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HYPERCONTRACTIONS AND FACTORIZATIONS OF MULTIPLIERS IN

ONE AND SEVERAL VARIABLES

MONOJIT BHATTACHARJEE, B. KRISHNA DAS, AND JAYDEB SARKAR

Abstract. We introduce the notion of characteristic functions for commuting tuples of hy-
percontractions on Hilbert spaces, as a generalization of the notion of Sz.-Nagy and Foias
characteristic functions of contractions. We present an explicit method to compute character-
istic functions of hypercontractions and relate characteristic functions by means of the factors
of Schur-Agler class of functions and universal multipliers on the unit ball in Cn. We also
offer some factorization properties of multipliers. Characteristic functions of hypercontrctions
are complete unitary invariant. The Drury-Arveson space and the weighted Bergman spaces
on the unit ball continues to play a significant role in our consideration. Our results are new
even in the special case of single hypercontractions.

1. Introduction

One of the important aspects of the classical Sz.-Nagy and Foias theory [15] is that in
order to understand non-self adjoint bounded linear operators on Hilbert spaces, one should
also study (analytic) function theory. For instance, if T is a pure contraction on a Hilbert
space H (that is, ‖Th‖H ≤ ‖h‖H and ‖T ∗qh‖ → 0 as q → ∞ and for all h ∈ H), then there
exist a (coefficient) Hilbert space E and an M∗

z -invariant closed subspace Q (model space)
of H2

E(D) such that T ∗ and M∗
z |Q are unitarily equivalent. Here Mz is the multiplication

operator by the coordinate function z (or, shift) on the E-valued Hardy space H2
E(D) over the

open unit disc D. Moreover, Q is uniquely determined by the characteristic function of T
in an appropriate sense. The Sz.-Nagy and Foias characteristic function of a contraction is a
canonical operator-valued analytic function on D and a complete unitary invariant.

This says, on the one hand, pure contractions on Hilbert spaces dilates to shifts on vector-
valued Hardy spaces over the unit disc, and on the other hand, the model spaces (as Hilbert
subspaces of vector-valued Hardy spaces) are explicitly and uniquely determined by charac-
teristic functions.

In this context, it should be remembered that the concept of Sz.-Nagy and Foias “dilations
and analytic model theory”, as above, is most useful in operator theory having important
applications in various fields. This has had an enormous influence on the development of
operator theory and function theory in one and several variables. Needless to say, one goal of
multivariable operator theory and function theory of several complex variables is to examine
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whether commuting tuples of contractions on Hilbert spaces admit analytic models as nice as
Sz.-Nagy and Foias analytic models for contractions.

Following Sz.-Nagy and Foias, Agler, in his seminal papers [1, 2], introduced a dilation
theory for m-hypercontractions: A pure m-hypercontraction dilates to shift on a vector-
valued m-weighted Bergman space over the unit disc in C. Agler’s idea was further gen-
eralized by Muller and Vasilescu [14] to commuting tuples of operators: A pure n-tuple of
m-hypercontraction dilates to n-shifts on a vector-valued m-weighted Bergman space over the
unit ball in Cn (see Section 2 for more details).

This paper concerns a complete unitary invariant, namely characteristic functions, one of
the basic questions which center around the Agler, and Muller and Vasilescu’s dilation theory,
of commuting tuples of pure m-hypercontractions on Hilbert spaces.

The problem of characteristic functions for hypercontractions and wandering subspaces of
shift invariant subspaces of weighted Bergman spaces in one-variable goes back to Olofsson
[16, 17] (also see Ball and Bolotnikov [6]). Then in [10], Eschmeier examined Olofsson’s
approach in several variables (also see Popescu [19]). However, Eschmeier’s approach to
characteristic functions appears to be more abstract than the familiar characteristic functions
of single contractions or row contractions [9].

Here we take a completely different approach to this problem. Namely, to each pure m-
hypercontraction on a Hilbert space, we associate a canonical triple consisting of a Hilbert
space and two bounded linear operators, and refer to this triple as a characteristic triple
of the pure m-hypercontraction. The characteristic function of a pure m-hypercontraction,
completely determined by a characteristic triple, is an operator-valued analytic function on
the open unit ball in Cn. Characteristic triple of a pure m-hypercontraction is unique up to
unitary equivalence (in an appropriate sense), which also yields that the characteristic function
is a complete unitary invariant. We prove that the joint invariant subspaces of a pure m-
hypercontraction is completely determined by the factors of the characteristic function. Unlike
the case of 1-hypercontractions (or row contractions) [9], the characteristic function of a pure
m-hypercontraction does not admit a transfer function realization. However, we prove that
the characteristic function of pure m-hypercontraction can be (canonically) represented as
a product of a universal multiplier and a transfer function (or a Drury-Arveson multiplier).
This result is a byproduct of a general factorization theorem for contractive multipliers from
vector-valued Drury-Arveson spaces to a class of reproducing kernel Hilbert spaces on Bn.
The general factorization theorem for contractive multipliers also yields parametrizations of
wandering subspaces of the joint shift invariant subspaces of reproducing kernel Hilbert spaces.

The results and the method we introduce here seems to be new even in the single hyper-
contractions case.

We now describe our main results more precisely. Let m and n be natural numbers, Zn
+ be

the set of n-tuples of non-negative integers, that is

Z
n
+ = {k = (k1, . . . , kn) : k1, . . . , kn ∈ Z+},

and let

B
n = {z = (z1, . . . , zn) ∈ C

n :

n
∑

i=1

|zi|
2 < 1},
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the open unit ball in Cn. We denote by H, K, E etc. as separable Hilbert spaces over C, and
by B(H) the set of all bounded linear operators on H.
Unless otherwise stated, T will always mean a commuting n-tuple of bounded linear operators
{T1, . . . , Tn} on some Hilbert space H. We also adopt the following notations:

T k = T k1
1 · · ·T kn

n and T ∗k = T ∗k1
1 · · ·T ∗kn

n ,

and the multinomial coefficient ρm(k) as

(1.1) ρm(k) =
(m+ |k| − 1)!

k!(m− 1)!
,

and

(1.2) ρ0(k) =

{

1 if k = 0

0 otherwise,

for all k ∈ Zn
+. We say that T is a row contraction if the row operator (T1, . . . , Tn) : H

n → H,
denoted again by T and defined by

T (h1, . . . , hn) =
n

∑

i=1

Tihi (hi ∈ H),

is a contraction. More generally, if we define the completely positive map σT : B(H) → B(H)
by

σT (X) =

n
∑

i=1

TiXT
∗
i (X ∈ B(H)),

then T is said to be an m-hypercontraction if

(IB(H) − σT )
p(IH) ≥ 0,

for p = 1, m. Note that T is an 1-contraction if and only if T is a row contraction (cf. [5]). It
is now immediate that

(1.3) (IB(H) − σT )
p(IH) =

p
∑

j=0

(−1)j
(

p

j

)

∑

|k|=j

ρ1(k)T
kT ∗k.

With this notation we get the following interpretation of hypercontractions: T is an m-
hypercontraction if and only if T is a row contraction (that is, (IB(H) − σT )(IH) ≥ 0) and
(IB(H) − σT )

m(IH) ≥ 0. For each m-hypercontraction T on H, we set the defect operator

Dm,T ∗ as

Dm,T ∗ =
[

(IB(H) − σT )
m(IH)

]
1

2 ,

and the defect space Dm,T ∗ as

Dm,T ∗ = ranDm,T ∗ .

An m-hypercontraction T is said to be pure (cf. [10, 14, 19]) if the strong operator limit of
σ
p
T (IH) is 0 as p→ ∞.
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Now let T = (T1, . . . , Tn) be a commuting n-tuple of pure m-hypercontraction on a Hilbert
spaceH. After reviewing the basic definitions and results of the theory ofm-hypercontractions
in Section 2, we prove the existence of a canonical contraction Cm,T : H → l2(Zn

+,Dm,T ∗), a
Hilbert space E , and bounded linear operators B ∈ B(E ,Hn) and D ∈ B(E , l2(Zn

+,Dm,T ∗))
such that the operator matrix

U =

[

T ∗ B

Cm,T D

]

: H⊕ E → Hn ⊕ l2(Zn
+,Dm,T ∗),

is unitary (see Theorem 2.1).
The triple (E , B,D) is referred to as a characteristic triple of T . The characteristic function

of T corresponding to the triple (E , B,D) is the B(E ,Dm,T ∗)-valued analytic function

ΦT : Bn → B(E ,Dm,T ∗),

defined by

ΦT (z) =
∑

k∈Zn
+

√

ρm−1(k)Dkz
k +Dm,T ∗(IH − ZT ∗)−mZB

(

z ∈ B
n
)

,

where Z = (z1IH, . . . , znIH) for all z ∈ Bn, Dk, k ∈ Zn
+, is the k-th entry of the “column

matrix” D (see (3.1) for more details).
The operator-valued analytic function ΦT may be viewed as a counterpart of Sz.-Nagy and

Foias characteristic functions for contractions. Indeed, in Theorem 3.1 in Section 3, we prove
that ΦT defines a partially isometric multiplier fromH2

n(E), the E-valued Drury-Arveson space
over the open unit ball Bn [5], to Hm(B

n,Dm,T ∗), the Dm,T ∗-valued weighted Bergman space
over Bn. Moreover,

Hm(B
n,Dm,T ∗)⊖ ΦT H

2
n(E),

is the model space of the pure m-hypercontraction T in the sense of Muller and Vasilescu [14].
Section 4 deals with universal multipliers corresponding to weight sequences and parame-

terizations of wandering subspaces of commuting tuples of shift operators. In Theorem 4.2
we prove that any multiplier from a vector-valued Drury-Arveson space to a (class of) vector-
valued reproducing kernel Hilbert space on Bn can be factored as a product of a universal
multiplier (which depends only on the kernel function and coefficient Hilbert space) and a
Schur-Agler class of functions. We also point out that the unique factorization property holds
in the setting of “inner” functions in several variables (see Theorem 4.3). Then, in Section 5,
we turn to a canonical factorization of ΦT . Recall that [3] given Hilbert spaces E and F and
an analytic function Θ : Bn → B(E ,F), Θ is a contractive multiplier from H2

n(E) to H
2
n(F) if

and only if there exist auxiliary Hilbert space H and a unitary

W : H⊕ E →
(

n
⊕

i=1

H
)

⊕ F ,

such that, writing W as

W =

[

A B

C D

]

,
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one has the following transfer function realization (cf. [3])

Θ(z) = D + C(IH − ZA)−1ZB (z ∈ B
n).

In Theorem 5.1, we prove that ΦT factors through a (canonical) transfer function. More
specifically

ΦT (z) = Ψβ(m),Dm,T∗ (z)Φ̃T (z),

where

Φ̃T (z) = D + Cm,T (IH − ZT ∗)−1ZB,

is the transfer function of the unitary matrix U corresponding to (E , B,D), and

Ψβ(m),Dm,T∗ (z) =







[

· · ·
√

ρm−1(k)z
kIDm,T∗ · · ·

]

k∈Zn
+

if m ≥ 2
[

ID1,T∗ 0 0 · · ·
]

if m = 1,

for all z ∈ B
n. Here Ψβ(m),Dm,T∗ is the universal multiplier from H2

n(l
2(Zn

+,Dm,T ∗)) to
Hm(B

n,Dm,T ∗). In the final section, Section 6, we link up our results with characteristic
functions of pure row contractions [9].

2. Preliminaries and Characteristic triples

We begin by exploring natural examples of pure m-hypercontractions. Let p be a natural
number, and let

Kp(z,w) = (1−
n

∑

i=1

ziw̄i)
−p (z,w ∈ B

n).

Then Kp is a positive-definite kernel on Bn. Denote by Hp the reproducing kernel Hilbert
space (of scalar-valued analytic functions on Bn) corresponding to the kernel Kp. If w ∈ Bn,
then we let Kp(·,w) denote the function in Hp defined by

(Kp(·,w))(z) = Kp(z,w) (z ∈ B
n).

Given a Hilbert space E , we denote by Hp(B
n, E) the reproducing kernel Hilbert space corre-

sponding to the B(E)-valued kernel

(z,w) 7→ Kp(z,w)IE ,

on B
n. We simply write Hp instead of Hp(B

n,C) if E = C. Note that for z ∈ B
n, we have (cf.

page 983, [14])

(1−

n
∑

i=1

zi)
−p =

∑

k∈Zn
+

ρp(k)z
k,

where zk = zk11 · · · zknn for all k ∈ Zn
+. Then

Hp(B
n, E) = {f =

∑

k∈Zn
+

akz
k ∈ O(Bn, E) : ‖f‖2 :=

∑

k∈Zn
+

‖ak‖
2
E

ρp(k)
<∞}.
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In particular, H1(B
n, E), Hn(B

n, E) and Hn+1(B
n, E) represents the well-known E-valued

Drury-Arveson space, the Hardy space and the Bergman space over Bn, respectively. More-
over, for each p > n+1, Hp(B

n, E) is an E-valued weighted Bergman space over Bn (cf. [23]).
Following standard notation, we denote the Drury-Arveson space H1(B

n, E) by H2
n(E). Again,

if E = C, then we simply denote H2
n(C) by H

2
n.

An easy computation shows that (Mz1, . . . ,Mzn), the commuting tuple of multiplication oper-
ators by the coordinate functions {z1, . . . , zn}, defines a purem-hypercontraction onHp(B

n, E)
for all m ≤ p.
To simplify the notation, we often identify Hp⊗E with Hp(B

n, E) via the unitary map defined
by z

k ⊗ η 7→ z
kη, for all k ∈ Zn

+ and η ∈ E . As a consequence, we can identify Mz ⊗ IE on
Hp ⊗ E with Mz on Hp(B

n, E) (as tuples of operators).
Recall that a holomorphic map Φ : Bn → B(E1, E2), for some Hilbert spaces E1 and E2, is

said to be a multiplier from H2
n(E1) to Hm(B

n, E2) if

Φf ∈ Hm(B
n, E2),

for all f ∈ H2
n(E1). We denote by M(H2

n(E1),Hm(B
n, E2)) the set of all multipliers from

H2
n(E1) to Hm(B

n, E2). Note also that a multiplier Φ ∈ M(H2
n(E1),Hm(B

n, E2)) gives rise to a
bounded linear operator

MΦ : H2
n(E1) → Hm(B

n, E2), f 7→ Φf,

known as the multiplication operator corresponding to Φ. Multipliers can be characterized
as follows: Let X ∈ B(H2

n(E1),Hm(B
n, E2)). Then X ∈ M(H2

n(E1),Hm(B
n, E2)) if and only if

X(Mzi ⊗ IE1) = (Mzi ⊗ IE2)X,

for all i = 1, . . . , n. For more details about multipliers on reproducing kernel Hilbert spaces
in our present context, we refer to [21].

Finally, recall also that if T is a pure m-hypercontraction on H, then the canonical dilation
map (see [8], and also see [14]) Πm : H → Hm(B

n,Dm,T ∗), defined by

(2.1) (Πmh)(z) = Dm,T ∗(IH − ZT ∗)−mh (h ∈ H, z ∈ B
n),

is an isometry and

ΠmT
∗
i =M∗

zi
Πm,

for all i = 1, . . . , n, where Z : Hn → H is the row contraction Z = (z1IH, . . . , znIH), z ∈ Bn.
In particular, if

Qm,T = ΠmH,

then Qm,T , the canonical model space corresponding to T , is a joint (M∗
z1
, . . . ,M∗

zn
)-invariant

subspace and (PQm,T
Mz1 |Qm,T

, . . . , PQm,T
Mz1 |Qm,T

) on Qm,T and (T1, . . . , Tn) on H are uni-
tarily equivalent (see [14, 21]). This shows, in particular, that pure m-hypercontractions on
Hilbert spaces are precisely (in the sense of unitary equivalence) the compressions of Mz to
joint co-invariant subspaces of vector-valued Hm-spaces.
On the other hand, Sm,T , the canonical invariant subspace corresponding to T , defined by

Sm,T = Hm(B
n,Dm,T ∗)⊖ΠmH,
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is a joint (Mz1 , . . . ,Mzn)-invariant subspace of Hm(B
n,Dm,T ∗), and hence by a Beurling-Lax-

Halmos type theorem (see [21, Theorem 4.4]) it follows that

(2.2) Sm,T = ΦH2
n(E),

for some Hilbert space E and a partially isometric multiplier Φ ∈ M(H2
n(E),Hm(B

n,Dm,T ∗)).
We turn now to the main content of this section. Let T be a pure m-hypercontraction on

H. Since

〈zk, zl〉Hm
=

1

ρm(k)
δk,l,

for all k, l ∈ Z
n
+, and the canonical dilation map Πm is an isometry, that is, Π∗

mΠm = IH, and

(Πmh)(z) =
∑

k∈Zn
+

ρm(k)(Dm,T ∗T ∗kh)zk (z ∈ B
n, h ∈ H),

it follows that

(2.3)
∑

k∈Zn
+

ρm(k)T
kD2

m,T ∗T
∗k = IH.

Moreover, since

ρ0(k) =

{

1 if k = 0

0 otherwise,

an easy computation shows that (cf. page 96, [10])

(2.4) ρm(k) = ρm−1(k) +

n
∑

i=1
ki≥1

ρm(k − ei),

where

k − ei =

{

(k1, . . . , ki−1, ki − 1, ki+1, . . . , kn) if ki ≥ 1

0 if ki = 0,

and k ∈ Zn
+. Hence, by (2.3) we have

∑

k∈Zn
+

ρm−1(k)T
kD2

m,T ∗T
∗k ≤

∑

k∈Zn
+

ρm(k)T
kD2

m,T ∗T
∗k = IH.

Then the linear map Cm,T : H → l2(Zn
+,Dm,T ∗) defined by

(2.5) Cm,T (h) = (
√

ρm−1(k)Dm,T ∗T ∗kh)k∈Zn
+

(h ∈ H),

is a contraction. It is often convenient to represent Cm,T as the column matrix

(2.6) Cm,T =







...
√

ρm−1(k)Dm,T ∗T ∗k

...







k∈Zn
+

.
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Now using (2.3) twice, we have

IH − C∗
m,TCm,T =

∑

k∈Zn
+

ρm(k)T
kD2

m,T ∗T
∗k −

∑

k∈Zn
+

ρm−1(k)T
kD2

m,T ∗T
∗k

=
∑

k∈Zn
+

(

ρm(k)− ρm−1(k)
)

T kD2
m,T ∗T

∗k

=
∑

k∈Zn
+

(

n
∑

i=1
ki≥1

ρm(k − ei)
)

T kD2
m,T ∗T

∗k

=

n
∑

i=1

∑

k∈Zn
+

ρm(k)T
k+eiD2

m,T ∗T
∗(k+ei)

=

n
∑

i=1

Ti

(

∑

k∈Zn
+

ρm(k)T
kD2

m,T ∗T
∗k
)

T ∗
i

=
n

∑

i=1

TiT
∗
i ,

that is

(2.7) TT ∗ + C∗
m,TCm,T = IH,

and therefore

XT =
[

T ∗

Cm,T

]

: H → Hn ⊕ l2(Zn
+,Dm,T ∗),

is an isometry. By adding a suitable Hilbert space E , we extend XT on H to a unitary
U : H⊕ E → Hn ⊕ l2(Zn

+,Dm,T ∗), and set

U :=
[

XT YT
]

: H⊕ E → Hn ⊕ l2(Zn
+,Dm,T ∗),

where YT = U |E : E → Hn⊕ l2(Zn
+,Dm,T ∗). If we set YT =

[

B

D

]

where B = PHnYT ∈ B(E ,Hn)

and D = Pl2(Zn
+
,Dm,T∗ )YT ∈ B(E , l2(Zn

+,Dm,T ∗)), then

U =

[

T ∗ B

Cm,T D

]

: H⊕ E → Hn ⊕ l2(Zn
+,Dm,T ∗).

Summarizing, we have the following result.

Theorem 2.1. Let T be a pure m-hypercontraction on H. Then the map Cm,T : H →
l2(Zn

+,Dm,T ∗) defined by

Cm,T (h) =
(

√

ρm−1(k)Dm,T ∗T ∗kh
)

k∈Zn
+

(h ∈ H),
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is a contraction, and there exist a Hilbert space E and a bounded linear operator

YT =

[

B

D

]

: E → Hn ⊕ l2(Zn
+,Dm,T ∗),

such that
[

XT YT
]

=

[

T ∗ B

Cm,T D

]

: H⊕ E → Hn ⊕ l2(Zn
+,Dm,T ∗),

is a unitary.

This motivates the following definition: Let T be a pure m-hypercontraction on H, m ≥ 1.
A triple (E , B,D) consisting of a Hilbert space E and bounded linear operators B ∈ B(E ,Hn)
and D ∈ B(E , l2(Zn

+,Dm,T ∗)) is said to be a characteristic triple of T if

[

XT YT
]

:=

[

T ∗ B

Cm,T D

]

: H⊕ E → Hn ⊕ l2(Zn
+,Dm,T ∗)

is a unitary.
Characteristic triple of a pure m-hypercontraction is unique in the following sense:

Theorem 2.2. Let T be a pure m-hypercontraction on H, and let (E , B,D) and (Ẽ , B̃, D̃) be
characteristic triples of T . Then there exists a unitary U : Ẽ → E such that

(Ẽ , B̃, D̃) = (U∗E , BU,DU).

Proof. Since
[

XT YT
]

=

[

T ∗ B

Cm,T D

]

: H⊕ E → Hn ⊕ l2(Zn
+,Dm,T ∗),

and
[

XT ỸT
]

=

[

T ∗ B̃

Cm,T D̃

]

: H⊕ Ẽ → Hn ⊕ l2(Zn
+,Dm,T ∗),

are unitary operators, it follows that YT =

[

B

D

]

and ỸT =

[

B̃

D̃

]

are isometries and

ranYT = ranỸT .

By Douglas lemma, we have
ỸT = YTU,

for some unitary U : Ẽ → E , and hence

B̃ = BU and D̃ = DU.

This completes the proof.

Characteristic triples of pure m-hypercontractions, m ≥ 1, will play a key role in what
follows. The special case m = 1 will be treated in the final section of this paper.

We conclude this section with an explicit construction of a characteristic triple of an m-
hypercontraction T on a Hilbert space H: Let XT be as above. Consider

ET =
(

ranXT

)⊥

,
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and the inclusion map

i =

[

BT

DT

]

:
(

ranXT

)⊥

→֒ Hn ⊕ l2(Zn
+,Dm,T ∗).

Then it readily follows that (ET , BT , DT ) is a characteristic triple of T .

3. Characteristic Functions

In this section, we continue, by means of operator-valued analytic functions corresponding
to characteristic triples, the exploration of pure m-hypercontractions. Here the operator-
valued analytic functions will play a similar role as Sz.-Nagy and Foias characteristic functions
for contractions.

Let T be a pure m-hypercontraction on H, and let (E , B,D) be a characteristic triple of T .
Note that D can be represented by a column matrix

(3.1) D =







...
Dk

...







k∈Zn
+

: E → l2(Zn
+,Dm,T ∗),

where Dk ∈ B(E ,Dm,T ∗), k ∈ Zn
+. Define

ΦT : Bn → B(E ,Dm,T ∗),

by

(3.2) ΦT (z) =
(

∑

k∈Zn
+

√

ρm−1(k)Dkz
k

)

+Dm,T ∗(IH − ZT ∗)−mZB (z ∈ B
n).

Notice that ΦT is a B(E ,Dm,T ∗)-valued analytic function on Bn. We call ΦT the characteristic
function of T corresponding to the characteristic triple (E , B,D).

We claim that ΦT is a partially isometric multiplier from H2
n(E) to Hm(B

n,Dm,T ∗). To this
end, first we proceed to compute ΦT (z)ΦT (w)∗, z,w ∈ B

n. For simplicity, set

xk =
√

ρm−1(k),

and
X(z) =

∑

k∈Zn
+

xkDkz
k, Y (z) = Dm,T ∗(IH − ZT ∗)−mZB,

for all z ∈ Bn and k ∈ Zn
+. Notice that, if m = 1, then xk = 0 for all k ∈ Zn

+ \ {0} and
x0 = 1. Thus

ΦT (z)ΦT (w)∗ = X(z)X(w)∗ +X(z)Y (w)∗ + Y (z)X(w)∗ + Y (z)Y (w)∗,

for all z,w ∈ Bn. On the other hand, since

[

T ∗ B

Cm,T D

]

is a co-isometry (see Theorem 2.1),

we have

(3.3)

[

T ∗T +BB∗ T ∗C∗
m,T +BD∗

Cm,TT +DB∗ Cm,TC
∗
m,T +DD∗

]

=

[

IHn 0
0 Il2(Zn

+
,Dm,T∗)

]

.
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Let z,w ∈ Bn. We note that

X(z)X(w)∗ =
∑

k,l∈Zn
+

xkxlDkD
∗
l
zkw̄l

=
∑

k∈Zn
+

x2
k
DkD

∗
k
zkw̄k +

∑

k 6=l

xkxlDkD
∗
l
zkw̄l.

By (3.3), we have Cm,TC
∗
m,T +DD∗ = Il2(Zn

+,Dm,T∗), which implies

x2
k
Dm,T ∗T ∗kT kDm,T ∗ +DkD

∗
k
= IDm,T∗ ,

for all k ∈ Zn
+, and

xkxlDm,T ∗T ∗kT lDm,T ∗ +DkD
∗
l
= 0,

for all k 6= l in Z
n
+. This implies that

∑

k∈Zn
+

x2
k
DkD

∗
k
zkw̄k =

∑

k∈Zn
+

x2
k
(IDm,T∗ − x2

k
Dm,T ∗T ∗kT kDm,T ∗)zkw̄k,

and
∑

k 6=l

xkxlDkD
∗
l
zkw̄l = −

∑

k 6=l

x2
k
x2
l
Dm,T ∗T ∗kT lDm,T ∗zkw̄l.

Hence

X(z)X(w)∗ =
∑

k∈Zn
+

x2
k
zkw̄kIDm,T∗ −

∑

k,l∈Zn
+

x2
k
x2
l
Dm,T ∗T ∗kT lDm,T ∗zkw̄l

= Km−1(z,w)IDm,T∗ −Dm,T ∗

(

∑

k∈Zn
+

x2
k
zkT ∗k

)(

∑

l∈Zn
+

x2
l
w̄lT l

)

Dm,T ∗

= Km−1(z,w)IDm,T∗ −Dm,T ∗(I − ZT ∗)−(m−1)(I − TW ∗)−(m−1)Dm,T ∗ .

Here

K0(z,w) ≡ 1 (z,w ∈ B
n).

Now we compute

X(z)Y (w)∗ =
(

∑

k∈Zn
+

xkDkz
k

)(

B∗W ∗(I − TW ∗)−mDm,T ∗

)

=
∑

k∈Zn
+

xkz
k

(

DkB
∗
)

W ∗(I − TW ∗)−mDm,T ∗ .

By (3.3), we have Cm,TT +DB∗ = 0, that is

xkDm,T ∗T ∗kT +DkB
∗ = 0 (k ∈ Z

n
+),

and so

X(z)Y (w)∗ = −Dm,T ∗

(

∑

k∈Zn
+

x2
k
zkT ∗k

)

TW ∗(I − TW ∗)−mDm,T ∗ ,
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that is
X(z)Y (w)∗ = −Dm,T ∗(I − ZT ∗)−(m−1)TW ∗(1− TW ∗)−mDm,T ∗ .

By duality

Y (z)X(w)∗ = −Dm,T ∗(I − ZT ∗)−mZT ∗(I − TW ∗)−(m−1)Dm,T ∗ .

Finally, again by (3.3), we have T ∗T +BB∗ = IHn , and so

Y (z)Y (w)∗ = Dm,T ∗(I − ZT ∗)−mZBB∗W ∗(I − TW ∗)−mDm,T ∗

= Dm,T ∗(I − ZT ∗)−mZ(IH − T ∗T )W ∗(I − TW ∗)−mDm,T ∗ .

Therefore

ΦT (z)ΦT (w)∗ = Km−1(z,w)IDm,T∗ −Dm,T ∗(I − ZT ∗)−(m−1)(I − TW ∗)−(m−1)Dm,T ∗

−Dm,T ∗(I − ZT ∗)−(m−1)TW ∗(I − TW ∗)−mDm,T ∗

−Dm,T ∗(I − ZT ∗)−mZT ∗(I −WT ∗)−(m−1)Dm,T ∗

+Dm,T ∗(I − ZT ∗)−mZ(I − T ∗T )W ∗(I − TW ∗)−mDm,T ∗

= Km−1(z,w)IDm,T∗ −Dm,T ∗(I − ZT ∗)−mM(I − TW ∗)−mDm,T ∗ ,

where

M = (I − ZT ∗)(I − TW ∗) + (I − ZT ∗)TW ∗ + ZT ∗(I −WT ∗)− Z(I − T ∗T )W ∗.

This is now simplified to M = I − ZW ∗, that is

M = (1− 〈z,w〉)I,

and so

ΦT (z)ΦT (w)∗ = Km−1(z,w)IDm,T∗ − (1− 〈z,w〉)Dm,T ∗(I − ZT ∗)−m(I − TW ∗)−mDm,T ∗ .

We obtain

1

(1− 〈z,w〉)m
IDm,T∗ −

ΦT (z)ΦT (w)∗

1− 〈z,w〉
= Dm,T ∗(I − ZT ∗)−m(I − TW ∗)−mDm,T ∗ ,(3.4)

which shows that

(z,w) ∈ B
n × B

n 7→
1

(1− 〈z,w〉)m
IDm,T∗ −

ΦT (z)ΦT (w)∗

1− 〈z,w〉
,

is a positive definite kernel. By a well-known fact from reproducing kernel Hilbert space
theory (cf. page 2412, [7]), it follows that

ΦT ∈ M(H2
n(E),Hm(B

n,Dm,T ∗)),

and hence

M∗
ΦT

(

Km(·,w)η
)

= K1(·,w)ΦT (w)∗η (w ∈ B
m, η ∈ Dm,T ∗).

This shows that

(I −MΦT
M∗

ΦT
)
(

Km(·,w)η
)

(z) =
(

Km(z,w)IDm,T∗ −K1(z,w)ΦT (z)ΦT (w)∗
)

η,
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and hence by (3.4)

(I −MΦT
M∗

ΦT
)
(

Km(·,w)η
)

(z) = Dm,T ∗(I − ZT ∗)−m(I − TW ∗)−mDm,T ∗η,

for all z,w ∈ Bn and η ∈ Dm,T ∗ . On the other hand, by the definition of canonical dilations
(see (2.1)), Π∗

m : Hm(B
n,Dm,T ∗) → H is given by

Π∗
m

(

Km(·,w)η
)

= (IH − TW ∗)−mDm,T ∗η (w ∈ B
m, η ∈ Dm,T ∗).

This implies that

(3.5) ΠmΠ
∗
m

(

Km(·,w)η
)

(z) = Dm,T ∗(IH − ZT ∗)−m(IH − TW ∗)−mDm,T ∗η,

for all z,w ∈ Bn and η ∈ Dm,T ∗ , and so

ΠmΠ
∗
m = IHm(Bn,Dm,T∗ ) −MΦT

M∗
ΦT
.

In particular, MΦT
is a partial isometry and the canonical model invariant subspace corre-

sponding to T (see (2.2)) is given by

Sm,T = ΦTH
2
n(E).

We have therefore proved the following:

Theorem 3.1. Let T be a pure m-hypercontraction on H, and let (E , B,D) be a characteristic

triple of T . Then

ΦT ∈ M(H2
n(E),Hm(B

n,Dm,T ∗)),

is a partially isometric multiplier and

Sm,T = ΦTH
2
n(E),

where

ΦT (z) =
∑

k∈Zn
+

√

ρm−1(k)Dkz
k +Dm,T ∗(IH − ZT ∗)−mZB

(

z ∈ B
n
)

,

is the characteristic function corresponding to (E , B,D) and Sm,T is the canonical model

invariant subspace corresponding to T .

Characteristic triples and functions are more explicit for 1-hypercontractions (or row con-
tractions). This particular case will be discussed in Section 6.

It is worth pointing out, also, that the representing multiplier ΦT of Sm,T is unique up to
a partial isometry constant right factor (cf. [8, Theorem 6.5]): If

Sm,T = Φ̃H2
n(Ẽ),

for some Hilbert space Ẽ and partially isometric multiplier Φ̃ ∈ M(H2
n(Ẽ),Hm(B

n,Dm,T ∗)),

then there exists a partial isometry V ∈ B(Ẽ , E) such that

Φ̃(z) = ΦT (z)V (z ∈ B
n).

We now proceed to prove complete unitary invariance of characteristic triples of pure m-
hypercontractions. Recall that two commuting tuples T = (T1, · · · , Tn) on H and T̃ =
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(T̃1, . . . , T̃n) on H̃ are said to be unitarily equivalent if there exists a unitary U ∈ B(H, H̃)
such that UTi = T̃iU for all i = 1, . . . , n.

Let T and T̃ be pure m-hypercontractions on H and H̃, respectively. Let ΦT and ΦT̃ be

characteristic functions corresponding to characteristic triples (E , B,D) and (Ẽ , B̃, D̃) of T

and T̃ , respectively. The characteristic functions ΦT and ΦT̃ are said to coincide if

ΦT̃ (z) = τ∗ΦT (z)τ (z ∈ B
n),

for some unitary operators τ : Ẽ → E and τ∗ : Dm,T ∗ → Dm,T̃ ∗ . Characteristic triples of pure
m-hypercontractions are complete unitary invariants:

Theorem 3.2. Let T and T̃ be pure m-hypercontractions on H and H̃, respectively. Then T

and T̃ are unitarily equivalent if and only if characteristic functions of T and T̃ coincide.

Proof. Let ΦT and ΦT̃ be characteristic functions corresponding to characteristic triples

(E , B,D) and (Ẽ , B̃, D̃) of T and T̃ , respectively. Then

U =
[

XT YT
]

∈ B(H⊕ E ,Hn ⊕ l2(Zn
+,Dm,T ∗)),

and

Ũ =
[

XT̃ YT̃
]

∈ B(H̃ ⊕ Ẽ , H̃n ⊕ l2(Zn
+,Dm,T̃ ∗),

are unitaries corresponding to characteristic triples (E , B,D) and (Ẽ , B̃, D̃), respectively, as
in Theorem 2.1.

To prove the forward implication, let W : H → H̃ be a unitary such that WTi = T̃iW ,
i = 1, . . . , n. Then WDm,T ∗ = Dm,T̃ ∗W , and so

Cm,T̃W = (I ⊗W |Dm,T∗ )Cm,T .

Also we have unitaries

Wn := W ⊕ · · · ⊕W : Hn → H̃n,

and

Ŵ :=

[

Wn 0
0 I ⊗W |Dm,T∗

]

: Hn ⊕ l2(Zn
+,Dm,T ∗) → H̃n ⊕ l2(Zn

+,Dm,T̃ ∗),

which gives

WnT
∗ = T̃ ∗W and ŴXT = XT̃W.

Hence
[

XT̃ ŴYT
]

= Ŵ
[

XT YT
]

[

W ∗ 0
0 IE

]

.

In particular
[

XT̃ ŴYT
]

: H̃ ⊕ E → H̃n ⊕ l2(Zn
+,Dm,T̃ ∗),

is a unitary and

ŴYT =

[

WnB

(I ⊗W )D

]

∈ B(E , H̃n ⊕ l2(Zn
+,Dm,T̃ ∗)),
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is an isometry. Thus, (E ,WnB, (I ⊗ W )D) is a characteristic triple of T̃ and hence, by

Theorem 2.2, there exists a unitary V : E → Ẽ such that ŴYT = YT̃V . This shows that

YT̃ = ŴYTV
∗,

that is

YT̃ =

[

WnBV
∗

(I ⊗W )DV ∗

]

,

and so

Ũ =

[

T̃ ∗ WnBV
∗

Cm,T̃ (I ⊗W )DV ∗

]

.

A routine computation then shows that

ΦT̃ (z) =WΦT (z)V
∗ (z ∈ B

n).

In order to prove sufficiency, we let ΦT̃ (z) = τ∗ΦT (z)τ
∗ for all z ∈ Bn for some unitaries

τ ∈ B(E , Ẽ) and τ∗ ∈ B(Dm,T ∗ ,Dm,T̃ ∗). Then

MΦ
T̃
= (IHm

⊗ τ∗)MΦT
(IH2

n
⊗ τ ∗),

and so

(IHm
⊗ τ ∗∗ )(IHm(Bn,D

m,T̃∗) −MΦ
T̃
M∗

Φ
T̃
) = (IHm(Bn,Dm,T∗) −MΦT

M∗
ΦT

)(IHm
⊗ τ ∗∗ ),

that is
(IHm

⊗ τ ∗∗ )PQ
T̃
= PQT

(IHm
⊗ τ ∗∗ ).

It follows that
(IHm

⊗ τ ∗∗ )QT̃ = QT .

Moreover

(IHm
⊗ τ ∗∗ )

(

PQ
T̃
MziPQ

T̃

)

= (IHm
⊗ τ ∗∗ )PQ

T̃
MziPQ

T̃

= PQT
(IHm

⊗ τ ∗∗ )MziPQ
T̃

= PQT
Mzi(IHm

⊗ τ ∗∗ )PQ
T̃
,

that is
(IHm

⊗ τ ∗∗ )
(

PQ
T̃
MziPQ

T̃

)

=
(

PQT
MziPQT

)

(IHm
⊗ τ ∗∗ ),

for all i = 1, . . . , n. Combining with the previous equality, we conclude that

PQT
Mz|QT

∼= PQ
T̃
Mz|Q

T̃
,

that is, T ∼= T̃ .
We now proceed to study joint invariant subspaces of pure m-hypercontractions. Following

Sz.-Nagy-Foias factorizations of characteristic functions, we relate joint invariant subspaces
of pure m-hypercontractions with operator-valued factors of characteristic functions corre-
sponding to characteristic triples. We make good use of the following fact (see Lemma 2,
[3]):

Lemma 3.3. Let E , E∗ and F be Hilbert spaces, and let Φ and Ψ be B(E , E∗) and B(F , E∗)
valued analytic functions, respectively, on Bn. Then the following are equivalent:
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(i) (z,w) 7→ Ψ(z)Ψ(w)∗−Φ(z)Φ(w)∗

1−〈z,w〉
is a positive-definite kernel on Bn.

(ii) There exists a contractive multiplier Θ ∈ M(H2
n(E), H

2
n(F)) such that

Φ(z) = Ψ(z)Θ(z) (z ∈ B
n).

We are now ready for a factorization theorem for joint invariant subspaces of pure m-
hypercontractions.

Theorem 3.4. Let T be a pure m-hypercontraction on H, and let (E , B,D) be a characteristic

triple of T . If ΦT is the characteristic function corresponding to (E , B,D), then T has a closed

joint invariant subspace if and only if there exist a Hilbert space F , a contractive multiplier

Φ1 ∈ M(H2
n(E), H

2
n(F)), and a partially isometric multiplier Φ2 ∈ M(H2

n(F),Hm(B
n,Dm,T ∗))

such that

ΦT (z) = Φ2(z)Φ1(z) (z ∈ B
n).

Moreover, the joint-invariant subspace is non-trivial if and only if ranMΦ2
is neither equal to

ranMΦT
nor to Hm(B

n,Dm,T ∗).

Proof. Let H1 be a closed joint T -invariant subspace of H, and let H2 = H⊖H1. Then

Hm(B
n,Dm,T ∗)⊖ ΠmH2,

is a joint Mz-invariant subspace of Hm(B
n,Dm,T ∗). By a Beurling-Lax-Halmos type theorem

for weighted Bergman spaces (see Theorem 4.4, [21]), there exist a Hilbert space F and a
partially isometric multiplier Φ2 ∈ M(H2

n(F),Hm(B
n,Dm,T ∗)) such that

(3.6) Hm(B
n,Dm,T ∗)⊖ ΠmH2 = Φ2H

2
n(F).

Since QT = ΠmH and ΠmH = Hm(B
n,Dm,T ∗)⊖ ΦTH

2
n(E), we conclude that

ΠmH1 = ΠmH⊖ ΠmH2

=
(

Hm(B
n,Dm,T ∗)⊖ ΦTH

2
n(E)

)

⊖
(

Hm(B
n,Dm,T ∗)⊖ Φ2H

2
n(F)

)

= Φ2H
2
n(F)⊖ ΦTH

2
n(E),(3.7)

and hence

(z,w) ∈ B
n × B

n 7→
Φ2(z)Φ2(w)∗ − ΦT (z)ΦT (w)∗

1− 〈z,w〉
,

is a kernel of the reproducing kernel Hilbert space ΠmH1. By Lemma 3.3, there is a contractive
multiplier Φ1 ∈ M(H2

n(E), H
2
n(F)) such that ΦT (z) = Φ2(z)Φ1(z) for all z ∈ B

n.
To prove the converse, let F be a Hilbert space, Φ1 ∈ M(H2

n(E), H
2
n(F)) be a contrac-

tive multiplier, Φ2 ∈ M(H2
n(F),Hm(B

n,Dm,T ∗)) be a partially isometric multiplier, and let
ΦT (z) = Φ2(z)Φ1(z) for all z ∈ Bn. We have

ranMΦT
⊆ ranMΦ2

,

and hence
Q ⊆ QT ,

where

Q =
(

ranMΦ2

)⊥

,
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is a joint M∗
z -invariant subspace of Hm(B

n,Dm,T ∗). It now follows that H1 = H⊖ Π∗
mQ is a

joint T -invariant subspace of H.
For the last part, note that, by (3.6), the invariant subspace H1 of T is the full space if
and only if ranMΦ2

= Hm(B
n,Dm,T ∗). On the other hand, by (3.7), H1 = 0 if and only if

ranMΦ2
= ranMΦT

. This completes the proof of the theorem.

4. Universal multipliers and wandering subspaces

In [7], Ball and Bolotnikov proved the following: Given a vector-valued weighted shift space
H2(β, E∗) (see the definition below), there exists a universal multiplier ψβ (depending only
on β and E∗) such that any contractive multiplier θ from a vector-valued Hardy space H2

E(D)
to H2(β, E∗) factors through ψβ , that is

θ(z) = ψβ(z)θ̃(z) (z ∈ D),

for some Schur multiplier θ̃ ∈ M(H2
E(D), H

2
l2(E∗)

(D)) (see [7, Theorem 2.1] for more details).

In this section, we generalize the above to several variables multipliers. We also define
“inner functions” and examine the uniqueness of universal factorizations in several variables.
First, we fix some notation and terminology.

A strictly decreasing sequence of positive numbers β = {βj}
∞
j=0 is said to be a weight

sequence, if β0 = 1 and

(4.1) lim inf β
1

j

j ≥ 1.

For a Hilbert space E and a weight sequence β, we let H2
n(β, E) denote the Hilbert space of

all E-valued analytic functions f =
∑

k∈Zn
+

akz
k, ak ∈ E for all k ∈ Zn

+, on Bn such that

‖f‖2
H2

n(β,E)
:=

∞
∑

j=0

βj
∑

|k|=j

1

ρ1(k)
‖ak‖

2
E =

∑

k∈Zn
+

β|k|

ρ1(k)
‖ak‖

2
E <∞,

that is

H
2
n(β, E) =

{

f ∈ O(Bn, E) : ‖f‖H2
n(β,E)

<∞
}

.

Then H2
n(β, E) is an E-valued reproducing kernel Hilbert space corresponding to the kernel

(4.2) Kβ(z,w) =

∞
∑

j=0

1

βj
〈z,w〉jIE (z,w ∈ B

n).

In particular, for βj = j!(n−1)!
(n+j−1)!

and βj = j!n!
(n+j)!

, j ∈ Z+, H
2
n(β, E) represents the E-valued

Hardy space and the Bergman space over Bn, respectively.
We now proceed to construct the universal multiplier corresponding to the weight sequence

β and the Hilbert space E . Let

γ0 = 1 and γj =
( 1

βj
−

1

βj−1

)−1

(j ≥ 1).
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Then γ = {γj}j∈Z+
is also a weight sequence and hence

Kγ(z,w) =
∞
∑

j=0

1

γj
〈z,w〉j (z,w ∈ B

n),

is a positive-definite kernel on Bn. Define Ψβ,E : Bn → B(l2(Zn
+, E), E) by

Ψβ,E(z)({ak}k∈Zn
+
) =

∑

k∈Zn
+

(

√

ρ1(k)

γ|k|
ak

)

zk,

for all z ∈ Bn and {ak}k∈Zn
+
∈ l2(Zn

+, E). We must first show that Ψβ,E is well-defined. For

each z ∈ Bn and {ak}k∈Zn
+
∈ l2(Zn

+, E), we have

∥

∥

∥

∑

k∈Zn
+

(

√

ρ1(k)

γ|k|
ak

)

zk
∥

∥

∥

E
≤

∑

k∈Zn
+

√

ρ1(k)

γ|k|
|zk|‖ak‖E

≤
(

∑

k∈Zn
+

ρ1(k)

γ|k|
|z|2k

)
1

2
(

∑

k∈Zn
+

‖ak‖
2
E

)
1

2

=
(

∞
∑

j=0

1

γj
〈z, z〉j

)
1

2

‖{ak}k∈Zn
+
‖l2(Zn

+
,E)

= Kγ(z, z)
1

2‖{ak}k∈Zn
+
‖l2(Zn

+
,E),

that is

‖Ψβ,E(z)({ak}k∈Zn
+
)‖ ≤ Kγ(z, z)

1

2‖{ak}k∈Zn
+
‖l2(Zn

+
,E).

It is again convenient to represent Ψβ(z), z ∈ Bn, as the row operator

Ψβ,E(z) =
[

· · ·

√

ρ1(k)

γ|k|
zkIE · · ·

]

k∈Zn
+

.

Now we prove that:

Lemma 4.1. Ψβ,E ∈ M(H2
n

(

l2(Zn
+, E)

)

,H2
n(β, E)) and

MΨβ,E
: H2

n

(

l2(Zn
+, E)

)

→ H
2
n(β, E),

is a co-isometry.
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Proof: For z and w in Bn, we have

(1− 〈z,w〉)Kβ(z,w) =
∞
∑

j=0

1

βj
〈z,w〉j −

∞
∑

j=0

1

βj
〈z,w〉j+1

=
1

β0
+

∞
∑

j=0

( 1

βj+1
〈z,w〉j+1 −

1

βj
〈z,w〉j+1

)

=
1

β0
+

∞
∑

j=0

( 1

βj+1
−

1

βj

)

〈z,w〉j+1

=
∞
∑

j=0

1

γj
〈z,w〉j,

that is

(1− 〈z,w〉)Kβ(z,w) = Kγ(z,w).

Hence from the matrix representation of Ψβ,E it follows that

Ψβ,E(z)Ψβ,E(w)∗ =

∞
∑

j=0

1

γj

∑

|k|=j

ρkz
kw̄kIE

=

∞
∑

j=0

1

γj
〈z,w〉jIE

= Kγ(z,w)IE

= (1− 〈z,w〉)Kβ(z,w)IE ,

which implies

(4.3) Kβ(z,w)IE −
Ψβ(z)Ψβ(w)∗

1− 〈z,w〉
= 0,

and so Ψβ,E ∈ M(H2
n

(

l2(Zn
+, E)

)

,H2
n(β, E)). The remaining part of the lemma follows from

(4.3) and the fact that {Kβ(·,w)η : w ∈ Bn, η ∈ E} is a total set in H2
n(β, E).

Given Hilbert spaces E and E∗, we use SM(H2
n(E),H

2
n(β, E∗)) to denote the set of all

contractive multipliers, that is

SM(H2
n(E),H

2
n(β, E∗)) = {Φ ∈ M(H2

n(E),H
2
n(β, E∗)) : ‖MΦ‖ ≤ 1}.

Now we are ready to prove the main theorem of this section.

Theorem 4.2. Let E and E∗ be Hilbert spaces, β be a weight sequence, and let Θ : Bn →
B(E , E∗) be an analytic function. Then Θ ∈ SM(H2

n(E),H
2
n(β, E∗)) if and only if there exists

a multiplier Θ̃ ∈ SM(H2
n(E), H

2
n(l

2(Zn
+, E∗)) such that

Θ(z) = Ψβ,E∗(z)Θ̃(z) (z ∈ B
n).
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Proof: Let Θ̃ ∈ SM(H2
n(E), H

2
n(l

2(Zn
+, E∗)), and let Θ(z) = Ψβ,E∗(z)Θ̃(z) for all z ∈ Bn.

Then

Kβ(z,w)IE∗ −
Θ(z)Θ(w)∗

1− 〈z,w〉
= Kβ(z,w)IE∗ −

Ψβ,E∗(z)Θ̃(z)Θ̃(w)∗Ψβ,E∗(w)∗

1− 〈z,w〉

=
Ψβ,E∗(z)Ψβ,E∗(w)∗

1− 〈z,w〉
−

Ψβ,E∗(z)Θ̃(z)Θ̃(w)∗Ψβ,E∗(w)∗

1− 〈z,w〉

= Ψβ,E∗(z)
[Il2(Zn

+,E∗) − Θ̃(z)Θ̃(w)∗

1− 〈z,w〉

]

Ψβ,E∗(w)∗,

for all z,w ∈ B
n, where the last but one equality follows from (4.3). Since Θ̃ is a contractive

multiplier, it follows that

(z,w) 7→ Kβ(z,w)IE∗ −
Θ(z)Θ(w)∗

1− 〈z,w〉
,

is a positive definite kernel on Bn, and so Θ ∈ SM(H2
n(E),H

2
n(β, E∗)). To prove the converse

we first note that MΘ : H2
n(E) → H2

n(β, E∗) is a contraction. Again, by (4.3), we have

Kβ(z,w)IE∗ −
Θ(z)Θ(w)∗

1− 〈z,w〉
=

Ψβ,E∗(z)Ψβ,E∗(w)∗

1− 〈z,w〉
−

Θ(z)Θ(w)∗

1− 〈z,w〉

=
Ψβ,E∗(z)Ψβ,E∗(w)∗ −Θ(z)Θ(w)∗

1− 〈z,w〉
,

for all z,w ∈ Bn. Hence

(z,w) 7→
Ψβ,E∗(z)Ψβ,E∗(w)∗ −Θ(z)Θ(w)∗

1− 〈z,w〉
∈ B(E∗),

is a positive-definite kernel on B
n. The proof now follows from Lemma 3.3.

The above theorem implies that the following diagram is commutative:

H2
n(E)

MΘ

H2
n(β, E∗)

H2
n(l

2(Zn
+, E∗))

❄�
�
�
�
�✒

✲

MΘ̃ MΨβ,E∗

We now turn to “inner functions” in M(H2
n(E),H

2
n(β, E∗)). The concept of inner functions

in the setting of Bergman space (knows as the Bergman inner functions) is due to Hedenmalm
[12] (see also Olofsson [17] and Eschmeier [10] for weighted Bergman spaces in one and sev-
eral variables, respectively). The notion of inner functions (or K-inner functions) in several
variables was introduced in [8].
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A contractive multiplier Θ ∈ M(H2
n(E),H

2
n(β, E∗)) is said to be Kβ-inner if

‖Θh‖H2
n(β,E∗) = ‖h‖E ,

for all h ∈ E (that is, MΘ|E is an isometry), and

ΘE ⊥ zkΘE (k ∈ Z
n
+).

In the case when Θ ∈ M(H2
n(E), H

2
n(E∗)) we simply say Θ is a K-inner multiplier.

In connection with this notice also that for a Hilbert space E

MΨβ,E
|l2(Zn

+
,E) : l

2(Zn
+, E) → H

2
n(γ, E),

is an isometry. Indeed, for each {ak}k∈Zn
+
∈ l2(Zn

+, E) and z ∈ Bn, we have

(MΨβ,E
({ak}k∈Zn

+
))(z) = Ψβ,E(z)({ak}k∈Zn

+
),

and so

‖MΨβ,E
({ak}k∈Zn

+
)‖2

H2
n(γ,E)

=
∥

∥

∥

∑

k∈Zn
+

(

√

ρ1(k)

γ|k|
ak

)

zk
∥

∥

∥

2

H2
n(γ,E)

=
∑

k∈Zn
+

ρ1(k)

γ|k|
‖ak‖

2
E‖z

k‖2
H2

n(γ,E)

=
∑

k∈Zn
+

ρ1(k)

γ|k|
‖ak‖

2
E

γ|k|

ρ1(k)

= ‖{ak}k∈Zn
+
‖2l2(Zn

+,E).

We now relate the idea of universal multipliers to uniqueness of factorizations of multipliers
in the context of Theorem 4.2.

Theorem 4.3. Let E and E∗ be Hilbert spaces, β be a weight sequence, and let

Θ ∈ SM(H2
n(E),H

2
n(β, E∗)).

If Θ is a Kβ-inner multiplier then there exists a unique K-inner multiplier

Θ̃ ∈ SM(H2
n(E), H

2
n(l

2(Zn
+, E∗)),

such that

Θ(z) = Ψβ,E∗(z)Θ̃(z) (z ∈ B
n).

Proof. If Θ ∈ SM(H2
n(E),H

2
n(β, E∗)), then by Theorem 4.2, we have

Θ = Ψβ,E∗Θ̃.

for some Θ̃ ∈ SM(H2
n(E),H

2
n(l

2(Zn
+, E∗)). Now let Θ beKβ-inner. We show that Θ̃ isK-inner.

Let η ∈ E , and let
Θ̃η = f ⊕ g ∈ kerMΨβ,E∗

⊕ (kerMΨβ,E∗
)⊥.

Since
‖η‖E = ‖MΘη‖H2

n(β,E∗) = ‖MΨβ,E∗
MΘ̃η‖H2

n(β,E∗)
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and MΨβ,E∗
is a co-isometry, we see that

‖η‖E = ‖MΨβ,E∗
MΘ̃η‖H2

n(β,E∗)

= ‖MΨβ,E∗
g‖H2

n(β,E∗)

= ‖g‖H2
n(l

2(Zn
+
,E∗))

≤ ‖Θ̃η‖H2
n(l

2(Zn
+
,E∗))

≤ ‖η‖E .

It now follows that ‖Θ̃η‖H2
n(l

2(Zn
+
,E∗)) = ‖η‖E for all η ∈ E and

Θ̃E ⊆
(

kerMΨβ,E∗

)⊥

.

This readily shows that

M∗
Ψβ,E∗

MΨβ,E∗
|Θ̃E = I.

Therefore, for η, ζ ∈ E and k ∈ Nn, we see that

〈Θ̃η, zkΘ̃ζ〉H2
n(l

2(Zn
+
,E∗)) = 〈M∗

Ψβ,E∗
MΨβ,E∗

Θ̃η, Θ̃zkζ〉H2
n(l

2(Zn
+
,E∗))

= 〈Ψβ,E∗Θ̃η,Ψβ,E∗Θ̃z
kζ〉H2

n(β,E∗))

= 〈Θη,Θzkζ〉H2
n(β,E∗)

= 〈Θη, zkΘζ〉H2
n(β,E∗),

and hence the orthogonality condition of Kβ-inner multiplier Θ implies that of Θ̃. Finally,
since

MΘ̃(z
kη) = zkΘ̃η = zkM∗

Ψβ,E∗
MΨβ,E∗

Θ̃η = zkM∗
Ψβ,E∗

Θη,

for all η ∈ E and k ∈ Zn
+, it follows that Θ̃ is unique. This completes the proof of the theorem.

In the particular case n = 1, all the results obtained so far in this section are due to Ball
and Bolotnikov [7].

The discussion to this point motivates us to define wandering subspaces of bounded linear
operators. The notion of a wandering subspace was introduced by Halmos [11] in the context of
invariant subspaces of shifts on vector-valued Hardy spaces. Let T be an n-tuple of commuting
operators on H, and let W be a closed subspace of H. If

W ⊥ T kW,

for all k ∈ Nn, then W is called a wandering subspace for T . We say that W is a generating

wandering subspace for T if in addition

H = span{T kW : k ∈ Z
n
+}.

Here, however, we aim at parameterizing wandering subspaces for Mz = (Mz1 , . . . ,Mzn) on
H2

n(β, E∗). Note, by virtue of (4.1) and (4.2), that the tuple of multiplication operator Mz
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defines a pure row contraction on H2
n(β, E∗). Let W be a wandering subspace for Mz on

H2
n(β, E∗). Clearly

∨

k∈Zn
+

zkW,

is a jointMz-invariant subspace of H
2
n(β, E∗). Then there exist a Hilbert space E and a partial

isometric multiplier Θ ∈ M(H2
n(E),H

2
n(β, E∗)) such that

∨

k∈Zn
+

zkW = ΘH2
n(E).

Moreover, if

F = {η ∈ E :M∗
ΘMΘη = η} ⊆ E ,

then the wandering subspace W and the multiplier Θ are related as follows (see Theorem 6.6,
[8]):

W = ΘF ,

and

Θ|H2
n(F) ∈ SM(H2

n(F),H2
n(β, E∗))

is a Kβ-inner function. Now we apply Theorem 4.3 to the Kβ-inner function Θ|H2
n(F) and get

that

Θ|H2
nF

= Ψβ,E∗Θ̃,

where Θ̃ ∈ SM(H2
n(F), H2

n(l
2(Zn

+, E∗))) is the unique K-inner multiplier. In particular,

W̃ := Θ̃F ,

is a wandering subspace for Mz on H2
n(l

2(Nn, E∗)), and so

W = Ψβ,E∗Θ̃F = Ψβ,E∗W̃ .

This yields the following parametrization of a wandering subspace for Mz on H2
n(β, E∗).

Theorem 4.4. If W is a wandering subspace for Mz on H2
n(β, E∗), then there exists a wan-

dering subspace W̃ for Mz on H2
n(l

2(Zn
+, E∗)) such that

W = Ψβ,E∗W̃,

where Ψβ,E∗ is the universal multiplier.

The above parametrizations of wandering subspaces is significantly different from that of
Eschmeier [10] and Olofsson [17].
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5. Factorizations and representations of Characteristic Functions

We continue our study of pure m-hypercontractions by focusing on the universal multipliers
Ψβ,H and relate this idea to the notion of the transfer functions on Bn. Here we follow the
notation introduced in Section 4.

Fix m > 1 and a weight sequence β(m) = {βj(m)} as

βj(m) =

(

m+ j − 1

j

)−1

,

for all j ∈ Z+. Then the corresponding weight sequence γ(m) = {γj(m)} is given by

γj(m)−1 =
1

βj(m)
−

1

βj−1(m)

=
(m+ j − 1)!

j!(m− 1)!
−

(m+ j − 2)!

(j − 1)!(m− 1)!

=
(m+ j − 2)!

j!(m− 2)!
,

that is

γj(m) =

(

m+ j − 2

j

)−1

,

for all j ≥ 1. Then for a Hilbert space F , one finds that

(5.1) H
2
n(β(m),F) = Hm(B

n,F) and H
2
n(γ(m),F) = Hm−1(B

n,F).

Now let T be a pure m-hypercontraction on H, and let (E , B,D) be a characteristic triple of
T . Then ΦT , the characteristic function of T corresponding to (E , B,D), defined by

ΦT (z) =
(

∑

k∈Zn
+

√

ρm−1(k)Dkz
k

)

+Dm,T ∗(IH − ZT ∗)−mZB (z ∈ B
n),

is a B(E ,Dm,T ∗)-valued analytic function on Bn. Moreover

ΦT ∈ M(H2
n(E),Hm(B

n,Dm,T ∗)),

is a partially isometric multiplier (see Theorem 3.1). Now, in view of (5.1), Theorem 4.2
implies that

ΦT = Ψβ(m),Dm,T∗ Φ̃T ,

for some contractive multiplier Φ̃T ∈ M(H2
n(E), H

2
n(l

2(Zn
+,Dm,T ∗))). Here

Ψβ(m),Dm,T∗ ∈ M(H2
n(l

2(Zn
+,Dm,T ∗)),Hm(B

n,Dm,T ∗)),

is the universal multiplier defined by

Ψβ(m),Dm,T∗ (z) =
[

· · ·

√

ρ1(k)

γ|k|(m)
zkIDm,T∗ · · ·

]

k∈Zn
+

,
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for all z ∈ Bn. However, in our particular situation

γ|k|(m) =

(

m+ |k| − 2

|k|

)

,

and hence
√

ρ1(k)

γ|k|(m)
=

√

ρm−1(k),

for all k ∈ Zn
+. Then the universal multiplier is given by

(5.2) Ψβ(m),Dm,T∗ (z) =
[

· · ·
√

ρm−1(k)z
kIDm,T∗ · · ·

]

k∈Zn
+

.

Now we proceed to compute an explicit representation of Φ̃T . To this end, we first recall
that

U =

[

T ∗ B

Cm,T D

]

: H⊕ E → Hn ⊕ l2(Zn
+,Dm,T ∗)

is unitary (see Theorem 2.1). We claim that Φ̃T is the transfer of the unitary U (see [3]), that
is,

Φ̃T (z) = D + Cm,T (IH − ZT ∗)−1ZB (z ∈ B
n).

Indeed, first note that Φ̃T ∈ M(H2
n(E), H

2
n(l

2(Zn
+,Dm,T ∗))) (cf. [3]) and

Φ̃T (z) = D + Cm,T (IH − ZT ∗)−1ZB

= D + Cm,T

n
∑

i=1

(

∑

l∈Zn
+

ρ1(l)z
lT ∗l

)

ziBi

= D +
n

∑

i=1

∑

l∈Zn
+

(

ρ1(l)Cm,TT
∗lBi

)

zl+ei ,

for all z ∈ B
n, where

B =





B1
...
Bn



 : E → Hn,

and ei ∈ Zn
+ has a 1 in the i-th position and 0 elsewhere, i = 1, . . . , n. Then, by applying the

matrix representation of Cm,T (see (2.6)), we have

Φ̃T (z) =















...

Dk +
n

∑

i=1

∑

l∈Zn
+

(

√

ρm−1(k)ρ1(l)Dm,T ∗T ∗(k+l)Bi

)

zl+ei

...















k∈Zn
+

,
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and consequently, by (5.2), we have

Ψβ(m),Dm,T∗ (z)Φ̃T (z) =
∑

k∈Zn
+

(

√

ρm−1(k)Dk+
n

∑

i=1

∑

l∈Zn
+

(

ρm−1(k)ρ1(l)Dm,T ∗T ∗(k+l)Bi

)

zl+ei

)

zk.

Also note that

Dm,T ∗(IH − ZT ∗)−mZB = Dm,T ∗(IH − ZT ∗)−(m−1)(IH − ZT ∗)−1ZB

= Dm,T ∗

(

∑

k∈Zn
+

ρm−1(k)T
∗kzk

)(

∑

l∈Zn
+

ρ1(l)T
∗lzl

)

ZB

= Dm,T ∗

n
∑

i=1

zi

(

∑

k∈Zn
+

ρm−1(k)T
∗kzk

)(

∑

l∈Zn
+

ρ1(l)T
∗lzl

)

Bi

=
∑

k,l∈Zn
+

n
∑

i=1

(

ρm−1(k)ρ1(l)Dm,T ∗T ∗(k+l)Bi

)

zk+l+ei.

From this it readily follows that

Ψβ(m),Dm,T∗ (z)Φ̃T (z) =
(

∑

k∈Zn
+

√

ρm−1(k)Dkz
k

)

+Dm,T ∗(IH − ZT ∗)−mZB

= ΦT (z),

for all z ∈ Bn. This leads to the following theorem on explicit representation of Φ̃T :

Theorem 5.1. Let m ≥ 1, T be a pure m-hypercontraction on a Hilbert space H, and let

(E , B,D) be a characteristic triple of T . If ΦT is the characteristic function of T corresponding

to (E , B,D), then

ΦT (z) = Ψβ(m),Dm,T∗ (z)Φ̃T (z) (z ∈ B
n),

where

Φ̃T (z) = D + Cm,T (IH − ZT ∗)−1ZB (z ∈ B
n),

is the transfer function of the canonical unitary matrix
[

T ∗ B

Cm,T D

]

: H⊕ E → Hn ⊕ l2(Zn
+,Dm,T ∗)

corresponding to the characteristic triple (E , B,D) of T , and

Ψβ(m),Dm,T∗ (z) =







[

· · ·
√

ρm−1(k)z
kIDm,T∗ · · ·

]

k∈Zn
+

if m ≥ 2
[

ID1,T∗ 0 0 · · ·
]

if m = 1,

for all z ∈ Bn.

Proof. It remains only to prove the special case m = 1. Let T be a pure 1-hypercontraction,
and let (E , B,D) be a characteristic triple of T . Then (2.5) implies that

C1,T (h) = (D1,T ∗h, 0, 0, . . .) (h ∈ H),
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and so

ΦT = D0 +D1,T ∗(IH − ZT ∗)−1ZB,

for all z ∈ Bn. It now easily follows that

ΦT = Ψβ(1),D1,T∗ (z)Φ̃T (z) (z ∈ B
n).

We will refer

Φ̃T ∈ M(H2
n(E),Hm(l

2(Zn
+,Dm,T ∗)),

as the canonical transfer function of T corresponding to the characteristic triple (E , B,D).

6. Hypercontractions and row-contractions

The present theory of pure m-hypercontractions leads to many interesting questions of an-
alytic models, such as any possible relationships between characteristic functions or canonical
transfer functions of m′-hypercontractions, 1 ≤ m′ < m. Here we address this issue. Also we
compare the ideas of characteristic functions of pure m-hypercontractions and characteristic
functions of pure row contractions.

First, we examine our construction of characteristic triples for pure 1-hypercontractions.
Before doing so we recall that the characteristic function [9] of a commuting row contraction
(that is, 1-hypercontraction) T = (T1, . . . , Tn) on a Hilbert space H is the operator-valued
analytic function

ΘT (z) = [−T +D1,T ∗(IH − ZT ∗)−1ZDT ]|DT
∈ B(DT ,D1,T ∗) (z ∈ B

n),

where DT = (IHn − T ∗T )
1

2 and DT = ranDT . Observe also that ΘT is the transfer function
corresponding to the unitary (colligation) matrix

[

T ∗ DT

D1,T ∗ −T

]

: H⊕DT → Hn ⊕D1,T ∗ ,

and ΘT ∈ M(H2
n(DT ), H

2
n(D1,T ∗)) (cf. [9]). In the following, we shall identify D1,T ∗ with

D1,T ∗ ⊕ {0} ⊕ {0} ⊕ · · · ⊂ l2(Zn
+,D1,T ∗),

and view ΘT ∈ M(H2
n(DT ), H

2
n(D1,T ∗ ⊕ {0} ⊕ {0} ⊕ · · · )).

Theorem 6.1. Let T be a pure row contraction on H. Then there exists a characteristic

triple (E , B,D) of T such that DT ⊆ E and

ΘT (z) = Φ̃T (z)|DT
(z ∈ B

n),

where Φ̃T , defined by

Φ̃T (z) = D + C1,T (IH − ZT ∗)−1ZB (z ∈ B
n),

and ΘT are the canonical transfer function corresponding to (E , B,D) and the characteristic

function of T , respectively.
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Proof. Let T be a pure row contraction (that is, pure 1-hypercontraction). Set

E := DT ⊕ Ẽ ,

where Ẽ = l2(Zn
+,D1,T ∗)⊖ (D1,T ∗, 0, · · · ). Define B = [DT , 0] : E → Hn by

B(f, {αk}k∈Zn
+
) = DTf,

and D : E → l2(Zn
+,D1,T ∗) by

(

D(f, {αk}k∈Zn
+
)
)

(l) =

{

−Tf if l = 0

αl otherwise

for all f ∈ DT and {αk}k∈Zn
+
∈ Ẽ . Finally, define C1,T : H → l2(Zn

+,D1,T ∗) by

C1,Th = (D1,T ∗h, 0, · · · ) (h ∈ H).

It is obvious that
TT ∗ + C∗

1,TC1,T = IH,

and
[

T ∗ B

C1,T D

]

: H⊕ E1 → Hn ⊕ l2(Zn
+,D1,T ∗),

is unitary, which implies that (E , B,D) is a characteristic triple of the 1-hypercontraction T .
The canonical transfer function corresponding to (E , B,D) is given by

Φ̃T (z) = D + C1,T (IH − ZT ∗)−1ZB (z ∈ B
n).

Then it readily follows that ΘT (z) = Φ̃T (z)|DT
for all z ∈ Bn. This completes the proof of

the theorem.

We refer to the characteristic triple constructed above for a pure 1-hypercontraction as the
canonical characteristic triple.

Now let 1 ≤ m1 < m2 and let T be a pure m2-hypercontraction on H. Then T is also
a pure m1-hypercontraction. Suppose that (Ei, Bi, Di) is a characteristic triple of the mi-
hypercontraction T , i = 1, 2. Then

Ui =

[

T ∗ Bi

Cmi,T Di

]

: H⊕ Ei → Hn ⊕ l2(Zn
+,Dmi,T ∗),

is the unitary operator corresponding to the mi-hypercontraction T , i = 1, 2. For simplicity
of notation, we denote Φ̃T,mi

the canonical transfer function corresponding to (Ei, Bi, Di),
i = 1, 2. Since (see (2.7))

C∗
mi,T

Cmi,T = IH − TT ∗ (i = 1, 2),

we have
C∗

m1,T
Cm1,T = C∗

m2,T
Cm2,T .

Also, according to (3.3), we have
B1B

∗
1 = B2B

∗
2

and
DiB

∗
i = −Cmi,TT,
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for i = 1, 2. It now follows by Douglas’ range inclusion theorem that

Y Cm2,T = Cm1,T and XB∗
1 = B∗

2 ,

for some isometry Y ∈ B(ran Cm2,T , l
2(Zn

+,Dm1,T ∗)) and unitary X ∈ B(ran B∗
1 , ran B∗

2).
Thus

D1B
∗
1 = −Cm1,TT = −Y Cm2,TT = Y D2B

∗
2 = Y D2XB

∗
1 ,

and so

D1|(kerB1)⊥ = Y D2X.

This and the definition of Φ̃T,mi
, i = 1, 2, gives

Φ̃T,m1
(z)|(kerB1)⊥ =

[

D1 + Cm1,T (IH − ZT ∗)−1ZB1

]

|(kerB1)⊥

= Y D2X + Y Cm2,T (IH − ZT ∗)−1ZB2X

= Y Φ̃T,m2
(z)X.

This establishes the following relationship between canonical transfer functions:

Theorem 6.2. Let 1 ≤ m1 < m2, T be a pure m2-hypercontraction on H, and let (Ei, Bi, Di)
be characteristic triple of the mi-hypercontraction T , i = 1, 2. Then there exist an isometry

Y ∈ B(ran Cm2,T , l
2(Zn

+,Dm1,T ∗)) and a unitary X ∈ B(ran B∗
1 , ran B

∗
2) such that

Φ̃T,m1
(z)|(kerB1)⊥ = Y Φ̃T,m2

(z)X (z ∈ B
n),

where Φ̃T,mi
is the canonical transfer function corresponding to the characteristic triple (Ei, Bi, Di),

i = 1, 2.

Remark 6.3. Let F , F∗, E and E∗ be Hilbert spaces, and let

U =

[

A B

C D

]

: F ⊕ E → F∗ ⊕ E∗,

be a unitary. Suppose that Φ is the transfer function corresponding to U , that is

Φ(z) = D + C(I − ZA)−1ZB (z ∈ B
n).

Then Φ|(kerB)⊥ is the purely contractive part of the contractive operator-valued analytic func-

tion Φ on Bn in the sense of Sz.-Nagy and Foias [15, Chapter V, Proposition 2.1]. This

follows from the observation that the maximal subspace of E where D is an isometry is kerB
and D|kerB : kerB → kerC∗ is a unitary. Moreover, Φ|(kerB)⊥ is the transfer function of the

unitary
[

A B|(kerB)⊥

C D|(kerB)⊥

]

: F ⊕ (kerB)⊥ → F∗ ⊕ ranC.

From this point of view, Φ̃T,m1
(z)|(kerB1)⊥ , z ∈ B

n, in the conclusion of Theorem 6.2 is

the purely contractive part of Φ̃T,m1
. Moreover, ranX = (kerB2)

⊥ implies that Y Φ̃T,m1
(.)X

coincides with the purely contactive part of Φ̃T,m1
. Therefore Theorem 6.2 implies that the

purely contractive part of Φ̃T,m1
coincides with the purely contractive part of Φ̃T,m2

.
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We continue with the hypothesis that T is a pure m-hypercontraction, m > 1. Let
(Em, Bm, Dm) be a characteristic triple of the pure m-hypercontraction T and Φ̃T,m be the
corresponding canonical transfer function. Since T is also a pure 1-hypercontraction, consider
the canonical characteristic triple (E , B,D) of T as obtained in the proof of Theorem 6.1. Let

Φ̃T be the canonical transfer function corresponding to (E , B,D). Then by Theorem 6.2,

Φ̃T (z)|(kerB)⊥ = Y Φ̃T,m(z)X (z ∈ B
n),

for some isometry Y ∈ B(ran Cm,T , l
2(Zn

+,D1,T ∗)) and unitary X ∈ B(ran B∗, ran B∗
m).

Moreover (see the construction of B in the proof of Theorem 6.1)

(kerB)⊥ = DT ,

and hence by Theorem 6.1, it follows that

ΘT (z) = Y Φ̃T,m(z)X (z ∈ B
n).

Therefore, we have the following theorem:

Theorem 6.4. Let m ≥ 2, T be a pure m-hypercontraction on H, and let (Em, Bm, Dm) be a

characteristic triple of T . Then there exist an isometry Y ∈ B(ran Cm,T , l
2(Zn

+,D1,T ∗)) and a

unitary X ∈ B(DT , ran B
∗
m) such that

ΘT (z) = Y Φ̃T,m(z)X (z ∈ B
n),

where ΘT and Φ̃m,T denote the characteristic function of the row contraction T and the canoni-

cal transfer function of T corresponding to the characteristic triple (Em, Bm, Dm), respectively.
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