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ON STRONGLY ORTHOGONAL MARTINGALES

IN UMD BANACH SPACES

IVAN YAROSLAVTSEV

Abstract. In the present paper we introduce the notion of strongly orthog-

onal martingales. Moreover, we show that for any UMD Banach space X and

for any X-valued strongly orthogonal martingales M and N such that N is

weakly differentially subordinate to M one has that for any 1 < p < ∞

E‖Nt‖
p ≤ χ

p

p,X
E‖Mt‖

p, t ≥ 0,

with the sharp constant χp,X being the norm of a decoupling-type martingale

transform and being within the range

max
{√

βp,X ,

√

~p,X

}

≤ max{βγ,+

p,X
, β

γ,−

p,X
} ≤ χp,X ≤ min{βp,X , ~p,X},

where βp,X is the UMDp constant of X, ~p,X is the norm of the Hilbert trans-

form on Lp(R;X), and β
γ,+

p,X
and β

γ,−

p,X
are the Gaussian decoupling constants.

1. Introduction

Weak differential subordination of Banach space-valued martingales was recently
discovered in the papers [24, 33, 36, 37] as a natural extension of differential subor-
dination in the sense of Burkholder and Wang (see [8, 32]) to infinite dimensions,
and it has the following form: for a given Banach space X an X-valued martingale
N is weakly differentially subordinate to an X-valued local martingale M if a.s.

|〈N0, x
∗〉| ≤ |〈M0, x

∗〉| and

[〈N, x∗〉]t − [〈N, x∗〉]s ≤ [〈M,x∗〉]t − [〈M,x∗〉]s, 0 ≤ s ≤ t,

for any x∗ ∈ X∗, where [ · ] is a quadratic variation of a martingale (see Subsec-
tion 2.2).

Weak differential subordination, especially if X satisfies the UMD property (see
Subsection 2.1), has several applications in Harmonic Analysis. On the one hand,
Lp-bounds for weakly differential subordinated purely discontinuous martingales
imply estimates for Lp-norms of Lévy multipliers. Namely, it was shown in [37] that
if Tm is a Lévy multiplier (i.e. a Fourier multiplier generated by a Lévy measure,
see [1, 2]), then by using weakly differential subordinated purely discontinuous
martingales one gets that for any 1 < p < ∞ the Lp-norm of Tm acting on X-valued
functions is bounded by the UMD constant βp,X (which boundedness characterizes
the UMD property, please see Subsection 2.1).

On the other hand, various bounds for weakly differential subordinated orthogo-
nal martingales coincide with the same type of estimates for the Hilbert transform

2010 Mathematics Subject Classification. 60G44, 60H05 Secondary: 60B11, 32U05.

Key words and phrases. strongly orthogonal martingales, weak differential subordination,

UMD, sharp estimates, decoupling constant, martingale transform, Hilbert transform, diagonally

plurisubharmonic function.

1

http://arxiv.org/abs/1812.08049v1
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(see [24] by Osȩkowski and the author). Recall that two X-valued martingales M
and N are orthogonal if a.s. for any x∗ ∈ X∗

〈M0, x
∗〉 · 〈N0, x

∗〉 = 0 and [〈M,x∗〉, 〈N, x∗〉]t = 0, t ≥ 0,

where [ · , · ] is a covariation of two martingales (see Subsection 2.2). In particular,
it was shown in [24] that for any UMD Banach space X and any X-valued orthog-
onal martingales M and N such that N is weakly differentially subordinate to M
one has that for every 1 < p < ∞

E‖Nt‖p ≤ ~
p
p,XE‖Mt‖p, t ≥ 0,

where the sharp constant ~p,X is the norm of the Hilbert transform on Lp(R;X).
The goal of the present paper is to present sharp Lp estimates for strongly or-

thogonal weakly differentially subordinated martingales. We call two X-valued
martingales M and N strongly orthogonal if a.s. for any x∗, y∗ ∈ X∗

〈M0, x
∗〉 · 〈N0, y

∗〉 = 0 and [〈M,x∗〉, 〈N, y∗〉]t = 0, t ≥ 0.

A classical example of strongly orthogonal martingales are stochastic integrals∫
ΦdW and

∫
ΦdW̃ , where Φ is X-valued elementary predictable, and W and

W̃ are independent Brownian motions. In the present paper we prove that for any
strongly orthogonal weakly differentially subordinated martingales M and N

(1.1) E‖Nt‖p ≤ χp
E‖Mt‖p, t ≥ 0, 1 < p < ∞,

where the sharp constant χ = χp,X is within the range

(1.2) max{
√
βp,X ,

√
~p,X} ≤ χp,X ≤ min{βp,X , ~p,X}.

The main technique we used in order to prove (1.1) is the Bellman function
method. More specifically, we show that the following are equivalent

(A) (1.1) holds for a constant χ > 0,
(B) there exists USO : X + iX → R such that USO(x) ≥ 0 for any x ∈ X ,

z 7→ USO(x0 + iy0 + zx) in subharmonic in z ∈ C for any x0, y0, x ∈ X , and

USO(x+ iy) ≤ χp‖x‖p − ‖y‖p, x, y ∈ X.

Notice that this method is not new while working with martingales with values in
UMD Banach space. Namely, in [37] there was applied the Burkholder function
U : X × X → R which first appeared in the paper [9] by Burkholder, and in
[24] there was used a plurisubhirmonic function UH : X + iX → Rwhich first was
constructed in the paper [17] by Hollenbeck, Kalton, and Verbitsky. The novelty of
the present paper is in minimizing the necessary properties of the Bellman function.
Namely, both −U and UH satisfy the property (B) outlined above (which makes
the upper bound of (1.2) elementary).

In order to show the lower bounds of (1.2) and in order to characterize the least
admissible cosntant χp,X we will need the example presented above. It turned out
in Section 3 and 4 that the sharp constant χp,X is the smallest constant χ > 0

such that for any independent Brownian motions W and W̃ and for any elementary
predictable X-valued Φ one has that

E

∥∥∥
∫ ∞

0

ΦdW̃
∥∥∥
p

≤ χp
E

∥∥∥
∫ ∞

0

ΦdW
∥∥∥
p

.

Thus the desires lower bound of (1.2) follows from the well-known decoupling-type
inequalities of Garling, see [13].
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Notice that if X = R, then χp,X = ~p,X (see Remark 3.6). Nevertheless, it
remains open whether this equality holds for a general UMD Banach space X .
Moreover, if this is the case, then it proves a celebrated open problem about linear
dependence of the constants βp,X and ~p,X , see [6, p. 48] and [15, 18, 24, 37] (so
far only a square dependence is known, see (2.2)).

Acknowledgment –The author would like to thank Adam Osȩkowski and Mark
Veraar for helpful comments. The author thanks Stefan Geiss for fruitful discussions
and for being the host while author’s stay at Jyväskylä University where the present
paper was written.

2. Preliminaries

Throughout the paper all Banach spaces are assumed to be over the scalar field
R unless stated otherwise. We also assume that any filtration satisfies the usual
conditions. In particular, any filtration is right-continuous, and thus all the local
martingales exploited in the article have càdlàg versions (i.e. versions which are
right continuous with left limits, see [28, 37]). Furthermore, for any Banach space
X , for any càdlàg process A : R+ ×Ω → X , and for any stopping time τ we define

∆Aτ := lim
ε→0

(Aτ −A(τ−ε)∨0).

2.1. UMD Banach spaces. A Banach space X is called UMD if for some (equiv-
alently, for all) p ∈ (1,∞) there exists a constant β > 0 such that for every N ≥ 1,
every martingale difference sequence (dn)

N
n=1 in Lp(Ω;X), and every {−1, 1}-valued

sequence (εn)
N
n=1 we have

(
E

∥∥∥
N∑

n=1

εndn

∥∥∥
p) 1

p ≤ β
(
E

∥∥∥
N∑

n=1

dn

∥∥∥
p) 1

p

.

The least admissible constant β is denoted by βp,X and is called the UMDp constant
or, in the case if the value of p is understood, the UMD constant of X . It is
well-known that UMD spaces obtain a large number of useful properties, such as
being reflexive. Examples of UMD spaces include all finite dimensional spaces and
the reflexive range of Lq-, Besov, Sobolev, Schatten class, and Musielak–Orlicz
spaces. Example of spaces without the UMD property include all nonreflexive
Banach spaces, e.g. L1(0, 1) or C([0, 1]). We refer to [10, 18, 25, 27] for details.

2.2. Quadratic variation. Let (Ω,F ,P) be a probability space with a filtration
F = (Ft)t≥0 that satisfies the usual conditions. Let M : R+ × Ω → R be a local
martingale. We define a quadratic variation of M in the following way:

(2.1) [M ]t := |M0|2 + P− lim
mesh→0

N∑

n=1

∣∣M(tn)−M(tn−1)
∣∣2,

where the limit in probability is taken over partitions 0 = t0 < . . . < tN = t. Note
that [M ] exists and is nondecreasing a.s. The reader can find more on quadratic
variations in [12, 20, 26]. For any martingales M,N : R+ × Ω → R we can define
a covariation [M,N ] : R+ × Ω → R as [M,N ] := 1

4 ([M + N ] − [M − N ]). Since
M and N have càdlàg versions, [M,N ] has a càdlàg version as well (see e.g. [19,
Theorem I.4.47]).

A local martingale M : R+ × Ω → R is called purely discontinuous if [M ] is
a.s. pure jump, i.e. [M ]t =

∑
0≤s≤t ∆[M ]s a.s. Let X be a Banach space. Then
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an X-valued local martingale M : R+ × Ω → X is called purely discontinuous if
〈M,x∗〉 is purely discontinuous for any x∗ ∈ X∗. Note that if X is UMD, then any
local martingale M has a unique decomposition into a sum of a continuous local
martingale M c with M c

0 = 0 and a purely discontinuous local martingale Md (see
[34]). We refer to [19, 20, 33, 34, 37] for details on purely discontinuous martingales.

2.3. Weak differential subordination of martingales. Let X be a Banach
space. Let M,N : R+ × Ω → X be local martingales. Then we say that N is

weakly differentially subordinate to M (we will denote this by N
w≪ M) if for each

x∗ ∈ X∗ one has that [〈M,x∗〉] − [〈N, x∗〉] is an a.s. nondecreasing function and
|〈N0, x

∗〉| ≤ |〈M0, x
∗〉| a.s.

The definition above first appeared in [37] as a natural extension of differential
subordination of real-valued martingales. Later in [33] there were obtained the first
Lp-estimated for weakly differentially subordinated martingales, which have been
significantly improved in [24] in the continuous-time case.

2.4. Orthogonal martingales. Let M and N be local martingales taking values
in a given Banach space X . Then M and N are said to be orthogonal, if 〈M0, x

∗〉 ·
〈N0, x

∗〉 = 0 and [〈M,x∗〉, 〈N, x∗〉] = 0 almost surely for all functionals x∗ ∈ X∗.

Remark 2.1. Assume that M and N are local martingales taking values in some
Banach space X . If M and N are orthogonal and N is weakly differentially subor-
dinate to M , then N0 = 0 almost surely (which follows immediately from the above
definitions, see [24]). Moreover, under these assumptions, N must have continu-
ous trajectories with probability 1. Indeed, in such a case for any fixed x∗ ∈ X∗

the real-valued local martingales 〈M,x∗〉 and 〈N, x∗〉 are orthogonal and we have
〈N, x∗〉 ≪ 〈M,x∗〉. Therefore, 〈N, x∗〉 has a continuous version for each x∗ ∈ X∗ by
[23, Lemma 3.1] (see also [4, Lemma 1]), which in turn implies that N is continuous
since any X-valued local martingale has a càdlàg version.

2.5. Stochastic integration. For given Banach spaces X and Y , the symbol
L(X,Y ) will denote the classes of all linear operators from X to Y . We will also use
the notation L(X) = L(X,X). Suppose that H is a Hilbert space. For each h ∈ H
and x ∈ X , we denote by h⊗x the associated linear operator given by g 7→ 〈g, h〉x,
g ∈ H . The process Φ : R+ × Ω → L(H,X) is called elementary predictable with
respect to the filtration F = (Ft)t≥0 if it is of the form

Φ(t, ω) =

K∑

k=1

M∑

m=1

1(tk−1,tk]×Bmk
(t, ω)

N∑

n=1

hn ⊗ xkmn, t ≥ 0, ω ∈ Ω.

Here 0 ≤ t0 < . . . < tK < ∞ is a finite increasing sequence of nonegative numbers,
the sets B1k, . . . , BMk belong to Ftk−1

for each k = 1, 2, . . . ,K, and the vectors
h1, . . . , hN are assumed to be orthogonal. Suppose further that M is an adapted
local martingale taking values in H . Then the stochastic integral

∫
ΦdM : R+×Ω →

X of Φ with respect to M is defined by the formula

∫ t

0

ΦdM =

K∑

k=1

M∑

m=1

1Bmk

N∑

n=1

〈(M(tk ∧ t)−M(tk−1 ∧ t)), hn〉xkmn, t ≥ 0.

Remark 2.2. If both X and H are finite dimensional, then we may assume that
X is isomorphic to R

d, and thus by [20, Theorem 26.6 and 26.12] we can extend the
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stochastic integration from elementary predictable processes to all the predictable
processes Φ : R+ × Ω → L(H,X) with

E

( n∑

i=1

∫ ∞

0

‖Φhi‖2 d[〈M,hi〉]s
)1/2

< ∞,

where n is the dimension of H and h1, . . . , hn is an orthonormal basis of H . In
fact, a similar characterization of stochastic integration can be shown for infinite
dimensional X and H by using γ-norms (see [22, 29, 31, 35]).

2.6. Hilbert transform. Let X be a Banach space. The Hilbert transform HX is
a singular integral operator that maps a step function f : R → X to the function

(HXf)(t) :=
1

π
p.v.

∫

R

f(s)

t− s
ds, t ∈ R.

For any 1 < p < ∞ we denote the norm of HX on Lp(R;X) by ~p,X . Note that
due to [5, 7] we have that ~p,X < ∞ if and only if X is UMD. Moreover, due to
[5, 13] we have that for every 1 < p < ∞

(2.2)
√
βp,X ≤ ~p,X ≤ β2

p,X .

Remark 2.3. Recently in [24] it was shown that ~p,X is the smallest constant ~

such that there exists a plurisubharmonic function UH : X + iX → R (i.e. z 7→
UH(x0+ iy0+z(x+ iy)) is subharmonic in z ∈ C for any fixed x0, y0, x, y ∈ X) such
that UH(x) ≥ 0 for any x ∈ X and UH(x+ iy) ≤ ~p‖x‖p − ‖y‖p for all x, y ∈ X .

2.7. Bellman functions and function approximation. Let X be a UMD Ba-
nach space, 1 < p < ∞. Throughout the paper we will use different Bellman
functions, i.e. functions u : X ×X → R which have certain appropriate properties.
Let us outline which functions we will use

• the Burkholder function U : X × X → R (see e.g. [18] and the proof of
Corollary 3.5),

• a plurisubharmonic function UH : X+iX → R (see [24] and Subsection 2.6),
• a diagonally plurisubharmonic function USO : X+ iX → R (see Section 3).

For all the Bellman functions named above we may assume that X is finite di-
mensional and that the function is twice Fréchet differentiable by an approximation
argument exploited in [3, 24, 33]. We will not repeat this argument here, but just
shortly remind the reader the main steps.

• Since X is UMD, it is reflexive, and by the Pettis measurability theorem
[18, Theorem 1.1.20] we may assume that X is separable. Thus X∗ is
separable as well, and there exist an increasing sequence (Yn)n≥1 of finite

dimensional subspaces of X∗ such that X∗ = ∪nYn. Let Pn : Yn → X∗ be
the injection operator. In the sequel we will need to show that E‖η‖p ≤
cpp,XE‖ξ‖p for a certain pair of random variables ξ, η ∈ Lp(Ω;X) and a

certain constant cp,X . Since ‖P ∗
nx‖ ր ‖x‖ monotonically as n → ∞ for any

x ∈ X , by the monotone convergence theorem it is sufficient to show that
E‖P ∗

nη‖p ≤ cpp,XE‖P ∗
nξ‖p for any n ≥ 1. Moreover, in fact we need to show

that E‖P ∗
nη‖p ≤ cpp,Y ∗

n
E‖P ∗

nξ‖p since in our case cp,X equals either βp,X ,

~p,X , or χp,X (see Section 3 for the definition), and since all these constants
can be represented as norms of operators having the same operators as their
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duals, so one has that analogously to [18, Proposition 4.2.17] cp,X = cp′,X∗

(where p′ = p/(p− 1)), and in particular

cp,Y ∗

n
= cp′,Yn

≤ cp′,X∗ = cp,X ,

Thus it is sufficient to assume that X is finite dimensional since both P ∗
nξ

and P ∗
nη have their values in a finite dimensional space Y ∗

n .
• Since X is finite dimensional, for a Bellman function u and for any ε > 0

we can define uε := u ∗ ε−1φ(ε−1·), where φ : X × X → R+ is a C∞

function with a compact domain such that
∫
X×X

φ(x, y) dλ(x) dλ(y) = 1

(here λ is the Lebesque measure on X , see e.g. [37, Remark 3.13] for the
definition). Then uε preserves such properties of u as convexity, concavity,
or subharmonicity on a linear subspace of X × X , and uε → u as ε → 0
locally uniformly on X × X due to continuity of u. Therefore by this
approximation argument we may assume that u is C∞.

3. The χp,X constant

Let X be a Banach space, 1 < p < ∞. We define χp,X ∈ [0,∞] to be the
least number χ > 0 such that for any independent standard Brownian motions

W, W̃ : R+ × Ω → R and for any elementary predictable with respect to the

filtration generated by both W and W̃ process Φ : R+ × Ω → X one has that

E

∥∥∥
∫ ∞

0

ΦdW̃
∥∥∥
p

≤ χp
E

∥∥∥
∫ ∞

0

ΦdW
∥∥∥
p

.

Remark 3.1. χp,X can be equivalently defined in the following way. Let (γn)n≥1

and (γ̃n)n≥1 be sequences of independent standard Gaussian random variables,
F0 = {∅,Ω}, and Fn = σ(γ1, γ̃1, . . . , γn, γ̃n) for n ≥ 1. Then χp,X is the smallest
χ > 0 such that for any N ≥ 1 and any elementary step functions v0, . . . , vN−1 :
Ω → X with vn being Fn-measurable for each n = 0, . . . , N − 1, one has that

(3.1) E

∥∥∥
N∑

n=1

γ̃nvn−1

∥∥∥
p

≤ χp
E

∥∥∥
N∑

n=1

γnvn−1

∥∥∥
p

.

Indeed, one can represent the sums
∑N

n=1 γnvn−1 and
∑N

n=1 γ̃nvn−1 as stochastic

integrals with respect to independent Brownian motions W and W̃ by just letting

γn = Wn − Wn−1 and γ̃n = W̃n − W̃n−1. On the other hand, if W and W̃ are
independent Brownian motions and if Φ is elementary predictable and defined by

Φ(t, ω) =
K∑

k=1

M∑

m=1

1(tk−1,tk]×Bmk
(t, ω)xkm, t ≥ 0, ω ∈ Ω.

where 0 ≤ t0 < . . . < tK < ∞ is a finite increasing sequence of nonnegative numbers
and the sets B1k, . . . , BMk belong to Ftk−1

for each k = 1, 2, . . . ,K, then one can

represent the stochastic integrals Φ ·W and Φ · W̃ as the sums
∑N

n=1 γnvn−1 and∑N
n=1 γ̃nvn−1 in the following way

∫ ∞

0

ΦdW =

K∑

k=1

M∑

m=1

1Bmk
(W (tk)−W (tk−1))xkm =

K∑

k=1

vk−1γk,
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∫ ∞

0

ΦdW̃ =

K∑

k=1

M∑

m=1

1Bmk
(W̃ (tk)− W̃ (tk−1))xkm =

K∑

k=1

vk−1γ̃k,

where γk =
W (tk)−W (tk−1)√

tk−tk−1

, γ̃k =
W̃ (tk)−W̃ (tk−1)√

tk−tk−1

, and vk−1 =
√
tk − tk−1

∑M
m=1 1Bmk

xkm.

The martingale transform (3.1) appears while working with Volterra-type oper-
ators and stochastic shifts (see [16]).

Concerning the constant χp,X one can show the following proposition. First we
will define diagonally plurisubharmonic functions.

Definition 3.2. A function F : X+ iX → R is called diagonally plurisubharmonic
if z 7→ F (x0 + iy0 + zx) is subharmonic in z ∈ C for any x0, y0, x ∈ X.

Proposition 3.3. Let X be a Banach space, 1 < p < ∞. Then the following are
equivalent

(i) χp,X < ∞,
(ii) there exists a constant χ > 0 and a diagonally plurisubharmonic u : X+iX →

R such that u(x) ≥ 0 for any x ∈ X, x 7→ u(x + iy) is convex in x ∈ X for
any y ∈ X, y 7→ u(x+ iy) is concave in y ∈ X for any x ∈ X, and

(3.2) u(x+ iy) ≤ χp‖x‖p − ‖y‖p, x, y ∈ X.

Moreover, if this is the case, then the smallest χ for which such a function u exists
equals χp,X .

Proof. We will prove both implications separately.
(i) ⇒ (ii). In order to show this implication we need to construct function u for

χ = χp,X . In this case let us define the desired function u to be as follows

u(x+ iy) := inf
{
χp
p,XE

∥∥∥x+

∫ ∞

0

ΦdW
∥∥∥
p

− E

∥∥∥y +
∫ ∞

0

ΦdW̃
∥∥∥
p

:

Φ : R+ × Ω → Xelementary predictable
}
, x, y ∈ X.

(3.3)

First of all notice that u is finite on X+iX . Indeed, one has that for any elementary
predictable Φ : R+ × Ω → X and for any x, y ∈ X by the triangle inequality

χp
p,XE

∥∥∥x+

∫ ∞

0

ΦdW
∥∥∥
p

− E

∥∥∥y +

∫ ∞

0

ΦdW̃
∥∥∥
p

&p χp
p,XE

∥∥∥
∫ ∞

0

ΦdW
∥∥∥
p

− E

∥∥∥
∫ ∞

0

ΦdW̃
∥∥∥
p

− χp
p,X‖x‖p − ‖y‖p ≥ −χp

p,X‖x‖p − ‖y‖p,

where the latter holds by the definition of χp,X .
Let us show that u is continuous. For any x, y, x̃, ỹ one has that by the triangle

inequality

u(x+ iy) = inf
{
χp
p,XE

∥∥∥x+

∫ ∞

0

ΦdW
∥∥∥
p

− E

∥∥∥y +
∫ ∞

0

ΦdW̃
∥∥∥
p

:

Φ : R+ × Ω → Xelementary predictable
}

.p inf
{
χp
p,XE

∥∥∥x̃+

∫ ∞

0

ΦdW
∥∥∥
p

− E

∥∥∥ỹ +
∫ ∞

0

ΦdW̃
∥∥∥
p

:

Φ : R+ × Ω → Xelementary predictable
}
+ χp,X‖x− x̃‖p + ‖y − ỹ‖p

≤ u(x̃+iỹ) + χp,X‖x− x̃‖p + ‖y − ỹ‖p,
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so the continuity follows.
Now let us show that u is diagonally plurisubharmonic. Fix x0, y0, x ∈ X . We

need to show that z 7→ u(x0 + iy0 + zx) is subharmonic in z ∈ C. To this end we
need to prove that for any fixed r > 0

(3.4) u(x0 + iy0) ≤
1

2π

∫ 2π

0

u(x0 + iy0 + xreiθ) dθ.

Let W, W̃ : R+ × Ω → R be independent standard Brownian motions. Define a
stopping time τ in the following way

τ := inf{t ≥ 0 : W 2
t + W̃ 2

t = r}.

Fix ε > 0. Note that since u is continuous, there exist δ > 0 and a δ-net (an)
N
n=1 =

(xn + iyn)
N
n=1 of a compact set A := {x0 + iy0 + xreiθ : θ ∈ [0, 2π)} ⊂ X + iX with

(3.5) |u(a)− u(an)| ≤ ε ∀a ∈ A such that ‖a− an‖ < δ

(here the norm on A is assumed to be a usual norm on C since A can be represented

as a circle on C). Let Bt := Wt+τ − Wτ , B̃t := W̃t+τ − W̃τ . Note that B and B̃
are independent Brownian motions (see e.g. [20, Theorem 13.11]). Therefore by the
definition of u for every n = 1, . . . , N there exists an elementary predictable with

respect to the filtration generated by B and B̃ process Φn : R+ → X such that

(3.6) u(an) ≥ χp
p,XE

∥∥∥xn +

∫ ∞

0

Φn dB
∥∥∥
p

− E

∥∥∥yn +

∫ ∞

0

Φn dB̃
∥∥∥
p

− ε.

Now let us define a predictable with respect to the filtration generated by W and

W̃ process Φ in the following way. Φ(t) = x if t ≤ τ and Φ(t) = Φn(t− τ) if t > τ

and an is the closest among the set (an)
N
n=1 point to x0 + iy0 + x(Wτ + iW̃τ ). This

is a predictable process and since Φ takes values in a finite dimensional subspace of
X , it can be approximated by an elementary predictable process (see Remark 2.2).
Therefore we get that

u(x0 + iy0) ≤ χp
p,XE

∥∥∥x0 +

∫ ∞

0

ΦdW
∥∥∥
p

− E

∥∥∥y0 +
∫ ∞

0

ΦdW̃
∥∥∥
p

= χp
p,XE

∥∥∥x0 + xWτ +

∫ ∞

0

Φ(t) dBt−τ

∥∥∥
p

− E

∥∥∥y0 + xW̃τ +

∫ ∞

0

Φ(t) dB̃t−τ

∥∥∥
p

(i)
=

1

2π

∫ 2π

0

χp
p,XE

∥∥∥x0 + x cos θ +

∫ ∞

0

Φn(θ)(t) dBt

∥∥∥
p

− E

∥∥∥y0 + x sin θ +

∫ ∞

0

Φn(θ)(t) dB̃t

∥∥∥
p

dθ

(ii)

≤ 1

2π

∫ 2π

0

χp
p,XE

∥∥∥xn(θ) +

∫ ∞

0

Φn(θ)(t) dBt

∥∥∥
p

− E

∥∥∥yn(θ) +
∫ ∞

0

Φn(θ)(t) dB̃t

∥∥∥
p

dθ + cpδ

(iii)

≤ 1

2π

∫ 2π

0

u(an(θ)) + ε dθ + cpδ
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(iv)

≤ 1

2π

∫ 2π

0

u(x0 + iy0 + xreiθ) dθ + cpδ + 2ε,

where n(θ) is such n that an is the closest to x0 + iy0 + xreiθ among (an)
N
n=1, (i)

follows from the definition of Φ, (ii) holds by the triangle inequality and the fact
that (an)

N
n=1 is a δ-net of A (where the constant cp depends only on p), (iii) holds

by (3.6), and (iv) holds by (3.5). Now if ε → 0, δ vanishes as well, and (3.4) follows.
Let us now show that u(x) ≥ 0 for any x ∈ X . First notice that u is concave

in the complex variable, i.e. y 7→ u(x + iy) is concave in y ∈ X for any x ∈ X ,
which follows directly form the construction of u in (3.3). Now one can show that
u is convex in the real variable, i.e. x 7→ u(x + iy) is convex in x ∈ X for any
y ∈ X , by using the same argument as was used for plurisubharmonic functions in
[24, Subsection 2.6]. Next notice that u is symmetric, i.e. u(x + iy) = u(−x− iy)
for any x, y ∈ X . Thus x 7→ u(x) is a symmetric convex function with u(0) = 0, so
it is nonnegative.

(ii) ⇒ (i). Let u : X + iX → R be a function from (ii). We need to show that

for any standard Brownian motions W, W̃ : R+ × Ω → R and for any elementary

predictable with respect to the filtration generated by both W and W̃ process
Φ : R+ × Ω → X one has that

(3.7) E

∥∥∥
∫ ∞

0

ΦdW̃
∥∥∥
p

≤ χp
E

∥∥∥
∫ ∞

0

ΦdW
∥∥∥
p

.

Since Φ is elementary predictable, it takes values in a finite-dimensional subspace
of X , so we may assume that X is finite-dimensional. Then by Subsection 2.7 we
can assume that u is twice differentiable on X + iX by a simple convolution-type
argument. Let d < ∞ be the dimension of X , (xn)

d
n=1 be the basis of X , (x∗

n)
d
n=1

be the corresponding dual basis of X∗, i.e. a unique basis such that 〈xn, x
∗
m〉 = δnm

for any n,m = 1, . . . , d (see e.g. [24, 33, 37]). Then by Itô’s formula [33, Theorem
3.8] and due to local boundedness and twice differentiability of u we have that (here

we define Mt :=
∫ t

0 ΦdW and Nt :=
∫ t

0 ΦdW̃ for the convenience of the reader)

χp
E

∥∥∥
∫ ∞

0

ΦdW
∥∥∥
p

− E

∥∥∥
∫ ∞

0

ΦdW̃
∥∥∥
p

≥ Eu
(∫ ∞

0

ΦdW + i

∫ ∞

0

ΦdW̃
)

= Eu(M0 + iN0) + E

∫ ∞

0

〈
∂xu(Mt− + iNt), dMt

〉
(3.8)

+ E

∫ ∞

0

〈
∂ixu(Mt− + iNt), dNt

〉
+

1

2
EI,

where

I = E

∫ ∞

0

d∑

n,m=1

(
∂2u(Mt−+iNt)

∂xnxm
+ ∂2u(Mt−+iNt)

∂ixnixm

)
〈Φ, x∗

n〉 · 〈Φ, x∗
m〉dt.

First notice that Eu(M0 + iN0) = Eu(0) = 0 and analogously to [37, proof of The-
orem 3.18] both ∂xu(Mt−+ iNt) and ∂ixu(Mt− + iNt) are stochastically integrable
with respect to M and N respectively, so

E

∫ ∞

0

〈
∂xu(Mt− + iNt), dMt

〉
+ E

∫ ∞

0

〈
∂ixu(Mt− + iNt), dNt

〉
= 0,

where the latter holds since both stochastic integrals are martingales which start
in zero. Let us show that EI ≥ 0. Fix t ≥ 0 and ω ∈ Ω. By [33, Lemma 3.7] we are
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free to choose any basis (and the corresponding dual basis). In particular, we can
assume that x1 = Φ(t, ω). Then 〈Φ(t, ω), x∗

n〉 = δ1n for any 1 ≤ n ≤ d, so (here we
skip (t, ω) for the convenience of the reader)

d∑

n,m=1

(
∂2u(Mt−+iNt)

∂xnxm
+ ∂2u(Mt−+iNt)

∂ixnixm

)
〈Φ, x∗

n〉 · 〈Φ, x∗
m〉

= ∂2u(Mt−+iNt)
∂x2

1

+ ∂2u(Mt−+iNt)
∂ix2

1

= ∆u(Mt− + iNt + zx1)
∣∣
z=0

≥ 0,

where z ∈ C, and the latter inequality follows from the diagonal plurisubharmonic-
ity of u. Thus EI ≥ 0, and hence (3.7) follows from (3.8). �

Remark 3.4. Note that the maximum of any set of harmonic functions is harmonic
as well, so the maximum of any set of diagonally plurisubharmonic functions is
diagonally plurisubharmonic as well, and thus for any Banach space X and for any
1 < p < ∞ with χp,X < ∞ we can define an optimal diagonal plurisubharmonic
function USO : X + iX → R as a supremum of all functions u satisfying the
conditions of Proposition 3.3(ii).

Note that USO coincides with the function u defined by (3.3). Indeed, let USO

be as defined above, u be as in (3.3). Then USO ≥ u by the definition of USO.
Let us show that USO(x + iy) ≤ u(x+ iy) for any x, y ∈ X . First fix independent

Brownian motions W and W̃ and elementary predictable Φ : R+ × Ω → X . Then
similarly to the Itô argument from the proof of Proposition 3.3 one has that

USO(x+ iy) ≤ EU
(
x+ iy +

∫ ∞

0

ΦdW + i

∫ ∞

0

ΦdW̃
)
.

Thus

USO(x+ iy) ≤ inf
{
EU

(
x+ iy +

∫ ∞

0

ΦdW + i

∫ ∞

0

ΦdW̃
)
:

Φ elementary predictable
}
≤ u(x+ iy),

which implies the desired.

As a corollary of Proposition 3.3 one can show the following upper and lower
bounds for χp,X . Recall that we define decoupling constants βγ,+

p,X and βγ,−
p,X to be

the smallest possible β+ and β− respectively for which

1

(β−)p
E

∥∥∥
∫ ∞

0

ΦdW
∥∥∥
p

≤ E

∥∥∥
∫ ∞

0

ΦdW̃
∥∥∥
p

≤ (β+)pE
∥∥∥
∫ ∞

0

ΦdW
∥∥∥
p

,

where W and W̃ are independent standard Brownian motion, Φ : R+ × Ω →
X is elementary predictable which is independent of W̃ (we refer the reader to
[11, 13, 14, 18, 21, 24, 30] for further details on decoupling constants).

Corollary 3.5. Let X be a Banach space, 1 < p < ∞. Then χp,X < ∞ if and only
if X is a UMD Banach space. Moreover, if this is the case, then

(3.9) max
{√

βp,X ,
√
~p,X

} (i)

≤ max{βγ,+
p,X , βγ,−

p,X}
(ii)

≤ χp,X

(iii)

≤ min{βp,X , ~p,X}.

Proof. First we show (3.9), and then the “iff” statement will follow simultaneously.
Let first show (iii) in (3.9). The fact that χp,X ≤ ~p,X follows from [24], the defi-

nition of χp,X , and the fact that any two stochastic integrals
∫
ΦdW and

∫
ΦdW̃
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are orthogonal martingales weakly differentially subordinate to each other. The in-
equality χp,X ≤ βp,X can be proven using a standard Burkholder function argument
e.g. presented in [33, 37]. Indeed, if βp,X < ∞, then X is a UMD Banach space,
and their exists a zigzag-concave function U : X×X → R (i.e. z 7→ U(x+z, y+αz)
is concave in z ∈ X for any x, y ∈ X and α ∈ [−1, 1]) such that U(0, 0) = 0 and

U(x, y) ≥ ‖y‖p − βp
p,X‖x‖p, x, y ∈ X.

(This function is called Burkholder.) By a standard convolution-type argument
(see Subsection 2.7) we may assume that U is twice differentiable, and hence for

any independent standard Brownian motions W and W̃ and for any elementary
predictable Φ : R+ × Ω → X by Itô’s formula [33, Theorem 3.8] we have that

analogously to (3.8) with denoting M :=
∫
ΦdW and N :=

∫
ΦdW̃

E

∥∥∥
∫ ∞

0

ΦdW̃
∥∥∥
p

− βp
p,XE

∥∥∥
∫ ∞

0

ΦdW
∥∥∥
p

≤ U
(∫ ∞

0

ΦdW,

∫ ∞

0

ΦdW̃
)

=
1

2

∫ ∞

0

∂2U(Mt,Nt)
∂(Φ,0)2 + ∂2U(Mt,Nt)

∂(0,Φ)2 dt

=
1

4

∫ ∞

0

∂2U(Mt,Nt)
∂(Φ,Φ)2 + ∂2U(Mt,Nt)

∂(Φ,−Φ)2 dt ≤ 0,

where the latter inequality holds due to the zigzag-concavity of U (so both ∂2U(x,y)
∂(z,z)2

and ∂2U(x,y)
∂(z,−z)2 and nonnegative for any x, y, z ∈ X). Thus χp,X ≤ βp,X holds true.

Now (ii) of (3.9) follows directly from the definitions of χp,X , βγ,+
p,X , and βγ,−

p,X ,

while (i) holds by [13, p. 43 and Theorem 3]. �

Remark 3.6. Note that due to the latter proof for a Burkholder function U one
has that −U is diagonal plurisubharmonic. Thus the proof of (iii) of (3.9) has the
following form: both −U and UH are diagonally plurisubharmonic and thus satisfy
the conditions of Proposition 3.3(ii), so the upper bound (iii) of (3.9) holds true.

We wish to notice that in the real-valued case functions USO and UH coincide
since in this case there is no difference between plurisubharmonicity and diagonal
plurisubharmonicity. Nevertheless, if the same holds for a general UMD Banach
space, then ~p,X = χp,X ≤ βp,X , which would partly solve an open problem outlined
in the introduction.

4. Weak differential subordination

of strongly orthogonal martingales

Now we are ready to show the main result of the paper.

Theorem 4.1. Let X be a UMD Banach space, 1 < p < ∞. Then for any strongly

orthogonal martingales M,N : R+ × Ω → X with N
w≪ M one has that

E‖Nt‖p ≤ χp
p,XE‖Mt‖p, t ≥ 0.

Proof. By Subsection 2.7 we may assume that X is finite dimensional and that all
the Bellman functions are smooth. Due to (3.2) we only need to show that

(4.1) EUSO(Mt + iNt) ≥ 0,
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where USO is as in Remark 3.4. Let d ≥ 0 be the dimension of X . Since N
w≪ M and

since M and N are orthogonal, by [24, Section 3] we know that after a proper time-
change there exist a standard 2d-dimensional Brownian motion W and predictable
Φ,Ψ : R+ × Ω → L(R2d, X) which are stochastically integrable with respect to
W such that N =

∫
ΨdW and M = M0 +

∫
ΦdW + Md, where Md is purely

discontinuous (see Subsection 2.2). Moreover, as M and N are strongly orthogonal,
we have that for any x∗, y∗ ∈ X∗ and t ≥ 0 by [20, Theorem 26.6 and 26.13]

[〈M,x∗〉, 〈N, y∗〉]t =
∫ t

0

〈
Φ∗(s)x∗,Ψ∗(s)y∗

〉
ds = 0.

Therefore by the Lebesgue differentiation theorem 〈Φ∗x∗,Ψ∗y∗
〉
= 0 a.e. on R+×Ω.

By choosing (x∗, y∗) from a dense subset of X∗ × X∗ and using the fact that
(x∗, y∗) 7→ 〈Φ∗x∗,Ψ∗y∗

〉
is continuous on X∗ ×X∗ on the whole R+ × Ω, one has

(4.2) 〈Φ∗x∗,Ψ∗y∗
〉
= 0, x∗, y∗ ∈ X∗,

a.e. on R+ ×Ω. Furthermore, by [24, Section 3] we have that a.s. for any 0 ≤ s ≤ t
there exists a skew-symmetric operator A(s, ω) ∈ L(Rd) (i.e. 〈Ah, h〉 = 0 for any
h ∈ Rd) of norm at most one such that

(4.3) Ψ(s, ω) = Φ(s, ω)A(s, ω).

Now let us show (4.1) using (4.2). Let (xn)
d
n=1 be a basis of X , (x∗

n)
d
n=1 be the

corresponding dual basis of X∗. By Itô’s formula [33, Theorem 3.8] and smoothness
of USO we have that

EUSO(Mt + iNt) = EUSO(M0 + iN0) + EI1 + EI2 +
1

2
EI3,

where

I1 =

∫ t

0

〈∂USO(Ms− + iNs), dMs + i dNs〉,

I2 =
∑

0≤s≤t

∆USO(Ms + iNs)− 〈∂USO(Ms− + iNs),∆Ms〉,

and

I3 =

∫ t

0

d∑

n,m=1

∂2USO(Ms−+iNs)
∂xnxm

〈Φ∗x∗
n,Φ

∗x∗
m〉dt

+ 2

∫ t

0

d∑

n,m=1

∂2USO(Ms−+iNs)
∂xnixm

〈Φ∗x∗
n,Ψ

∗x∗
m〉dt

+

∫ t

0

d∑

n,m=1

∂2USO(Ms−+iNs)
∂ixnixm

〈Ψ∗x∗
n,Ψ

∗x∗
m〉dt.

First notice that since N0 = 0 and since USO(x) ≥ 0 for any x ∈ X we have that
EUSO(M0 + iN0) = EUSO(M0) ≥ 0. Moreover, EI1 = 0 since this is a martingale
that starts at zero (which follows similarly to the proof of Proposition 3.3). Let us
show that I2 ≥ 0 a.s. Note that x 7→ USO(x+ iy) is convex in x ∈ X for any y ∈ X
by Proposition 3.3, so by the continuity of N we have that for any 0 ≤ s ≤ t

USO(Ms + iNs) ≤ USO(Ms− + iNs) + 〈∂USO(Ms− + iNs),∆Ms〉,
and thus I2 ≥ 0 a.s.
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Now we show that I3 ≥ 0 a.s. In order to show this we need to prove that a.s.
for every 0 ≤ s ≤ t

d∑

n,m=1

∂2USO(Ms−+iNs)
∂xnxm

〈Φ∗x∗
n,Φ

∗x∗
m〉

+ ∂2USO(Ms−+iNs)
∂xnixm

〈Φ∗x∗
n,Ψ

∗x∗
m〉

+ ∂2USO(Ms−+iNs)
∂ixnixm

〈Ψ∗x∗
n,Ψ

∗x∗
m〉 ≥ 0

(4.4)

Fix ω ∈ Ω and 0 ≤ s ≤ t so that (4.2) and (4.3) hold true. Then the expression on
the left-hand side of (4.4) gets the following form

(4.5)

d∑

n,m=1

∂2USO(Ms−+iNs)
∂xnxm

〈Φ∗x∗
n,Φ

∗x∗
m〉+ ∂2USO(Ms−+iNs)

∂ixnixm
〈Ψ∗x∗

n,Ψ
∗x∗

m〉.

Now analogously to [24, Section 3] the expression (4.5) does not depend on the
choice of the basis (xn)

d
n=1 or, equivalently, the choice of the basis (x∗

n)
d
n=1 (since one

can reconstruct the basis by its corresponding dual basis, see [24, 33]). Moreover, by
(4.3) for two symmetric nonnegative bilinear forms V,W : X∗×X∗ → R defined by

V (x∗, y∗) := 〈Φ∗x∗,Φ∗y∗〉, W (x∗, y∗) := 〈Ψ∗x∗,Ψ∗y∗〉, x∗, y∗ ∈ X∗,

we have that V (x∗, x∗) = 0 implies W (x∗, x∗) = 0 for any x∗ ∈ X∗. Thus by
[24, Section 3] there exist a basis (y∗n)

d
n=1 of X∗ with the corresponding dual basis

(yn)
d
n=1 of X , a [0, 1]-valued sequence (λn)

d
n=1, and a number 0 ≤ K ≤ d such

that V (y∗n, y
∗
m) = δnm1m,n≤K and W (y∗n, y

∗
m) = λnδnm1m,n≤K for any m,n =

1, . . . , d. Therefore by the discussion above we can change the basis and get that
the expression (4.5) equals

d∑

n,m=1

∂2USO(Ms−+iNs)
∂ynym

〈Φ∗y∗n,Φ
∗y∗m〉+ ∂2USO(Ms−+iNs)

∂iyniym
〈Ψ∗y∗n,Ψ

∗y∗m〉

=
K∑

n=1

∂2USO(Ms−+iNs)
∂y2

n
+ λn

∂2USO(Ms−+iNs)
∂iy2

n
.

(4.6)

Since y 7→ USO(x + iy) is concave in y ∈ X for any x ∈ X , ∂2USO(Ms−+iNs)
∂iy2

n
≤ 0,

and hence due to the fact that 0 ≤ λn ≤ 1 we have that the latter expression of
(4.6) is bounded from below by (here z ∈ C)

K∑

n=1

∂2USO(Ms−+iNs)
∂y2

n
+ ∂2USO(Ms−+iNs)

∂iy2
n

=

K∑

n=1

∆zU
SO(Ms− + iNs + zyn)|z=0 ≥ 0,

where the latter holds by the diagonal plurisubharmonicity of USO. Therefore (4.4)
holds a.e. on R+ ×Ω, and thus EI3 ≥ 0. This completes the proof of (4.1) and the
proof of the theorem. �
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