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THE DIMENSION OF AN AMOEBA

JAN DRAISMA, JOHANNES RAU, AND CHI HO YUEN

Abstract. Answering a question by Nisse and Sottile, we derive a formula for the
dimension of the amoeba of an irreducible algebraic variety.

1. Introduction and main result

Let X ⊆ (C∗)n be an irreducible, closed algebraic subvariety. We define

Log : (C∗)n → Rn, (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|)

andA(X) := Log(X), the amoeba of X. The amoeba is the image of the semi-algebraic
set (algebraic amoeba)

|X| := {(|z1|, . . . , |zn|) | (z1, . . . , zn) ∈ X} ⊆ Rn
>0,

under a diffeomorphism and thus has an obvious notion of dimension, denoted
dimRA(X). Clearly, dimRA(X) ≤ 2 dimCX. In [NS18], Nisse and Sottile raise the
question when this inequality is strict, as happens in the following two examples.

Example 1 (hypersurfaces). Suppose that n > 2 and that X is a hypersurface. Then
dimRA(X) ≤ n < 2(n − 1) = 2 dimC X. ♣

Example 2 (torus-invariant varieties). Suppose that X is stable under a subtorus
S ⊆ (C∗)n of dimension k > 0. Denote by Y the image of X in the algebraic

torus (C∗)n/S � (C∗)n−k. The map X → Y has fibers of complex dimension k, and
the corresponding map A(X) → A(Y) has fibers of real dimension k—namely,
translates ofA(S), which is a linear subspace ofRn spanned by its intersection wih
Qn. Thus we have

dimRA(X) = k+dimRA(Y) ≤ k+ 2 dimC Y = −k+ 2 dimCX < 2 dimCX. ♣

Our theorem says that these are two instances of the same phenomenon, and
that this phenomenon is responsible for all drops in dimension.

Theorem 3. Let X ⊆ (C∗)n be an irreducible, closed algebraic subvariety. Then

dimRA(X) = min{ 2 dimCX + 2 dimC T − dimC S |

T ⊆ S ⊆ (C∗)n subtori and S · (T · X) = T · X }.

An equivalent but more concise formula can then be given as

dimRA(X) = min{2 dimC S · X − dimC S | S ⊆ (C∗)n subtorus}.

In this theorem, T · X (resp. S · X) is the Zariski closure of the set of all tz with

t ∈ T (resp. all rz with r ∈ S) and z ∈ X; notice that whenever S · (T · X) = T · X
1
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2 JAN DRAISMA, JOHANNES RAU, AND CHI HO YUEN

as in the formula, the set is also equal to S · X. Naturally, S and T may be taken
zero-dimensional, in which case we recover the upper bound 2 dimCX.

Example 4 (hypersurfaces revisited). If X is a hypersurface, then most one-dimensional

tori T ⊆ (C∗)n will satisfy T · X = (C∗)n (see Lemma 10), so we may take S = (C∗)n.
The bound in the theorem is 2(n − 1) + 2 − n = n. ♣

To motivate the structure of this paper, we now prove the easy inequality ≤ in
our main theorem.

Proof of ≤ in Theorem 3. Let T ⊆ S ⊆ (C∗)n be subtori such that Y := T · X is S-stable.
Then

dimRA(X) ≤ dimRA(Y) ≤ 2 dimC Y − dimC S ≤ 2(dimCX + dimC T) − dimC S,

where the second equality follows from Example 2. �

If we want equality to hold in the proof above, then we need that first, dimC Y =
dimCX + dimC T; second, the bound in Example 2 for the pair (Y, S) is tight; and
third, dimRA(X) = dimRA(Y) = dimR(A(X) +A(T)). Our proof of Theorem 3
consists of first finding a torus T with the latter property (see Section 2):

Proposition 5. Let X ⊆ (C∗)n be a closed, irreducible variety. Then the Zariski-closure

|X| in (R∗)n of the algebraic amoeba is stable under a subtorus of the real algebraic torus
(R∗)n of dimension at least 2 dimC X − dimRA(X).

In particular, if the amoeba has dimension strictly less than 2 dimCX, then a

positive-dimensional real torus acts on |X|. Using this positive-dimensional torus,
we prove Theorem 3 by induction in Section 3.

Theorem 3 implies [NS18, Conjecture 4.4], which proposes near torus actions
(Definition 12 below) as the only cause of dimension drops for the amoeba.

Corollary 6. For an irreducible, closed subvariety X ⊆ (C∗), we have

dimRA(X) < min{n, 2 dimCX}

if and only if some nontrivial subtorus S ⊆ (C∗)n has a near action on X.

We conclude this introduction with a relation to the tropical variety of X, also to
be proved in Section 3.

Corollary 7. For any irreducible, closed subvariety X ⊆ (C∗) the dimension dimRA(X)
is determined by the tropical variety Trop(X) ⊆ Rn of X via

dimRA(X) = min{ 2 dimR Trop(X) + 2 dimR T − dimR S |

T ⊆ S ⊆ Rn rational linear subspaces with S + (T + Trop(X)) = T + Trop(X) },

where a subspace of Rn is called rational if it is spanned by vectors in Qn. Similar to
Theorem 3, we have the equivalent formula

dimRA(X) =min{ 2 dimR(S + Trop(X)) − dimR S | S ⊆ Rn rational linear subspace}.
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Mittag-Leffler for inspiring working conditions. JR thanks Jürgen Hausen for
helpful discussions.
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2. In search of a positive-dimensional torus

Throughout this section we fix an irreducible, closed subvariety X ⊆ (C∗)n. If
dimRA(X) < 2 dimCX, then we will find a one-dimensional torus T ⊆ (C∗)n such

that T∩(R∗)n preserves the Zariski-closure |X|and dimR(A(X)+A(T)) = dimRA(X).

Preliminaries. We write S1 ⊆ C∗ for the unit circle. Recall that this is a real form of
the algebraic groupC∗: indeed, tensoring the coordinate ringR[c, s]/(c2

+s2−1) of S1

withC yields the coordinate ringC[c, s]/((c+is)(c−is)−1), which we recognise as the
coordinate ring of an algebraic torus with standard coordinate c+ is; moreover, the
the inverse morphism S1 → S1, (c, s) 7→ (c,−s) complexifies to the inverse morphism
C∗ → C∗, (c+is) 7→ 1/(c+is) = (c−is); and similarly for the multiplication morphism
S1 × S1 → S1. Both S1 and the other real form of C∗, the real-algebraic group R∗,
will play fundamental roles in our proof.

We write (S1)n ⊆ (C∗)n, where the former is a real form of the latter algebraic
group. For p ∈ (C∗)n and Q any subset of Cn we write pQ for the for the result of
coordinate-wise multiplication of p with each element of Q. Writing 1 for the unit
element in (C∗)n and T•• for (real or complex) tangent spaces, we have

T1(C∗)n
= Cn

= Rn ⊕R iRn
= T1R

n ⊕R T1(S1)n.

Component-wise multiplication by p ∈ (C∗)n yields

Tp(C∗)n
= pRn ⊕R ipRn

= TppRn ⊕R Tpp(S1)n.

Note that p−1Tpp(S1)n is naturally identified with (the same) iRn for all p ∈ (C∗)n,

and p−1TppRn is identified with (the same) Rn for all p.
Rather than directly working with the amoeba of X, we will work with the

algebraic amoeba |X|, the image of X under the semi-algebraic map

abs : (C∗)n → Rn
>0, (z1, . . . , zn) 7→ (|z1|, . . . , |zn|).

The reason for this is that |X| is, by real quantifier elimination, a semi-algebraic
set, hence analysable with methods from real algebraic geometry. The following is
immediate.

Lemma 8. At p ∈ (C∗)n, the derivative dp Log (respectively, dp abs) sends the real vector

space Tpp(S1)n to zero and an element pv with v ∈ Rn to v (respectively, to |p|v). �

Subvarieties of real tori. We prove an auxiliary result on subvarieties of real tori.
We will use the term real-Zariski to refer to the real Zariski topology on a real
algebraic variety or, more generally, on a semi-algebraic set. We write Zns for the
nonsingular locus of a real algebraic variety.

Lemma 9. Let Z be a real-Zariski-closed subset of (S1)n ⊆ (C∗)n. Then the real subspace
∑

p∈Zns
p−1TpZ ⊆ iRn is spanned by its intersection with iQn.

Proof. That subspace is additive under union of irreducible components, so we
may assume that Z is irreducible. Let ZC ⊆ (C∗)n be the complexification of Z, an
irreducible algebraic variety. After multiplying with p−1 for any fixed p ∈ ZC we
may assume that 1 ∈ ZC. By [Bor91, Proposition 2.2] there exist a natural number
m and exponents e1, . . . , em ∈ {±1} such that the image T of the multiplication map

µZ : Zm
C
→ (C∗)n, z = (z1, . . . , zm) 7→ ze1

1
· · · zem

m
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is a closed, connected algebraic subgroup T of (C∗)n, i.e., a sub-torus. Since Zns is
Zariski-dense in ZC, there exists a point z = (z1, . . . , zm) ∈ Zm

ns (no complexification!)
such that the complex-linear map dzµZ : TzZm

C
→ Tµ(z)T is surjective. Now µZ is

the restriction to Zm
C

of the multiplication map µ : ((C∗)n)m → (C∗)n with the same
definition. We have

µ = Lµ(z) ◦ µ ◦ (Lz−1
1
× · · · × Lz−1

m
),

where Lx is left multiplication with x ∈ (C∗)n, and accordingly,

dzµ = d1Lµ(z) ◦ d(1,...,1)µ ◦ (dz1
Lz−1

1
× · · · × dzm

Lz−1
m

).

Using that the derivative of multiplication is addition and the derivative of inverse
is negation, we find

dµ(z)Lµ(z)−1 ◦ dzµZ : TzZm
C
→ T1T, (v1, . . . , vm) 7→ e1z−1

1 v1 + · · · + emz−1
m vm;

and by the choice of z this map is surjective. For each j we have Tz j
ZC = Tz j

Z⊕RiTz j
Z

and the complex-linear map dµ(z)Lµ(z)−1 ◦ dzµZ sends the real direct sum
⊕

j
Tz j

Z

surjectively onto T1(T ∩ (S1)n) = (T1T) ∩ (iR)n =: Q. Since T is an algebraic torus,
Q is spanned by its intersection with iQn, and the space in the lemma contains Q.
Moreover, for all z ∈ Z we have z−1TzZ ⊆ Q, so that the space in the lemma is in
fact equal to Q. �

A real torus action. We return to our irreducible variety X ⊆ (C∗)n. By stan-
dard results in real algebraic geometry, X is also irreducible when regarded as
a real-algebraic variety of dimension 2 dimC X. Then the semialgebraic set |X| is
irreducible in the sense that its (real) Zariski closure in Rn is irreducible. To see
that, first note that the square

|X|2 := {(|z1|
2, . . . , |zn|

2) | (z1, . . . , zn) ∈ X} ⊆ Rn
>0

is irreducible, since it is the image of X under an algebraic morphism. Now, since
the map (x1, . . . , xn) 7→ (x2

1
, . . . , x2

n) on (R∗)n is a finite flat morphism, there exists

exactly one irreducible component of the preimage of the Zariski closure |X|2 which
intersects the positive orthant. Hence |X| is irreducible.

Proof of Proposition 5. For q ∈ |X|, write Zq := q−1X ∩ (S1)n, which is a real Zariski-

closed subset of (S1)n such that qZq = abs−1(q) ∩ X is the fiber of abs |X over
q. By Sard’s theorem, there is an open subset U of |X|, dense in |X| in the real
Zariski-topology, such that Zq has dimension equal to the expected dimension
c := 2 dimC X − dimR |X| = 2 dimCX − dimRA(X). For each q ∈ U, define

Qq :=
∑

p∈(Zq)ns

p−1TpZq ⊆ iRn,

which is a real vector space of dimension at least c, spanned by Qp∩iQ by Lemma 9.

Fix q ∈ U. For each p ∈ Zq we have qp ∈ X and qp(p−1TpZq) ⊆ TqpX and

hence, since X is a complex algebraic variety, also (qp)(ip−1TpZq) ⊆ TqpX. The space
on the left is contained in qpRn, and hence, by Lemma 8, dqp abs maps it onto

|qp|(ip−1TpZq) = q(ip−1TpZq). We conclude that the latter space is contained in TqU
for each p ∈ Zq. Therefore,

TqU ⊇ q
∑

p∈(Zq)ns

ip−1TpZq = q(iQq);
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here iQq ⊆ R
n is spanned by its intersection with Qn. Now for each vector space

R ⊆ Rn of dimension at least c and spanned by its intersection with Qn, the set

VR := {q ∈ U | TqU ⊇ qR}

is a real-Zariski-closed subset of U. There are only countably many such R, and
the above discussion shows that the closed sets VR cover the semialgebraic set U.

But then one of them must have dimension equal to that of U, and in fact, since
the Zariski closure of U is irreducible, be equal to U. We conclude that there exists
a real vector space R ⊆ Rn, of dimension at least c and spanned by R∩Qn, such that

qR ⊆ TqU for all q ∈ U. But then qR ⊆ Tq|X| for all q in the real algebraic variety |X|.
Since R is spanned by its intersection with Qn, there exists a real-algebraic torus
RR ⊆ (R∗)n with Lie algebra R. The sub-bundle of the tangent bundle of (R∗)n that

arises by differentiating the action of RR on (R∗)n is tangent to |X|. This implies that

|X| is RR-stable. �

3. Proofs of the main results

We begin with a lemma that was already used in the introduction (Example 4).

Lemma 10. Let X ⊆ (C∗)n be a closed, irreducible subvariety and S ⊆ (C∗)n a subtorus.

Then there exists a subtorus T ⊆ S with dimC T = dimC S · X − dimCX such that
T · X = S · X.

Proof. We prove the statement by induction on k = dimC S · X − dimCX. If k = 0,

then S · X = X and T = {1} will do. If k > 0, choose a one-dimensional subtorus

R ⊂ S such that dimC R · X > dimCX. Such R exists since otherwise X would be
invariant under all such R and hence under S. Then the statement follows from the
induction assumption applied to X′ = R · X and a torus S′ such that S = R× S′. �

We now use Proposition 5 to establish our dimension formula for the (ordinary
or algebraic) amoeba.

Proof of Theorem 3. Let X ⊆ (C∗)n be Zariski-closed and irreducible. Since we have
already proved the inequality ≤ of the theorem, it suffices to establish the existence

of subtori T ⊆ S of (C∗)n such that T · X is S-stable and dimRA(X) = 2 dimCX +
2 dimC T − dimC S. We proceed by induction on n. For n = 0 we have X = (C∗)0

and we can take S = T = {1}. So we assume that n > 0 and that the statement holds
for subvarieties of tori of dimension n − 1.

If dimRA(X) = 2 dimCX, then we may take T = S = {1} and we are done. So we
may assume that dimRA(X) < 2 dimCX. Then, by Proposition 5, there exists a one-
dimensional, real-algebraic torus RR ⊆ (R∗)n which stabilises the Zariski-closure

|X| of the algebraic amoeba. Let R ⊆ (C∗)n be the complexification of RR. Then we
find an open subset U ⊆ A(X) whose complement has positive codimension such
that U is a smooth manifold withA(R) ⊆ TuU for each u ∈ U (use Lemma 8 for the
tangent vectors coming from the action of RR). We find that the fibres of the map
U→ Rn/A(R) have dimension 1, and this implies that

dimRA(R) +A(X)/A(R) = −1 + dimRA(X).

(We note that we are working with the closure with respect to the Euclidean
topology of Rn in the above formula.)
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Define

X̃ := R · X/R ⊆ (C∗)n/R � (C∗)n−1.

Then the previous equation implies that the amoeba

A(X̃) = A(R) +A(X)/A(R)

has real dimension equal to −1 + dimRA(X).

By the induction hypothesis, there exist subtori T̃ ⊆ S̃ of (C∗)n/R such that T̃ · X̃
is S̃-stable and

dimRA(X̃) = 2 dimC X̃ + 2 dimC T̃ − dimC S̃.

We distinguish two cases. First, assume that X is not stable under R, so that
dimC X̃ = dimCX. Then let T, S be the pre-images in (C∗)n of T̃, S̃ ⊆ (C∗)n/R,

respectively. Then T ⊆ S are subtori such that T · X is S-stable, and we find

dimRA(X) = 1 + dimRA(X̃)

= 1 + 2 dimC X̃ + 2 dimC T̃ − dimC S̃

= 1 + 2 dimCX + 2(−1+ dimC T) − (−1 + dimC S)

= 2 dimCX + 2 dimC T − dimC S.

Second, assume that X is stable under R. As before, let S be the pre-image of S̃ in
(C∗)n, but now let T be any torus in (C∗)n of complex dimension equal to dimC T̃ that

projects surjectively onto T. Using that X is R-stable and T̃ · X̃ is S̃-stable, we find

that T · X is S-stable. Furthermore,

dimRA(X) = 1 + dimRA(X̃)

= 1 + 2 dimC X̃ + 2 dimC T̃ − dimC S̃

= 1 + 2(−1 + dimCX) + 2 dimC T − (−1 + dimC S)

= 2 dimCX + 2 dimC T − dimC S,

as desired.
For the second formula, let T, S be subtori as in the first formula. We then have

2 dimC S · X − dimC S = 2 dimC T · X − dimC S ≤ 2 dimCX + 2 dimC T − dimC S,

so the second formula is a lower bound to the first formula. Conversely, if S is any

subtorus, then by Lemma 10 there exists a subtorus T ⊆ S such that T · X = S · X

and dimC T = dimC S · X − dimCX, and we find

2 dimCX + 2 dimC T − dimC S = 2 dimC S · X − dimC S,

hence the first formula is a lower bound to the second formula. �

Example 11. We give an alternative proof of [NS18, Theorem 4.5], which says that
if dimRA(X) = dimCX, then X is a single orbit under a subtorus of (C∗)n. Take a
subtorus S ⊆ (C∗)n that achieves the minimum in the second formula of Theorem 3.

Since we always have dimC S · X ≥ dimC S,dimCX, from our choice of S we have

dimCX = 2 dimC S · X − dimC S ≥ dimCX.

Hence dimC S = dimCX = dimC S · X. But S · X is irreducible and contains both X
and an orbit of S, so X must be equal to such an orbit. ♣
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Near Torus Actions. We start by reviewing Nisse-Sottile’s notion of near torus
actions [NS18, Definition 4.1].

Definition 12. Let X ⊆ (C∗) be an irreducible closed subvariety and S ⊆ (C∗)n. We
set Y := (S · X)/S. Then S has a near action on X if

2 dimCX > dimC S + 2 dimC Y and n > dimC S + 2 dimC Y.

We now show that, as conjectured in [NS18], unexpected amoeba dimension is
equivalent to a near torus action. The implication⇐ is [NS18, Theorem 4.3].

Proof of Corollary 6. For any subtorus S ⊆ (C∗)n, setting Y := S · X/S we have
dimC(Y) = dimC(S · X) − dimC(S). Note that 2 dimC(S · X) − dimC(S) < 2 dimC(X)
and 2 dimC(S ·X)−dimC(S) < n imply S , {1} and S , (C∗)n, respectively. Hence the
statement follows directly from the second formula of Theorem 3. In particular, in
case of a dimension drop, a torus S providing the minimum in this formula has a
near action on X. �

Proof of Corollary 7. We start by presenting a well-known fact in tropical geome-
try.

Lemma 13. Let X ⊆ (C∗) be an irreducible (in particular, reduced) closed subvariety
and denote by Trop(X) ⊆ Rn its tropicalisation. Let S ⊂ (C∗)n be a subtorus and
S = Trop(S) = A(S) ⊂ Rn the associated (rational) linear subspace. Then S ·X = X if and
only if S + Trop(X) = Trop(X).

Proof. By basic tropical geometry, Trop(S · X) = S + Trop(X). Hence S · X = X
implies S + Trop(X) = Trop(X). Let us assume S + Trop(X) = Trop(X) now. Note
that for irreducible varieties Y ⊆ (C∗)n, we have dimC Y = dimR Trop(Y), see [BG84,

Theorem A]. Since both X and S · X are irreducible, it follows that dimC S · X =

dimCX. Since X ⊆ S · X, this implies X = S · X = S · X. �

Proof of Corollary 7. By Lemma 13, the pairs of subtori T ⊆ S ⊆ (C∗)n such that

S · (T · X) = T · X are in bijection to the pairs of rational linear subspaces T ⊆ S ⊆ Rn

such that S + (T + Trop(X)) = T + Trop(X), via T = Trop(T), S = Trop(S). Using the
relation dimC Y = dimR Trop(Y) again, we have

2 dimCX + 2 dimC T − dimC S = 2 dimR Trop(X) + 2 dimR T − dimR S.

Hence the two minima agree. The second formula follows similarly as in the proof
of Theorem 3. �

We conclude this paper with a question on computability.

Question 14. Does there exist an algorithm that, on input a balanced, pure-dimensional,
rational polyhedral complex Σ ⊆ Rn which is connected in codimension 1, computes the
expression

min{2 dimR(S + Σ) − dimR S | S ⊆ Rn rational subspace}

from Corollary 7?

The first term is the maximum, over all maximal cones C of Σ, of dimR Σ +
dimR S−dimR(〈C〉R∩S), and hence it is minimised by an S have certain incidences
with given linear subspaces of Rn. If the rationality assumption is dropped, then
real quantifier elimination answers the question in the affirmative. However,
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similar incidence problems often have real but no rational solutions. For instance,
a classical result in enumerative geometry says that the number of two-dimensional
subspaces in R4 (lines in projective three-space) that nontrivially intersect 4 given
two-dimensional subspaces in general position is either zero (in which case there
are two complex conjugate solutions) or two. In the latter case, even if the four
given spaces are rational, the two solutions will typically not be. We do not know
whether the existence of rational solutions for such incidence problems is decidable
in general, nor whether the additional conditions on Σ force that real solutions
imply rational solutions. On the other hand, if X is a variety given by equations
with coefficients in, say, some number field, then of course, by real quantifier
elimination, there does exist an algorithm for computing dimRA(X) = dimR |X|.
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