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THE WEAK GALERKIN METHODS ARE REWRITINGS OF THE

HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS

BERNARDO COCKBURN

Abstract. We establish that the Weak Galerkin methods are rewritings of the hybridizable
discontinuous Galerkin methods.

1. Introduction

Nowhere in the by now massive literature of Weak Galerkin (WG) methods, there has been a
serious effort to clarify the relation between the WG and the Hybridizable Discontinuous Galerkin
(HDG) methods. The need for clarification stems from the fact that the two methods are defined
by using different weak formulations. To the outsider, this has produced the impression that the
methods are actually different. In this paper, we dispel such an impression by showing that the
WG methods are nothing but rewritings of the HDG methods.

The paper is organized as follows. In Section 2, we begin by establishing this fact in the framework
of steady-state diffusion, thus expanding previous work presented in Subsection §6.6 in [11]. In
Section 3, we briefly indicate the equivalence of the methods in the framework of Stokes flow. In
Section 4, we consider, in full detail, the case of the bilaplacian. In Section 5, we critically assess
several questionable statements made in the literature of the WG methods. We end with some
concluding remarks.

2. Second-order elliptic problems

Here, we establish the equivalence between the HDG and the WG methods in the framework of
the model elliptic problem

c q =−∇u in Ω,

∇ · q = f in Ω,

u = uD on ∂Ω.

We consider four WGmethods for this model problem. We have to do this because the WG methods
have been characterized in different ways in different papers.

We begin by establishing that the first WG methods, proposed in 2013 [38], are a rewriting of
the hybridized version of mixed methods like the 1994 mixed method introduced in [8] and the
1997 mixed methods in [1] which were also called expanded mixed methods therein. The mixed
methods fit the general formulation of the HDG methods and the only difference between them is
that, unlike the HDG methods, the mixed methods do not need stabilization.
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2 BERNARDO COCKBURN

We then consider the WG method proposed in 2014 in [39], the WG method proposed in 2015 in
[29], and the WG method proposed in 2015 in [27]. We show that each of these three WG methods
are simple rewritings of HDG methods.

2.1. The HDG methods.

2.1.1. The original formulation of the HDG methods. Let us recall the definition of the HDG meth-
ods as introduced for the first time in 2009 in [14]. The (conforming) mesh of the domain Ω will
be denoted by Th. The set of all the faces F of the elements of the mesh is denoted by Fh. The set
∂Th := {∂K : K ∈ Th} is the set of the boundaries of all the elements K of the triangulation Th.

We also write

(c qh,v)Th
:=

∑

K∈Th

(c qh,v)K , where (c qh,v)K :=

∫

K

c qh · v,

〈µ,v · n〉∂Th
:=

∑

K∈Th

〈µ,v · n〉∂K where 〈µ,v · n〉∂K :=

∫

∂K

µv · n.

Similar notation holds for other integrals.
The HDG method seeks an approximation (qh, uh, ûh), to the exact solution

(q := −a∇u, u, u|Fh
),

where a := c−1, in the finite element space V h ×Wh ×Mh where

V h := {v ∈ L2(Ω) : v|K ∈ V (K) ∀K ∈ Th},

Wh := {w ∈ L2(Ω) : w|K ∈ W (K) ∀K ∈ Th},

Mh := {µ ∈ L2(Fh) : µ|F ∈ M(F ) ∀F ∈ Fh}.

The approximation is defined as the solution of

(c qh,v)Th
− (uh,∇ · v)Th

+ 〈ûh,v · n〉∂Th
= 0,

−(qh,∇w)Th
+ 〈q̂h · n, w〉∂Th

= (f, w)Th
,

〈µ, q̂h · n〉∂Th\∂Ω = 0,

〈µ, ûh〉∂Ω = 〈µ, uD〉∂Ω,

for all (v, w, µ) ∈ V h ×Wh ×Mh, and

q̂h · n := qh · n+ τ(uh − ûh) on ∂Th.

The function τ is called the stabilization function as it ensures the stability and well-posedness of
the approximation. This completes the definition of the HDG methods.

A few, brief comments are in order:

• The different HDG methods are obtained by choosing the local spaces V (K), W (K), M(F ),
and the stabilization function τ . The function τ is called the stabilization function as it
ensures the stability and well-posedness of the approximation provided by the methods.

• In [14], it was shown that, under suitable choices of these spaces and stabilization function,
the resulting HDG methods are actually previously known DG methods, none of which
belong to the class of DG methods considered in the unifying analysis proposed in [2]. The
HDG methods are thus DG methods.
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• The distinctive feature of the HDG methods is that their numerical traces are defined in
such a way that the only globally-coupled degrees of freedom are those of the numerical
trace ûh. This is why these methods are called hybridizable.

• In [14], it was also pointed out that, when the stabilization function τ is identically zero,
the hybridized form of the well known mixed methods is obtained.

2.1.2. A second formulation of the HDG methods. To continue our discussion, we introduce two
different, but strongly related, formulations of our model problem based in the following equivalent
rewritings

(Fc)





g = ∇u in Ω,
c q = −g in Ω,

∇ · q = f in Ω,
u = uD on ∂Ω,

(Fa)





g = ∇u in Ω,
q = −a g in Ω,

∇ · q = f in Ω,
u = uD on ∂Ω,

where a := c−1. It has been noted long time ago that, if c is difficult to obtain from a, which is
usually the observed data, a numerical method based on the set of equations (Fa) is in order.

HDG methods based on (Fc) and on (Fa). Let us show that the HDG method displayed in the
previous section is naturally associated with the set of equations (Fc). Indeed, if we define the
approximation (qh, gh, uh, ûh), in the finite element space V h × V h ×Wh ×Mh as the solution of

−(gh,v)Th
− (uh,∇ · v)Th

+ 〈ûh,v · n〉∂Th
= 0,

(c qh,v)Th
= −(gh,v)Th

,

−(qh,∇w)Th
+ 〈q̂h · n, w〉∂Th

= (f, w)Th
,

〈µ, q̂h · n〉∂Th\∂Ω = 0,

〈µ, ûh〉∂Ω = 〈µ, uD〉∂Ω,

for all (v, w, µ) ∈ V h ×Wh ×Mh, and

q̂h · n := qh · n+ τ(uh − ûh) on ∂Th,

we immediately see that the component (qh, uh, ûh) is nothing but the approximate solution pro-
vided by the HDG method just considered, that is, the HDG method introduced in 2009 in [14].

Let us now introduce the HDG method based on the equations (Fa). The HDG method defines
the approximation (qh, gh, uh, ûh), in the finite element space V h ×V h ×Wh ×Mh as the solution
of

−(gh,v)Th
− (uh,∇ · v)Th

+ 〈ûh,v · n〉∂Th
= 0,

(qh,v)Th
= −(a gh,v)Th

,

−(qh,∇w)Th
+ 〈q̂h · n, w〉∂Th

= (f, w)Th
,

〈µ, q̂h · n〉∂Th\∂Ω = 0,

〈µ, ûh〉∂Ω = 〈µ, uD〉∂Ω,

for all (v, w, µ) ∈ V h ×Wh ×Mh, and

q̂h · n := qh · n+ τ(uh − ûh) on ∂Th.

Some remarks are in order:
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• It is not difficult to see that for any HDG method defined by using the equations (Fc), we
can immediately define the corresponding HDG method for the equations (Fa). A detailed
comparative study of HDG methods based on the equations (Fc) and (Fa) has been recently
carried out in [15]. There, conditions on the local spaces under which the approximations
provided by both HDG methods are superclose are provided.

• HDG methods based on the equations of the type (Fa) were introduced for the more difficult
problem of linear (and nonlinear) elasticity. In those equations, g corresponds to the strain,
q to the stress, a to the so-called constitutive tensor and c to the so-called compliance tensor.
The first HDG method based on the equations corresponding to (Fa) for linear and nonlinear
elasticity were introduced in the 2008 PhD. thesis [34] part of which was then published in
2009 in [35]. In 2015, the convergence properties of the HDG methods were re-examined
in [19] for the linear case and in [20] for the nonlinear case. An HDG method based on the
equations (Fa) was introduced for the p-Laplacian in 2016 in [16].

• The HDG methods based on the equations (Fa) are also hybridizable.
• As with the HDG methods based on the equations (Fc), when the stabilization function τ

can be taken to be equal to zero, we obtain mixed methods. These mixed methods were
explored in the mid 90’s for the first time in [21, 8, 1]. If we formulate the 1985 mixed BDM
method [4], defined by using the equations (Fc), by using the equations (Fa), we obtain the
1994 mixed method proposed in [8] – for a nonlinear diffusion equation. The author found
that these two methods were so similar, he still refered to the resulting method as a BDM
mixed method. He did not find the need to change the name of the method. An extension
of this work to arbitrary mixed methods was carried out in 1997 [1]. Therein, the authors
called the resulting mixed methods the “expanded” mixed methods, in order to stress the
fact that a new unknown for the gradient had to be added to the equations. When these

methods are hybridized, and their space of gradients Ṽ h is such that Ṽ h∩H(div,Ω) = V h,
their formulation fits the HDG formulation based on (Fa) with a zero stabilization function.

2.2. The 2013 WG methods [38] are mixed methods. Let us recall the fact that, the very
first WG methods [38] were devised to discretize the steady-state second-order elliptic equation

−∇ · (a∇u) +∇ · (bu) + cu = f.

Since the main contribution in [38] is the discretization of the second-order term, the main result
we present here is for the case in which b = 0 and c = 0.

So, for b = 0 and c = 0, we are then going to show that the very first WG methods [38] are
nothing but a rewriting of the hybridized version of the mixed methods introduced in 1994 [8] and
in 1997 [1].

Since these two methods satisfy the formulation of the HDG method based on the equations (Fa)
with a zero stabilization function τ , to prove this, we only have to rewrite such formulation in terms
of (uh, ûh). To achieve this, we express the approximate gradient gh and the approximate flux qh

as linear mappings of uh := (uh, ûh) defined by using the first and second equations, respectively,
defining the HDG method.

Thus, for any wh := (w, ŵ) ∈ L2(Th) × L2(∂Th), we define (Gwh
,Qwh

) ∈ V h × V h to be the
solution of

−(Gwh
,v)Th

= (w,∇ · v)Th
− 〈ŵ,v · n〉∂Th

∀v ∈ V h,

(Qwh
,v)Th

= −(aGwh
,v)Th

∀v ∈ V h.
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Note that, when wh := uh = (uh, ûh), we have that gh = Guh by the first equation defining the
HDG methods, and qh = Quh by the second. Next we show how, by using these mappings, we can
eliminate gh and qh from the equations.

Integrating by parts the third equation defining the HDG methods, we get

(∇ · qh, w)Th
+ 〈(q̂h − qh) · n, w〉∂Th

= (f, w)Th
∀w ∈ Wh.

Taking v := qh in the equation defining Gwh
, we get that

−(Gwh
, qh)Th

= (w,∇ · qh)Th
− 〈ŵ, qh · n〉∂Th

.

If in the equation defining Qwh
, we set wh := uh and the take v := Gwh

, we get that

(qh,Gwh
) = (Quh ,Gwh

)Th
= −(aGuh ,Gwh

)Th
.

This implies that

(aGwh
,Guh)Th

+ 〈ŵ, qh · n〉∂Th
+ 〈(q̂h − qh) · n, w〉∂Th

= (f, w)Th
∀w ∈ Wh.

Adding and subtracting the term 〈w, q̂h · n〉∂Th
, and rearranging terms, we get

(aGwh
,Guh)Th

+ 〈(q̂h − qh) · n, w − ŵ〉∂Th
= (f, w)Th

− 〈ŵ, q̂h · n〉∂Th

= (f, w)Th
− 〈ŵ, q̂h · n〉∂Ω,

for all (w, ŵ) ∈ Wh ×Mh, by the fourth equation defining the HDG methods. Now, inserting the
definition of the numerical trace q̂h · n and noting that qh = Quh

, we get

(aGwh
,Guh)Th

+ 〈τ(uh − ûh), w − ŵ〉∂Th
= (f, w)Th

− 〈ŵ, q̂h · n〉∂Ω,

for all (w, ŵ) ∈ Wh ×Mh.
Finally, if we set Mh(η) := {ζ ∈ Mh : 〈ζ, µ〉∂Ω = 〈η, µ〉∂Ω ∀µ ∈ Mh}, the formulation of the

HDG method determines the approximation to the exact solution (u|Ω, u|Fh
), uh := (uh, ûh), as

the element of Wh ×Mh(g) such that

(aGwh
,Guh)Th

+ 〈τ(uh − ûh), w − ŵ〉∂Th
= (f, w)Th

,

for all wh := (w, ŵ) ∈ Wh ×Mh.
These are precisely the WG methods in [38] obtained by taking the stabilization function τ = 0,

the local space M(F ) := Pk(F ), and

V (K) := [Pk(K)]d, W (K) := Pk−1(K), (Example 5.1),

V (K) := [Pk(K)]d + xPk(K), W (K) := Pk(K), (Example 5.2).

Since, the stabilization function τ is zero, these are mixed methods. In fact the first is nothing but
the hybridized version of the BDM method considered in 1994 [8], and the second is nothing but
the hybridized version of the RT method considered in 1997 [1]. Thus, for b = 0 and c = 0, the first
WG methods [38] are nothing but the hybridized version of mixed methods.

Remark. Let us emphasize that taking c 6= 0 does not alter the above results. Concerning the
discretization of the convective term (when b 6= 0), the way it was done in [38] represents a regression
with respect to the original upwinding technique introduced back in the early 70’s in [32, 23] since
the absence of upwinding introduces a lack of stabilization. This technique was rescued a few
years later in [7].

The original definition of the WG methods, equation (4.6) in [38] holds for piecewise polynomial
approximations (defined on meshes made of triangles only), but the methods were proven to be
well posed only for the spaces of the Examples 5.1 and 5.2, which constitute classic mixed methods,
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as just proved above. If the spaces defining the WG methods were not associated to classic mixed
methods, the brief attempt of relating the WG and the HDG methods made by the authors, see
our Introduction, would then be granted. However, even in this case, the stabilization function the
authors use is zero and so, the methods are not HDG methods but only mixed methods, as pointed
out back in 2009 [14]. However, if c = 0, then the reaction term does not play a stabilizing role
anymore. Hence, a nonzero stabilization function τ would have to be introduced, and the method
would become an HDG method. This is exactly what happened with the WG methods we consider
next.

2.3. Equivalence of the HDG and WG methods.

2.3.1. The 2014 WG method [39] is an HDG method. Here, we establish the equivalence between
the 2014 WG method proposed in [39] and the HDG method. To do that, we need to pick a
particular stabilization function τ , and then express the HDG method (using the first formulation)
as a method whose “unknowns” are (qh, uh, q̂h) are instead of (qh, uh, ûh).

To do this, we rely on two very simple observations. The first is that, if we take as stabilization
function τ , the so-called Lehrenfeld-Schöberl stabilization [22, 33] function, that is,

τ :=
ρ

hK

PM(F ) on the face F of the element K ∈ Th,

where hK is the diameter of the element K and PM(F ) is the L2-projection into M(F ), we have
that

q̂h · n = qh · n+
1

h
(PM (uh)− ûh),

which immediately implies that

ûh = PM (uh) +
h

ρ
(qh − q̂h) · n.

The second observation is that, for each face F of the mesh, since ûh|F ∈ M(F ), when

V (K) · n|F ⊂ M(F ),

we have that q̂h · n|F also belongs to M(F ). In other words, by the third equation defining the
HDG method, the numerical trace q̂h belongs to the space

Nh := {ν ∈ L2(Fh) : ν · n|F ∈ M(F )∀F ∈ Fh},

where the superscripts ± denote the corresponding traces.
We can thus rewrite the HDG method as follows. The approximate solution given by the HDG

method is the function (qh, uh, q̂h) ∈ V h ×Wh ×Nh satisfying the equations

(c qh,v)Th
− (uh,∇ · v)Th

+ 〈ûh,v · n〉∂Th
= 0 ∀v ∈ V h,

−(qh,∇w)Th
+ 〈q̂h · n, w〉∂Th

= (f, w)Th
∀w ∈ Wh,

ûh = PM (uh) +
h

ρ
(qh − q̂h) · n, on ∂Th,

〈ûh,ν · n〉∂Th
= 〈uD,ν · n〉∂Ω ∀ν ∈ Nh.
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Now, let us work on the first equation. If we subtract the fourth equation from the first one, we
immediately get that

−〈uD,ν · n〉∂Ω =(cq
h
,v)Th

− (uh,∇ · v)Th
+ 〈ûh, (v − ν) · n〉∂Th

=(cqh,v)Th
+(∇uh,v)Th

− 〈uh,v · n〉∂Th
+〈ûh, (v − ν) · n〉∂Th

=(cq
h
,v)Th

+(∇uh,v)Th
− 〈uh,ν · n〉∂Th

+〈ûh − uh, (v − ν) · n〉∂Th

=(cq
h
,v)Th

+(∇uh,v)Th
− 〈uh,ν · n〉∂Th

+〈
h

ρ
(q

h
− q̂

h
) · n, (v − ν) · n〉∂Th

,

since V (K) · n|F ⊂ M(F ) and since ûh = PM (uh) +
h
ρ
(qh − q̂h) · n on ∂Th.

Thus, the approximate solution given by the HDG method is the function satisfying the equations

[(c qh,v)Th
+ 〈

h

ρ
(qh − q̂h) · n,(v − ν) · n〉∂Th

]

− [−(∇uh,v)Th
+ 〈uh,ν · n〉∂Th

] = 0,

[−(qh,∇w)Th
+ 〈q̂h · n, w〉∂Th

] = (f, w)Th
,

for all (v, ω,ν) ∈ V h ×Wh ×Nh.
For the choice of local spaces V (K) := [Pk(K)]d, W (K) := Pk+1(K), M(F ) := Pk(F ), this is

precisely the 2014 WG method proposed in [39]; see equations (3.14) and (3.15) therein. In other
words, the 2014 WG method in [39] is nothing but an HDG method.

2.3.2. The 2015 WG method in [29] is an HDG method. To show that the 2015 WG method in [29]
is an HDG method, we simply rewrite the formulation of the HDG method based on (Fa) in terms
of (uh, ûh) only, as we did in Subsection 2.2.

Thus, with the same notation used there, we obtain that the HDG method determines the
approximation to the exact solution (u|Ω, u|Fh

), uh := (uh, ûh), as the element of Wh × Mh(uD)
such that

(aGwh
,Guh)Th

+ 〈τ(uh − ûh), w − ŵ〉∂Th
= (f, w)Th

,

for all wh := (w, ŵ) ∈ Wh ×Mh.
For the choice of spaces V (K) := [Pk(K)]d, W (K) := Pk+1(K), M(F ) := Pk+1(F ), and the

stabilization function

τ :=
ρ

hK

on the face F of the element K ∈ Th,

where ρ is a positive constant, this is precisely the WG method proposed in 2015 [29]. Thus, the
2015 WG method in [29] is nothing but an HDG method.

2.3.3. The 2015 WG method in [27] is an HDG method. The 2015 WG method in [27] is obtained
by taking V (K) := [Pk(K)]d, W (K) := Pk+1(K), M(F ) := Pk(F ), and the stabilization function
is

τ :=
ρ

hK

PM(F ) on the face F of the element K ∈ Th,

where ρ is a positive constant.
Thus, the only differences between the 2015 WG method proposed in [27] and the WG method

proposed in 2015 [29] are the choice of the local spaceM(F ) and of the related stabilization function
τ . For the WG method proposed in 2015 [29], M(F ) := Pk+1(F ) and the stabilization function is a
simple multiplication function, whereas for the 2015 WG method in [27], M(F ) := Pk(F ) and the
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stabilization function is the Lehrenfeld-Schöberl stabilization function [22, 33]. Since we proved in
the previous subsection that the WG method proposed in 2015 [29] is an HDG method, the same
holds for the 2015 WG method in [27]. Thus, the 2015 WG method in [27] is nothing but an HDG
method.

Let us end by pointing out that the 2014 WG method in [39] is identical to the WG method
in [27] when the tensors c and a are piecewise constant. Even if these functions are not piecewise
constant, by the results of [15], these two methods are superclose.

3. The Stokes equations

The WG method for Stokes obtained in [40] can be shown to be an HDG method with the local
spaces

G(K) := [Pk(K)]d×d, V (K) := [Pk+1(K)]d, P (K) := Pk(K), M(F ) := [Pk(F )]d,

and the Leherenfeld-Schöberl stabilization function [22, 33]

τ :=
1

hK

PM(F ) on the face F of the element K ∈ Th,

where hK is the diameter of the element K and PM(F ) is the L2-projection into the space M (F ).

4. The biharmonic

Here we show that the WG methods in [25, 28, 36] for the biharmonic problem

∆2u = f on Ω, u =
∂u

∂n
= 0 on ∂Ω,

are also rewritings of the HDG methods. To do that, it is enough to follow a straightforward
extension of the procedure used in the previous cases.

4.1. The HDG methods. To define an HDG method, we first rewrite the problem as a first-order
system. Here, we consider two ways of doing that.

4.1.1. A first formulation for HDG methods. The first way uses the following equations:

σ = ∇ · z, ∇ · σ = f, q = ∇u, ∇ · q = z in Ω,

with the boundary conditions u = 0 and q · n = 0 on ∂Ω.
The HDG method seeks an approximation (σh, zh, qh, uh) to the exact solution

(σ, z, q, u) in Ω,

in a finite dimensional space Σh × Zh ×Qh ×Wh of the form

Σh :={v ∈ L2(Ω) : v|K ∈ Σ(K) ∀K ∈ Th},

Zh :={s ∈ L2(Ω) : s|K ∈ Z(K) ∀K ∈ Th},

Qh :={m ∈ L2(Ω) : m|K ∈ Q(K) ∀K ∈ Th},

Wh :={ω ∈ L2(Ω) : ω|K ∈ W (K) ∀K ∈ Th},

and an approximation (σ̂h · n, ẑh, q̂h · n, , ûh) to the traces of the exact solution

(σ · n, z, q · n, u) on ∂Th,
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and determines them by requiring that

(σh,m)Th
+ (zh,∇m)Th

− 〈ẑh,m · n〉∂Th
=0,

−(σh,∇ω)Th
+ 〈σ̂h · n, ω〉∂Th

=(f, ω)Th
,

(qh,v)Th
+ (uh,∇ · v)Th

− 〈ûh,v · n〉∂Th
=0,

−(qh,∇s)Th
+ 〈q̂h · n, s〉∂Th

=(zh, s)Th
,

for all (v, s,m, ω) ∈ Σh × Zh ×Qh ×Wh. As is typical of all the HDG methods, to complete their
definition, we must impose the boundary conditions and define the approximate traces in such a
way that the approximation is well defined and that the method can be statically condensed.

A couple of remarks are in order:

• All the HDG methods based on this formulation are obtained by varying the local spaces
and the definition of the approximate traces.

• The very first HDG method of the biharmonic, introduced in 2009 [13], is obtained when
we take the local spaces to be

Σ(K) = Q(K) := [Pk(K)]d and Z(K) = W (K) := Pk(K),

impose the boundary conditions

ûh = 0 and q̂h · n = 0 on ∂Ω,

pick the numerical traces ẑh and ûh as the globally coupled unknowns in the finite dimen-
sional space

Mh := {µ ∈ L2(Fh) : µ|F ∈ Pk(F ) ∀ F ∈ Fh},

define the numerical traces (q̂h · n, σ̂h · n) by

q̂h · n = qh · n− τ (uh − ûh) on ∂Th \ ∂Ω,

σ̂h · n = σh · n− τ (zh − ẑh), on ∂Th,

where τ is the stabilization function of the SFH method for scalar diffusion introduced in
2008 [12], and impose the transmission conditions

〈qh · n, ω̂〉∂Th\∂Ω = 0 ∀ω̂ ∈ Mh,

〈σh · n, ω̂〉∂Th\∂Ω = 0 ∀ω̂ ∈ Mh.

• The above HDG method extends the HDG methods for Timoshenko beams introduced in
2010 [5] and then analyzed in 2012 [6] .

4.1.2. A second formulation for HDG methods. A second way of writing the biharmonic equations
is

σ = ∇ · z, ∇ · σ = f, q = ∇u, ∇q = z in Ω,

with the boundary conditions u = 0 and q · n = 0 on ∂Ω. Note that the only difference between
these equations is that whereas z is the Laplacian of u, z is its Hessian.

The HDG method seeks an approximation (σh, zh, qh, uh) to the exact solution

(σ, z, q, u) in Ω,
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in a finite dimensional space Σh ×Zh ×Qh ×Wh where

Σh :={v ∈ L2(Ω) : v|K ∈ Σ(K) ∀K ∈ Th},

Zh :={s ∈ [L2(Ω)]d×d : s|K ∈ Z(K) ∀K ∈ Th},

Qh :={m ∈ L2(Ω) : m|K ∈ Q(K) ∀K ∈ Th},

Wh :={ω ∈ L2(Ω) : ω|K ∈ W (K) ∀K ∈ Th},

and an approximation (σ̂h · n, ẑhn, q̂h, ûh) to the traces of the exact solution

(σ · n, zn, q, u) on ∂Th,

and determines them by requiring that

(σh,m)Th
+ (zh,∇m)Th

− 〈ẑhn,m〉∂Th
=0,

−(σh,∇ω)Th
+ 〈σ̂h · n, ω〉∂Th

=(f, ω)Th
,

(qh,v)Th
+ (uh,∇ · v)Th

− 〈ûh,v · n〉∂Th
=0,

−(qh,∇ · s)Th
+ 〈q̂h, sn〉∂Th

=(zh, s)Th
,

for all (v, s,m, ω) ∈ Σh ×Zh ×Qh ×Wh. Again, to complete the definition of the HDG methods,
we must impose the boundary conditions and define the approximate traces in such a way that the
approximation is well defined and that the method can be statically condensed.

A couple of remarks are in order:

• All the HDG methods based on this formulation are obtained by varying the local spaces
and the definition of the approximate traces.

• A hybridized version of the mixed method for this formulation introduced in 2011 [3] is
obtained when we take the local spaces to be

Σ(K) := [Pk(K)]d ⊕ xPk(K),

Z(K) := {s ∈ [Pk(K)]d×d : each row of s belongs to Σ(K)},

Q(K) := [Pk(K)]d,

W (K) := Pk(K),

impose the boundary conditions

ûh = 0, q̂h = 0 on ∂Ω,

pick the traces (q̂h, ûh) in the space Mh ×Mh, where

Mh :={µ ∈ [L2(Fh)]
d : µ|K ∈ [Pk(K)]d ∀K ∈ Th},

Mh :={µ ∈ L2(Fh) : µ|K ∈ Pk(K) ∀K ∈ Th},

define the traces (σ̂h · n, ẑhn) on ∂Th as

σ̂h · n := σh · n,

ẑhn := zhn,

and impose the transmission conditions

〈σ̂h · n, µ〉∂Th\∂Ω =0 ∀ µ ∈ Mh,

〈q̂h,µ〉∂Th\∂Ω =0 ∀ µ ∈ Mh.

4.2. Equivalence of the HDG and the WG methods.
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4.2.1. The 2013 WG method [25] is an HDG method. We show that the 2013 WG method [25] is
an HDG method based on the first formulation. To do that, we first eliminate the unknowns qh

and σh from the equations defining the HDG methods. We then impose the boundary and the
transmission conditions. After defining the general form of the numerical traces, we finally display
the choices of local spaces and the stabilization function which results in the 2014 WG method [25].
We proceed in several steps.

Step 1: The spaces. We assume that

Qh = Σh =: V h and Zh = Wh,

and take both uh := (uh, ûh) and zh := (zh, ẑh) in the space Wh ×Mh, where

Mh := {µ ∈ L2(Fh) : µ|F ∈ M(F ) ∀F ∈ Fh}.

We set M0
h := {µ ∈ Mh : µ|∂Ω = 0}.

Step 2: The auxiliary mapping. To eliminate the unknowns qh and σh from the equations, we
express them in terms of an auxiliary linear mapping of uh := (uh, ûh) and zh := (zh, ẑh) defined
by using the third and first equations, respectively.

Thus, for any w := (ω, ω̂) ∈ L2(Th)× L2(∂Th), we define Gw ∈ V h to be the solution of

(Gw,v)Th
= −(ω,∇ · v)Th

+ 〈ω̂,v · n〉∂Th
∀v ∈ V h.

In this manner, since Qh = Σh = Vh, when w := uh = (uh, ûh), we have that qh = Guh , by the
third equation, and that, when w := zh = (zh, ẑh), we have that σh = Gzh , by the first equation.

Step 3: Rewriting the second and fourth equations. Now, let us work on the remaining equations
defining the HDG method. Simple integration by parts in the second and fourth equations gives

(∇ · σh, ω)Th
+ 〈(σ̂h − σh) · n, ω〉∂Th

=(f, ω)Th
,

(∇ · qh, s)Th
+ 〈(q̂h − qh) · n, s〉∂Th

=(zh, s)Th
,

and, by definition of Gw with w := (ω, ω̂) and v := σh, and Gs with s := (s, ŝ ) and v := qh, we
get that

−(Gw,σh)Th
+ 〈σh · n, ω̂ 〉∂Th

+ 〈(σ̂h − σh) · n, ω〉∂Th
=(f, ω)Th

,

−(Gs, qh)Th
+ 〈qh · n, ŝ 〉∂Th

+ 〈(q̂h − qh) · n, s〉∂Th
=(zh, s)Th

.

This implies that

−(Gw,σh)Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

=(f, ω)Th
− 〈σ̂h · n, ω̂ 〉∂Th

,

−(Gs, qh)Th
+ 〈(q̂h − qh) · n, s− ŝ 〉∂Th

=(zh, s)Th
− 〈q̂h · n, ŝ 〉∂Th

,

and, since σh = Gzh and qh = Guh , that

−(Gw,Gzh)Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

=(f, ω)Th
− 〈σ̂h · n, ω̂ 〉∂Th

,

−(Gs,Guh)Th
+ 〈(q̂h − qh) · n, s− ŝ 〉∂Th

=(zh, s)Th
− 〈q̂h · n, ŝ 〉∂Th

,
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Step 4: Boundary and transmission conditions. Next, we impose the boundary conditions

ûh = 0, q̂h · n = 0 on ∂Ω,

and the transmissions conditions

〈σ̂h · n, ω̂ 〉∂Th\∂Ω = 0 ∀ ω̂ ∈ Mh,

〈q̂h · n, ŝ 〉∂Th\∂Ω = 0 ∀ ŝ ∈ Mh,

to get that uh = (uh, ûh ) is the element of Wh ×M0
h and zh = (zh, ẑh ) is the element of Wh ×Mh

such that

−(Gw,Gzh)Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

=(f, ω)Th
,

−(Gs,Guh)Th
+ 〈(q̂h − qh) · n, s− ŝ 〉∂Th

=(zh, s)Th
,

for all (ω, ω̂) ∈ Wh ×Mh and all (ω, ω̂) ∈ Wh ×M0
h .

Step 5: The numerical traces. If we now define the remaining numerical traces by

σ̂h · n := σh · n on ∂Th,

q̂h · n := qh · n− τ (zh − ẑh) on ∂Th \ ∂Ω,

we get that uh = (uh, ûh ) is the element of Wh ×M0
h and zh = (zh, ẑh ) is the element of Wh ×Mh

such that

−(Gw,Gzh)Th
=(f, ω)Th

,

−(Gs,Guh)Th
− 〈τ(zh − ẑh), s− ŝ 〉∂Th

=(zh, s)Th
,

for all w = (ω, ω̂ ) ∈ Wh ×M0
h and s = (s, ŝ ) ∈ Wh ×Mh.

Step 6: Conclusion. For the local spaces

V (K) := [Pk(K)]d + xPk(K), W (K) := Pk(K) and M(F ) := Pk(F ),

and the stabilization function τ |∂K := hK ∀ K ∈ Th, this is precisely the 2013 WG method in [25];
see equations (6) therein. Thus the 2013 WG method in [25] is an HDG method.

4.2.2. The 2014 WG method [28] is an HDG method. We show that the 2014 WG method [28] is
an HDG method based on the first formulation. To do that, we first eliminate the unknowns qh,
σh and zh from the equations defining the HDG methods. We then impose the boundary and the
transmission conditions. After defining the general form of the numerical traces, we finally display
the choices of local spaces and the stabilization function which results in the 2014 WG method [28].
We proceed in several steps.

Step 1: The spaces. We assume that

Qh = Σh =: V h,

that
∇W (K) ⊂ V (K) := Q(K) = Σ(K) ∀K ∈ Th,

and take the numerical traces (q̂h, ûh) in the space Nh ×Mh where

Nh := {ν ∈ L2(Fh) : ν · n|F ∈ N(F )∀F ∈ Fh},

Mh := {µ ∈ L2(Fh) : µ|F ∈ M(F ) ∀F ∈ Fh},

We set N0
h := {µ ∈ Nh : µ · n|∂Ω = 0} and M0

h := {µ ∈ Mh : µ|∂Ω = 0}.
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Step 2: The auxiliary mappings. To capture the third equation defining the HDG methods, we
proceed as in the previous subsection and introduce the following mapping. For any w := (ω, ω̂) ∈
L2(Th)× L2(∂Th), we define Gw ∈ V h to be the solution of

(Gw,v)Th
= −(ω,∇ · v)Th

+ 〈ω̂,v · n〉∂Th
∀v ∈ V h.

In this way, since Qh = Σh = Vh, we have that qh = Guh , where uh := (uh, ûh).
To capture the fourth equation defining the HDG equations, we introduce an additional mapping.

For any E := (E, Ê) ∈ [L2(Th)]
d × [L2(∂Th)]

d, we define DE ∈ Zh to be the solution of

(DE, s)Th
= −(E,∇s)Th

+ 〈Ê · n, s〉∂Th
∀s ∈ Zh.

In this way, for E := Qh := (qh, q̂h) = (Guh , q̂h), we have that zh = DQh
, by the fourth equations

defining the HDG method.

Step 3: Rewriting the second equation. Now, let us work on the second equation defining the HDG
method. By proceeding exactly as in the previous case, we get that

(f, ω)Th
= −(Gw,σh)Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

,

with w := (ω, ω̂). By the first equation with m := Gw ∈ Qh, we obtain that

(f, ω)Th
=(zh,∇ ·Gw)Th

− 〈ẑh,Gw · n〉∂Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

=− (∇zh,Gw)Th
− 〈ẑh − zh,Gw · n〉∂Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

,

and, by the definition of DW with W := (Gw, Ŵ ) ∈ Qh ×Nh and s = zh, that

(f, ω)Th
=(DW, zh)Th

− 〈zh, Ŵ · n〉∂Th
− 〈ẑh − zh,Gw · n〉∂Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

=(DW, DQh
)Th

− 〈ẑh, Ŵ · n〉∂Th
− 〈ẑh − zh, (Gw − Ŵ ) · n〉∂Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

,

since zh = DQh
.

Step 4: Boundary and transmission conditions. Next, we impose the boundary conditions

ûh = 0, q̂h · n = 0 on ∂Ω,

and the transmissions conditions

〈ẑh, Ŵ · n 〉∂Th\∂Ω = 0 ∀ Ŵ ∈ Nh,

〈σ̂h · n, ω̂ 〉∂Th\∂Ω = 0 ∀ ω̂ ∈ Mh,

to get that (uh, ûh, q̂h ) is the element of Wh ×M0
h ×N0

h such that

(f, ω)Th
=(DW, DQh

)Th
− 〈ẑh − zh, (Gw − Ŵ ) · n〉∂Th

+ 〈(σ̂h − σh)ṅ, ω − ω̂ 〉∂Th
,

for all (ω, ω̂, Ŵ ) ∈ Wh ×M0 ×N0
h.
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Step 5: The numerical traces. It remains to work on the term

Θh :=− 〈ẑh − Pzh, (Gw − Ŵ ) · n〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

,

in order to render it a stabilization term by suitably defining the numerical traces ẑh and σ̂h ·n on
∂Th.

To do that, we take advantage that we are assuming that

∇W (K) ⊂ Q(K) ∀K ∈ Th,

to rewrite the mapping w := (ω, ω̂) 7→ Gw as

Gw = ∇w +Φ(ω̂ − ω),

where, on each element K ∈ Th, we define Φ(µ) as the element of V (K) such that

(Φ(µ),v)K = 〈µ,v · n〉∂K ∀v ∈ V (K).

Using the definition of Φ, we can now write that

Θh :=− 〈ẑh − zh, (∇ω − Ŵ ) · n〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

− 〈ẑh − zh,Φ(ω̂ − ω) · n〉∂Th

=− 〈ẑh − zh, (∇ω − Ŵ ) · n〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

− (Φ(ẑh − zh),Φ(ω̂ − ω))∂Th

=− 〈ẑh − zh, (∇ω − Ŵ ) · n〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

− 〈Φ(ẑh − zh) · n, ω̂ − ω〉∂Th

=− 〈ẑh − zh, (∇ω − Ŵ ) · n〉∂Th

+ 〈(σ̂h − σh) · n+Φ(ẑh − zh) · n, ω − ω̂ 〉∂Th
.

This term becomes the stabilization term

Θh =〈τ1(∇uh − q̂h) · n, (∇ω − Ŵ ) · n〉∂Th
+ 〈τ2(uh − ûh), ω − ω̂ 〉∂Th

.

if we define the numerical traces (ẑn, σ̂h · n) as

ẑh :=zh − τ1(∇uh − q̂h) · n on ∂Th,

σ̂h · n :=σh · n− Φ(ẑh − zh) · n+ τ2(uh − ûh) on ∂Th.

This definition certainly allows for the hybridization of the method.
With this choice, we see that the HDG method defines (uh, ûh, q̂h ) as the element of Wh×M0

h×

N0
h such that

(f, ω)Th
=(DW, DQh

)Th

+ 〈τ1(∇uh − q̂h) · n, (∇ω − Ŵ ) · n〉∂Th

+ 〈τ2(uh − ûh), ω − ω̂ 〉∂Th
,

for all (ω, ω̂, Ŵ ) ∈ Wh ×M0 ×N0
h.
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Step 6: Conclusion. For the local spaces

Zh := Pk−2(K), V (K) := [Pk−1(K)]d, W (K) := Pk(K),

M(F ) := Pk(F ), N(F ) := Pk−1(F ).

and the stabilization functions

τ1|∂K := h−1
K , τ2|∂K := h−3

K ∀K ∈ Th,

this is precisely the 2014 WG method [28]. This shows that the 2014 WG method [28] is an HDG
method.

4.2.3. The 2014 WG method [36] is an HDG method. We show that the 2014 WG method [36] is an
HDG method based on the second formulation. To do that, we proceed exactly as in the previous
subsection. So, we first eliminate the unknowns qh, σh and zh from the equations defining the
HDG methods. We then impose the boundary and the transmission conditions. After defining
the general form of the numerical traces, we finally display the choices of local spaces and the
stabilization function which results in the 2014 WG method [36]. We proceed in several steps.

Step 1: The spaces. We assume that

Qh = Σh =: V h,

that

∇W (K) ⊂ V (K) := Q(K) = Σ(K) ∀K ∈ Th,

and take the numerical traces (q̂h, ûh) in the space Mh ×Mh where

Mh := {ν ∈ L2(Fh) : ν|F ∈ M(F )∀F ∈ Fh},

Mh := {µ ∈ L2(Fh) : µ|F ∈ M(F ) ∀F ∈ Fh},

We set M0
h := {µ ∈ Mh : µ|∂Ω = 0} and M0

h := {µ ∈ Mh : µ|∂Ω = 0}.

Step 2: The auxiliary mappings. To capture the first and third equations defining the HDG meth-
ods, we introduce the following mapping. For any w := (ω, ω̂) ∈ L2(Th) × L2(∂Th), we define
Gw ∈ V h to be the solution of

(Gw,v)Th
= −(ω,∇ · v)Th

+ 〈ω̂,v · n〉∂Th
∀v ∈ V h.

In this way, we have that qh := Guh , where uh := (uh, ûh).
To capture the fourth equation defining the HDG equations, we introduce an additional mapping.

For any E := (E, Ê) ∈ [L2(Th)]
d × [L2(∂Th)]

d, we define GE ∈ Wh to be the solution of

(GE, w)Th
= −(E,∇ · s)Th

+ 〈Ê, sn〉∂Th
∀s ∈ Zh.

In this way, for E := Qh := (qh, q̂h) = (Guh , q̂h), we have that zh = GQh
, by the fourth equation

defining the HDG method.
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Step 3: Rewriting the second equation. Now, let us work on the second equation defining the HDG
method. Proceeding exactly and in the two previous cases, we get

(f, ω)Th
= −(Gw,σh)Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

,

with w := (ω, ω̂). By the first equation with m := Gw, we obtain that

(f, ω)Th
=(zh,∇Gw)Th

− 〈ẑhn,Gw〉∂Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

=− (∇ · zh,Gw)Th
− 〈(ẑh − zh)n,Gw〉∂Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

,

and, by the definition of GW with W := (Gw, Ŵ ) and s := zh, that

(f, ω)Th
=(GW, zh)Th

− 〈zhn, Ŵ 〉∂Th
− 〈(ẑh − zh)n,Gw〉∂Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

=(GW,GQh
)Th

− 〈ẑhn, Ŵ 〉∂Th
− 〈(ẑh − zh)n,Gw − Ŵ 〉∂Th

+ 〈σ̂h · n, ω̂ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

since zh = GQh
.

Step 4: Boundary and transmission conditions. Next, we impose the boundary conditions

ûh = 0, q̂h = 0 on ∂Ω,

and the transmissions conditions

〈ẑhn, Ŵ 〉∂Th\∂Ω = 0 ∀ Ŵ ∈ Mh,

〈σ̂h · n, ω̂ 〉∂Th\∂Ω = 0 ∀ ω̂ ∈ Mh,

to get that (uh, ûh, q̂) ∈ Wh ×M0
h ×M0

h satisfies

(f, ω)Th
=(GW,GQh

)Th
− 〈(ẑh − zh)n,Gw − Ŵ 〉∂Th

+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th
,

for all (ω, ω̂, Ŵ ) ∈ Wh ×M0
h ×M0

h.

Step 5: The numerical traces. Let us now work on the term

Θh :=− 〈(ẑh − zh)n,Gw − Ŵ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

,

in order to render it a stabilization term by suitably defining the numerical traces ẑh and σ̂h ·n on
∂Th. To do that, we take advantage that we are assuming that

∇W (K) ⊂ V (K) ∀K ∈ Th,

to rewrite the mapping w := (ω, ω̂) 7→ Gw as

Gw = ∇w +Φ(ω̂ − ω),

where, on the element K ∈ Th, Φ(µ) is the element of V (K) such that

(Φ(µ),v)K = 〈µ,v · n〉∂K ∀v ∈ V (K).
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We also define, on the element K ∈ Th, Ψ(µ) as the element of

R(∂K) := {µ ∈ L2(∂K) : µ|F ∈ M(F ) +W (K)|F for all faces F of K},

defined by

〈Ψ(µ), r〉∂K = 〈µ,Φ(r)〉∂K ∀r ∈ R(∂K).

With the help of the lifting Φ and the mapping Ψ, we can write

Θh :=− 〈(ẑh − zh)n,∇ω − Ŵ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

− 〈(ẑh − zh)n,Φ(ω̂ − ω)〉∂Th

=− 〈(ẑh − zh)n,∇ω − Ŵ 〉∂Th
+ 〈(σ̂h − σh) · n, ω − ω̂ 〉∂Th

− 〈Ψ((ẑh − zh)n), ω̂ − ω〉∂Th
.

=− 〈(ẑh − zh)n,∇ω − Ŵ 〉∂Th

+ 〈(σ̂h − σh) · n+Ψ((ẑh − zh)n), ω − ω̂ 〉∂Th
.

This terms becomes the stabilization term

Θh :=〈τ1(∇uh − q̂h), (∇ω − Ŵ 〉∂Th
+ 〈τ2(uh − ûh), (ω − ω̂) 〉∂Th

,

if we define the numerical traces on ∂Th by

ẑh :=zh + τ1(∇uh − q̂h)

σ̂h · n :=σh · n−Ψ((ẑh − zh)n) + τ2(uh − ûh).

Again, this definition allows for the hybridization of the method.
With this choice, the HDG method defines (uh, ûh, q̂) ∈ Wh ×M0

h ×M 0
h as the solution of

(f, ω)Th
=(GW,GQh

)Th
+ 〈τ1(∇uh − q̂h), (∇ω − Ŵ 〉∂Th

+ 〈τ2(uh − ûh), (ω − ω̂) 〉∂Th
,

for all (ω, ω̂, Ŵ ) ∈ Wh ×M0
h ×M0

h.

Step 6: Conclusion. For the local spaces

Z(K) := [Pk−2(K)]d×d,Σ(K) = Q(K) := [Pk−1(K)]d, W (K) := Pk(K),

M(F ) := Pk−2(F ), M (F ) := [Pk−2(F )]d.

and the Lehrenfeld-Schöberl stabilization functions [22, 33]

τ1|∂K := h−1
K PM τ2|∂K := h−3

K PM on the face F of the element K ∈ Th,

where hK is the diameter of rhte element K ∈ Th, and PM is the L2-projection into Mh and PM

is the L2-projection into Mh, this is precisely the 2014 WG method in [36]. This shows that the
2014 WG method [36] is an HDG method.
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5. A critique of questionable claims

5.1. On the novelty of the discrete weak gradient. WG authors assert that their discovery
of the discrete weak gradient is the main novelty of their work; see, for example, lines -9 to -6 in
page 765 of [24].

Unfortunately, this is not a novelty. In fact, this very concept was introduced, under a different
name, at least back in 1977: see page 296, Remark 2, equation (2.15) in [31]. Moreover, in the
unifying work on DG methods for second-order elliptic equations [2], the discrete weak gradients
“invented” by the WG authors, were systematically used, again, under a different name, to de-
scribe all the then-known DG methods for second-order elliptic equations. Finally, these “discrete
weak gradients” (an other similarly defined operators) have been the bread and butter of all DG
approximations since the very inception of the method back in 1973, see [17, 9, 10]. None of these
references have ever been quoted in WG papers.

Other researchers, have also proposed interpretations of the“discrete weak gradient” similar to
the one proposed by the WG authors, but for much more fruitful ends. In particular, Adrian Lew
and collaborators [18], called the “discrete weak gradient”, the “DG derivative” and used it to
actually define new DG methods for nonlinear elasticity. No mention to their work has been ever
made in any WG paper.

5.2. On the flexibility for handling elements of arbitrary shape. WG authors claim that
a novelty of their method is its ability to handle elements of general geometry; see, for example,
the last line of page 5 in [26]. Unfortunately, this is a direct consequence of the WG method being
nothing but a HDG method and hence a DG method; it cannot be presented as a novelty.

5.3. On the Lehrenfeld-Schöberl stabilization. In the papers [39, 27, 40], WG authors arro-
gated for themselves the introduction of the stabilization function

τ :=
ρ

hK

PM(F ),

where ρ is a positive constant, hK is the diameter of the element K and PM(F ) is the L
2-projection

into M(F ). As we have pointed out above, this stabilization function was introduced by Christoph
Lehrenfeld back in May of 2010 in his Diploma Thesis entitled “Hybrid Discontinuous Galerkin
methods for solving incompressible flow problems”, Aachen, Germany, under the direction of
Joachim Schöberl; see Remark 1.2.4 in page 17 in [22] and [33]. In his 2015 paper, Oikawa [30] does
refer to the projection under consideration as the Lehrenfeld-Schöberl stabilization, showing that
this is a well-known fact in the community.

Joachim Schöberl spoke about this stabilization function in his plenary talk at ICOSAHOM ’09
conference, June 22-26, Trondheim, Norway. More importantly, he spoke about this method in
the Fall 2010 Finite Element Circus held at the Institute for Mathematics and its Applications in
Minneapolis, MN on November 5-6, 2010 to honor Profs. R. Falk, J. Pasciak and L. Wahlbin. As
we can see in the list of participants

https://www.ima.umn.edu/2010-2011/SW11.5-6.10/#participants

The authors of the first paper on WG methods were present. They were aware of the Lehrenfeld-
Schöberl stabilization function and the HDG method by Christoph Lehrenfeld and Joachim Schöberl
before they wrote the papers in which they used it [39, 27, 40].
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5.4. On the definition of the Weak Galerkin methods. The definition of what constitutes a
WG method has changed with time.

The very first WG methods [38] were devised to discretize the steady-state second-order elliptic
equation

−∇ · (a∇u) +∇ · (bu) + cu = f.

In that paper, the authors write that

The weak Galerkin finite element method, as detailed in Section 4, is closely related to the mixed
finite element method (see [9-12,14,16]) with a hybridized interpretation of Fraejis de Veubeque
[21,22] and the hybridizable discontinuous Galerkin (HDG) method [18]. The hybridized
formulation introduces a new term, known as the Lagrange multiplier, on the boundary of each
element. The Lagrange multiplier is known to approximate the original function u = u(x) on the
boundary of each element. In fact, the WG schemes introduced in Section 4 are equivalent
to some standard mixed methods and the HDG method when b = 0, c = 0 and a = const

in (1.1). But the WG method is different from these methods when the coefficients are
general variable functions. The concept of weak gradients shall provide a systematic framework
for dealing with discontinuous functions defined on elements and their boundaries in a near classical
sense.

Here, we have used boldface to mark the sentences added from the original version [37]. We
can see that in the original version, no mention was made to a possible relation between the WG
and the HDG (and mixed) methods. This is because in this setting, the WG methods are in fact
hybridized mixed methods. In the second version of the paper, the authors claim, incorrectly, that
the WG method is not an HDG method when the coefficients are general variable functions, as we
have argued in §2.

This gives the impression that the variability of the coefficients is what makes the difference
between the WG and the HDG methods. And yet, when dealing with the Stokes problem and the
bilaplacian, whose differential operators present coefficients which are all constant, the WG authors
still claim that their WG method is not an HDG method.

Finally, let us point out that for this convection-diffusion-reaction equation, no stabilization is
needed due to the presence of the reaction term. However, when this term is not present, the
introduction of the stabilization function, typical of HDG methods, is necessary. This is why the
WG authors incorporated the stabilization function in their subsequent papers.

6. Conclusion

We have established that the WG methods are nothing but rewritings of the HDG methods. We
have done that for steady-state diffusion, (briefly for) the Stokes equations of incompressible flow,
and for the bilaplacian equation. Similar results can be established for all other applications. This
paper shows that the WG methods are a simple rebranding of the HDG methods.
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