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1 Introduction

In [20] Schultz considered the expectation based two-stage optimisation problem

min{ Eω[h(ξ) + ϕ(z(ω)− Tξ) ] : ξ ∈ X} (1)

where X is a subset of some Rn, h convex and real-valued, z(ω) a s-dimensional
random vector on some propability space (Ω,F ,P) and ϕ a recourse function of
the form

ϕ(t) = min{qᵀy | Wy = t, y ≥ 0} (2)

which is the value function of a linear program with parametric right-hand side.
For a general introduction to such models we refer to the standard textbooks [6]
and [22]. The optimisation problem (1) can be rewritten as

min{ĥ(x) +QE(x) | x ∈ T (X)} (3)

with

ĥ(x) = min{h(ξ) | Tξ = x, ξ ∈ X} (4)

and the reduced expectation function

QE(x) = Eµ[ϕ(z − x) ] (5)

where µ denotes the pushforward measure of z. It is well-known that under mild
assumptions QE is well-defined and convex on all of Rs. For further structural
analysis of the optimisation problem (1) (e.g. stability analysis, cf. section 4) and
its algorithmic treatment with subgradient schemes (cf. [12]) conditions for strong
convexity may be desirable and for the risk-neutral setting were given in [20],
Theorem 2.2:

Theorem 1 Assume that the following conditions are satisfied:

A1 For every t there exist some y ≥ 0 such that Wy = t. (Complete recourse)

A2 There exists some v with Wᵀv < q. (Strengthened sufficiently expensive recourse)

A3 ‖z‖ is µ-integrable. (Finite first moments)

A4 µ has a density θ with respect to the Lebesgue-measure and there exists a convex

open set V , constants r, ρ > 0 such that θ ≥ r a.s. on V +Bρ(0).

Then QE is strongly convex on V .

Remember that a real-valued function f on some convex subset V of a normed
space is called κ-strongly convex on that set if for all x, y ∈ V and all λ ∈ (0, 1) it
holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− κ

2
λ(1− λ)‖x− y‖2.

We point out that a constant of strong convexity for QE in Theorem 1 can be
computed from the model data, i.e. the geometry of the set {v |Wᵀv ≤ q}, ρ and
r.
In [7] the analysis of (5) was extended to the upper semideviation based functional

QD+
(x) = QE(x) + Eµ[max{0, ϕ(z − x)−QE(x)}]
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and the expected-excess based one

QEE(x, η) = Eµ[max{0, ϕ(z − x)− η}]

which, for simplicity, we shall call upper semideviation and expected excess repec-
tively. For the latter one an additional assumption A5 on the magnitude of η is
needed because if η is too big, QEE(x, η) might not even depend on x anymore.

1.1 On strong convexity of QEE(·, η) for fixed η

In order to formulate condition A5 we note the following properties of the value
function ϕ and its linearity complex (cf. Lemma 32 and 34 in [7]):

Lemma 1 Assume A1 and A2. Then {v | Wᵀv ≤ q} is the convex hull of its finitely

many extreme points {di | i ∈ I = {1, . . . , N}} and ϕ has the following properties:

(i) ϕ(t) = maxi∈I d
ᵀ
i t, ϕ(t) = dᵀi t for all t ∈ Ki = {z | (di− dj)ᵀz ≥ 0 for all j ∈ I},

i.e. ϕ is finite and polyhedral.

(ii)
⋃
i∈I Ki = Rs with each Ki being a s-dimensional, pointed polyhdral cone. Fur-

thermore each Ki ∩ Kj with i 6= j is a common closed face of Ki and Kj and it

holds dim(Ki ∩Kj) = s− 1 if and only if di and dj are adjacent.

(iii) There is some α > 0 such that

inf
u∈Ki

sup
j

(di − dj)ᵀu ≥ α‖u‖.

Let us fix some more notation:
Since each Ki is a polyhedral cone, we can write it as the conic hull of its
finitely many extreme-rays, i.e. Ki = cone{ti1, . . . , tini}. With shorthand K+

i =
Ki ∩ {z | dᵀi z ≥ 0} and I+ = {i ∈ I | intK+

i 6= ∅ and di 6= 0} we note that for
η0 > 0 and i ∈ I+ it holds that the hyperplane {z | dᵀi z = η0} intersects at least
one extreme ray of Ki in a single point:

{rtis | r ≥ 0} ∩ {z | dᵀi z = η} = {ŷis}

for at least one s ∈ {1, . . . , ni}. Let ŷi(η0) denote one with minimum norm. Theo-
rem 35 in [7] can then be formulated as this:

Theorem 2 Let A1-A4 hold. In addition assume

A5 η0 is such that for all i ∈ I+ we have ‖ŷi(η0)‖ < ρ (where ρ is the one given in

A4).

Then QEE(x, η) is strongly convex on V (cf. A4 for the definition of V ) with respect

to x for all η ≤ η0. The modulus of strong convexity does not depend on η.

The geometric situation is shown in Fig. 1.
In A5 it is in fact enough to show that for every i ∈ I+ it holds ‖ŷi(η0)‖ < ρ or if
there exist an index set Ji ⊂ I such that −Ki ⊂

⋃
j∈Ji K

+
j it holds ‖ŷj(η0)‖ < ρ

for all j ∈ Ji. In this paper we shall use the slightly less general version of A5.
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Fig. 1 The geometry of the cones Ki

Let us make three remarks on the theorem:
Firstly, it is desirable to verify condition A5 for η0 as large as possible (especially
when considering Theorem 23 later). The larger ρ and ‖di‖ with i ∈ I+, the larger
η0 can be chosen.
Secondly, condition A5 might not be fulfilled on the entire set V . By considering
a subset U ⊂ V instead, allowing for a possibly bigger value of ρ, one can ensure
that condition A5 holds on U at least. Hence, strong convexity of QEE(·, η) can
be shown on a smaller set. We shall demonstrate these two remarks in Example 1
below.
Thirdly, a modulus of strong convexity κ can be computed in terms of model-
data directly with the techniques employed in [7]. It depends on ρ, the shape of
{Wᵀv ≤ q}, the lower bound of µ’s density r and η0 (all subsumized as ”model
data”). There is a certain trade-off between how big κ can be and how η0 is chosen:
The bigger η0, the smaller κ. Example 2 illustrates this fact.
In Theorem 23 and Theorem 24 we will calculate moduli of strong convexity for
QEE in a more general setting than in Theorem 2.

Example 1 Consider ϕ(t) = max{0, α t} and µ = U|(−ρ,1+ρ). For arbitrary x ∈ V =
(0, 1) we compute for η, α, ρ > 0

QEE(x) =

{
0 for x ≥ 1 + ρ− α−1η
1
2α [α(1 + ρ− x)− η]2, else.
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We see that QEE(·, η) is strongly convex as long as the condition 0 < x < min{1 +
ρ − α−1η, 1} is fulfilled. In notation of A5 there is only one cone K+

i with i ∈ I+
which is K = R≥0 corresponding to d = α. We get ŷ = α−1η0 and condition A5
reads α−1η0 < ρ so that QEE(·, η) is strongly convex on V whenever η < αρ. If
ρ < 1

2 we may consider the set U = (ρ, 1−ρ) ⊂ V to get strong convexity for larger
η than before. We can set as the new ρ̃ = 2ρ and see that QEE(·, η) is strongly
convex on U for all η < 2αρ.

Note that the modulus of strong convexity does not depend on ρ or η which in
higher dimensional cases cannot be expected:

Example 2 Let ϕ(t) = max{0, t1, t2}, µ = U(0,1).
We shall also assume 0 < x2 < x1, η > 0 and x1 + η ≤ 1 when computing

QEE(x1, x2) =
1

2
x2(1− x1 − η)2 +

1

2
x1(1− x2 − η)2 +

2

3
(1− x1 − η)3

+ η(1− x1 − η)2 +
1

2
(1− x1)[(1− x2 − η)2 − (1− x1 − η)2].

For the tedious computation we refer to the appendix. The components of the
Hessian H of QEE are

∂2

∂x21
QEE(x1, x2) = x2 − x1 + 1

∂2

∂x22
QEE(x1, x2) = 1

∂2

∂x1∂x2
QEE(x1, x2) = x1 + η − 1.

If η → 1−, we can choose x1 close to 1 and x2 close to 0 which gives detHQEE → 0+.
Since the determinant of the Hessian is equal to the product of its Eigenvalues we
see that at least one of them approaches 0 so that the modulus of strong convexity
must depend on the choice of η0 given in condition A5.

1.2 Variational representation of CVaR

In section 3 we shall consider the Conditional Value-at-Risk at a confidence level
α ∈ (0, 1), which can be characterized by a minimisation problem in terms of QEE :

QαCV aR(x) = min
η∈R

{
η +

1

α
QEE(x, η)

}
. (6)

For smooth distributions this representation is due to [24, Theorem 1], while [25,
Theorem 10] covers the general case and shows that the Value-at-Risk

QαV aR(x) = inf
{
t ∈ R | µ({z | ϕ(z − x) ≤ t}) ≥ 1− α

}
is an optimal solution to the above minimisation problem. Thus,

QαCV aR(x) = QαV aR(x) +
1

α
QEE(x,QαV aR(x)). (7)
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We shall however favor working with representation (6) due to inconvenient prop-
erties of QαV aR, i.e. absence of convexity. While it is straightforward to show con-
vexity of QαCV aR through (6) essentially due to joint convexity of QEE in both
arguments, strong convexity does not follow trivially even if QEE(x, η) is strongly
convex in x with strong convexity constant not depending on η. A property that
ensures strong convexity of QαCV aR can be defined as follows:

Definition 1 Let V ⊂ Rn and W ⊂ Rm nonempty and convex.
A function f : V ×W → R is called partially κ-strongly convex with respect to its
first argument if

f(λ(x1, y1) + (1− λ)(x2, y2)) ≤ λf(x1, y1) + (1− λ)f(x2, y2)− κ

2
λ(1− λ)‖x1 − x2‖2

(8)

holds for all x1, x2 ∈ V, y1, y2 ∈W, 0 < λ < 1.

Lemma 2 If f (as above) is continuously differentiable then partial strong convexity

is equivalent to

[f ′(x1, y1)− f ′(x2, y2)]((x1, y1)− (x2, y2)) ≥ κ‖x1 − x2‖2 (9)

for all x1, x2 ∈ V, y1, y2 ∈W, 0 < λ < 1.

Although the proof is virtually the same as for strong convexity (cf. [17]) in both
arguments, we shall give a variant of the proof in for the reader’s convenience in
the appendix.

For the moment let us assume that QEE(x, η) is partially strongly convex with
respect to x on some set V ×W ⊂ Rs ×R. The following simple calculation shows
that QαCV aR is strongly convex on V with modulus κ

α if QαV aR(V ) ⊂W .
For any λ ∈ [0, 1] and x1, x2 ∈ V set ηi = QαV aR(xi) ∈W , i = 1, 2. Then

QαCV aR(λx1 + (1− λ)x2) = min
η∈R

{
η +

1

α
QEE(λx1 + (1− λ)x2, η)

}
≤ λη1 + (1− λ)η2 +

1

α
QEE(λx1 + (1− λ)x2, λη1 + (1− λ)η2)

≤ λ [η1 +
1

α
QEE(x1, η1)] + (1− λ) [η2 +

1

α
QEE(x2, η2)]− κ

α
λ(1− λ)‖x1 − x2‖2

= λQαCV aR(x1) + (1− λ)QαCV aR(x2)− κ

α
λ(1− λ)‖x1 − x2‖2,

where the second inequality follows from QEE being partially strongly convex.

One might hope that conditions A1-A5 suffice to prove partial strong convexity
for QEE . It turns out, that this is not true:

Example 3 As a counterexample consider

QEE(x, η) =

∫
R

max{0, ϕ(z − x)− η}µ(dz)
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with ϕ(t) = max{0, t} and µ = U| (0,1) (i.e. uniformly distributed on (0, 1)). Let
V ⊂ (0, 1) so that conditions A1−A4 are satisfied. Also choose η0 > 0 so that A5
holds. In case η0 ≥ η > 0 we get

QEE(x, η) =

∫ 1

x

max{0, z − x− η}dz =

∫ 1

x+η

z − x− η dz

=

∫ 1−x−η

0

tdt =
1

2
(1− x− η)2.

We calculate for x, x+ u ∈ V

[Q′EE(x+ u, η + ν)−Q′EE(x, η)](u, ν) = u2 + 2uν + ν2 = (u+ ν)2

as long as η + ν ≥ 0. Since for small ν we can choose u = −ν, QEE cannot be
partially strongly convex in wrt. x on the set V × (−∞, η0].
In this example QEE does not have the desired joint convexity properties on any
open set contained in the support of µ.

Unsurprisingly, QαCV aR does not behave any better:

Example 4 With the same specifications as in example 3 we can calculate the
conditional value at risk at some level α ∈ (0, 1) for any x ∈ V as (cf. (6))

QαCV aR(x) = min
η∈R

{
η +

1

2α
(1− x− η)2

}
.

The unique minimizer is η∗ = QαV aR(x) = 1−α−x. Note that we can restrict the
minimisation to η > 0 since the value at risk is obviously positive. We arrive at

QαCV aR(x) = −x+
1

2
(2− α),

so there is no subset U ⊂ V on which QαCV aR is strongly convex.

We shall give a rather strict condition on the value function ϕ that yields partial
strong convexity for the expected excess in section 3 without additional assump-
tions on the distribution of z.

Before that we will introduce the even weaker concept of strong convexity, re-
stricted partial strong convexity, which can be shown to hold for QEE under less
restrictive assumptions on the recourse function. This property can also be char-
acterized by monotonicity of the gradient as in Lemma 2.

Definition 2 Let V ⊂ Rn and W ⊂ Rm nonempty and convex.
A function f : V × W → R is called restricted partially κ-strongly convex on
Ω ⊂ V ×W with respect to its first argument if

f(λ(x1, y1) + (1− λ)(x2, y2)) ≤ λf(x1, y1) + (1− λ)f(x2, y2)− κ

2
λ(1− λ)‖x1 − x2‖2

for all (x1, y1), (x2, y2) ∈ Ω and all 0 < λ < 1.
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Note that Ω does not need to be a cylindrical subset of V ×W as in Definition 1.

In section 3 we will show that conditions A1-A5 are sufficient for restricted partial
strong convexity of QEE on some nonempt set Ω ⊂ V × R. The estimates above
showing that partial strong convexity of QEE implies strong convexity of QαCV aR
can be used verbatim to show that restricted partial strong convexity of QEE does
so as well - if one can additionally show that (x,QαV aR(x)) ∈ Ω for all x ∈ V (or
maybe for all x ∈ U ⊂ V ). Example 4 shows that this cannot be done without only
relying on assumptions A3 and A4 on the distribution of z.

2 Joint properties of QEE

Theorem 2 addresses properties of QEE(·, η) for fixed threshold η. In Theorem 23
we will show that in conjunction with A1-A5 the following condition is sufficient
for partial strong convexity of QEE(x, η) wrt. x:

A6 It holds q > 0, i.e. the gradient of the objective function of the second stage is
positive componentwise (cf. (2)).

Note that this condition is stronger than A2 (choose v = 0 there). Although it is
a rather strict condition on the problem data, it might be well justifiable in the
setting of simple recourse problems because compensating actions in the second
stage should have negative impact on the total objective.
If A6 does not hold, all that can be shown is restricted partial strong convexity
in the sense of Definition 2. We start with an elementary lemma to provide some
geometrical insights that are used within the proof of Theorems 23 and 24:

Lemma 21 Let A1 and A2 hold. Then A6 is fulfilled if and only if one of the following

conditions is fulfilled:

(i) There is some α′ > 0 such that for all u ∈ Rs it holds

ϕ(u) ≥ α′ ‖u‖, (10)

(ii) For all i ∈ I we have di ∈ int cone{di − dj | dj adj. to di}.

Proof This follows directly from well-known separating hyperplane theorems.

Lemma 22 Let A1-A4 hold. Then QEE is continuously differentiable and we have the

following formula:

[Q′EE(x+ u, η + ν)−Q′EE(x, η)](u, ν)

=

∫
µ
( ⋃
l∈I(u,ν)(τ)

Ml(x, η)
∖ ⋃
l∈I(u,ν)(τ)

Ml(x+ u, η + ν)
)

dτ (11)

with suitable parametric sets I(u, ν) sets Ml(x, η) ⊂ Rs to be constructed in the proof

below.
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Proof By assumptions A1-A4 and standard arguments QEE is continuously differ-
entiable on Rs ×R, so only (11) warrants a proof. We calculate

Q′EE(x; η)(u, ν) =
∑
i∈I

µ(Mi(x, η))(−dᵀi u− v)

Q′EE(x+ u; η + ν)(u, ν) =
∑
i∈I

µ(Mi(x+ u, η + ν))(−dᵀi u− v) (12)

with shorthand Mi(x, η) = (x+Ki) ∩ {ϕ(z − x) ≥ η}.
Let M0(x, η) = {ϕ(z − x) ≤ η} and

π1i = µ(Mi(x, η)), y1i = −dᵀi u− v, i ∈ I,

π10 = µ(M0(x, η)), y10 = 0,

π2i = µ(Mi(x+ u, η + ν)), y2i = −dᵀi u− v, i ∈ I,

π20 = µ(M0(x+ u, η + ν)), y20 = 0.

Define random variables Y1 and Y2 taking values y1i with probability π1i and y2i
with probability π2i respectively. We observe that the quantities in (12) can be
rewritten as Riemann-Stieltjes integrals with cdfs FY1

, FY2
as integrators:

Q′EE(x, η)(u, ν) =
N∑
i=0

π1i y
1
i =

∫
τ dFY1

(τ)

Q′EE(x+ u, η + ν)(u, ν) =
N∑
i=0

π2i y
2
i =

∫
τ dFY2

(τ).

Integration by parts yields

[Q′EE(x+ u, η + ν)−Q′EE(x, η)](u, ν)

=

∫
τ dFY2

(τ)−
∫
τ dFY1

(τ) =

∫
FY1
− FY2

dτ.

Note that the boundary terms cancel out because y1i = y2i for all i.
Introducing the index set

I(u, ν)(τ) = {i ∈ I ∪ {0} | yi ≤ τ}

and observing that the sets Mi(x, η) only meet in lower dimensional sets (if they
meet at all) and thus µ(Mi(x, η) ∩Mj(x, η)) = 0 for i 6= j, we can write down the
cdfs FY1

and FY2
as follows:

FY1
(τ) =

∑
i∈I(u,ν)(τ)

π1i =
∑

i∈I(u,ν)(τ)
µ(Mi(x, η)) = µ

( ⋃
i∈I(u,ν)(τ)

Mi(x, η)
)
,

FY2
(τ) =

∑
i∈I(u,ν)(τ)

π2i =
∑

i∈I(u,ν)(τ)
µ(Mi(x+ u, η + ν)) = µ

( ⋃
i∈I(u,ν)(τ)

Mi(x+ u, η + ν)
)
.

(13)
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Note that FY1
−FY2

can be written as the measure of a difference of sets if we can
show that the following inclusion holds for all τ ∈ R:⋃

i∈I(u,ν)(τ)
Mi(x+ u, η + ν) ⊂

⋃
i∈I(u,ν)(τ)

Mi(x, η). (14)

First note that for all τ we have⋃
i∈I(u,ν)(τ)\{0}

x+ u+Ki ⊂
⋃

i∈I(u,ν)(τ)\{0}

x+Ki (15)

for if it was not true there would be some z̄ contained in the union to the left
side of the inclusion but not in the right. This means there is some index i1 with
z̄ ∈ x+u+Ki1 such that −dᵀi1u−v ≤ τ . Since the cones x+Ki cover the entire space
(cf. Lemma 1 (ii) ) there is some index i2 such that z̄ ∈ x+Ki2 and −dᵀi2u− v > τ .
By using the definition of the sets Ki we arrive at the contradiction

0 ≤ (di1 − di2)ᵀ(z̄ − x− u) = (di1 − di2)ᵀ(z̄ − x)− (di1 − di2)ᵀu

≤ −dᵀi1u+ dᵀi2u = (−dᵀi1u− v) + (dᵀi2u+ v) < τ + (−τ) = 0

Back to (14) we see that this inclusion reduces to (15) in case τ ≥ 0 which was
just discussed. Now let τ < 0 and z̄ ∈ Mi1(x + u, η + ν) for some i1 ∈ I(u, ν)(τ)
which implies z̄ ∈ x+ u+Ki1 , −dᵀi1u− ν ≤ τ < 0 and dᵀi1(z̄ − x− u) ≥ η + ν. This
yields

ϕ(z̄ − x) ≥ dᵀi1(z̄ − x− u) + dᵀi1u > η + ν − ν = η.

Since by (15) we also have z̄ ∈ x+Ki2 for some i ∈ I(u, ν)(τ) we have shown that
z̄ ∈

⋃
i∈I(u,ν)(τ)Mi(x, η) and (14) is proven. We can now replace FY1

− FY2
and

conclude the proof with∫
(FY1

− FY2
)(τ) dτ =

∫
µ
( ⋃
l∈I(u,ν)(τ)

Ml(x, η)
∖ ⋃
l∈I(u,ν)(τ)

Ml(x+ u, η + ν)
)

dτ.

ut

Since QEE is continuously differentiable we can prove (restricted) partial strong
convexity of QEE by showing that (9) (and its restricted counterpart) holds for
QEE , i.e. showing that there exists some κ > 0 with

[Q′EE(x+ u, η + ν)−Q′EE(x, η)](u, ν) ≥ κ ‖u‖2 (16)

for relevant x, η, u, ν.
This is done by restricting the area of integration in (11) to some subset with
measure not smaller than α‖u‖ for some constant α > 0. Then the µ-measure
of the set within the integrand will be estimated from below by constructing a
cylindrical subset with Lebesgue measure not smaller than α′‖u‖ (with some other
constant α′ > 0) and which is contained in V +Bρ(0), where a lower bound on µ’s
Lebesgue-density is available. We begin with the special case employing condition
A6:

Theorem 23 (Partial strong convexity of QEE) Let A1-A6 hold.

Then QEE(x, η) is partially strongly convex on the set Vη0 = V × (−∞, η0] wrt. x.
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Proof Crucially relying on A6 we may assume ν ≥ 0, otherwise substitute x′ =
x + u, η′ = η + ν and u′ = −u, ν′ = −ν and consider u′ and ν′ instead of u and
ν. Since the sets Kl cover the entire space Rs we can pick an index i such that
u ∈ Ki. Note that in condition A5 and the discussion before it, which will come
into play soon, we have I = I+ and K+

l = Kl for all indices l ∈ I.

We shall now construct some η− > 0 and give the desired estimate of (11) for
−∞ < η ≤ η− first. By Lemma 1 (iii) there is some index j different from i such
that

(di − dj)ᵀu ≥ α‖u‖. (17)

Assume that τ ∈ (−dᵀi u − ν,−d
ᵀ
ju − ν). This implies i ∈ I(u, ν)(τ) and is implied

by k ∈ I(u, ν)(τ) for all k with dᵀku > dᵀju. We thus find the inclusion⋃
l∈I(u,ν)(τ)

Ml(x, η)
∖ ⋃
l∈I(u,ν)(τ)

Ml(x+ u, η + ν) ⊃Mi(x, η)
∖ ⋃
{k:dᵀku>d

ᵀ
ju}

Mk(x+ u, η + ν)

(18)

where the set on the right-hand side does not depend on τ anymore. We want to
estimate the µ-measure of this set:

Remember thatKi is a pointed cone and therefore has finitely many facets {F ij}j=1,...,fi

and finitely many extreme-rays {rti,jk | k = 1, . . . , gi,j} adjacent to facet F ij . For
notational convenience set

F+
i,j(x, η) = (x+ F ij ) ∩ {d

ᵀ
i (z − x) ≥ η}.

Intersecting F ij with a hyperplane {dᵀi z = η−} - this really is a hyperplane since i ∈
I+ - yields points {yj1(η−), . . . , yjrj (η

−)} where the hyperplane meets the extreme

rays of Ki adjacent to F ij :

{dᵀi z = η−} ∩Ki = {yj1(η−) . . . , yjrj (η
−)}.

Among all yjk(η−) pick some ŷj(η−) with

‖ŷj(η−)‖ = min{‖yjk(η−)‖ | k = 1, . . . , rj}. (19)

Choose η− > 0 such that

max
j=1,...,fi

‖ŷj(η−)‖ < ρ, (20)

which is possible since ‖ŷj(η−)‖ → 0 as η− → 0+, and let ρ̃ = ρ−maxj=1,...,fi ‖ŷ
j(η−)‖.

For all −∞ < η ≤ η− we can now show the inclusions⋃
0≤λ<1

(
[F+
i,j(x, η

−) ∩Bρ̃(x+ ŷj(η−))] + λu
)
⊂ V +Bρ(0), (21)

⋃
0≤λ<1

(
[F+
i,j(x, η

−) ∩Bρ̃(x+ ŷj(η−))] + λu
)
⊂
(
Mi(x, η)

∖ ⋃
k:dᵀku>d

ᵀ
ju

Mi(x+ u, η + ν)
)
.

(22)
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To this end let x+z+λu with z ∈ F+
i,j(0, η

−)∩Bρ̃(ŷj(η−)) and 0 ≤ λ < 1 be given.
It holds x+ λu ∈ V due to the convexity of V . Furthermore

‖z‖ ≤ ‖z − ŷj‖+ ‖ŷj(η−)‖

≤ ρ̃+ ‖ŷj(η−)‖

= ρ− max
k=1,...,fi

‖ŷjk(η−)‖+ ‖ŷj(η−)‖ ≤ ρ.

It remains to be shown

x+ z + λu ∈Mi(x, η)
∖ ⋃
{k:dᵀku>d

ᵀ
ju}

Mi(x+ u, η + ν).

Due to x+ z ∈ F+
ij

(x, η−) ⊂ x+Ki and u ∈ Ki we have x+ z + λu ∈ x+Ki, since

Ki is a convex cone. We also have

dᵀi (x+ z + λu− x) = dᵀi z + λdᵀi u ≥ η
− + 0 ≥ η,

which establishes x+z+λu ∈Mi(x, η). Let k be any index in I such that dᵀku > dᵀju.
We will show that x+ z + λu does not even lie in x+ u+Kk:

dᵀk(x+ z + λu− x− u) = dᵀkz + (λ− 1)dᵀku

< dᵀj z + (λ− 1)dᵀju = dᵀj (x+ z + λu− x− u)

where we used the fact that z ∈ F ij , implying dᵀkz ≤ d
ᵀ
i z = dᵀj z, and λ < 1.

As the last prerequisite step we want to show that there exists some constant β > 0
such that

λ
( ⋃

0≤λ<1

[F+
i,j(x, η

−) ∩Bρ̃(x+ ŷj(η−))] + λu
)
≥ αβ ‖u‖. (23)

First note that we may as well set x = 0 due to the translation invariance of the
Lebesgue measure. The set is then the Lebesgue measure of a cylindrical set with
bases F+

i,j(0, η
−) ∩Bρ̃(ŷj(η−)) and F+

i,j(0, η
−) ∩Bρ̃(ŷj(η−)) + u.

Let

β = λs−1

(
F+
i,j(0, η

−) ∩Bρ̃(ŷj(η−))
)
> 0. (24)

This constant still depends on the index j which in turn depends on the direction
u ∈ Ki. Since there are only finitely many possible choices of j we can robustify
by picking the minimal β.
The estimate (23) then follows from (17) and Cavalieri’s principle. As a side-remark
- which comes into play when trying to maximize the constant of partial strong
convexity - we note that the function

η− 7→ λs−1

(
F+
i,j(0, η

−) ∩Bρ̃(ŷj(η−))
)

is continuous, monotonically decreasing and tends to λs−1

(
F ij ∩Bρ(0)

)
as η → 0+.
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We have gathered all necessary information to continue in (11) as∫
µ
( ⋃
l∈I(u,ν)(τ)

Ml(x, η)
∖ ⋃
l∈I(u,ν)(τ)

Ml(x+ u, η + ν)
)

dτ

(18)

≥
∫ −dᵀju−ν
−dᵀi u−ν

µ
(
Mi(x, η)

∖ ⋃
{k:dᵀku>d

ᵀ
ju}

Mk(x+ u, η + ν)
)

dτ

(17)

≥ α‖u‖ µ
(
Mi(x, η)

∖ ⋃
{k:dᵀku>d

ᵀ
ju}

Mk(x+ u, η + ν)
)

(22)

≥ α‖u‖
∫
⋃

0≤λ<1[F
+
i,j(x,η

−)∩Bρ̃(x+ŷj(η−))]+λu

θ(z) dz

(21)

≥ α r ‖u‖ λ
( ⋃
0≤λ<1

(
[F+
i,j(x, η

−) ∩Bρ̃(x+ ŷj(η−))] + λu
)

= α r ‖u‖ λ
( ⋃
0≤λ<1

(
[F+
i,j(0, η

−) ∩Bρ̃(ŷj(η−))] + λu
)

(23)

≥ α2 β r ‖u‖2.

In the first inequality the nonnegativity of the integrand and in the only equality
the translation invariance of the Lebesgue measure was used.

Choose now some 0 < η− ≤ η+ with

‖ŷj(η+)‖ = min
k=1,...,fi

‖ŷjk(η+)‖ < ρ (25)

and set

ρ̃ = ρ− ‖ŷj(η+)‖.

Now consider the case η− < η ≤ η+:
We will choose

(
−dᵀi u− ν, 0

)
as the area of integration in (11). As the integration

variable τ satisfies −dᵀi u− ν < τ < 0 we can find a subset of the one in (11) as⋃
k∈I(u,ν)(τ)

Mk(x, η)
∖ ⋃
k∈I(u,ν)(τ)

Mk(x+ u, η + ν) ⊃Mi(x, η)
∖ ⋃
k:−dᵀku−ν<0

Mk(x+ u, η + ν).

(26)

In analogy with the notation used in the previous case set

Fi,0(x, η) = (x+Ki) ∩ {dᵀi (z − x) = η}.

It holds⋃
0≤λ<1

(
[Fi,0(x, η) ∩Bρ̃(x+ ŷi(η))] + λu

)
⊂ V +Bρ(0), (27)

⋃
0≤λ<1

(
[Fi,0(x, η) ∩Bρ̃(x+ ŷi(η))] + λu

)
⊂Mi(x, η)

∖ ⋃
k:−dᵀku−ν<0

Mk(x+ u, η + ν).

(28)



14 M. Claus and K. Spürkel

Inclusion (27) follows the same way as (21). The proof for (28) works similar to
the one for (22) with minor modifications:
Let x+ z + λu with z ∈ Ki ∩ {dᵀi z

′ = η} and 0 ≤ λ < 1. Again x+ z + λu ∈ x+Ki
due to Ki being a convex cone. Furthermore

dᵀi (x+ z + λu− x) = dᵀi z + λdᵀi u ≥ η

because dᵀi z = η and dᵀi u ≥ 0. Thus x + z + λu ∈ Mi(x, η) has been established.
Pick any index k ∈ I with −dᵀku− ν < 0. It holds

dᵀk(x+ z + λu− x− u) = dᵀkz + (λ− 1)dᵀku < η + (λ− 1)dᵀku < η + (1− λ)ν ≤ η + ν,

so we have x+ z+λu /∈Mk(x+u, η+ν). In the last inequality we have used ν ≥ 0.

As the last ingredient we will show that there exist constants α′, β′ > 0

λ
( ⋃
0≤λ<1

(
[Fi,0(0, η−) ∩Bρ̃(ŷi(η−))] + λu

))
≥ α′ β′ ‖u‖ (29)

To this end set

β′ = λs−1

(
Fi,0(0, η−) ∩Bρ̃(ŷi(η−))

)
> 0 (30)

which is positive by construction. Applying Lemma 21 (i) and Cavalier’s principle
yields (29). Having a lower bound on the measure of the set Fi,0(0, η−)∩Bρ̃(ŷi(η−))
is the reason why we need to have to distinct the cases −∞ < η < η− and η− ≤
η ≤ η+ in the first place.
With this we can continue (11) as

(11)
(26)

≥
∫ 0

−dᵀi−ν
µ
(
Mi(x, η)

∖ ⋃
k:−dᵀku−ν<0

Mk(x+ u, η + ν)
)

dτ

(10)

≥ ‖u‖ µ
(
Mi(x, η)

∖ ⋃
k:−dᵀku−ν<0

Mk(x+ u, η + ν)
)

(27)

≥ α′ ‖u‖ µ
( ⋃
0≤λ<1

(
[Fi,0(x, η) ∩Bρ̃(x+ ŷj(η))] + λu

))
= α′ ‖u‖ µ

( ⋃
0≤λ<1

(
[Fi,0(0, η−) ∩Bρ̃(ŷj(η−))] + λu

))
(28)

≥ α′ r ‖u‖ λ
( ⋃
0≤λ<1

(
[Fi,0(0, η−) ∩Bρ̃(ŷj(η−))] + λu

))
(29)

≥ α′2 r β′ ‖u‖2.

As before, nonnegativity of the integrand is used in the first step. Translation in-
variance of the Lebesgue measure is exploited in the only equation.

All constants α, α′, β and β′ computed until now implicitly depend on the index i

for which we have u ∈ Ki. But since the index set I is finite so is the number of
such constants. Choosing minimal constants thus concludes the proof of the first
part. ut
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Fig. 2 Truncated cones for varying η

That fact that the sets Ml(x, η) have a simple geometry, i.e. they are pointed cones
or truncated cones, is one of the key arguments in the proof (cf. Fig. 2 below).
This geometry allowed us to explicitly construct cylindrical sets ((22) resp. (27))
for the estimates needed after (11). The size of these cylindrical sets is dictated by
the model data, e.g. ρ, and a certain degree of freedom when choosing η− and η+.
With a little more effort the constants β and β′ which depend on the choice of η−

and ρ explicitly (and on d1, . . . , dN implicitly) can be maximized to yield a partial
strong convexity constant as large as possible. In principle the modulus of partial
strong convexity resp. of restricted partial strong convexity (in the next theorem)
can thus be computed directly in terms of model data. The remarks after Theorem
2. also apply in the setting of Theorem 23.
As a last remark to the preceding theorem we point out that once a η− > 0 has been
fixed, the arguments in the proof can be modified to show that A6 implies strong
convexity of QEE in both arguments with strong convexity constant depending on
η−.

Next we will consider the more general case when A6 fails to hold and prove
restricted partial strong convexity of QEE wrt. the first argument in the sense of
Definition 2. In the last theorem u and ν varied independently of each other, but
as example 3 shows, we need to make some new assumptions which tie together
u and ν in order for restricted partial strong convexity to hold. This necessitates
more case distinctions and technicalities, mainly due to the following two facts:
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1. The interplay between choosing the area of integration in (11) and constructing
suitable subsets of the set in the integrand become more subtle.

2. The geometry of the sets M+
i can be slightly more complicated.

To avoid being overly repetitive in the proof of the next theorem, we will borrow
notation from the preceeding one and mostly point out where changes need to
be made to the last proof to accomodate the new situation, i.e. where two main
consequences of A6 - being able to reflect to ν ≥ 0 when necessary and the lower
bound on dᵀi u from (10) - were used.
We feel that it is still convenient to separate the two theorems: Firstly, to not ob-
scure the general structure of the proof by even more case distinctions. Secondly,
because most of the discussions in section 3 only make use of Theorem 23 anyway.

We start with some simple geometric observations which apply when A6 is dis-
carded:
Before Theorem 2. we introduced the notation K+

i and I+. For η > 0 we had
observed that for i ∈ I+ the hyperplane {dᵀi z = η} intersects Ki (and also K+

i )
in some of its extreme rays rays. We denote a point of intersection (say with
{r ti | r ≥ 0}) having minimum norm among all such points as ŷi. Assume that ti

has norm 1 and set γ = dᵀi t
i. We then have the estimate

dᵀi u ≤ γ‖u‖ for all u ∈ K+
i . (31)

The hyperplane {dᵀi z = η} also slices Ki into two polyhedra M+
i (0, η) = Ki∩{dᵀi z ≥

η} and M−i (0, η) = Ki ∩ {dᵀi z ≤ η}. Denote with I± indices i ∈ I+ such that both
polyhedra are unbounded - it is I± 6= ∅ if and only if A6 fails to hold - and with
I++ indices in I+ such that only M+

i (0, η) is unbounded - which holds iff there is
some α′ > 0 with

dᵀi u ≥ α
′‖u‖ for all u ∈ Ki. (32)

Obviously I++ ∩ I± = ∅ and I++ ∪ I± = I+.
For i ∈ I± we note that by inequality (31) we can write

K+
i = K++

i ∪K±i (33)

with two full-dimensional polyhedral cones K++
i = K+

i ∩ {u | d
ᵀ
i u ≥ γ′‖u‖} and

K±i = K+
i ∩ {u | d

ᵀ
i u ≤ γ

′‖u‖} (choose for example γ′ = γ
2 ).

Theorem 24 (Restricted partial strong convexity of QEE) Let A1-A5 hold.

Then QEE(x, η) is restricted partially strongly convex on the set

Ω = {(x, η) ∈ Vη0 | η
′ − η ≥ − δ

3
‖y − x‖ ∀(y, η′) ∈ Vη0 : y − x ∈ Ki, i ∈ I+},

where δ = max{α′i, γ
′
j | i ∈ I

++, j ∈ I±} with α′i and γ′j from (32) and (33). For the

definition of Vη0 cf. Theorem 23 above.

Proof Let (x, η), (x+ u, η + ν) ∈ Ω so that we have

ν ≥ − δ
3
‖u‖ (34)
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as required by the definition of Ω. In (16) we may, after a suitable change of
variables, assume that u ∈ K+

i with i ∈ I+ = I++ ∪ I±. We can however not take
ν ≥ 0 as granted. Since the case i ∈ I++ is structurally more similar to the ones
already treated, we shall start with this one. Drawing on condition A5 choose again
0 < η− ≤ η+ so that conditions (20) and (25) are fulfilled. Let us first consider the
case η− ≤ η ≤ η+:
We need to choose the area of integration in (11) differently as before: This time
it shall be

−dᵀi u− ν ≤ τ < −d
ᵀ
i u− ν +

α

3
‖u‖.

Consequently we need to replace (26) by⋃
k∈I(u,ν)(τ)

Mk(x, η)
∖ ⋃
k∈I(u,ν)(τ)

Mk(x+ u, η + ν) ⊃Mi(x, η)
∖ ⋃
k:−dᵀku<

α
3
‖u‖−dᵀi u

Mk(x+ u, η + ν).

Inclusions (27) and (28) must be replaced by⋃
0≤λ< 1

2

(
[Fi,0(x, η) ∩Bρ̃(x+ ŷi(η))] + λu

)
⊂ V +Bρ(0) (35)

⋃
0≤λ< 1

2

(
[Fi,0(x, η) ∩Bρ̃(x+ ŷi(η))] + λu

)
⊂Mi(x, η)

∖ ⋃
k:−dᵀku<

α
3
‖u‖−dᵀi u

Mk(x+ u, η + ν)

(36)

where only⋃
0≤λ< 1

2

(
[Fi,0(x, η) ∩Bρ̃(x+ ŷi(η))] + λu

)⋂ ⋃
k:−dᵀku<

α
3
‖u‖−dᵀi u

Mk(x+ u, η + ν) = ∅

needs justification:
For any 0 ≤ λ < 1

2 , z ∈ Fi,0(x, η) and index k ∈ I with −dᵀku <
α
3 ‖u‖− d

ᵀ
i u it holds

dᵀk(z + λu− x− u) = dᵀk(z − x) + (1− λ)(−dᵀku) ≤ dᵀi (z − x) + (1− λ)(−dᵀku)

= η + (1− λ)(−dᵀku) < η + (1− λ)(
α

3
‖u‖ − dᵀi u)

< η + (1− λ)(
α

3
‖u‖ − α‖u‖) = η + (1− λ)(−2α

3
‖u‖)

≤ η − 1

3
α‖u‖ ≤ η + ν.

With (35) and (36) at hand the remaining estimates are analogous to the ones
made before. The case −∞ < η ≤ η− is identical to the one in (i).

For i ∈ I± we shall construct η− a little different than before.
Let us also assume that the set K−i = Ki ∩ {z | dᵀi z ≤ 0} has nonempty interior.
The other case can be handled in a similar way.
We then find that for η < 0 the hyperplane {dᵀi z = η} intersects the extreme rays

of K− in singletons, let ŷi = ŷi(η) denote one point of intersection with minimum
norm. Choose η− ¡ 0 so that ‖ŷi(η−)‖ < ρ and set ρ̃ = ρ− ‖ŷi(η−)‖.
For arbitrary −∞ < η ≤ η− we see that for all j with dj adjacent to di it holds

(x+ F ij ) ∩B‖ŷi(η−)‖(x) ⊂ F+
i,j(x, η)
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and

λ
(
(x+ Fi,j) ∩B‖ŷi‖(x)

)
> 0.

there first inclusion holding true since ‖ŷi‖(η) is monotonically increasing in η, the
second one bcause η− < 0.

With this and resorting to (17) we can be continue (11) using as area of integration
−dᵀi u− ν < τ < −dᵀju− ν. In (21) and (22) the left hand side needs to be replaced
by ⋃

0≤λ<1

(
(x+ F ij ) ∩B‖ŷi(η−)‖(x) + λu

)
,

everything else is straightforward from thereon.

Now consider η− ≤ η ≤ η+ and - employing (33) - look at the cases
u ∈ K+

i ∩ {d
ᵀ
i u
′ ≤ γ′‖u′‖} and u ∈ K+

i ∩ {d
ᵀ
i u
′ ≥ γ′‖u′‖} separately.

For each of the two cases the area of integration in (11) and estimates for the
integrands (as seen in (18), (21) and (22)) must be done appropriately as demon-
strated before. ut

3 CVaR based models

We shall now discuss implications of the preceding results for models extending
(1) by replacing the expectation-functional with the the conditional value at risk
αCV aR:

min{ αCV aR[h(ξ) + ϕ(z(ω)− Tξ) ] | ξ ∈ X}. (37)

By translation equivariance of αCV aR and the same arguments as above we can
rewrite this problem as

min{ĥ(x) +QαCV aR(x) | x ∈ T (X)} (38)

with

QαCV aR(x) = αCV aR[ϕ(z − x) ]. (39)

Theorem 23 and the discussion after Lemma 9 yields

Theorem 3 (Strong convexity of QαCV aR) Assume A1-A6 (in particular, there

is some η0 > 0 satisfying A5) and the following condition

sup
x∈V

QαV aR(x) ≤ η0. (40)

Then QαCV aR is κ
α -strongly convex on V with κ being the modulus of partial strong

convexity for QEE for η ≤ η0. ut
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Let us make some remarks on this theorem:
Since α 7→ QαV aR(Y ) is nonincreasing for fixed Y , condition (40) will hold
for all α ≤ α′ ≤ 1 if it holds for α. It follows that Qα′CV aR is strongly convex for
all such α′.

There is some heuristic on when one can hope for QαCV aR to be strongly convex:
We have that QαCV aR ≡ QE for α = 1 which is strongly convex given the usual
assumptions made above. If 1 ≥ α ≥ α0 for some α0 which is not too close to 0
condition (40) might still hold. When α→ 0+ the quantity QαV aR(x) will increase
and condition (40) might be violated.

If not on V it might still be possible to show strong convexity on some subset
U of V for two reasons: Firstly, on U conditions A5 is weaker since a larger ρ
can be chosen so that condition A5 holds. Secondly, in (40) we have the obvious
estimate supx∈V QαV aR(x) ≥ supx∈U QαV aR(x). We give an academic example to
illustrate these points in the appendix, cf. example 5 there.

If 0 ∈ V , the following (very rough) upper bound for the value-at-risk might also
be helpful: Set d = maxi∈I ‖di‖, then for any x ∈ U ⊆ V and z ∈ Rs we have

ϕ(z − x) = max
i=1,...,N

dᵀi (z − x) ≤ d‖z‖+ dmax
x∈U

‖x‖.

Thus,

QαV aR(x) ≤ inf
{
t ∈ R | µ({z | ‖z‖ ≤ t

d
−max
x∈U

‖x‖}) ≥ α
}

= d inf
{
t | µ(Bt(0)) ≥ α

}
+ dmax

x∈U
‖x‖.

The above quantity is finite by the tightness of the probability measure µ and the
boundedness of U . Set η̄ := inf {t | µ(Bt(0)) ≥ α}. As direct consequence of the
above considerations, we obtain the following:

Proposition 1 If QEE(·; dη̄ + ε) is κ-strongly convex on V for some ε > 0, then

QαCV aR is strongly convex with modulus κ
α on any nonempty, open, convex U ⊆ V

satisfying

max
x∈U

‖x‖ ≤ ε

d
.

As a consequence of theorem 24 we get

Proposition 2 Assume A1-A5, (40) and the condition

|QαV aR(y)−QαV aR(x)| ≤ δ

3
‖y − x‖

for all x, y ∈ V with δ as defined in theorem 24. Then QαCV aR is κ
α -strongly convex

on V with κ being the modulus of partial strong convexity for QEE for η ≤ η0.



20 M. Claus and K. Spürkel

3.1 Coherent risk measures and spectral risk measures

With verifiable conditions for strong convexity of CVaR-based models at hand, we
shall now consider risk measures that can be represented as mixtures of CVaRs,
so called coherent risk measures. For a general discussion of such functionals we
refer to [2] and [8].

Definition 3 Let Z = L1(Ω,F ,P). A proper function ρ : Z → R is called a coher-
ent risk measure if it satisfies the following four properties:

(1) ρ(tZ + (1− t)Z) ≤ tρ(Z) + (1− t)ρ(Z) for all Z ∈ Z, 0 ≤ t ≤ 1. (Convexity)
(2) ρ(Z) ≤ ρ(Z′) for Z,Z′ ∈ Z such that Z ≤ Z′ holds P-almost surely. (Mono-

tonicity)
(3) ρ(a+ Z) = a+ ρ(Z) for all Z ∈ Z, a ∈ R. (Translation equivariance)
(4) ρ(t Z) = tρ(Z) for all Z ∈ Z, t > 0. (Positive homogeneity)

Theorem 4 (Kusuoka [11]) Assume (Ω,F ,P) is nonatomic and ρ is a law-invariant,

coherent risk measure on Z. Then we have for any Z ∈ Z

ρ(Z) = sup
ν∈M

∫
CV aRα(Z) ν(dα) (41)

where M is a set of probability measures on the interval [0, 1).

As in the preceding paragraphs we consider as probability space (Ω,F ,P) =
(Rs,B(Rs), µ) which clearly is non-atomic due to µ having a Lebesgue-density.
Now consider the random variables Zx(z) = ϕ(z − x) and the induced functional

Qρ : Rs ⊃ V → R, Q(x) = ρ (Zx).

This gives the induced Kusuoka representation

Qρ(x) = sup
ν∈M

∫
QαCV aR(x) ν(dα). (42)

Formula (42) makes theorem 3 applicable to derive sufficient conditions for strong
convexity of Qρ if information on M is available. In the scope of this paper we
shall only investigate comonotonic risk measures appearing in the Kusuoka repre-
sentation as

Qν(x) =

∫
QαCV aR(x) ν(dα)

for some probability measure ν on (0, 1] (cf. [21, Theorem 2]). In particular, we
shall consider measures νg induced by continuous, increasing, concave distortion
functions g : [0, 1]→ [0, 1] with g(0) = 0, g(1) = 1. These are defined on half open
intervals as

νg((0, t]) = g(t)− tg′(t) (43)

if t ∈ (0, 1) and

νg({1}) = lim
t→1−

g′(t) (44)

else (cf. [5] and [8], section 4.6). For a comprehensive treatment of distortion
functions and risk measures we refer to [4], [13] and [23]. Theorem 3 yields criteria
for strong convexity of Qν and Qνg :
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Corollary 1 (Strong convexity for comonotonic risk measures) Assume that

Qα0 CV aR is strongly convex on some nonempty, open convex set V with modulus of

strong convexity κ for some 0 < α0 < 1 and that the following inequality is fulfilled:

c = ν((α0, 1]) > 0. (45)

Then Qν is strongly convex on V with modulus κ c. If ν = νg is generated by a distortion

function, condition (45) is equivalent to

c = 1− g(α0) + α0g
′(α0) > 0. (46)

Proof Let x, y ∈ V and 0 < λ < 1. By splitting the integral into two and using
convexity resp. strong convexity of the integrands we get

Qν(λx+ (1− λ)y) =

∫
(0,1]

QαCV aR(λx+ (1− λ)y) ν(dα)

=

∫
(0,α0]

QαCV aR(λx+ (1− λ)y) ν(dα) +

∫
(α0,1]

QαCV aR(λx+ (1− λ)y) ν(dα)

≤ λ
∫
(0,α0]

QαCV aR(x) ν(dα) + (1− λ)

∫
(0,α0]

QαCV aR(y) ν(dα)

+ λ

∫
(α0,1]

QαCV aR(x) ν(dα) + (1− λ)

∫
(α0,1]

QαCV aR(y) ν(dα)

− κ

2
λ(1− λ)‖x− y‖2ν((α0, 1])

= λ

∫
(0,1]

QαCV aR(x) ν(dα) + (1− λ)

∫
(0,1]

QαCV aR(y) ν(dα)

− κ

2
λ(1− λ)‖x− y‖2ν((α0, 1])

≥ λQν(x) + (1− λ)Qν(y)− κ c

2
λ(1− λ)‖x− y‖2.

For distortion risk measures we have

νg((α0, 1]) = νg((0, 1] \ (0, α0]) = νg((0, 1])− νg((0, α0])

= 1− (g(α0)− α0 g
′(α0)) = 1− g(α0) + α0 g

′(α0) = c > 0,

which completes the proof. ut

To illustrate Corollary 1, we shall discuss condition (46) for various distortion
functions.

The expectation is generated by the distortion function gE(t) := t. By 1 − g(t) +
tg′(t) = 1 for all t, condition (46) is fulfilled with c = 1. However, the assumption
of strong convexity of Qα0CV aR for some α0 ∈ (0, 1) is generally more restrictive
than the assumptions of Theorem 1.

The distortion function associated with the conditional value at risk QαCV aR is
defined by gαCV aR(t) := min{ tα , 1}. We have

1− gαCV aR(t) + tg′αCV aR(t) =

{
1, for t ≤ α
0, for t > α

.
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Thus, (46) does not constitute an additional assumption for the conditional value
at risk.

The Wang Transform distortion is given by gβWT (t) := Φ(Φ−1(x) − β), where
β > 0 is a parameter and Φ denotes the cdf. of the standard normal distribution
(cf. [28]). For arbitrary t ∈ (0, 1), we calculate

1− gβWT (t) + tg′βWT (t) = 1− gβWT (t)︸ ︷︷ ︸
≤1

+t exp(−βt− 1

2
β2)︸ ︷︷ ︸

>0

> 0.

Consequently, condition (46) is always fulfilled for the Wang Transform.

The mappings gγ PH(t) := tγ with γ ∈ (0, 1] form the parametrized familiy of
Proportional Hazard distortion functions. For any feasible γ and any t ∈ (0, 1), we
have

1− gγ PH(t) + tg′γ PH(t) = 1− (1− γ)tγ > 0,

which means that condition (46) holds for any Proportional Hazard distortion
function.

The Lookback distortion is given by gγ LB(t) := tγ(1− γ ln(t)), where γ ∈ (0, 1] is
a parameter. For any t ∈ (0, 1), we calculate

1− gγ LB(t) + tg′γ LB(t) = 1− tγ(1 + γ ln(t)(1− γ)) > 0.

Thus, condition (46) is fulfilled.

4 Stability

While we have only considered QαCV aR and Qνg as functions of the first-stage
decision variable x so far, these quantities also depend on the underlying prob-
ability measure µ. In stochastic programming, incomplete information about the
true underlying distribution or the need for computational efficiency may lead to
optimisation models that employ an approximation of µ. Stability analysis deals
with the behaviour of optimal values and optimal solution sets of the perturbed
models in comparison to the original one.

First, we shall recall some relevant results concerning stability and strong convexity
of abstract parametric programs of the form

P(t) min
x
{g(x, t) | x ∈ X(t)}

where g : Rn × T → R and X : T ⇒ Rn are functions and t varies in some
metric space (T ,dT ). With inequality constraints and differentiable data, stability
analysis for (P(t)) goes back to Alt [1], while a more general setting is considered
by Klatte in [10]. For constant feasible set X(t) ≡ X ⊆ Rn for all t ∈ T , a proof of
the following result is also given in [19].
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Lemma 3 Let X be some nonempty, closed, convex subset of Rn and consider the

mapping Ψ : T ⇒ Rn given by

Ψ(t) := Argminx{g(x, t) | x ∈ X}.

Suppose that t0 ∈ T is such that the following conditions are satisfied:

S1 g(·, t) is convex for all t in a neighborhood of t0.

S2 There exists a bounded open set Q ⊂ Rn such that Φ(t0) ⊆ Q.

S3 There exist x0 ∈ Ψ(t0) and α : Rn → [0,∞) such that α(0) = 0 and

g(x, t0) ≥ g(x0, t0) + α(x− x0) ∀x ∈ X ∩ cl Q. (47)

S4 There exists a constant L > 0 such that

|g(x, t)− g(x, t0)| ≤ LdT (t, t0) (48)

holds for all x ∈ cl Q and all t in a neighborhood of t0.

Then there exists a neighborhood of t0 on which we have Ψ(t) 6= ∅ and

sup
x∈Ψ(t)

α(x− x0) ≤ 2LdT (t, t0). (49)

In the presence of strong convexity, assumptions S2 - S4 above can be weakened.

Lemma 4 Let X ⊆ Rn be nonempty, closed and convex and suppose that t0 ∈ T is

such that S1 and the following conditions are satisfied:

C1 g(·, t0) is κ-strongly convex on some open convex set V with Ψ(t0) ∩ V 6= ∅.
C2 There is a constant L > 0 such that (48) holds for all t in a neighborhood of t0

and all x in a neighborhood of Ψ(t0).

Then there exists a neighborhood of t0 on which we have Ψ(t) 6= ∅ and

dH(Ψ(t0), Ψ(t)) ≤ 2

√
L

κ
dT (t, t0).

Proof Conditions S1 and C1 imply that Ψ(t0) is a singleton {x0} ⊂ V . By C2
and the openess of V , there thus exist constants L > 0 and r > 0 such that (48)
holds for all t in a neighborhood of t0 and all x ∈ cl Br(x0) ⊂ V . In particular,
setting Q := Br(x0), assumptions S2 and S4 of Lemma 3 are fulfilled. By C1,
gt0(·) := g(·, t0) is κ-strongly convex on V and [9, Proposition 4.2] yields

gt0(x) ≥ gt0(x0) + d>(x− x0) +
1

2
κ‖x− x0‖2 (50)

for all d ∈ ∂gt0(x0) and all x ∈ V . As x0 minimizes g(·, t0) over X, there is a
subgradient d0 ∈ ∂gt0(x0) such that d>0 (x − x0) is nonnegative for all x ∈ X.
Consequently, (50) implies

gt0(x) ≥ gt0(x0) +
1

2
κ‖x− x0‖2

for all x ∈ X ∩ Q. Choosing α(·) := 1
2κ‖ · ‖ we obtain S3. Lemma 3 yields the

existence of a neighborhood T0 of t0 on which Ψ(t) 6= ∅ and (49) hold. Thus,

dH(Ψ(t0), Ψ(t)) = sup
x∈Ψ(t)

‖x− x0‖ ≤ 2

√
L

κ
dT (t, t0)

holds for all t ∈ T0.
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Returning to stochastic programming models, we shall endow the parameter space
of Borel probability measures on Rs with finite moments of order p ≥ 1

Mp
s := {µ ∈ P(Rs) |

∫
Rs
‖t‖p µ(dt) <∞}

with the p−th order Wasserstein distance (cf. [16], [26] and [27])

Wp(µ, ν) := inf
κ

{∫
Rs×Rs

‖v−ṽ‖p κ(d(v, ṽ)) | κ ∈ P(Rs×Rs), κ◦π−1
1 = µ, π−1

2 = ν
} 1
p
.

To make the dependence of QαCV aR on the underlying measure explicit, we shall
consider the mapping QαCV aR : Rs ×M1

s → R definded by

QαCV aR(x, µ) := min
η∈R

η +
1

α

∫
Rs

max{0, ϕ(z − x)− η} µ(dz).

Let g : [0, 1] → [0, 1] be some continuous, increasing, concave distortion function
with g(0) = 0, g(1) = 1 such that the mapping Qνg : Rn ×Mp

s → R,

Qνg (x, µ) =

∫ 1

0

QαCV aR(x, µ) ν(dα)

with νg ∈ P((0, 1]) given by (43) and (44) is well defined. We shall consider the
parametric optimisation problem

P(µ) min
x
{ĥ(x) +Qνg (x, µ) | x ∈ T (X))},

where X is some subset of Rn, T : Rn → Rs is linear and the mapping ĥ is given
by (4). Let Ψg :Mp

s ⇒ Rn,

Ψg(µ) := Argminx{ĥ(x) +Qνg (x, µ) | x ∈ T (X))}

denote the optimal solution set mapping of (P(µ)).

Theorem 5 (Quantitative Stability of (P(µ))) Let X ⊆ Rn be nonempty, closed

and convex and let µ0 ∈ Mp
s be such that Qνg (·, µ0) is κ-strongly convex on some

nonempty, open convex set V satisfying Ψg(µ0) ∩ V 6= ∅. Furthermore, assume that

L :=

∫ 1

0

1

(1− α)
1
p

νg(dα) <∞.

is finite. Then there exists a constant r > 0 such that for any µ ∈ Mp
s satisfying

dp(µ, µ0) ≤ r we have Ψg(µ) 6= ∅ and

dH(Ψg(µ0), Ψg(µ)) ≤ 2

√
L ·maxi∈I ‖di‖

κ
· dp(µ0, µ).

Proof By [15, Corollary 12], the first part of Lemma 1 and finiteness of L imply

|Qνg (µ)−Qνg (µ′)| ≤ L ·max
i∈I
‖di‖ · dp(µ, µ′)

for any µ, µ′ ∈Mp
s . In addition, the linearity of T implies that T (X) is nonempty,

closed and convex. The result is thus a direct consequence of Lemma 4.
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5 Appendix

Example 2: Details

QEE(x1, x2) =

∫ 1

0

∫ 1

0

max{0,max{0, z1 − x1, z2 − x2} − η}dz1dz2

=

∫ x2

0

∫ 1

x1

max{0, z1 − x1 − η}dz1dz2 (A)

+

∫ x1

0

∫ 1

x2

max{0, z2 − x2 − η}dz2dz1 (A’)

+

∫ 1

x2

∫ 1

x1

max{0,max{z1 − x1, z2 − x2} − η}dz1dz2 (B)

We directly get

(A) =
1

2
x2(1− x1 − η)2

(A′) =
1

2
x1(1− x2 − η)2.

The calculation of (B) is a little more involved:

(B) =

∫ 1+x2−x1

x2

∫ 1

x1+z2−x2

max{0, z1 − x1 − η}dz1dz2 (C)

+

∫ 1+x2−x1

x2

∫ x1+z2−x2

x1

max{0, z2 − x2 − η}dz1dz2 (C’)

+

∫ 1

1+x2−x1

∫ 1

x1

max{0, z2 − x2 − η}dz1dz2 (C”)

For the treatment of (C) use that x1 + η ≤ 1 which implies x2 + η ≤ 1:

(C) =

∫ 1+x2−x1

x2

∫ 1

x1+z2−x2∨x1+η

z1 − x1 − η dz1dz2

=

∫ x2+η

x2

∫ 1

x1+η

z1 − x1 − η dz1dz2

+

∫ 1+x2−x1

x2+η

∫ 1

x1+z2−x2

z1 − x1 − η dz1dz2

=
1

2
η (1− x1 − η)2 +

1

2

∫ 1+x2−x1

x2+η

(1− x1 − η)2 − (z2 − x2 − η)2 dz2

=
1

2
η (1− x1 − η)2 +

1

3
(1− x1 − η)3.
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(C′) =

∫ 1+x2−x1

x2

(z2 − x2) max{0, z2 − x2 − η}dz2

=

∫ 1+x2−x1

x2+η

(z2 − x2)(z2 − x2 − η) dz2

=

∫ 1−x1−η

0

(z′2 + η)z′2 dz′2

=
1

3
(1− x1 − η)3 +

1

2
η(1− x1 − η)2.

We thus get

(C) + (C′) =
2

3
(1− x1 − η)3 + η(1− x1 − η)2,

(C′′) =

∫ 1

1+x2−x1

(1− x1) max{0, z2 − x2 − η}dz2

=

∫ 1

1+x2−x1

(1− x1)(z2 − x2 − η) dz2

=
1

2
(1− x1)[(1− x2 − η)2 − (1− x1 − η)2].

Proof of Lemma 9:

Proof We shall first show that (9) implies

f(x2, y2)− f(x1, y1) ≥ c‖x1 − x2‖2 + f ′(x1, y1)(x2 − x1, y2 − y1) (51)

Set tk = k
m+1 for k = 0, . . . ,m+ 1 and some arbitrary integer m. Let z1 = (x1, y1)

and z2 = (x2, y2). By the mean-value theorem we get tk < sk < tk+1 such that

f(z1 + tk+1(z2 − z1))− f(z1 + tk(z2 − z1))

= f ′(z1 + sk(z2 − z1))(tk+1 − tk)(z2 − z1).

This yields

f(z2)− f(z1) =
m∑
k=0

[f(z1 + tk+1(z2 − z1))− f(z1 + tk(z2 − z1))]

=
m∑
k=0

[f ′(z1 + sk(z2 − z1))− f ′(z1)](tk+1 − tk)(z2 − z1) + f ′(z1)(z2 − z1)

≥ κ‖x2 − x1‖2
m∑
k=0

(tk+1 − tk)sk + f ′(z1)(z2 − z1).

Since we have

m∑
k=0

(tk+1 − tk)sk ≥
m∑
k=0

(tk+1 − tk)tk =
1

(m+ 1)2

m∑
k=0

k =
m

2(m+ 1)
→ 1

2
, m→∞
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this shows (51) which is the same as

f(z2)− f(z1) ≥ f ′(z1)(z2 − z1) +
κ

2
‖x2 − x1‖2. (52)

Now let z = λz1 + (1− λ)z2. (52) yields

f(z1)− f(z) ≥ f ′(z)(z1 − z) +
κ

2
‖x1 − [λx1 + (1− λ)x2]‖2

f(z2)− f(z) ≥ f ′(z)(z2 − z) +
κ

2
‖x2 − [λx1 + (1− λ)x2]‖2.

Multiplying by λ and (1− λ) respectively and adding up gives

λf(z − 1) + (1− λ)f(z2)− f(z)

≥ f ′(z)[λ(z1 − z) + (1− λ)(z2 − z)] +
κ

2

[
λ‖x1 − [λx1 + (1− λ)x2]‖2+

(1− λ)‖x2 − [λx1 + (1λ)x2]‖2
]

=
κ

2
λ(1− λ)‖x1 − x2‖2

due to the first bracketed term vanishing. Rearranging terms yields (8).

Example 5 We compute the αCV aR for an elementary example via representation
(6).
Consider ϕ(t) = max{t,−t}, µ = 1

2U|(0,1) + 1
2U|(1.5,2.5), x ∈ (0, 1) and η > 0:

For the expected excess we get

4QEE(x, η) =



(x− η)2 + (1− x− η)2+

+(5
2 − x− η)2 − (3

2 − x− η)2 0 ≤ x− η ≤ x+ η ≤ 1,

(1− x− η)2 + (5
2 − x− η)2−

−(3
2 − x− η)2 x− η ≤ 0 ≤ x+ η ≤ 1,

(5
2 − x− η)2 − (3

2 − x− η)2 x− η ≤ 0 ≤ 1 ≤ x+ η ≤ 3
2 ,

(5
2 − x− η)2 x− η ≤ 0 ≤ 3

2 ≤ x+ η ≤ 5
2 ,

(x− η)2 + (5
2 − x− η)2−

−(3
2 − x− η)2 0 ≤ x− η ≤ 1 ≤ x+ η ≤ 3

2 ,

(x− η)2 + (5
2 − x− η)2 0 ≤ x− η ≤ 3

2 ≤ x+ η ≤ 5
2 ,

0 x− η ≤ 0 ≤ 5
2 ≤ x+ η.

In order to calculate QαV aR(x) we first compute

µ(ϕ(z − x) ≤ t)

=
1

2
U| (0,1)([x− t, x+ t]) +

1

2
U| (1.5,2.5)([x− t, x+ t])

=



t, 0 ≤ x− t ≤ x+ t ≤ 1,
1
2 (x+ t), x− t ≤ 0 ≤ x+ t ≤ 1,
1
2 + 1

2 (x+ t− 3
2 ), x− t ≤ 0 ≤ 3

2 ≤ x+ t ≤ 5
2 ,

1
2 (1− x+ t), 0 ≤ x− t ≤ 1 ≤ x+ t ≤ 3

2 ,
1
2 (1− x+ t) + 1

2 (x+ t− 3
2 ), 0 ≤ x− t ≤ 3

2 ≤ x+ t ≤ 5
2 ,

1, x− t ≤ 0 ≤ 5
2 ≤ x+ t.
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For given x and α now determine the minimal t∗ for which µ(ϕ(z−x) ≤ t) ≥ 1−α,
i.e. t∗ = QαV aR(x). For 0 < α < 1

4 we get QαV aR(x) > 1 on the entire set V ,
plugging this into (6) exhibits QαCV aR to be nowhere strongly convex on V . For
values of α close to 1 and x close to 0 one also sees QαCV aR failing to be strongly
convex. This is due to the fact that QαV aR is decreasing in a neighborhood of 0.
For 1

4 < α < 1
2 one can show strong convexity on U = (5

4 − α, 1).
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