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Abstract

For his work in the economics of climate change, Professor William Nordhaus was a co-recipient of the 2018 Nobel Memorial
Prize for Economic Sciences. A core component of the work undertaken by Nordhaus is the Dynamic Integrated model of
Climate and Economy, known as the DICE model. The DICE model is a discrete-time model with two control inputs and is
primarily used in conjunction with a particular optimal control problem in order to estimate optimal pathways for reducing
greenhouse gas emissions. In this paper, we provide a tutorial introduction to the DICE model and we indicate challenges and
open problems of potential interest for the systems and control community.
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1 Introduction

In the absence of deep and sustained reductions in green-
house gas emissions, the overwhelming scientific consen-
sus points to global warming of several degrees Celsius by
2100. Warming of this magnitude poses profound risks
to both human society and natural ecosystems [46]. In
response to these risks, in late 2015 at the United Na-
tions Climate Change Conference governments around
the world committed to urgent reductions in human-
caused emissions of greenhouse gases, most notably car-
bon dioxide (CO2), in order to limit the increase in global
average temperature to well below 2 ◦C relative to pre-
industrial levels.

? This paper was not presented at any IFAC meeting.
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With global average warming of 1 ◦C having already
been realized, constraining temperature increases below
agreed target levels will require careful control of future
emissions, with the Intergovernmental Panel on Climate
Change (IPCC) special report on Global Warming of
1.5 ◦C [47] indicating that remaining below 1.5◦C will
require net-zero CO2 emissions by about 2050. Com-
plicating this task are large uncertainties regarding the
speed and extent of warming in response to elevated at-
mospheric CO2 concentrations, coupled with the need
for a policy response that balances reduced economic
consumption today with avoided (and discounted) eco-
nomic damages of an uncertain magnitude in the future.

To quantify the damages from anthropogenic emissions
of heat-trapping greenhouse gases, specifically CO2,
economists model the dynamics of climate–economy in-
teractions using Integrated Assessment Models (IAMs),
which incorporate mathematical models of phenomena
from both economics and geophysical science. Possibly
the first IAM in the area of climate economics was pro-
posed by William Nordhaus in [55]. Subsequently, Nord-
haus proposed the Dynamic Integrated model of Cli-
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mate and Economy (DICE) in [56], with regular refine-
ments and parameter updates, such as [58,59,60,62,64].
Largely for this body of work, Nordhaus was awarded
the 2018 Nobel Memorial Prize in Economic Sciences.

A central role for IAMs is to estimate the Social Cost of
Carbon Dioxide (SC-CO2), defined as the dollar value
of the economic damage caused by a one metric tonne
increase in CO2 emissions to the atmosphere. The SC-
CO2 is used by governments, companies, and interna-
tional finance organizations as a key quantity in all as-
pects of climate change mitigation and adaptation, in-
cluding cost-benefit analyses, emissions trading schemes,
carbon taxes, quantification of energy subsidies, and
modelling the impact of climate change on financial as-
sets, known as the value at risk [78]. The SC-CO2 there-
fore underpins trillions of dollars worth of investment
decisions [41].

A commonly used derivation for the SC-CO2 solves an
open-loop optimal control problem to determine eco-
nomically optimal CO2 emissions pathways. The open-
loop use of IAMs for decision-making, however, disre-
gards crucial uncertainties in both geophysical and eco-
nomic models. As a consequence, current SC-CO2 esti-
mates range from US$11 per tonne of CO2 to US$63 per
tonne of CO2 or higher, and hence the SC-CO2 fails to
reflect the true economic risk posed by CO2 emissions,
seriously compromising the accuracy of the SC-CO2 as
a price on carbon for the purposes of climate change mit-
igation and adaptation [42,66,68].

The IAM community presently pre-dominantly employs
simplistic Monte Carlo-based methods to emulate the
impact of parametric uncertainty on the SC-CO2 [44],
whilst recognizing that such an approach can lead to con-
tradictory policy advice [16]. On the other hand, known
resolutions to this major deficiency are computation-
ally intractable (e.g., stochastic dynamic programming
[16]) and do not easily accommodate enhanced geophys-
ical models. At a time when governments, financial bod-
ies [18], business [88], and even emissions-intensive in-
dustries [79,1] are demanding a price on carbon, it is
imperative that the shortcomings in quantifying uncer-
tainty in SC-CO2 estimates be rectified. Indeed, this is
considered to be a problem of the utmost importance
[15,53,41,75].

Our contribution in this paper is three-fold. First, we
provide a complete and replicable specification of the
DICE model, with accompanying code available for
download at [21]. Second, we summarize some of our
recent work and update the numerical results to ac-
count for updated parameters released by Nordhaus in
2016 [62]. Third, we indicate challenges and open prob-
lems of potential interest for the systems and control
community.

The paper is organized as follows. Section 2 provides a

tutorial description of the DICE model and of its us-
age in the context of computing the Social Cost of Car-
bon Dioxide. Section 3 describes the benefits of receding
horizon control for the DICE model both as a numerical
solution technique and as a way to investigate the im-
pact of parametric uncertainty. Section 4 considers the
impact of placing constraints on the atmospheric tem-
perature and mitigation rate constraints. Section 5 in-
dicates potential challenges and opportunities of partic-
ular relevance for the systems and control community.
Section 6 provides some brief concluding remarks.

2 The DICE Model and Methodology

There are three dominant IAMs used for the calculation
of the Social Cost of Carbon Dioxide [44,8]: the previ-
ously mentioned DICE [64,60], Policy Analysis of the
Greenhouse Effect (PAGE) [40], and Climate Framework
for Uncertainty, Negotiation, and Distribution (FUND)
[6]. As we will describe below, the DICE model and
methodology consists of an optimal control problem for
a discrete time nonlinear system. A brief description of
PAGE and FUND is provided in Section 2.9.

2.1 DICE Dynamics

It should be noted that there exist different open-source
implementations of DICE. While Nordhaus maintains
an open-source GAMS implementation [63], 1 a subset of
the authors of this paper have recently published open-
source DICE code that runs in Matlab [49] and [21] (see
also [20]).

It is important to note at the outset that there is not a
definitive statement of the DICE model. Rather, there
are two primary sources in the form of a user’s manual
[64] (updated in [61]) and the available code itself (both
the manual and the code are available at [63]). Addi-
tional explanations and, occasionally, equations can be
found in various other sources including [60,62]. How-
ever, these sources are not consistent with each other
and, in fact, the specification in [64] is incomplete. Fur-
thermore, there are some minor inconsistencies between
text and equations in [64]. For completeness, and with
the aim of presenting the DICE model and methodol-
ogy in a way that can be independently implemented,
we necessarily deviate from [64] and [63]. However, the
subsequent impact on the numerical results when using
the default parameters (included in the Appendices) is
not significant.

One further note before proceeding to the model de-
scription: while the most recent version of the model is
DICE2016 (as used in, for example, [62]), the previous
version of the model, DICE2013, has been widely used

1 We refer to https://www.gams.com for details on GAMS.
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in the literature. Importantly, the move from DICE2013
to DICE2016 involves essentially no structural changes.
Rather, the model update involves updates on initial
conditions and most of the model parameters. For ease
of reference, we provide initial conditions and model pa-
rameters for both DICE2013 and DICE2016 in the ap-
pendices. The Matlab DICE code [21,49] implements
both parameter sets.

The dynamics of the DICE IAM [64] are given by equa-
tions (CLI)–(EI) and the inter-relationships shown in
Figure 1. Note that the equation labels are descriptive,
with (CLI) describing the climate (or temperature)
dynamics; (CAR) describing the carbon cycle dynam-
ics; (CAP) describing capital (or economic) dynamics;
(POP) providing population dynamics; (TFP) giving
the dynamics of total factor productivity; and (EI)
describing the emissions intensity of economic activity.

We describe each of the modeling blocks in Figure 1 in
Sections 2.2–2.6 below. Here, however, we note that the
model is nonlinear and time-varying. The model assumes
two control inputs: the savings rate s and the mitigation
or abatement rate µ. The first of these we describe more
fully in Section 2.3. The latter is the rate at which mit-
igation of industrial carbon dioxide emissions occurs.

The model uses a time-step of 5 years, starting in the
year 2015 for DICE2016 (or 2010 for DICE2013). Take
the discrete time index i ∈ N, the sampling rate ∆ = 5,
and the initial time t0 = 2015 (or 2010) so that

t = t0 + ∆ · (i− 1) (1)

and hence t ∈ {2015, 2020, 2025, . . .}.

2.2 DICE “Exogenous” States

The states for population L, total factor productivity
A (which is a measure of technological progress), and
carbon intensity of economic activity σ, are frequently
referred to as “exogenous variables”. This is due to the
fact that they are not influenced by the states for climate,
carbon, or capital, which are frequently referred to as
“endogenous variables” (see Figure 1).

As mentioned, there are some inconsistencies in the pub-
lished literature with regards to the form of these in-
puts. For the sake of completeness and to remain close to
the numerical results generated by [63], we present and
use the exogenous states as defined in [63]. Background
information on the parameters and functional form of
these expressions can be found in [57], [58], and [64].

The population model (POP) is referred to as the Has-
sell Model [39]. Total factor productivity (TFP) yields
a logistic-type function; i.e., the total factor productiv-
ity is monotonically increasing with a decreasing growth

rate. Carbon intensity of economic activity (EI) is sim-
ilar to total factor productivity in that it is a mono-
tonically decreasing function with a decreasing decrease
rate. The quantities L(1) = L0 and A(1) = A0 are pre-
scribed initial conditions for the global population and
total factor productivity in the base year.

An estimate for the initial emissions intensity of eco-
nomic activity σ(1) = σ0 can be calculated as the ratio
of global industrial emissions to global economic output.
The estimate of σ0 can be further refined by estimat-
ing the mitigation rate in the base year. In other words,
with base year emissions e0, base year economic output
q0, and an estimated base year mitigation rate µ0, we
can estimate σ0 = e0

q0(1−µ0) .

An estimate of the cost of mitigation efforts is given by

θ1(i) =
pb

1000 · θ2
(1− δpb)i−1 · σ(i). (2)

Here, pb represents the price of a backstop technology
that can remove carbon dioxide from the atmosphere.
Note that this equation embeds the assumption that the
cost of such technology will decrease over time (since
δpb ∈ (0, 1)) and will be proportional to the emissions
intensity of economic activity.

The remaining two exogenous signals are given by

FEX(i) = f0 + min

{
f1 − f0,

f1 − f0

tf
(i− 1)

}
, (3)

ELand(i) = EL0 · (1− δEL)i−1. (4)

The signals FEX and ELand are estimates of the effect
of greenhouse gases other than carbon dioxide and the
emissions due to land use changes, respectively.

Numerical values for all parameters can be found in the
appendix as well as in the accompanying code [20].

2.3 Economic Model

We now turn to the economic component of the DICE
integrated assessment model. In summary, the DICE
model assumes a single global economic “capital”. Cap-
ital depreciates and is replenished by investment. The
amount available to invest is some fraction of the net
economic output which can be derived from the gross
economic output. This is a standard economic growth
model (see [2] for a comprehensive treatment of such
models).

Gross economic output is the product of three terms;
the total factor productivity A; capital K; and labor
L approximated by the global population. Additionally,
capital and labor contribute at different levels given by

3



µ

s
(CAP) +

(POP) (TFP) (EI)

(CAR) + (CLI)

ELand FEX

Fig. 1. Block Diagram of DICE.

T (i+ 1) = ΦTT (i) +BT

(
F2× log2

(
MAT(i)
MAT,1750

)
+ FEX(i)

)
, (CLI)

M(i+ 1) = ΦMM(i) +BM
(
σ(i)(1− µ(i))A(i)K(i)γL(i)1−γ + ELand(i)

)
, (CAR)

K(i+ 1) = ΦKK(i) + ∆

(
1

1 + a2 TAT(i)a3

)(
1− θ1(i)µ(i)θ2

)
A(i)K(i)γL(i)1−γs(i), (CAP)

L(i+ 1) = L(i)

(
1+La

1+L(i)

)`g
, (POP)

A(i+ 1) =
A(i)

1− gA exp(−δA∆(i− 1))
, (TFP)

σ(i+ 1) = σ(i) exp
(
−gσ(1− δσ)∆(i−1)∆

)
, (EI)

a constant called the capital elasticity γ ∈ [0, 1]; that is,
gross economic output is given by 2

Y (i) = A(i)K(i)γL(i)1−γ . (5)

Note the expression corresponding to gross economic
output in (CAR) (see also (20) below).

Net economic output, Q, is gross economic output, Y ,
reduced by two factors: 1) climate damages from rising
atmospheric temperature, and 2) the cost of efforts to-
wards mitigation:

Q(i) =

(
1

1 + a2 TAT(i)a3

)(
1− θ1(i)µ(i)θ2

)
Y (i)

=

(
1

1 + a2 TAT(i)a3

)(
1− θ1(i)µ(i)θ2

)
·A(i)K(i)γL(i)1−γ , (6)

2 The quantity in (5) is referred to as a Cobb-Douglas Pro-
duction Function with Hicks-Neutral technological progress
(see [2, p. 36, p. 58]).

where θ1 is as defined in (2). Observe the component of
net economic output in (CAP).

Net economic output can then be split between con-
sumption and investment

Q(i) = C(i) + I(i) (7)

and the savings rate is defined as

s(i) =
I(i)

Q(i)
. (8)

The economic dynamics (CAP) are a capital accumula-
tion model where capital depreciates according to

ΦK
.
= (1− δK)∆ (9)

and is replenished by investment I in the form of the
product of the savings rate and net economic output;

4



i.e.,

K(i+ 1) = ΦKK(i) + ∆ · I(i)

= ΦKK(i) + ∆ ·Q(i)s(i) (10)

and substitution of (6) into (10) yields (CAP). The sav-
ings rate s is the second of the two control inputs.

2.4 The Damages Function

One of the two most contentious elements 3 in climate
economics is the specification of the damages function
(see [8]). This stems from the inherent difficulty of mod-
eling in an application where experimentation is simply
not possible and the fact that rising temperatures will
have different local effects. Hence, different researchers
have proposed many different damage functions and lev-
els [8]. The specific form of the damages function in
DICE, as shown in (CAP), is

1

1 + a2TAT(i)a3
(11)

where, with a3 = 2, the parameter a2 is calibrated to
yield a loss of 2% at 3 ◦C (see [61] for the calibration of
this and other parameters).

While a full discussion of the appropriateness of (11) is
beyond the scope of this article, it is worthwhile noting
that it has been vigorously argued that the above cal-
ibration of 2% loss at 3 ◦C is unreasonably low if it is
to be consistent with currently available climate science
[74]. Recent efforts to empirically estimate climate dam-
ages can be found in [43].

2.5 Climate Model

The climate or temperature dynamics used in DICE
are derived from a two-layer energy balance model
[26,28,70]. In particular, a simple explicit Euler dis-
cretization is applied to an established continuous-time
energy balance model to obtain (CLI). However, the
implementation in [63] is not strictly causal in that the
atmospheric temperature at the next time step depends
on the radiative forcing at the next time step. This
was previously observed in [11] and [12]. We explicitly
provide the derivation of the model here for future refer-
ence. Furthermore, we note that using the causal model
below, as opposed to the version in [63], has a negligible
quantitative impact on the numerical results obtained
using the model.

The two layers in the energy balance model are the com-
bined atmosphere, land surface, and upper ocean (sim-
ply referred to as the atmospheric layer in what follows)

3 The other being the discount rate discussed below.

and the lower ocean. We denote these two states by TAT

and TLO, respectively, and the zero reference is taken as
the temperature in the year 1750. With F (t) denoting
the radiative forcing at the top of atmosphere due to the
enhanced greenhouse effect, the (continuous-time) dy-
namics for these states are given by

CAT
d TAT(t)

dt
= F (t)− λTAT(t)

− γ (TAT(t)− TLO(t)) , (12a)

CLO
d TLO(t)

dt
= γ (TAT(t)− TLO(t)) . (12b)

Here, CAT and CLO are the heat capacities of the atmo-
spheric and lower ocean layers and γ is a heat exchange
coefficient. The quantity λ is called the Equilibrium Cli-
mate Sensitivity (ECS). We discuss the ECS in Remark 1
below.

Taking an explicit Euler discretization with time-step ∆
yields

TAT(i+ 1) = TAT(i) +
∆

CAT
(F (i)− λTAT(i)

−γ (TAT(i)− TLO(i))) (13a)

TLO(i+ 1) = TLO(i)

+
∆

CLO
(γ (TAT(i)− TLO(i))) . (13b)

With T
.
= [TAT TLO]> ∈ R2, the above 4 can be rewrit-

ten as

T (i+ 1) = ΦTT (i) +BTF (i) (14)

where

ΦT
.
=

[
φ11 φ12

φ21 φ22

]
, BT

.
=

[
ξ1

0

]
(15a)

4 The implementation in [63] replaces F (i) with F (i + 1)
in (13a). This could be interpreted as an implicit Euler dis-
cretization. However, an implicit Euler discretization of (12)
would lead to very different expressions for the constants in
(15).

5



and

φ11 = 1− ∆

CAT
(λ+ γ) (15b)

φ12 =
∆γ

CAT
(15c)

φ21 =
∆γ

CLO
(15d)

φ22 = 1− ∆γ

CLO
(15e)

ξ1 =
∆

CAT
. (15f)

Atmospheric temperature rise is driven by radiative forc-
ing, or the greenhouse effect, at the top of atmosphere
and, as shown in (CLI) has a nonlinear (logarithmic) de-
pendence on the mass of CO2 in the atmosphere, MAT.
Greenhouse gases other than CO2 (e.g., methane, ni-
trous oxide, and chloroflourocarbons) contribute to the
radiative forcing effect, and these are accounted for in
the DICE model by the exogenously defined signal, FEX

in (3).

Remark 1 (Equilibrium Climate Sensitivity)
The parameter λ in (12a) has a specific physical inter-
pretation in terms of the radiative forcing and an exper-
iment involving the doubling of atmospheric carbon. Let
F2× > 0 denote the forcing associated with equilibrium
carbon doubling. Ignoring the contribution of the exoge-
nous forcing FEX, the radiative forcing is given by

F (t) = F2× log2

(
MAT(t)

MAT, 1750

)
(16)

where MAT, 1750 is the atmospheric mass of carbon in
the year 1750. Doubling the value of atmospheric carbon
from pre-industrial equilibrium yields radiative forcing of

F2× log2

(
2MAT, 1750

MAT, 1750

)
= F2×. (17)

The Equilibrium Climate Sensitivity (ECS) is defined as
the steady-state atmospheric temperature arising from
a doubling of atmospheric carbon. Hence, for thermal
equilibrium corresponding to a doubling of atmospheric
carbon, we can combine (12a) and (16) to see that

F2× log2

(
2MAT, 1750

MAT, 1750

)
− λECS = 0 (18)

or λ = F2×/ECS. In words, λ is the ratio between the ra-
diative forcing associated with a doubling of atmospheric
carbon and the equilibrium atmospheric temperature aris-
ing from such a doubling.

2.6 Carbon Model

Similar to the temperature dynamics, (CAR) is a three-
reservoir model of the global carbon cycle, with states
describing the average mass of carbon in the atmo-
sphere, MAT, the upper ocean, MUP, and the deep or
lower ocean, MLO. We denote the carbon states by
M

.
= [MAT MUP MLO]> ∈ R3 and the coefficients

ζii ∈ [0, 1] give the diffusion between reservoirs. We
define

ΦM
.
=


ζ11 ζ12 0

ζ21 ζ22 ζ23

0 ζ32 ζ33

 , BM
.
=


ξ2

0

0

 . (19)

The mass of atmospheric carbon is driven by CO2 emis-
sions due to economic activity 5 . This occurs via a non-
linear, time-varying function as shown in (CAR), that
corresponds to modeled predictions of emissions and the
emissions intensity of economic activity. The additional
term, ELand, captures emissions due to land use changes
as given by (4) above. Hence, the total emissions are de-
scribed by

E(i) =

σ(i)(1− µ(i))A(i)K(i)γL(i)1−γ + ELand(i). (20)

Note that this model is conceptually similar to the three
reservoir model of the Global Carbon Budget project
[10]. However, the three reservoirs used by the Global
Carbon Budget correspond to atmospheric, ocean, and
land reservoirs.

2.7 Welfare Maximization

While the nine state, two decision variable DICE model
(CLI)–(EI) can be used to predict outcomes based on
externally (e.g., expert) predicted mitigation and sav-
ings rates, the inputs, and predicted outcomes, are more
usually the result of solving an Optimal Control Prob-
lem (OCP). In particular, the DICE dynamics act as
constraints in a social welfare maximization problem.

The social welfare W is defined as the discounted sum of
(time-varying) utility U which depends on consumption.
Consumption is derived from (7) and (8) as

C(i) = Q(i)(1− s(i)) (21)

which can be written explicitly in terms of states and
inputs using (6).

5 Note that the parameter ξ2 is simply for converting CO2

to carbon (see Appendix B).
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The utility is taken as:

U(C(i), L(i)) = L(i)


(
C(i)
L(i)

)1−α
− 1

1− α

 , (22)

where α ≥ 0 is called the elasticity of marginal utility of
consumption. Note that, in the limit as α→ 1, the util-
ity is a logarithmic function of per capita consumption
and for α ∈ (0, 1), (22) behaves qualitatively like a log-
arithm. For α > 1, since the population L(i) is bounded
(as the solution of (POP)), the utility is also bounded.

Indeed, denoting the upper bound on population by L̂

(i.e., L(i) ≤ L̂ for all i), we see that

lim
(C/L)→∞

L

((
C
L

)1−α − 1

1− α

)
≤ − L̂

1− α
.

The optimal control problem of interest, maximizing the
social welfare, is then given by

W ? .
= max

s,µ

∞∑
i=0

U(C(i), L(i))

(1 + ρ)∆i

subject to (OCP)

(CLI)− (EI), (3)− (4)

µ(i), s(i) ∈ [0, 1],∀i ∈ N,

where ρ > 0 is a prescribed discount rate.

Remark 2 (Dis. rates and soc. time preference)
It should be mentioned that the numerical value chosen
for ρ can have a significant impact on the results and is a
subject of significant discussion. On the one hand, when
analyzing capital investment decisions, discount rates
of 7-9% are common [65]. On the other hand, given the
extremely long time scales involved in the climate system
and hence the long-term impacts of current emissions,
the discount rate can also be viewed in the context of
intergenerational fairness (or social time preference).
Here, arguments have been made for an effective 0% dis-
count rate [74], though rates of 1-3% are more common.
In the results that follow, when not otherwise specified,
we use the default value of 1.5% as in [63].

2.8 The Social Cost of Carbon Dioxide (SC-CO2)

The Social Cost of Carbon Dioxide (SC-CO2) in a par-
ticular year is defined as

“the decrease in aggregate consumption in that year
that would change the current . . . value of social wel-
fare by the same amount as a one unit increase in car-
bon emissions in that year.” [54]

Fig. 2. The Social Cost of Carbon Dioxide (SC-CO2) com-
puted from an emissions pulse experiment. (a) Baseline emis-
sions and a pulse in the year 2020 (vertical axis in gigatonnes
CO2). (b) Consumption pathways resulting from the baseline
and pulse emissions pathways are virtually indistinguishable
(vertical axis in millions of 2010USD). (c) The difference be-
tween the baseline consumption pathway and the emissions
pulse pathway (vertical axis in millions of 2010USD). (d)
The 5% discounted difference between the two consumption
pathways. Summing the values in this plot, and normalizing
by the size of the emissions pulse, yields the SC-CO2 for
2020.

This can be computed as shown in Figure 2 where base-
line emissions and consumption (Figure 2 (a) and (b))
are defined, e.g., by solving the optimal control problem
(OCP). A pulse of CO2 emissions is then injected at a
particular year (10 GtCO2 in 2020 in Figure 2(a)) and
the aggregate reduction in consumption (Figure 2(c))
over succeeding years, appropriately discounted (Fig-
ure 2(d)), is the SC-CO2 for that year. Note the different
time scales between Figure 2(a) and 2(b)-(d), which em-
phasizes that although industrial emissions in this sce-
nario go to zero shortly after the year 2100, the effects
of these emissions, even discounted, persist far into the
future.

These pulse experiments are suggestive of a sensitivity
analysis and, in fact, the computation of the SC-CO2 is
given by the ratio of two Lagrange multipliers. Specifi-
cally, the Lagrange multipliers of interest are the incre-
mental change in welfare with respect to the incremental
change in emissions, ∂W?

∂E(i) , and the incremental change

in welfare with respect to the incremental change in con-
sumption, ∂W?

∂C(i) . The SC-CO2 is then given by

SC-CO2(i) = −1000 · ∂W
?/∂E(i)

∂W ?/∂C(i)

= −1000 · ∂C(i)

∂E(i)
. (23)

7



Table 1
SC-CO2 computed for DICE2016 via [63] for selected years
and different values of the discount rate ρ.

Year ρ = 0.005 ρ = 0.015 ρ = 0.03

2015 US$73.95 US$27.14 US$10.84

2020 US$89.31 US$32.28 US$12.54

2030 US$124.20 US$44.54 US$16.98

Note that the factor of 1000 scales the SC-CO2 to 2010
US dollars per tonne of CO2, whereas consumption is
in trillions of 2010 US dollars and emissions are in giga-
tonnes of CO2.

As mentioned above, the discount rate ρ can have a sig-
nificant impact on the optimal solution and, hence, the
monetary value of emissions given by the SC-CO2. Ta-
ble 1 lists the SC-CO2 for different years and the dif-
ferent discount rates ρ ∈ {0.005, 0.015, 0, 03} and con-
sidering a finite horizon N = 100. For example, the esti-
mates SC-CO2 for the year 2020 range from US$12.55
(ρ = 0.03) to US$89.31 (ρ = 0.005).

2.9 DICE, PAGE, and FUND

While many integrated assessment models have been
proposed, the three most commonly used and cited mod-
els are DICE, PAGE, and FUND. In particular, the
U.S. Interagency Working Group made use of these three
models in deriving its estimates of the SC-CO2 [44]. The
PAGE model was used extensively in the Stern Review
[73].

PAGE and FUND are fundamentally different mod-
els than DICE. In the economics lexicon, PAGE and
FUND are “partial equilibrium models” while DICE
is a “general equilibrium model”. Specifically, economic
growth is an input in the former type of model, but a
state (given by the evolution of K) in the latter. As a
consequence, in solving the welfare maximization prob-
lem (OCP), DICE generates optimal emissions and con-
sumption pathways. By contrast, such pathways must
be provided as inputs to PAGE and FUND.

The PAGE model divides the world into eight regions
and considers four different damages components given
by sea level rise, economic damages, non-economic dam-
ages, and discontinuities. This is in contrast to DICE
which considers a single global region and a single dam-
ages component. Additionally, PAGE looks to incorpo-
rate uncertainty by repeatedly drawing several param-
eters from probability distributions. The model is in-
stantiated as an Excel spreadsheet and makes use of the
proprietary @RISK software add-in [67] to perform the
required Monte Carlo calculations.

It is important to note that PAGE takes not just eco-
nomic growth (or projected Gross Domestic Product) as

an input, but also climate policies (such as the mitiga-
tion rate µ) as inputs. In other words, there is no opti-
mization problem associated with the model.

FUND is similar in concept to PAGE as a partial equi-
librium model, but differs in its specifics. FUND consid-
ers sixteen geographic regions and eight damages com-
ponents. Furthermore, some of the damages components
are dependent on both the temperature increase and the
rate of temperature rise or CO2 concentrations, while
damages in DICE and PAGE are dependent solely on
the temperature increase. FUND is coded in C# and is
available at [5].

Given the fact that neither PAGE nor FUND involve an
optimal control problem, they do not compute the SC-
CO2 as per (23), but rather do so via the pulse experi-
ment as indicated in Figure 2.

Finally, we note that a regional variant of DICE—
called RICE (Regional Integrated model of Climate and
Economy)—was considered by Nordhaus in conjunction
with the 2010 variant of DICE [59]. The RICE model
used the same geophysical structure as previously de-
scribed for DICE, but considered twelve global regions
by calibrating twelve essentially independent copies of
the economic model (CAP).

3 Receding Horizon Solution to DICE

As defined, (OCP) is a non-convex infinite-horizon opti-
mal control problem and is thus difficult to solve analyt-
ically and numerically. 6 However, from a systems-and-
control perspective it is intuitive to approximate the so-
lution to the infinite-horizon problem (OCP) by means
of a receding-horizon—or model predictive control—
approach. Recently the analysis of asymptotic proper-
ties of model predictive control with generic objective
functionals (that do not explicitly encode a control task)
has received significant attention under the label eco-
nomic MPC, cf. [69,19]. Indeed, for a very general class
of problems in the undiscounted time-invariant setting,
it can be shown that the receding-horizon approach
yields a quantifiably accurate approximation of the
infinite-horizon solution that improves as the horizon

6 Note that [63] solves a slightly different problem than
(OCP). Specifically, [63] solves over a fixed horizon of 60 or
100 (corresponding to 300 or 500 years), and fixes the sav-
ings rate over the last ten time steps to a value close to
the turnpike value. This latter element precludes the capital
stock from being depleted at the end of the fixed horizon.
Conceptually, fixing the horizon a priori rules out discount
rates below a certain threshold since numerically significant
behavior occurs on long time scales but is not rendered in-
significant by the discounting.
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increases 7 [29]. Extending the approximation results
of [29] to include time-varying systems and discounted
optimal control problems is the subject of ongoing work
and some specific indications are provided at the end of
this section and in Section 6.

It is worth noting that, despite the familiarity of
economists with optimal control methods (e.g., [71]) and
despite its significant impact on systems and control,
the receding-horizon approach is still largely unknown
in the economics community [34]. However, from a con-
trol point of view the welfare maximization described
in (OCP) immediately suggests a receding-horizon ap-
proach for at least two reasons: One, it is conjectured
that, as in the case of undiscounted optimal control
problems, receding horizon control likely provides an ap-
proximate solution to the infinite horizon optimal con-
trol problem. Two, a receding horizon implementation
provides a natural framework for considering robustness
issues by, in particular, separating the ‘plant’ and the
model of the plant used for control purposes [38]. 8 This
idea is intuitive from a control point view, yet is not
the standard for climate-economy assessment. To the
best of the authors’ knowledge the earliest application
of a receding-horizon framework to the DICE OCP
was presented in [14], which looked at the RICE model,
while [85] considered the DICE model and explicitly
accounted for uncertainty in emissions and temperature
measurements in relation to the SC-CO2.

Subsequently, we aim at solving (OCP) in a receding-
horizon fashion to the end of computing the SC-CO2.
As mentioned before, the SC-CO2 definition (23) can
be read as a quotient of Lagrange multipliers (or adjoint
states). Hence, following our development in [20], we re-
formulate the DICE dynamics such that the consump-
tion C and the E formally can be regarded as state vari-
ables. In turn this implies that the required Lagrange
multipliers / adjoints states are readily available upon
solving (OCP) using state-of-the-art optimization codes.

7 Specifically, the analysis of economic MPC schemes lever-
ages so-called turnpike properties of OCPs. Turnpike prop-
erties are similarity properties of parametric OCPs, whereby
for varying horizon lengths and varying initial conditions, the
time that the solution spends close to a specific attractor—
i.e., close to the turnpike—grows with horizon length. Early
observations of this phenomenon can be traced back to John
von Neumann [81], while the term “turnpike” was coined in
1958 in [17]. The concept has received widespread attention
in economics [50,13] and, more recently, in systems and con-
trol [80,33,22].
8 Interestingly, in 2015 the EU called for revisiting emission
reduction targets every five years [72], which can also be
understood as a feedback mechanism.

We begin by defining the augmented state vector

x̃ =
[
i T M K σ L ATFP ELand FEX

]>
,

xaux =
[
E(i) C(i) µ(i) s(i) W (i)

]>
.

Note that x̃(i) ∈ R12 collects the time index i, the state
variables of (CLI)–(EI), and the sequences (3) and (4).
The vector xaux(i) ∈ R5 collects the emissions (20), con-
sumption (21), inputs µ(i) and s(i) at time i, and the
extra state

W (i) =

i∑
j=1

U(C(j), L(j))

(1 + ρ)∆(j−1)

which is used to define the objective (social welfare).
Moreover, using

x(i)
.
=
[
x̃(i)> xaux(i)>

]>
and the shifted input variables

w(i)
.
=
[
µ(i+ 1) s(i+ 1)

]>
,

we can rewrite the dynamics underlying (OCP) as fol-
lows:

x(i+ 1) = f(x(i), w(i)), x(1) = v. (24)

The first component of the righthand-side function f :
R17 × R2 → R17, f = [f1, . . . , f17]> is given by

f1(x,w)
.
= x1 + 1,

and the components k = 2, . . . , 12 are given by (CLI)–
(EI), (3), and (4). For k = 13 we obtain from (20)

E(i+ 1) = f13(x(i), w(i))

= ∆

(
σ(i+ 1)(1− µ(i+ 1))Y (i+ 1) +ELand(i+ 1)

)
= ∆

(
f8(x(i), w(i)) · (1− w1(i)) · f10(x(i), w(i))

· f7(x(i), w(i))γ ·
(
f9(x(i),w(i))

1000

)1−γ

+EL0 · (1− δEL)i
)
.

In other words, we can rewrite the emissions explicitly
as a state using (CAP)–(TFP) to expand f7, f8, f9, and
f10. Immediately from the above, we obtain the initial
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emissions

E(1) = ∆

(
x8(1)(1− x15(1))x10(1)x8(1)γ

(
x9(1)
1000

)1−γ

+ EL0

)
.

Similarly, we may rewrite the consumption state equa-
tion as

C(i+ 1) = f14(x(i), w(i))

= ∆

(
1− θ1(i+ 1)µ(i+ 1)θ2

1 + a2 TAT(i+ 1)a3

)
Y (i+ 1)(1− s(i+ 1))

= ∆

(
1− θ1(i+ 1)w1(i)θ2

1 + a2 f2(x(i), w(i))a3

)
· f10(x(i), w(i))

· f7(x(i), w(i))γ ·
(
f9(x(i), w(i))

1000

)1−γ

· (1− w2(i))

with initial condition given by

C(1) = ∆

(
1− θ1(1)x15(1)θ2

1 + a2 x2(1)a3

)
· x10(1) · x8(1)γ

·
(
x8(1)
1000

)1−γ
· (1− x16(1)).

The final three states are given by

x15(i+ 1) = w1(i), x15(1) = v15

x16(i+ 1) = w2(i), x16(1) = v16

x17(i+ 1) = x17(i) +
U(x12(i), x9(i))

(1 + ρ)∆(i−1)
, x17(1) = 0.

Observe that the initial condition x14(1) = C(1) de-
pends on the (unshifted) inputs at time i = 1; i.e. it
depends on µ(1) = x15(1) and s(1) = x16(1). Like-
wise the initial condition x13(1) = E(1) depends on
µ(1) = x15(1).

To handle this dependence in the optimization, we in-
troduce the auxiliary decision variable v ∈ R17 and the
additional constraint x(1) = v. Now, we can summarize
the equivalent (finite-horizon) reformulation of (OCP)
based on the augmented dynamics (24) as follows

max
w, v

x17(N + 1) (25a)

subject to

x(j + 1) = f(x(j), w(j)), j = 1, . . . , N (25b)

x(1) = v (25c)

vk = xk(1), k ∈ {1, . . . , 17} \ {15, 16} (25d)

vk ∈ [0, 1], k = 15, 16 (25e)

w(j) ∈ [0, 1]× [0, 1], j = 1, . . . , N. (25f)

In order to obtain a receding horizon variant of the orig-
inal OCP, we define a second optimization problem as
follows

max
w

x17(N + 1) (26a)

subject to

x(j + 1) = f(x(j), w(j)), j = 1, . . . , N (26b)

x(1) = x?(2 | i− 1) (26c)

w(j) ∈ [0, 1]× [0, 1], j = 1, . . . , N, (26d)

which differs from OCP (25) in that the initial condition
x(1) is available from the previous optimization via the
variable x?(2 | i − 1). 9 This OCP is to be solved for
i = 2, . . . , Nsim, where Nsim is the desired simulation
horizon. Consequently, the extra decision variable v is
not required, since x13(1) = E?(2 | i − 1) and x14(1) =
C?(2 | i− 1).

Solving either OCP (25) or OCP (26), we obtain the
following data:

• The optimal state trajectory x?(j), j = 1, . . . , N + 1,
which contains the savings rate and the mitigation
rate as

µ?(j) = x?15(j) and s?(j) = x?16(j).

• The optimal adjoint variables λ?C(j) and λ?E(j) which
are given by the Lagrange multipliers associated to
the equality constraints implied by the dynamics of
E(j) = x13(j) and C(j) = x14(j). 10

Hence, the SC-CO2 at time j is obtained by

SC-CO2(j) = −1000 · ∂W/∂E(j)

∂W/∂C(j)
= −1000 · λ

?
E(j)

λ?C(j)
.

Finally, the receding-horizon approximation of (OCP)
is summarized in Algorithm 1.

Remark 3 (Open source code MPC-DICE [20])
MPC-DICE is an open-source Matlab implementation of
DICE which provides parameter sets for both DICE2013
and DICE2016. Specifically, MPC-DICE provides an
implementation of the receding horizon reformulation
described above. It uses CasADi [4], which comes with
IPOPT [82] as an NLP solver, to solve (OCP). The rel-
atively simple CasADi syntax enables extensions of the
DICE OCP, some of which we will describe in Section
4. The code is available at [21].

9 Here, whenever helpful, we employ the common MPC no-
tation convention that x?(2 | i − 1) refers to the second ele-
ment of the state prediction computed at time i− 1.
10 The Lagrange multipliers are typically provided by mod-
ern NLP solvers such as IPOPT [82], which is used in the
open-source DICE implementation [20].
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(a) Temperature, emissions, mitigation rate and savings rate.
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Fig. 3. Results for MPC-DICE 2016 for varying prediction horizons using Algorithm 1 with N ∈ {10, 20, 40, 60} (black,
black-dashdot, blue, blue-dashdot) and the open-loop solution to (OCP) for N = 120 (red-dashdot).

Algorithm 1 MPC-DICE

1: Input: simulation horizon Nsim, prediction horizon
N ,

2: if i == 1 then
3: Solve OCP (25)
4: Set x(1) = x?(1|1), λE(1) = λ?E(1|1), λC(1) =
λ?C(1|1).

5: for i = 2, . . . , Nsim do
6: Solve OCP (26) for x(1) = x?(1 | i− 1).
7: Set x(i) = x?(2 | i−1), λE(i) = λ?E(2 | i−1), λC(i) =
λ?C(1 | i− 1).

8: Return x(j), λE(j) and λC(j), j = 0, . . . , Nsim.

Figure 3 shows simulation results obtained with MPC-
DICE for the 2016 parameter set for different prediction
horizons N ∈ {10, 20, 40, 60} and an MPC-DICE simu-
lation horizon Nsim = 40 in comparison to the solution
of (OCP) with N = 120 of which we plot the first 40
steps. Figure 3a shows temperature increase, emissions
as well as mitigation rate and savings rate. Figure 3b
shows the corresponding SC-CO2 trajectories. As one
can see, for increasing prediction horizons the receding-
horizon input and state trajectories both converge to-
wards the infinite-horizon solution; approximated here
by computing a long horizon solution (N = 120). This
approximation property can also be observed in Figure
3b. Hence we conjecture that under suitable assumptions
the approximation properties of MPC, which are estab-
lished for time-invariant and undiscounted OCPs in [29],
also hold for time-varying and discounted problems.

In fact, the theoretical results supporting this conjecture
are reasonably mature where [34] shows that receding
horizon control yields approximate optimal solutions for

discounted problems if the turnpike property holds. Fur-
thermore, it follows from a combination of [24] and [32]
that strict dissipativity implies the turnpike property
for discounted problems, provided the discount factor is
sufficiently close to one. Note that the default DICE dis-
count rate of 1.5% corresponds to a discount factor of
approximately 0.985. Hence, while these results for dis-
counted optimal control do not yet accommodate time-
varying systems or cost functions, the primary difficulty
lies in checking the appropriate assumptions for compli-
cated models such as the DICE model.

4 State and Input Rate Constraints

The welfare maximization problem as posed in Section
2.7 considers only input magnitude constraints and the
dynamics. However, in view of the reports of the IPCC,
the overwhelming scientific consensus is that tempera-
ture increase should be limited to 2 ◦C [46] and prefer-
ably to 1.5◦C [47]. Inspection of Figure 3a reveals that
straightforward maximization of social welfare might
lead to much higher values of temperature increase in
the order of 3− 4 ◦C. 11

This indicates that there is an inconsistency between
the model (or the chosen parameters) and the scientific
consensus that 2 ◦C of warming represents a dangerous
threshold. One approach to addressing this is to modify
the model directly; for example by changing the climate
damages function (11) to reflect the consensus that dam-
ages at 2 ◦C are expected to be significantly higher than

11 In climate physics the temperature increase is also referred
to as the temperature anomaly.
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(a) Results using Algorithm 1 and the temperature increase
constraint (27) with 2.36 ◦C (blue) and 3 ◦C (red).
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(b) Results using Algorithm 1, the temperature increase con-
straint (27) with 3 ◦C, the rate constraint (28a) (red) and the
growth constraint (28b) (blue-dashdot).

Fig. 4. Results for MPC-DICE 2016 with additional constraints.

a loss of 0.9% of global economic output. It is also possi-
ble to consider a different welfare function that not only
places a value on consumption but also values environ-
mental “services” (such as clean air and water) [76] or
accounts for the cost of adaptation to climate change [7].

A third approach, as done in [58, pp. 69–73], is to add
a constraint on the temperature increase to (OCP). As
mentioned in [58, pp. 69–73], the purely economic case
for imposing a hard limit is somewhat unjustified as it
effectively implies an infinite cost of exceeding the con-
straint. However, also as discussed in [58, pp. 69–73],
a hard constraint can represent a tipping point where
the climate damages dramatically increase, for example
due to adverse climatic effects that are not captured in
the simple DICE climate model. Here, following [84], we
place an upper limit on the atmospheric temperature
rise and investigate what this then requires of the con-
trol inputs.

Consider the state constraint

TAT (i) ≤ TAT,max, ∀i ∈ N. (27a)

Moreover, in the economics literature the value for the
mitigation rate at time i = 1 is usually fixed, with

µ(1) = µ0 = 0.03, (27b)

an estimate of the global greenhouse gas emissions abate-
ment or mitigation rate in the base year of 2015 (or
µ(1) = 0.039 for the DICE2013 base year of 2010) [63].

Figure 4a shows the corresponding results for MPC-

DICE 2016 considering (27) and

TAT,max ∈ {2.36 ◦C, 3 ◦C}.

Not surprisingly the tighter temperature target of
2.36 ◦C requires a drastic and fast reduction of emis-
sions, which would imply a steep increase of the miti-
gation rate in the near future. Interestingly the savings
rate is not affected by the temperature target. Moreover,
we remark that TAT,max = 2.36 ◦C is the lowest heuris-
tically determined value of the temperature constraint
for which (OCP) is feasible.

However, the steep increase of the mitigation rate shown
in Figure 4a might be difficult to realize on a policy level.
This motivates analyzing whether constraints on the in-
crease of the mitigation rate are compatible with the
temperature target of 2− 3 ◦C. To this end, in [84] (for
DICE2013) we considered both rate and growth con-
straints on µ. The rate constraint takes the form

|µ(i+ 1)− µ(i)| ≤ ∆µ, ∀i ∈ N (28a)

while the growth constraint is given by

µ(i+ 1)− µ(i)

µ(i)
≤ Γµ, ∀i ∈ N. (28b)

Note that the growth constraint (28b) is motivated by
the argument that abatement technologies and markets
will increase year-on-year rather than in equal incre-
ments.

Results for this setting using MPC-DICE with Nsim =
40 and N = 60 are depicted in Figure 4b. We consider
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the temperature target of 3 ◦C according to (27), the
rate bound ∆µ = 0.1 and the growth bound Γµ = 0.53.
Note that (27b) is needed to ensure that the constraints
(28) are defined at i = 1.

As one can see the temperature trajectories do not differ
much for the different constraints (28). However, not
surprisingly, the mitigation rates behave very differently
as do the emissions.

It is worth noting that Γµ = 0.53 is an experimentally
determined threshold whereby lower values render the
optimal control problem infeasible. In this extreme case,
the optimal solution shows the savings rate effectively
taking a value of zero for several years. Conceptually, this
corresponds to an extended period of non-investment in
the capital stockK so as to reduce emissions by explicitly
reducing economic activity.

Remark 4 (Feasibility of temperature targets)
Given that it is considered feasible that global atmo-
spheric temperature rise could yet be limited to 1.5 ◦C,
it is interesting to note that the default parameters of
DICE2016 do not even yield a feasible solution to (OCP)
for the higher 2 ◦C limit. Indeed, in [62] Nordhaus notes
that while the 2 ◦C limit was achievable in DICE2013,
this is not the case for DICE2016. However, only lim-
ited information on the calibration of the model (i.e.,
the parameter choices shown in Appendix B) has been
provided. In Section 5 below, we indicate some recent
work on improving the transparency of the temperature
model parameters. Similar work on the carbon cycle pa-
rameters would be a valuable contribution to improved
estimates of the SC-CO2.

5 Systems and Control in Climate–Economy
Assessment: Opportunities and Progress

The DICE model interconnects geophysical and socio-
economic dynamics, the structure and parameters of
which are clearly subject to a vast array of uncertainties.
Quantifying the implications of these uncertainties on
SC-CO2 estimates and on related policy advice is con-
sequently an issue of major importance to policymakers.
Given the wide range of tools developed by the systems
and control community for handling and quantifying un-
certainty, many challenges and research opportunities
exist for this community within climate–economy assess-
ment. In this section, we identify several key avenues of
research opportunity, and describe previous work under-
taken in the context of those directions.

5.1 Uncertainty Quantification

In early 2017, the U.S. National Academies released an
extensive and influential report on improving estimates
of the SC-CO2 [53]. Many of the recurring themes in

[53] would be familiar to the systems and control com-
munity, particularly around the quantification of uncer-
tainty and its impacts.

The climate economics literature distinguishes between
parametric uncertainty [3,30,9,44] and structural uncer-
tainty [27,52,35,62] in IAMs such as DICE. Paramet-
ric uncertainty is uncertainty about the value of various
parameters within an IAM module, e.g. F2× or ΦT in
(CLI). Structural uncertainty, on the other hand, refers
to uncertainty regarding the functional form of the equa-
tions comprising the IAM. As one example of structural
uncertainty, consider carbon cycle feedbacks—currently
neglected in DICE—wherein rising surface temperatures
lead to thawing of carbon-rich permafrost and the con-
sequent release of methane, itself a potent greenhouse
gas.

5.2 Identification of Predictive Climate Models

The geophysical models presented in Section 2.1 are
clearly significant simplifications of reality, with the
climate (temperature) model having been originally
proposed in [70]. While low-order models are necessary
to efficiently solve the optimal control problem (OCP),
it is possible to construct improved higher order mod-
els. In particular, a large number of supercomputer-
based, atmosphere–ocean general circulation models
(AOGCMs) have been developed by a number of climate
modeling centres, providing very high spatio-temporal
resolution. Furthermore, many of these AOGCMs par-
ticipate in the Coupled Model Intercomparison Project
(CMIP) [77], which effectively provides input–output
data for a number of AOGCMs.

With such input–output data available, standard sys-
tem identification tools can be applied. In [87], for exam-
ple, we derived fourth-order linear time-invariant models
from the CMIP3 (CMIP, Phase 3) data set. In particular,
12 AOGCMs from the CMIP3 ensemble were identified
for which linear, time-invariant (LTI) models of order 4
were able to very closely approximate surface tempera-
ture projections under each of the four Representative
Concentration Pathway (RCP) emission scenarios in the
AR5 assessment report (see [46, p. 45, Box SPM.1]).

The LTI models identified in [87] are suitable for appli-
cation in feedback-based approaches to mitigation; see
for example [86] in which these models are applied in an
optimal control-based approach to geoengineering of the
climate based on solar radiation management (SRM). In
[83], we considered (CLI)–(CAP) in which the climate
model (CLI) is replaced by each of 12 fourth-order mod-
els derived in [87]. The range of estimated SC-CO2 val-
ues for 2015 obtained using this method span US$10.20–
$58.20/tCO2 depending on the specific CMIP3 model,
with an ensemble mean SC-CO2 of US$22.90/tCO2.
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This wide range of values highlights the substantial vari-
ability in estimates of the SC-CO2 arising from scien-
tific uncertainty in the climatic response to net radia-
tive forcing, all other components of the IAM being held
constant.

In recognizing the numerous uncertainties inherent in
estimation of the SC-CO2, the National Academies re-
port recommends that research effort on the SC-CO2 be
focused on “incorporating the most important sources
of uncertainty, rather than seeking to incorporate all
possible sources of uncertainty” [53, p. 54]. One ap-
proach along these lines avoids direct appeal to strongly
geophysically-inspired climate models, instead captur-
ing climate behaviour simply via three scalar parame-
ters: the transient climate response (TCR), the equilib-
rium climate sensitivity (ECS), and F2×.

Here we recall ECS as the steady-state atmospheric tem-
perature arising from a doubling of atmospheric carbon,
F2× as the associated downward radiative forcing at top-
of-atmosphere for doubled atmospheric carbon (see Re-
mark 1), and define TCR as the temperature change at
the time of CO2 doubling under a scenario in which CO2

concentrations increase by 1% yr−1.

In [37] we proposed an optimization-based methodol-
ogy for computing the parameters of a climate model
in such a way that the resulting model exhibits a spec-
ified TCR. The results reported in [37] enable policy-
makers using DICE—which specifies the TCR parame-
ter only indirectly—to compute optimal CO2 emissions
pathways which directly reflect the reported TCR of
state-of-the-art AOGCM climate models documented in
the most recent (Fifth) Assessment Report (AR5) of the
IPCC (see [45, p. 818, Table 9.5]).

5.3 Modular Tools for Simulation and Optimization

The report [53] also recommends increasing trans-
parency around the models used, and maintaining
modular models to allow for advances in any particu-
lar model to be easily incorporated. As an example of
this latter topic, in [23] we replaced the standard DICE
geophysical model (i.e., (CLI)–(CAR)) with a state-of-
the-art reduced-order geophysical model termed FAIR
[51]. In this context it is worth noting that the original
reference for the FAIR model [51] does not highlight
the fact that FAIR is a system of differential algebraic
equations (DAEs), which should be accounted for in
developing simulation code.

However, as of now, when it comes to uncertainty
quantification combined with dynamic optimization no
widely accepted open-source tools that go beyond var-
ious sampling techniques exist. Hence, there is a need
for tailoring and implementing the powerful methods
developed by the systems and control community to
climate-economy assessment.

5.4 System Theoretic Analysis

In addition to the research questions mentioned above
and posed in [53], the framework of discounted optimal
control (i.e., where the cost function involves a discount
factor) is one which has received less attention in the
systems and control community than the usual undis-
counted framework. Several recent results [25,24,31,32]
indicate that the connections between strict dissipa-
tivity, turnpike properties, and numerically accurate
approximations via MPC, which are known for undis-
counted optimal control (as reported in [29]) also hold in
the discounted setting. However, checking the necessary
assumptions to use results in particular applications,
such as for the DICE model, remains a difficult problem.

Moreover, the fact that the receding-horizon solution
to DICE approximates long/infinite horizon solutions
quite well (see [38, Fig. 2]) gives raise to the conjecture
that the DICE OCP exhibits a time-varying turnpike
phenomenon. However, a formal analysis remains to be
done.

Finally, recall that Nordhaus also proposed a regionally
distributed variant of DICE named RICE, wherein sev-
eral economic regions (US, EU, China, ...) are considered
[59]. From a systems and control perspective RICE raises
many interesting problems ranging from distributed im-
plementation to game-theoretic frameworks.

6 Summary and Concluding Remarks

The overwhelming scientific consensus is that avoiding
the worst potential effects of anthropogenic climate
change require achieving economy-wide net-zero green-
house gas emissions by the middle of this century. Such
a significant economic transition will require a suite of
policy responses, many of which will rely on a price on
greenhouse gas emissions [48]. Estimates of the SC-CO2

provide guidance on the range of prices.

In this paper, we have provided a complete tutorial de-
scription of the DICE model, one of the most widely used
IAMs for estimation of the SC-CO2 and have indicated
some work already undertaken to improve SC-CO2 es-
timates and indicated where we believe the systems and
control community can make important contributions.

Appendix A: Default initial conditions

TAT(0) TLO(0) K(0)

2013R 0.8 0.0068 135

2016R 0.85 0.0068 223
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MAT(0) MUP(0) MLO(0)

2013R 830.4 1527 10010

2016R 851 460 1740

The parameters for calculating σ0 = e0
q0(1−µ0) :

e0 q0 µ0

2013R 33.61 63.69 0.039

2016R 35.85 105.5 0.03

Appendix B: Default parameter values

Rather than the cost function in (OCP), Nordhaus has
used the scaled cost function

(scale2) + (scale1) ·max
s,µ

N+1∑
i=1

U(C(i), L(i))

(1 + ρ)∆i
. (29)

This obviously has no impact on the solution of (OCP).
These values are chosen so that the optimal value func-
tion has a numerical value consistent with economic in-
tuition.
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Default parameter values for DICE 2013 and DICE 2016.
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[34] L. Grüne, W. Semmler, and M. Stieler. Using nonlinear
model predictive control for dynamic decision problems in
economics. J. Econ. Dyn. Control, 60:112–133, November
2015.

[35] C. Guivarch and A. Pottier. Climate damage on production
or on growth: What impact on the social cost of carbon?
Environ. Model. Assess., 23:117–130, 2018.

[36] S. Hafeez, S. R. Weller, and C. M. Kellett. Steady-state
and transient dynamic behavior of simple climate models for
application in integrated assessment models. In Proc. Aus.
Control Conf. (AuCC 2015), pages 269–273, Gold Coast,
Australia, 5–6 November 2015.

[37] S. Hafeez, S. R. Weller, and C. M. Kellett. Transient climate
response in the DICE integrated assessment model of climate-
economy. In Proc. of the Australian Control Conference,
pages 282–287, Newcastle, Australia, 3–4 November 2016.

[38] S. Hafeez, S. R. Weller, and C. M. Kellett. Impact of climate
model parametric uncertainty in an MPC implementation of
the DICE integrated assessment model. In Proceedings of the
IFAC World Congress, Toulouse, France, July 2017.

[39] M. P. Hassell. Density-dependence in single-species
populations. Journal of Animal Ecology, 44(1):283–295, Feb.
1975.

[40] C. Hope. Critical issues for the calculation of the social cost
of CO2: Why the estimates from PAGE09 are higher than
those from PAGE2002. Climatic Change, 117(3):531–543,
April 2013.

[41] C. Hope. The $10 trillion value of better information about
the transient climate response. Phil. Trans. R. Soc. A,
373(2054):20140429, 2015.

[42] R. B. Howarth, M. D. Gerst, and M. E. Borsuk. Risk
mitigation and the social cost of carbon. Global Environ.
Change, 24:123–131, 2014.

[43] S. Hsiang, R. Kopp, A. Jina, J. Rising, M. Delgado,
S. Mohan, D. J. Rasmussen, R. Muir-Wood, P. Wilson,
M. Oppenheimer, K. Larsen, and T. Houser. Estimating
economic damage from climate change in the United States.
Science, 356:1362–1369, 2017.

[44] Interagency Working Group on Social Cost of Carbon,
U.S. Government. Technical Update of the Social Cost of
Carbon for Regulatory Impact Analysis - Under Executive
Order 12866, 2013.

[45] IPCC. Evaluation of Climate Models. In T. F. Stocker et al.,
editor, Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, UK, 2013.

[46] IPCC. Summary for Policymakers. In T. F. Stocker et al.,
editor, Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, UK, 2013.

[47] IPCC. Global Warming of 1.5◦C. Intergovernmental Panel
on Climate Change, 2018.

[48] C. M. Kellett, E. Aydos, S. Rudolph, and S. R. Weller.
The social cost of carbon dioxide: Policy and methods for
pricing greenhouse gas emissions. In Our Changing World
in the South Pacific: Australasian and German Perspectives.
Australian Association of von Humboldt Fellows, 2018.

[49] C. M. Kellett, T. Faulwasser, and S. R. Weller. DICE2013R-
mc: A Matlab / CasADi Implementation of Vanilla
DICE2013R. arXiv:1608.04294v1, code available at http:

//bit.ly/2lpdeqp, Aug. 2016.

[50] L.W. McKenzie. Turnpike theory. Econometrica: Journal of
the Econometric Society, 44(5):841–865, 1976.

[51] R.J. Millar, Z.R. Nicholls, P. Friedlingstein, and M.R. Allen.
A modified impulse-response representation of the global
near-surface air temperature and atmospheric concentration
response to carbon dioxide emissions. Atmospheric
Chemistry and Physics, 17(11):7213–7228, 2017.

[52] F. C. Moore and D. B. Diaz. Temperature impacts on
economic growth warrant stringent mitigation policy. Nature
Clim. Change, 5:127–131, 2015.

[53] National Academies of Sciences, Engineering, and Medicine.
Valuing Climate Damages: Updating Estimation of the Social
Cost of Carbon Dioxide. The National Academies Press,
2017.

[54] S. C. Newbold, C. Griffiths, C. Moore, A. Wolverton, and
E. Kopits. A rapid assessment model for understanding the
social cost of carbon. Climate Change Economics, 4(1), 2013.

[55] W. D. Nordhaus. Can we control carbon dioxide?
Technical Report WP-75-63, International Institute for
Applied Systems Analysis, Laxenburg, Austria, 1975.

[56] W. D. Nordhaus. An optimal transition path for controlling
greenhouse gases. Science, 258:1315–1319, 20 November
1992.

[57] W. D. Nordhaus. Accompanying Notes and Documentation
on Development of DICE-2007 Mode: Notes on DICE-
2007.v8 of September 21, 2007. New Haven, CT:
Yale University. Available http://nordhaus.econ.yale.edu/
Accom_Notes_100507.pdf, 2007.

17

https://epub.uni-bayreuth.de/3738/1/discounted_dissipativity.pdf
https://epub.uni-bayreuth.de/3738/1/discounted_dissipativity.pdf
http://bit.ly/2lpdeqp
http://bit.ly/2lpdeqp
http://nordhaus.econ.yale.edu/Accom_Notes_100507.pdf
http://nordhaus.econ.yale.edu/Accom_Notes_100507.pdf


[58] W. D. Nordhaus. A Question of Balance: Weighing the
Options on Global Warming Policies. Yale University Press,
2008.

[59] W. D. Nordhaus. Economic aspects of global warming in a
post-Copenhagen environment. Proc. Natl. Acad. Scie. USA
(PNAS), 107(26):11721–11726, 2010.

[60] W. D. Nordhaus. Estimates of the social cost of
carbon: Concepts and results from the DICE-2013R model
and alternative approaches. J. Assoc. Environ. Resour.
Econ., 1(1/2):273–312, March 2014.

[61] W. D. Nordhaus. Projections and uncertainties about
climate change in an era of minimal climate policies. NBER
Working Paper Series, No. 22933, http://www.nber.org/

papers/w22933, 2017.

[62] W. D. Nordhaus. Revisiting the social cost of carbon. Proc.
Natl. Acad. Scie. USA (PNAS), 114(7):1518–1523, 14 Feb.
2017.

[63] W. D. Nordhaus. Scientific and Economic Background
on DICE models. https://sites.google.com/site/

williamdnordhaus/dice-rice, October 2017.

[64] W. D. Nordhaus and P. Sztorc. DICE 2013R: Introduction
and User’s Manual, second edition, 31 October 2013.

[65] Office of Management and Budget, U.S. Federal Government.
OMB Circular A-4 of September 17, 2003 (Regulatory
Analysis). Available at https://www.transportation.gov/

regulations/omb-circular-no-4-0.

[66] F. E. Otto, D. J. Frame, A. Otto, and M. R. Allen. Embracing
uncertainty in climate change policy. Nature Clim. Change,
5:917–920, October 2015.

[67] Palisade. @risk. https://www.palisade.com/risk/.

[68] W. Pizer et al. Using and improving the social cost of carbon.
Science, 346:1189–1190, 2014.

[69] J.B. Rawlings, D.Q. Mayne, and M. Diehl. Model Predictive
Control: Theory, Computation, and Design. Nob Hill
Publishing, Madison, WI, 2017.

[70] S. H. Schneider and S. L. Thompson. Atmospheric CO2 and
climate: Importance of the transient response. Journal of
Geophysical Research: Oceans, 86(C4):3135–3147, 1981.

[71] A. Seierstad and K. Sydsaeter. Optimal Control Theory with
Economic Applications. North-Holland, 1987.

[72] G. Steinhauser. EU calls for five-year emission target renewal.
https://on.wsj.com/2LjE3Jo, 2015. Sep 18, 2015.

[73] N. Stern. The Economics of Climate Change: The Stern
Review. Cambridge University Press, 2007.

[74] N. Stern. The structure of economic modeling of potential
impacts of climate change: Grafting gross underestimation of
risk onto already narrow science models. Journal of Economic
Literature, 51(3):838–859, 2013.

[75] N. Stern. Current climate models are grossly misleading.
Nature, 530:407–409, 2016.

[76] T. Sterner and U. M. Persson. An even Sterner Review:
Introducing relative prices into the discounting debate.
Review of Environmental Economics and Policy, 2:61–76,
2008.

[77] K. E. Taylor, R. J. Stouffer, and G. A. Meehl. An overview of
CMIP5 and the experiment design. B. Am. Meteorol. Soc.,
93(4):485–498, April 2012.

[78] The Economist Intelligence Unit. The cost of
inaction: Recognising the value at risk from climate change.
Available http://bit.ly/2kKbOJU, 2015.

[79] The Guardian. AGL boss: regardless of climate science,
it’s time to drop the ‘emissions business’. https://bit.ly/

2GgFx8t, 24 February 2016.
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