗) = 7
12 . Let ω ≥ 0 such that any

θ ∈ [0, 1] with |θ − θ∗| ≤ 1
40ω satisfies

∣∣∣∣
d

dθ
log g(θ)

∣∣∣∣ ≤ ω ·
(
1 +

1

g(θ)
+ g(θ)

)
.

Then one also has g(θ) ∈ [12 ,
2
3 ].

Proof. Let h be the largest number such that |θ − θ∗| ≤ h implies g(θ) ∈ [12 ,
2
3 ]. It suffices to show

h ≥ 1
40ω . Proceed by contradiction and suppose that h ≤ 1

40ω . For any θ such that |θ− θ∗| ≤ h, by
the assumption on g and h, we have

∣∣∣∣
d

dθ
g(θ)

∣∣∣∣ ≤ ω · (g(θ) + 1 + g2(θ)) ≤ ω ·
(
2

3
+ 1 +

(
2

3

)2
)

=
19

9
ω.

Hence, for any θ such that |θ− θ∗| ≤ h, we have |g(θ)− g(θ∗)| ≤ h · 199 ω < 1
12 . Since g is continuous

and g(θ∗) = 7
12 this contradicts the assumption of h being the largest. Therefore |θ − θ∗| ≤ 1

40ω
implies that g(θ) ∈ [12 ,

2
3 ] as desired.

Now, we can prove our main theorem of this section.

Theorem 4.6. Let ε > 0. At iteration k, using at most 30p log2 p + log2

⌈
Lp‖x∗‖p+1

ε

⌉
calls to the

pth order Taylor oracle we find either a point y such that f(y) − f(x∗) ≤ ε or we find λk+1 that
satisfies (13).

Proof. First note that we can assume Ak ≤ ‖x∗‖2/(2ε), for otherwise f(yk)− f(x∗) ≤ ε by Lemma
2.3. Now using log2(1/δ) binary search step on ζ, let us find θ such that |θ − θ∗| ≤ δ for some θ∗

with ζ(θ∗) = 7
12 .

If ∆(θ) ≤ ε then we are done, so let us assume this is not the case. By the Lipschitz constant
bound from Lemma 4.3, as well as choosing δ smaller than ε/2 divided by this Lipschitz constant,
we obtain that ∆(θ′) ≥ ε/2 for any θ′ such that |θ − θ′| ≤ 2δ (so in particular for any θ′ such that
|θ′− θ∗| ≤ δ). We now want to apply Lemma 4.5 to conclude that ζ(θ) ∈ [12 ,

2
3 ]. For this we need to

compute a value for ω using Lemma 4.4 (and we will want δ small enough so that δ ≤ 1
40ω ). One

can easily verify that the following value of ω works given the above:

ω ≤ 4(12p3)p+1 ·
(
1 +AkLp‖x∗‖p−1 +

Lp‖x∗‖p+1

∆(θ)

)

≤ 4(12p3)p+1 ·
(
1 +

‖x∗‖2
2ε

Lp‖x∗‖p−1 +
Lp‖x∗‖p+1

ε/2

)

≤ 16 · (12p3)p+1 ·
⌈
Lp‖x∗‖p+1

ε

⌉
.

Hence we can choose

1

δ
= 640 · (12p)3(p+1) ·

⌈
Lp‖x∗‖p+1

ε

⌉
≤ p30p ·

⌈
Lp‖x∗‖p+1

ε

⌉

and binary search finishes in log2(1/δ) = 30p log2 p+ log2

⌈
Lp‖x∗‖p+1

ε

⌉
steps.
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Finally, we give the bound for ‖xk − x∗‖ and ‖yk − x∗‖.

Lemma 4.7. We have that ‖xk − x∗‖ ≤ ‖x∗‖ and ‖yk − x∗‖ ≤ 4‖x∗‖ for all k.

Proof. From Lemma 2.5 we have

ψk+1(xk+1)−Ak+1f(yk+1) ≥
k+1∑

i=1

Ai

2λi

(
(1− σ2)‖yi − x̃i−1‖2

)

Since from Lemma 2.2

ψk+1(xk+1) +
1

2
‖x∗ − xk+1‖2 = ψk+1(x

∗) ≤ Ak+1f(x
∗) +

1

2
‖x∗‖2

altogether this gives

k+1∑

i=1

Ai

2λi

(
(1− σ2)‖yi − x̃i−1‖2

)
≤ Ak+1(f

∗ − f(yk+1)) +
1

2
‖x∗‖2 − 1

2
‖x∗ − xk+1‖2

therefore we have that ‖xk−x∗‖ ≤ ‖x∗‖ for all k. Let Dk = ‖yk−x∗‖. Using x̃k = Ak

Ak+1
yk+

ak+1

Ak+1
xk,

we have

‖x̃k − x∗‖ ≤ Ak

Ak+1
Dk +

ak+1

Ak+1
‖x∗‖.

Hence, we have Dk+1 ≤ Ak

Ak+1
Dk+

ak+1

Ak+1
‖x∗‖+‖yk+1− x̃k‖. Rescaling and summing over k, we have

Dk+1 ≤ ‖x∗‖+ ‖yk+1 − x̃k‖+
Ak

Ak+1
‖yk − x̃k−1‖+

Ak−1

Ak+1
‖yk−1 − x̃k−2‖+ · · ·

≤ ‖x∗‖+ 1

Ak+1

k+1∑

j=1

Aj‖yj − x̃j−1‖

≤ ‖x∗‖+

√∑k+1
j=1 Ajλj

Ak+1

√√√√
k+1∑

j=1

Aj

λj
‖yj − x̃j−1‖2

≤ ‖x∗‖+

√∑k+1
j=1 λj√
Ak+1

√
‖x∗‖2
1− σ2

≤ 4‖x∗‖

where we used Aj is increasing and (6) in the second to last equation, and Lemma 2.6 and σ = 1
2

for the last.
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