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A QUOTIENT OF THE LUBIN–TATE TOWER II

CHRISTIAN JOHANSSON AND JUDITH LUDWIG

WITH AN APPENDIX BY DAVID HANSEN

ABSTRACT. In this article we construct the quotientM1/P (K) of the infinite-level Lubin–Tate spaceM1

by the parabolic subgroup P (K) ⊂ GLn(K) of block form (n − 1, 1) as a perfectoid space, generalizing

the results of [Lud17] to arbitrary n and K/Qp finite. For this we prove some perfectoidness results for

certain Harris–Taylor Shimura varieties at infinite level. As an application of the quotient construction we show

a vanishing theorem for Scholze’s candidate for the mod p Jacquet–Langlands and mod p local Langlands

correspondence. An appendix by David Hansen gives a local proof of perfectoidness of M1/P (K) when

n = 2, and shows thatM1/Q(K) is not perfectoid for maximal parabolics Q not conjugate to P .

1. INTRODUCTION

This article generalises the main results of [Lud17]. Let K/Qp be a finite extension with ring of integers

OK , uniformizer ̟ and residue field k. Fix an algebraically closed and complete non-archimedean field C
containing K . LetM1 denote the infinite-level Lubin–Tate space over C. By work of Weinstein,M1 is a

perfectoid space equipped with an action of GLn(K). Let P ⊂ GLn be the parabolic subgroup consisting

of upper triangular block matrices of block size (n− 1, 1). In this article we prove the following theorem.

Theorem A. The quotientMP (K) :=M1/P (K) is a perfectoid space over C of Krull dimension n− 1.

Here we take the quotient in Huber’s category V of locally v-ringed spaces, as in [Lud17]. The con-

struction of the perfectoid structure onMP (K) follows the strategy via globalisation from [Lud17], where

the quotient was constructed in the case when n = 2 and K = Qp. In that case, modular curves were used

to globalise and one could rely on the perfectoidness results of [Sch15]. For our generalisation we make

use of the Shimura varieties studied by Harris–Taylor in their proof of the local Langlands correspondence

for GLn [HT01], and this necessitates some new perfectoidness results.

Let us now describe the strategy of [Lud17] and this paper in slightly more detail; the reader may also

consult the introduction to [Lud17]. The space M1 has a GLn(OK)-equivariant decompositionM1
∼=⊔

i∈ZM
(i)
1

into pairwise isomorphic spaces (coming from the decomposition of the Lubin–Tate space

at level 0 into connected components). As in [Lud17] we reduce the construction of M1/P (K) to the

construction ofM
(0)
1

/P (OK) using the geometry of the Gross–Hopkins period map. We can realizeM
(0)
1

as an open subspace of a certain infinite level perfectoid Harris–Taylor Shimura variety X1. The image

lands inside what we call the “complementary locus” X comp
1

, which is a subspace of X1 defined in terms

of the Hodge–Tate period map. We show that the quotient X comp
1

/P (OK) exists and is perfectoid, and

existence and perfectoidness ofM
(0)
1

/P (OK) is then a direct consequence. The main ingredient of the

proof is the construction of a perfectoid overconvergent anticanonical tower for our Harris–Taylor Shimura

varieties (analogous to [Sch15, Corollary 3.2.20]), and this forms the technical heart of this paper.

Theorem A has the following application. Let D× be the group of units in the central division algebra D
over K with invariant 1/n. In [Sch18], Scholze constructs a functor that is expected to be simultaneously

related to a conjectural mod p local Langlands correspondence for the group GLn(K) and an equally

conjectural mod p Jacquet–Langlands transfer between GLn(K) and D×. For any admissible smooth

representation π of GLn(K) on a Fp-vector space, Scholze constructs an étale sheaf Fπ on Pn−1 using the

Gross–Hopkins period morphismM1 → Pn−1. The cohomology groups

Si(π) := Hi
ét(P

n−1,Fπ), i ≥ 0,
1
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are admissible D×-representations which carry an action of Gal(K/K) and vanish in degree i > 2(n− 1)
([Sch18, Theorem 1.1]). As an application of the construction ofMP (K) we prove the following vanishing

result.

Theorem B (Theorem 5.3.1). Let P ∗ ⊂ GLn be a parabolic subgroup contained in P and let σ be

a smooth admissible representation of P ∗(K) with parabolic induction π := Ind
GLn(K)
P∗(K) σ to GLn(K).

Then

Si(π) = 0 for all i > n− 1.

This theorem generalises [Lud17, Theorem 4.6], which is the special case when n = 2, K = Qp and σ
is a character.

The paper also features an appendix, written by David Hansen, in which the spaceMP (K) is studied in

Scholze’s category of diamonds from a purely local point of view, using the moduli-theoretic description of

M1 due to Scholze–Weinstein in terms of vector bundles on the Fargues–Fontaine curve. The main results

of the appendix can be summarized as follows; we refer to the introduction to the appendix for further

details.

Theorem C (Hansen; Corollary A.1.4 and Theorem A.1.5). Let Q ⊂ GLn be a standard (block upper

triangular) maximal parabolic subgroup of GLn. Then the diamond quotientM1/Q(K) is proper and

ℓ-cohomologically smooth (in the sense of [Sch17]) for all primes ℓ 6= p, but not a perfectoid space if

Q 6= P . Moreover, in the special case n = 2, Theorem A may be proved by purely local methods1.

Let us now describe the contents of this paper. Sections 2 and 3 are devoted to proving the perfectoidness

results for the Harris–Taylor Shimura vartieties that we need. While it might be possible to deduce what we

need from [Sch15], certain technicalities made such an approach seem very cumbersome and unsatisfactory

to us. We have therefore elected to construct the anticanonical tower in the Harris–Taylor setting directly,

following the approach in [Sch15] (simplified by the absence of a boundary). Scholze’s approach relies

on an integral theory of canonical subgroups and on the Hasse invariant, so we need a version of these

notions for our Harris–Taylor Shimura varieties (which have empty ordinary locus in general). Section 2

develops a theory of µ-ordinary Hasse invariants and canonical subgroups for one-dimensional compatible

Barsotti–Tate OK -modules G/S of height n, where S is a k-scheme. We use a Hasse invariant due to Ito

[Ito, Ito06] which turns out to be perfect for adapting Scholze’s approach to canonical subgroups based on

Illusie’s deformation theory for group schemes [Ill85]. We refer to Remark 2.2.4 for further discussion of

the Hasse invariants used in this paper.

Equipped with a theory of canonical subgroups, Section 3 proceeds to construct the ǫ-neighbourhoods

of the anticanonical tower in our setting. It is a tower of formal schemes (X̂(ǫ)m,a)m≥0 whose generic

fibres X (ǫ)m,a embed into the adic Shimura varieties XU0(̟m), where the level at the important prime is

U0(̟
m) := {g ∈ GLn(OK) | g mod ̟m ∈ P (OK/̟m)}; we refer to the main body of the paper for

precise definitions. In the limit we get a perfectoid space (Theorem 3.1.8). This then allows us to prove the

analogues of the main geometric results of [Sch15], importantly including the construction of a Hodge–

Tate period map πHT : X1 → Pn−1 (see Theorem 3.3.3). For this we have found it convenient to use the

language of diamonds [Sch17]. We end Section 3 by using the geometry of the Hodge–Tate period map to

show that the quotient X comp
1

/P (OK) of the complementary locus is perfectoid (Theorem 3.3.6).

Section 4 then uses the results of Section 3 to prove Theorem A and deduce some properties of the

space MP (K). The Gross–Hopkins period map plays a prominent role in the proofs, and it induces a

quasicompact map πGH :MP (K) → Pn−1.

The main part of the paper then finishes with section 5, which proves Theorem B. The calculations

follow the same path as Section 4 of [Lud17], the idea being that pushforward along the map πGH :
MP (K) → Pn−1 is a geometric realisation of the parabolic induction functor, so étale cohomology of

Fπ on Pn−1 is equal to étale cohomology of an analogously defined sheaf Fσ onMP (K). For the reader

familiar with [Lud17], we mention that our argument deviates somewhat from that of [Lud17]. The most

1We remark that if eitherMP (K) orM1/P (K) is perfectoid, then they are equal. In particular, Theorems A and C a posteriori

concern the same space (when P = Q).
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important point is that, by invoking a general result of Scheiderer [Sch92] on the cohomological dimen-

sion of spectral spaces, it suffices for us to relate the étale cohomology of Fσ onMP (K) to an analytic

cohomology group onMP (K). In [Lud17] it was instead related to an analytic cohomology group on P1,

which necessitated the study of the fibres of πGH . Moreover, to deal with the fact that σ will typically be

infinite-dimensional, we use some additional limit arguments.

The paper then finishes with Hansen’s appendix; we refer to its introduction for a detailed overview of

its results and methods.

Acknowledgments. The authors wish to thank David Hansen for his interest in our work and for a number

of discussions relating to it, and for generously agreeing to include his local study ofMP (K) in an appendix

to our paper. The authors would furthermore like to thank Florian Herzig and Vytautas Paškūnas for

helpful conversations, and an anonymous referee for useful comments and corrections. C.J. also wishes to

thank Daniel Gulotta, Chi-Yun Hsu, Lucia Mocz, Emanuel Reinecke, Sheng-Chi Shih and especially Ana

Caraiani for all discussions relating to [CGH+20], which have had a large influence on this paper. C.J. was

supported by the Herchel Smith Foundation for part of the work on this paper. J.L. was supported by the

Max Planck Institute for Mathematics and the IWR Heidelberg.

2. HASSE INVARIANTS AND CANONICAL SUBGROUPS

2.1. Global setup. We start by introducing some notation which will be in place throughout the paper.

Fix, once and for all, a prime p and an integer n ≥ 2. We also fix a finite extension K/Qp with ring of

integers OK , uniformizer ̟, residue field k, ramification index e, and inertia degree f . Set q = pf . As

in [HT01], we choose a totally real field F+ of degree d, with primes v = v1, v2, . . . , vr above p, such

that F+
v
∼= K (we fix such an isomorphism and think of it as an equality). We then choose an imaginary

quadratic field E in which p splits as p = uuc, where c denotes complex conjugation, and let F = EF+;

this is a CM field. We let wi, i = 1, . . . , r, denote the unique prime in F above u and vi, and put w = w1.

Let us now recall the setup of [HT01], to which we refer for more details. Following [HT01, §I.7], we

let B/F denote a central division algebra of dimension n2 such that

• The opposite algebra Bop is isomorphic to B ⊗F,c F ;

• B is split at w;

• if x is a place of F whose restriction to F+ does not split in F/F+, Bx is split;

• if x is a place of F whose restriction to F+ splits in F/F+, Bx is either split or a division algebra;

• if n is even, then the number of finite places of F+ above which B is ramified is congruent to

1 + dn/2 modulo 2.

Choose an involution ∗ of the second kind on B. Let V = B and consider it as a B ⊗F Bop-module.

For any β ∈ B with β∗ = −β, we can define an alternating ∗-Hermitian pairing V × V → Q by

(x, y) = trF trB/F (xβy
∗)

where trB/F denotes the reduced trace. We fix a β ∈ B with β∗ = −β. We define another involution #

of the second kind on V by x# = βx∗β−1. We let G/Q be the reductive group with the functor of points

(R any Q-algebra)

G(R) =
{
(g, λ) ∈ (Bop ⊗Q R)× ×R× | gg# = λ

}
.

The map (g, λ) 7→ λ defines a homomorphism ν : G → Gm (the similitude factor) and we denote

its kernel by G1. If x is a prime in Q which splits as x = yyc in E, then y induces an isomorphism

G(Qx) ∼= (Bop
y )× ×Q×

x . In particular, u induces an isomorphism

G(Qp) ∼= (Bop
u )× ×Q×

p
∼= Q×

p ×
r∏

i=1

(Bop
wi
)×.

We will assume (see [HT01, Lemma I.7.1] and the discussion following it; we assume that β is chosen so

that this applies) that

• if x is a prime in Q which does not split in E, then G×Qx is quasi-split;

• the pairing (−,−) on V ⊗Q R has invariants (1, n− 1) at one embedding F+ →֒ R and (0, n) at

all other embeddings F+ →֒ R.
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Next, fix a maximal order Λi = OB,wi
⊆ Bwi

for each i = 1, . . . , r. The pairing (−,−) gives a perfect

duality between Vwi
:= V⊗F

Fwi
and Vwc

i
, and we let Λ∨

i ⊆ Vwc
i

denote the dual of Λi. We get a Zp-lattice

Λ =

r⊕

i=1

Λi ⊕
r⊕

i=1

Λ∨
i ⊆ V ⊗Q Qp.

and (−,−) restricts to a perfect pairing Λ × Λ → Zp. We fix an isomorphism OB,w
∼= Mn(OK), and

we compose it with the transpose map to get an isomorphism Oop
B,w
∼= Mn(OK). If ǫ ∈ Mn(OF,w) is the

idempotent which has 1 in the (1, 1)-entry and 0 everywhere else; ǫ induces an isomorphism

Λ11 := ǫOB,w
∼= (On

K)∨.

Finally, we let OB denote the unique maximal Z(p)-order in B which localizes to OB,wi
for all i and

satisfies O∗
B = OB (see [HT01, p. 56-57] for further discussion).

Let us now recall the integral models of the Shimura varieties for G; we refer to [HT01, §III.4] for more

details. We remark that we will only need integral models in the case m1 = 0 below, when the models

are smooth, but we recall the definitions in the general case. If S is an OK-scheme and A/S is an abelian

scheme with an injective homomorphism i : OB →֒ End(A) ⊗Z Z(p), we write GA for the p-divisible

group

GA := ǫA[̟∞].

Fix a sufficiently small compact open subgroup Up ⊆ G(A∞,p) and a tuple m = (m1, . . . ,mr) ∈ Zr
≥0.

The moduli functor Xm (we suppress Up from the notation) is defined as follows: If S is a connected

locally noetherian OK-scheme and s is a geometric point of S, Xm is the set of equivalence classes of

(r + 4)-tuples (A, λ, i, ηp, αi) where

• A/S is an abelian scheme of dimension dn2;

• λ : A→ A∨ is a prime-to-p polarization;

• i : OB →֒ End(A) ⊗Z Z(p) is a homomorphism such that (A, i) is compatible and λ ◦ i(b) =
i(b∗)∨ ◦ λ for all b ∈ OB ;

• ηp is a π1(S, s)-invariant Up-orbit of isomorphisms of B ⊗Q A∞,p-modules ηp : V ⊗Q A∞,p →
V pAs which take the pairing (−,−) on V ⊗Q A∞,p to a (A∞,p)×-multiple of the λ-Weil pairing

on V pAs;

• α1 : ̟−m1Λ11/Λ11 → GA[̟m1 ] is a Drinfeld ̟m1-level structure;

• for i = 2, . . . , r, αi : (̟−mi

i Λi/Λi)S → A[̟mi

i ] is an isomorphism of S-schemes with OB-

actions.

Here̟ = ̟1, . . . , ̟r are uniformizers ofOF,wi
. Two (r+4)-tuples (A, λ, i, ηp, αi) and (A′, λ′, i′, (ηp)′, α′

i)

are equivalent if there is a prime-to-p isogeny δ : A→ A′ and a γ ∈ Z×
(p) such that δ carries λ to γλ′, i to

i′, ηp to (ηp)′, and αi to α′
i. Xm(S, s) is canonically independent of the choice of s, and we get a functor

on all locally noetherianOK -schemes by requiring that

Xm

(
∐

i

Si

)
=
∏

i

Xm(Si).

This functor is representable by a projective scheme over OK , which is smooth when m1 = 0. By abuse

of notation, we will denote it by Xm. If m′ ≥ m (by which we mean m′
i ≥ mi for all i), then the natural

map Xm′ → Xm is finite and flat; moreover it is étale if m′
1 = m1. See [HT01, pp. 109–112]. We will

denote the special fibre of Xm by Xm, and the generic fibre by Xm. Over Xm, we have a universal abelian

scheme Am and the associated Barsotti–Tate OK-module GAm
, which we will denote by Gm or just G if

the context is clear. One defines a locally closed subscheme X
(h)

m by requiring that the étale part Get of

G has constant OK-height h, where 0 ≤ h ≤ n − 1. Then X
(h)

m is smooth of pure dimension h [HT01,

Corollary III.4.4].
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2.2. Hasse invariants. In this section, we let S be a scheme over k and we let G/S be a compatible

Barsotti–Tate OK-module of dimension 1 and height n (throughout this article, heights are OK -heights

unless otherwise specified). Let us briefly recall the notion of compatibility, referring to [HT01, p. 59] for

more details. The Lie algebra LieG of G is locally freeOS-module and a priori carries two actions ofOK .

One comes from the OK-action map OK → EndS(G), and the second action comes from the natural map

OK → k → OS together with the OS-module structure on LieG. Compatibility then means that these

twoOK-actions agree. The goal of this section is to define a so-called µ-ordinary Hasse invariant for G/S.

The topic of generalized Hasse invariants has received a lot of attention recently. In the case of µ-ordinary

Hasse invariants we mention the works [GN17, KW18, Her18, BH17]; moreover the works [GK19, Box15]

construct generalized Hasse invariants on all Ekedahl–Oort strata (in the cases when they apply). In par-

ticular, µ-ordinary Hasse invariants have been defined in large generality (including the cases needed here)

by Bijakowski and Hernandez [BH17]. We have nevertheless opted for a direct approach. It should be

noted that ‘Hasse invariants’, as the term exists in the literature, are not unique. The definition given here

is chosen because it is very well suited for adapting Scholze’s approach to the canonical subgroup to the

situation of our Harris–Taylor Shimura varieties, which is the topic of the next subsection. After writing

a first draft of this section, we learnt that the definition of a µ-ordinary Hasse invariant we give here was

first given by Ito [Ito, Ito06]. Since we are not aware of any detailed account of Ito’s construction, we give

our construction (it seems very likely that they are the same, judging from the sketch in [Ito]). Ito did not

only construct a µ-ordinary Hasse invariant but also ‘strata’ Hasse invariants on Harris–Taylor Shimura

varieties, and the construction below can easily be adapted to produce such Hasse invariants (see Remark

2.2.4).

We start with a description of some Dieudonné modules. Let κ be an algebraically closed field contain-

ing k and assume that S = Spec κ. Then we have G ∼= Get × G0 (étale and connected parts) and both

G0 and Get are Barsotti–Tate OK-modules. Let h be the height of Get, then 0 ≤ h ≤ n − 1. By the

Dieudonné–Manin theorem, Get and G0 are determined up to isomorphism by their Dieudonné modules.

The Dieudonné module of G0 is isomorphic to a Dieudonné module Mn−h, which we now describe. We

write W (κ) for the Witt vectors of κ, and σ for the lift of the p-th power Frobenius. Mn−h has a Frobenius

F and a Verschiebung V , and has a basis ω, Fω, F 2ω, . . . , Fn−h−1ω overOK ⊗Zp
W (κ), i.e.

Mn−h =

n−h−1⊕

i=0

(OK ⊗Zp
W (κ)).F iω.

To finish the description, we need to describe F , and we know that it is σ-linear and it sends F iω to F i+1ω
for i = 0, . . . , n− h− 1, so it remains to determine Fn−hω. For this, we write

OK ⊗Zp
W (κ) =

⊕

τ∈T

OK ⊗OK0 ,ι◦τ
W (κ),

where T = Gal(k/Fp), K0 is the maximal unramified subextension of K/Qp, and ι : OK0 →֒ W (κ) is

the lift of the inclusion k ⊆ κ. Then

Mn−h =

n−h−1⊕

i=0

⊕

τ∈T

(OK ⊗OK0 ,ι◦τ
W (κ)).F iω.

We then define

Fn−hω = (aτ )τω,

where aid = ̟⊗ 1 and aτ = 1⊗ 1 if τ 6= id. V is then defined uniquely by the condition FV = V F = p.

The Dieudonné module of Get is

(OK ⊗Zp
W (κ))h

with F acting as x⊗ y 7→ x⊗ σ(y) on every factor. Taking the direct sum gives us the Dieudonné module

of G.

Definition 2.2.1. Let S = Specκ, where κ ⊇ k algebraically closed. We say that G is µ-ordinary if Get

has height n − 1. For a general S/k and G/S, we say that G is µ-ordinary if Gx is µ-ordinary for every

geometric point x of S.
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We now give an axiomatic definition of the µ-ordinary Hasse invariant. Here and elsewhere we use the

following piece of notation: For any integer m ≥ 1, the twist G(q
m) is defined as the pullback of G along

the absolute qm-th power Frobenius Fqm : S → S. The relative qm-power Frobenius will be denoted by

Frqm .

Definition 2.2.2. Let S/k be a scheme and let G/S be a one-dimensional compatible Barsotti–Tate OK-

module of height n.

(1) If ̟ : G → G factors through Frq : G → G(q), then we denote by V the unique isogeny G(q) → G
such that V ◦ Frq = ̟.

(2) In the situation in (1), V induces a pullback map V
∗
: ωG → ωG(q)

∼= ω⊗q
G on top differentials,

which corresponds to an element H ∈ H0(S, ωq−1
G ). We define H to be the µ-ordinary Hasse

invariant.

The following proposition shows that we have µ-ordinary Hasse invariants whenever S is reduced.

Proposition 2.2.3. Let S be a reduced scheme over k and G/S a one-dimensional compatible Barsotti–

Tate OK-module of height n. Then the isogeny ̟ : G → G factors through the q-th power Frobenius

isogeny Frq : G → G(q).

Proof. The proposition is equivalent to showing that KerFrq ⊆ Ker̟ = G[̟]. Both are finite locally

free subschemes of the finite locally free scheme G[q], so we are in the situation where we have a finite

locally free scheme G over a reduced k-scheme S, and two finite locally free subschemes H,K ⊆ G and

we want to show that H ⊆ K . We claim that it is enough to check this on geometric points.

To see this we argue as follows. First, it is enough to check it Zariski-locally on S. So without loss of

generality S = Spec(A) is affine, and G = Spec(B) where A→ B is projective; moreoverH = Spec(C)
and K = Spec(D) with A→ C,D projective and B ։ C,D. Let I = Ker(B → C) and J = Ker(B →
D); we want J ⊆ I . J and I are also projective as A-modules, so localising further on S we may assume

that I, J, C,D are all free over A (which implies that B is free as well, since B ∼= I ⊕ C ∼= J ⊕ D).

Choose a basis e1, . . . , er, . . . , et of B over A such that e1, . . . , er is a basis of I , and choose another basis

f1, . . . , fs, . . . , ft of B over A such that f1, . . . , fs is a basis for J . We can write

fj =

t∑

i=1

ajiei

for unique aji ∈ A. To check that J ⊆ I we need to check that aji = 0 when 1 ≤ j ≤ s and i > r. But

this can be checked at geometric points of S since S is reduced.

So, let us go back to our original situation. Let x : Spec(κ) → S be a geometric point. We need to

show that ̟ : Gx → Gx factors through Frq : Gx → G
(q)
x . This follows from a direct calculation on the

Dieudonné module. In fact, if h is the height of Getx , then F f(n−h) acts as ̟σf(n−h) on the Dieudonné

module of G0x and as σf(n−h) on the Dieudonné module of Getx by the description of the Dieudonné modules

above; this implies what we want. �

Remark 2.2.4. The proof above works to give ‘strata’ Hasse invariants cutting out the Ekedahl–Oort strata,

in the sense of [Box15, GK19]. These strata Hasse invariants were already defined by Ito [Ito, Ito06]. More

precisely, assume that there are no points s of S where Getx has height > h. Then the proof above shows

that there exists an isogeny V h : G(q
n−h) → G such that V h ◦Frqn−h = ̟, and V

∗

h : ωG → ωqn−h

G defines

a section Hh ∈ H0(S, ωqn−h−1
G ). Moreover, the proof of Proposition 2.2.5 adapts easily to show that the

non-vanishing locus of Hh is precisely the open subset consisting of the points s where Gets has height h.

In the context of Harris–Taylor Shimura varieties, this gives sections defined on the closure of each X
(h)

m

whose vanishing locus is precisely X
(h)

m (we recall that the stratification given by the X
(h)

m is precisely the

Ekedahl–Ort stratification in this case, moreover it is also equal to the Newton stratification). This was the

main point of Ito’s work, and some further properties and applications are stated in [Ito] in the case when

F+ = Q.

Moving on, we record some basic properties of our Hasse invariants.
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Proposition 2.2.5. Let S/k be a scheme and let G/S be a one-dimensional compatible Barsotti–Tate

OK-module of height n. Assume that the µ-ordinary Hasse invariant of G exists and denote it by H ∈
H0(S, ωq−1

G ).

(1) Let φ : S′ → S be a k-morphism and let G′ = G ×S S′. Then the µ-ordinary Hasse invariant of

G′ exists and is equal to φ∗H .

(2) Assume that S = Specκ, where κ is an algebraically closed field. Then H 6= 0 if and only if G is

µ-ordinary.

Proof. The first part follows from the fact that bothFrq and̟ are functorial, so the factorizationV ◦Frq =

̟ on S pulls back to a factorization φ∗V ◦ Frq = ̟ on S′.

For the second part, we note that H 6= 0 if and only if V is étale. Let h denote the height of Get; by

the calculation in the proof of Proposition 2.2.3 we see that ̟ factors through Frq(n−h) so we must have

h = n− 1 for V to be étale. The calculation also shows that if h = n− 1 then V is étale, which is what

we wanted. �

In particular, we have a µ-ordinary Hasse invariant whenever G/S comes by pullback from some G′/S′

with S′ reduced, and the non-vanishing locus is precisely the open whose geometric points x are those for

which Gx is µ-ordinary.

Remark 2.2.6. We note a particular consequence of Proposition 2.2.5(1). Let G/S be a one-dimensional

Barsotti–Tate OK-module of height n over a k-scheme S, and assume that the µ-ordinary Hasse invariant

H(G) exists. Let m ≥ 1 and consider the qm-power Frobenius twist G(q
m), which is the pullback of G

under the absolute qm-th power Frobenius map Fqm : S → S. Then Proposition 2.2.5(1) implies that

H(G(q
m)) = F ∗

qmH(G) = H(G)q
m

. Note that the qm-power Frobenius isogeny Frqm : G → G(q
m) gives

a canonical isomorphism G/KerFrqm ∼= G(q
m), so we get that H(G/KerFrqm) = H(G)q

m

.

Let us now return to the setting of our Shimura varieties. Recall Xm, which is reduced and has the

one-dimensional compatible Barsotti–Tate OK-module G on it, so we have a µ-ordinary Hasse invariant

H ∈ H0(Xm, ωq−1
G ). The µ-ordinary locus is X

(n−1)

m . The following proposition is presumably well

known to experts. We state it for completeness and sketch the proof, though it is not necessary for the main

results of this paper.

Proposition 2.2.7. In the setting above, ωG is ample. As a consequence, X
(n−1)

m is affine.

Proof. When p is unramified in F and m = (0, . . . , 0) this is a special case of [LS12, Proposition 7.15],

but the proof of that result also works when p is ramified in F , using that the models Xm are smooth and

defined by a Kottwitz condition when m1 = 0. The case of general m then follows since the natural map

Xm → X(0,...,0) is finite and surjective. �

Remark 2.2.8. By Remark 2.2.4, it follows more generally that X
(h)

m is affine for all 0 ≤ h ≤ n− 1.

2.3. Canonical subgroups. Our goal in this section is to establish a theory of canonical subgroups for

one-dimensional Barsotti–Tate OK-modules of height n, under the assumption that the Hasse invariant

exists. We follow the approach of Scholze closely [Sch15, 3.2.1], which relies on Illusie’s deformation

theory for group schemes [Ill72].

Let Qcycl
p denote the completion of the p-power cyclotomic extension of Qp; this is a perfectoid field.

We let Zcycl
p denote the ring of integers of Qcycl

p . Set Kcycl := K.Qcycl
p and Ocycl

K := OKcycl . Let

e′n := gcd(e, (p− 1)pn), where we recall that e is the ramification index of K/Qp. Let e′ = limn→∞ e′n,

which exists since (e′n)n is eventually constant. Then Ocycl
K contains elements of valuation ǫ for any

ǫ ∈ Q≥0 of the form ae′/(p − 1)pn for a, n ∈ Z≥0 (here we normalise the valuation so that ̟ has

valuation 1); we will let ̟ǫ denote such an element.

The following results are direct analogues of [Sch15, Corollary 3.2.2, Corollary 3.2.6].
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Proposition 2.3.1. Let R be a ̟-adically complete flat Ocycl
K -algebra. Let G be a finite locally free

commutative group scheme over R and let C1 ⊆ G1 := G ⊗R R/̟ be a finite locally free subgroup

scheme. Assume that multiplication by ̟ǫ on the Lie complex ℓ̌G1/C1
of G1/C1 is homotopic to zero,

where 0 ≤ ǫ < 1/2. Then there is a finite locally free subgroup scheme C ⊆ G such that C⊗RR/̟1−ǫ =
C1 ⊗R/̟ R/̟1−ǫ.

Proof. The proof of [Sch15, Corollary 3.2.2] goes through verbatim (substituting ̟ for p). �

Proposition 2.3.2. Let R be a ̟-adically complete flat Ocycl
K -algebra and let G be a one-dimensional

compatible Barsotti–Tate OK-module of height n over R, with reduction G1 to R/̟. Assume that the µ-

ordinary Hasse invariant H(G1) exists and that H(G1)
qm−1
q−1 divides ̟ǫ for some ǫ < 1/2. Then there is a

unique finite locally free subgroup scheme Cm ⊆ G[̟m] such that Cm⊗R R/̟1−ǫ = (KerFrqm )⊗R/̟

R/̟1−ǫ.

For any ̟-adically complete flat Ocycl
K -algebra R′ with an Ocycl

K -algebra map R→ R′ , one has

(2.3.1) Cm(R′) = {s ∈ G[̟m](R′) | s ≡ 0 mod ̟(1−ǫ)/qm}.

Proof. The proof of [Sch15, Corollary 3.2.6] goes through with only superficial changes; we sketch it for

completeness. Fix m and set H1 := Ker(V
m

: G
(qm)
1 → G1) (which makes sense by assumption); then

there is an exact sequence

0→ KerFrqm → G1[̟
m]→ H1 → 0

by definition. By Lemma 2.3.4 below, the Lie complex of H1 is isomorphic to

ℓ̌H1 = (LieG
(qm)
1

LieV
m

−→ LieG1).

We calculate the determinant of LieV
m

to be H(G1)
qm−1
q−1 using Remark 2.2.6. Multiplication by the

determinant LieV
m

is then null-homotopic on the complex LieG
(qm)
1

LieV
m

−→ LieG1 (using the adjugate

endomorphism of LieV
m

as the chain homotopy), so multiplication by ̟ǫ is null-homotopic using the as-

sumption that H(G1)
qm−1
q−1 divides ̟ǫ. The existence of Cm then follows from Proposition 2.3.1. Unique-

ness is a consequence of the final statement of the proposition, which is proved in the same way as the

analogous part of [Sch15, Corollary 3.2.6], using Lemma 2.3.3. �

We have used the following two lemmas in the proof.

Lemma 2.3.3. Let R be a ̟-adically complete flatOcycl
K -algebra. Let X/R be an affine scheme such that

Ω1
X/R is killed by ̟ǫ, for some ǫ ≥ 0. Let s, t ∈ X(R) be two sections with s = t ∈ X(R/̟δ), for some

δ > ǫ. Then s = t.

Proof. The proof of [Sch15, Lemma 3.2.4] goes through, replacing pǫ and pδ by ̟ǫ and ̟δ , respectively.

�

Lemma 2.3.4. With notation as in the statement and proof of Proposition 2.3.2, the Lie complex ℓ̌H1 of H1

is isomorphic to the complex LieG
(qm)
1

LieV
m

−→ LieG1 (with terms in degrees 0 and 1).

Proof. We may identifyLieG1 andLieG
(qm)
1 with LieG1[̟

k] and LieG
(qm)
1 [̟k], respectively, for all large

enough k. Note that we have natural identifications LieG1[̟k] = ℓ̌≤0
G1[̟k]

and LieG
(qm)
1 [̟k] = ℓ̌≤0

G
(qm)
1 [̟k]

(cf. e.g. [Ill85, §2.1]; we regard modules as complexes concentrated in degree 0). We have exact sequences

0→ H1 → G
(qm)
1 [̟k]→ G

(qm)
1 [̟k]/H1 → 0

for all large k, which give distinguished triangles

ℓ̌H1 → ℓ̌
G

(qm)
1 [̟k]

→ ℓ̌
G

(qm)
1 [̟k]/H1

→ .

Define A to be the complex LieG
(qm)
1

LieV
m

−→ LieG1. By the remarks above, we have

A = cone

(
ℓ̌≤0

G
(qm)
1 [̟k]

→ ℓ̌≤0
G1[̟k]

)
[−1]



A QUOTIENT OF THE LUBIN–TATE TOWER II 9

and hence a distinguished triangle A → ℓ̌≤0

G
(qm)
1 [̟k]

→ ℓ̌≤0
G1[̟k]

→. We may then construct a commutative

diagram

A //

f

��

ℓ̌≤0

G
(qm)
1 [̟k]

//

��

ℓ̌≤0
G1[̟k]

//

��

ℓ̌H1
// ℓ̌

G
(qm)
1 [̟k′ ]

// ℓ̌
G

(qm)
1 [̟k′ ]/H1

//

for all large enough k′ ≥ k, where the two unmarked vertical arrows are canonical and f then exists for

abstract reasons (we remark that we can and do choose f to be independent of k′). We claim that f is

an isomorphism; it suffices to check this on cohomology groups in degrees 0 and 1 (all other cohomology

groups vanish). Taking long exact exact sequences we get a commutative diagram (with exact rows)

0 // H0(A) //

H0(f)

��

LieG
(qm)
1 [̟k] //

��

LieG1[̟k] //

��

H1(A) //

H1(f)

��

0

��

0 // H0(ℓ̌H1) // LieG
(qm)
1 [̟k′

] // LieG
(qm)
1 [̟k′

]/H1
// H1(ℓ̌H1) // H1

(
ℓ̌
G

(qm)
1 [̟k′ ]

)
.

Now take the direct limit over k′ in the bottom row. We have lim−→k′
H1
(
ℓ̌
G

(qm)
1 [̟k′ ]

)
= 0 by [Ill85,

Proposition 2.2.1(c)(i)], and the maps LieG
(qm)
1 [̟k]→ lim

−→k′
LieG

(qm)
1 [̟k′

] and

LieG1[̟
k]→ lim−→

k′

(
LieG

(qm)
1 [̟k′

]/H1

)
∼= lim−→

k′′

LieG1[̟
k′′

]

are both isomorphisms. This implies that H0(f) and H1(f) are both isomorphisms, which finishes the

proof. �

Remark 2.3.5. Morally, the Lemma above should be proven by taking the homotopy colimit of the trian-

gles ℓ̌H1 → ℓ̌
G

(qm)
1 [̟k]

→ ℓ̌
G

(qm)
1 [̟k]/H1

→ for large k. However, since homotopy colimits are poorly

behaved, such an argument seems to require some work to carry out. The argument above may be viewed

as an elementary workaround.

Using Proposition 2.3.2, we define canonical subgroups by analogy with [Sch15, Definition 3.2.7].

Definition 2.3.6. Let R be a ̟-adically complete flat Ocycl
K -algebra and let G be a one-dimensional com-

patible Barsotti–TateOK-module of height n over R, with reduction G1 to R/̟. We say that G has a weak

canonical subgroup of level m if the µ-ordinary Hasse invariant H(G1) exists and H(G1)
qm−1
q−1 divides ̟ǫ

for some ǫ < 1/2, and we then call the subgroup Cm ⊆ G[̟m] (given by Proposition 2.3.2) the weak

canonical subgroup of level m. If in addition H(G1)q
m

divides ̟ǫ, we call Cm the (strong) canonical

subgroup.

One then has the following analogue of [Sch15, Proposition 3.2.8], which is proved by exactly the same

arguments.

Proposition 2.3.7. Let R be a ̟-adically complete flatOcycl
K -algebra, and let G andH be one-dimensional

compatible Barsotti–Tate OK-modules of height n over R.

(1) If G has a (weak) canonical subgroup of level m, then it has a (weak) canonical subgroup of level

m′ for any m′ ≤ m, and Cm′ ⊆ Cm.

(2) Let f : G → H be a morphism of Barsotti–Tate OK-modules. If both G and H have canonical

subgroups Cm and Dm, respectively, of level m, then f maps Cm into Dm. In particular, Cm is

stable under the action of OK .

(3) Assume that G has a canonical subgroup Cm1 of level m1, and that H = G/Cm1 . Then H has a

canonical subgroup Dm2 of level m2 if and only if G has a canonical subgroup Cm1+m2 of level

m1 +m2. If so, there is a short exact sequence

0→ Cm1 → Cm1+m2 → Dm2 → 0
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which is compatible with 0→ Cm1 → G → H → 0.

(4) Assume that G has a canonical subgroupCm of levelm and let x be a geometric point of SpecR[̟−1].
Then Cm(x) ∼= OK/̟m as OK-modules. In other words, the restriction of G to SpecR[̟−1] is

étale-locally isomorphic to OK/̟m as a finite étale group scheme with an OK-action.

3. PERFECTOID SHIMURA VARIETIES

In this section we prove our results about Harris–Taylor Shimura varieties. We first prove an analogue

of Scholze’s result [Sch15, Corollary 3.2.19] that the ‘anticanonical tower’ for Siegel modular varieties is

perfectoid at Γ0(p
∞)-level; this is the main result of this section. Using this, we prove slight refinements2 of

results of Scholze [Sch15] and Caraiani–Scholze [CS17] that the tower of Harris–Taylor Shimura varieties

is perfectoid at full infinite level and admits a Hodge–Tate period map to Pn−1. For this, we follow

Scholze’s arguments for the Siegel case, but the situation is much simpler in our case due to the absence of

a boundary. We also take advantage of the formalism of diamonds, which provide a good setting in which

to carry out the arguments.

3.1. The anticanonical tower. Let us start by recalling a characteristic 0 version of the moduli problem

defining our Shimura varieties from [HT01, §III.1]. For each i ∈ {1, . . . , r}, let

Uvi ⊆ (Oop
B,wi

)×

be a compact open subgroup and set

Up = Z×
p ×

r∏

i=1

Uvi ⊆ G(Qp)

and U = UpUp (recall that we have fixed a sufficiently small compact open subgroup Up ⊆ G(Ap,∞)
throughout this article). We define a contravariant functor XU from locally noetherian K-schemes to sets

as follows. If S is a connected locally Noetherian K-scheme and s is a geometric point of S, we define

XU (S, s) to be the set of equivalence classes of (r + 4)-tuples (A, λ, i, ηp, ηi) where

• A is an abelian scheme over S of dimension dn2;

• λ : A→ A∨ is a polarization;

• i : B →֒ EndS(A)⊗ZQ is a homomorphism such that (A, i) is compatible and λ◦i(b) = i(b∗)∨◦λ
for all b ∈ B;

• ηp is a π1(S, s)-invariant Up-orbit of isomorphisms of B ⊗Q Ap,∞-modules η : V ⊗Q Ap,∞ →
V pAs which take the standard pairing (−,−) on V to a (Ap,∞)×-multiple of the λ-Weil pairing

on V pAs;

• η1 is π1(S, s)-invariant Uv1-orbit of isomorphisms η1 : Λ11 ⊗Zp
Qp → ǫVw1As of K-modules;

• for i = 2, . . . , r, ηi is a π1(S, s)-invariant Uvi-orbit of isomorphisms of Bwi
-modules ηi : Λi ⊗Zp

Qp → Vwi
As.

Before defining equivalence, let us define compatibility. The map i induces an action of E on LieA, and

we let Lie+ A denote the summand of LieA where E acts in the same way as via the structure morphism

E → OS . We then say that (A, i) is compatible if Lie+ A has rank n (over OS) and the actions of F+ on

Lie+ A via i and via the structure morphism F+ → OS agree. Finally, two (r + 4)-tuples (A, λ, i, ηp, ηi)
and (A′, λ′, i′, η′

p
, η′i) are equivalent if there is an isogeny α : A → A′ which takes λ to a Q×-multiple

of λ′, takes i to i′ and takes η to η′. Again the set XU (S, s) is canonically independent of the choice

of s, giving XU on connected S, and one extends to disconnected S in the usual way. This functor is

representable by a smooth projective K-scheme which we will also denote by XU . If m = (m1, . . . ,mr)
and Uvi = 1+̟mi

i O
op
B,wi

, then XU is canonically isomorphic to the generic fibre Xm of Xm ; see [HT01,

pp. 93-94].

For the rest of this article, we will fix non-negative integers m2, . . . ,mr and the corresponding compact

open subgroups Uvi = 1 + ̟mi

i O
op
B,wi

for i = 2, . . . , r. We drop the levels Up, Uvi , i = 2, . . . , r, and

Z×
p from all notation and only indicate the level at v. In particular, we write Xm for what was previously

called X(m,m2,...,mr), etc.

2The (very minor) refinement is the following: [Sch15, CS17] work over the full infinite level at all places dividing p, whereas we

only work with full infinite level at the place v.
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Let us now introduce the level subgroups U0(̟
m) ⊆ GLn(K) that we will use to define the anti-

canonical tower. Let P ⊆ GLn denote the (n − 1, 1)-block upper triangular parabolic. We define, for

m ≥ 0,

U0(̟
m) := {g ∈ GLn(OK) | g mod ̟m ∈ P (OK/̟m)}.

Let us also put U(̟m) = 1 + ̟mMn(OK). Consider XU0(̟m). It is the quotient of Xm by the free

action of the finite group U0(̟
m)/U(̟m) ∼= P (OK/̟m). Since the level structure at w defining Xm

are isomorphisms

α1 : ̟−mΛ11/Λ11 → G[̟
m],

it follows that the level structure at w defining XU0(̟m) are OK-subgroup schemes H ⊆ G[̟m] which

are étale-locally isomorphic to (OK/̟m)n−1.

For the rest of this section we will base change all Shimura varietes XU to Kcycl. We will now define

some formal schemes whose generic fibres embed in the rigid analytification of XU0(̟m) (for suitable m).

Set X := X0 and let X̂ be the formal completion of X ⊗OK
Ocycl

K along ̟. Recall our conventions about

elements ǫ ∈ Q≥0 and elements ̟ǫ ∈ Ocycl
K from §2.3.

Definition 3.1.1. Assume that 0 ≤ ǫ < 1/2. Let X̂(ǫ) → X̂ be the functor on ̟-adically complete flat

Ocycl
K -algebras sending such an S to the set of equivalence classes of pairs (f, u), where f : Spf S → X̂ is

a morphism and and u ∈ H0(Spf S, (f∗ω)1−q) is a section such that u(f∗H) = ̟ǫ ∈ S/̟, where H is

the µ-ordinary Hasse invariant on X̂⊗Ocycl
K
Ocycl

K /̟. Two pairs (f, u) and (f ′, u′) are equivalent if f = f ′

and there is some h ∈ S with u′ = u(1 +̟1−ǫh).

Proposition 3.1.2. X̂(ǫ) is representable by a flat formal scheme over Ocycl
K which is affine over X̂.

Proof. It suffices to work Zariski locally on X̂, so let Spf R ⊆ X̂ be an affine open over which ωq−1

is trivial. Choose a non-vanishing section η ∈ ωq−1 and choose a lift H̃ ∈ H0(Spf R,ωq−1) of H .

We claim that X̂(ǫ) ×
X̂
Spf R is represented by Spf(R〈T 〉/(T (H̃η−1) − ̟ǫ)). The formal scheme

Spf(R〈T 〉/(T (H̃η−1) − ̟ǫ)) represents pairs (f, ũ) with f : Spf S → Spf R a morphism and ũ ∈

H0(Spf S, (f∗ω)1−q) such that ũH̃ = ̟ǫ in S. There is a natural transformation from pairs (f, ũ) to

equivalence classes of pairs (f, u) parametrized by X̃(ǫ) ×
X̃
Spf R, and one shows that this is an isomor-

phism by the same argument as in [Sch15, Lemma 3.2.13]. This shows that X̂(ǫ) is representable and is

affine over X̂.

It remains to show that R〈T 〉/(T (H̃η−1) − ̟ǫ) is flat over Ocycl
K , for which it suffices to show that

it has no ̟ǫ-torsion. Set A = R〈T 〉 and g = T (H̃η−1) − ̟ǫ. Taking the long exact sequence of

0→ A→ A→ A/g → 0 and using the Ocycl
K -flatness of A shows that Tor

Ocycl
K

1 (Ocycl
K /̟ǫ, A/g) (which

is the ̟ǫ-torsion in A/g) is the g-torsion in A/̟ǫ. Since g = T (Hη−1) in A/̟ǫ and Hη−1 is not a zero

divisor in R/̟ǫ, the assertion follows. �

For any formal scheme whose notation involves X̂..., we will use X ... to denote its generic fibre, and

X... the reduction modulo ̟. We record two corollaries.

Corollary 3.1.3. The reduction X(ǫ) represents the functor on Ocycl
K /̟-algebras sending such an S to

the set of pairs f : SpecS → X and u ∈ H0(SpecS, (f∗ω)1−q) such that u(f∗H) = ̟ǫ.

Proof. It suffices to prove this locally on X , so we pick an open affine Spf R ⊆ X̂ and η trivialising

ωq−1 as in the proof of Proposition 3.1.2. Then, by the proof, X(ǫ) is represented over SpecR/̟ by

the Ocycl
K /̟-algebra (R/̟)[T ]/(T (Hη−1) − ̟ǫ), where η denotes the reduction of η. A morphism

(R/̟)[T ]/(T (Hη−1)−̟ǫ)→ S then corresponds to a morphism R/̟→ S plus an element t ∈ S such

that t(Hη−1) = ̟ǫ; setting u = tη−1 gives the desired element of H0(SpecS, (f∗ω)1−q). One checks

that this is independent of the choice of η, which finishes the proof. �

Corollary 3.1.4. Let 0 ≤ ǫ < 1/2. Let S be a ̟-adically complete and flat Ocycl
K -algebra and let

f : Spf S → X̂ be a morphism. Assume that the reduction f : SpecS/̟1−ǫ → X ⊗Ocycl
K

/̟ O
cycl
K /̟1−ǫ
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lifts to a map g : SpecS/̟1−ǫ → X(ǫ) ⊗Ocycl
K

/̟ O
cycl
K /̟1−ǫ. Then there exists a unique map g :

Spf S → X̂(ǫ) lifting g such that the composition Spf S
g
−→ X̂(ǫ)→ X̂ is f .

Proof. The assertion is local on the target and the source, so we may use the local description of X̂(ǫ)
from the proof of Proposition 3.1.2; we use the notation of that proof. The problem then becomes to

prove the following: If h : R → S is an Ocycl
K -algebra homomorphism and u0 ∈ S is an element such

that u0h(H̃η−1) ≡ ̟ǫ modulo ̟1−ǫ, then there is a unique u ∈ S such that uh(H̃η−1) = ̟ǫ and

u ≡ u0 modulo ̟1−ǫ. For existence, write u0h(H̃η−1) = ̟ǫ + ̟1−ǫv for some v ∈ S, then we can

set u = u0(1 +̟1−2ǫv)−1. Since S is Ocycl
K -flat, existence shows that S is h(H̃η−1)-torsionfree, which

implies uniqueness. �

Remark 3.1.5. Note that the map X̂(0)→ X̂ is an open immersion; it identifies X̂(0) with the open subset

{H 6= 0} of X̂. In particular, X̂(0) is formally smooth overOcycl
K . Note also that, for any 0 ≤ ǫ < 1/2, the

natural map X̂(0)→ X̂(ǫ) (given by multiplying the section by̟ǫ) is an open immersion, again identifying

X̂(0) as the subset {H 6= 0} ⊆ X̂(ǫ). Similar remarks then apply modulo ̟, in particular X(0) is formally

smooth overOcycl
K /̟.

Let Â be the universal abelian (formal) scheme over X̂, with pullback Â(ǫ) to X̂(ǫ). We may define

canonical subgroups of Â(ǫ) whenever they exist for G
Â(ǫ), as follows. Recall that we have a decomposition

Â(ǫ)[p∞] ∼= G⊕n

Â(ǫ)
⊕ Â(ǫ)[w∞

2 ]⊕ · · · ⊕ Â(ǫ)[w∞
r ]⊕ (G∨

Â(ǫ)
)⊕n ⊕ Â(ǫ)[w∞

2 ]∨ ⊕ · · · ⊕ Â(ǫ)[w∞
r ]∨.

Here −∨ denotes the Cartier dual. If G
Â(ǫ) has a (weak) canonical subgroup Cm of level m, then we let

Dm ⊆ Â(ǫ)[pm] be the subgroup corresponding to

C⊕n
m ⊕ 0⊕ · · · ⊕ 0⊕ (C⊥

m)⊕n ⊕ Â(ǫ)[wm
2 ]∨ ⊕ · · · ⊕ Â(ǫ)[wm

r ]∨

under the isomorphism above, where C⊥
m is the annihilator of Cm with respect to the duality pairing. We

say that Dm is the (weak) canonical subgroup of Â(ǫ). Note that Dm modulo ̟ is the kernel of the qth

power Frobenius on A(ǫ) (since Â(ǫ)[w∞
i ] is étale for i = 2, . . . , r).

Next, we note that there is a natural isomorphism X
(q) ∼= X over Ocycl

K /̟ (or any other base), since

X comes by base change from k. Let Fr = FrX/(Ocycl
K /̟) : X → X

(q)
be the relative (qth power)

Frobenius map3; note that the composition

X
Fr
−→ X

(q) ∼= X

is the map coming from the abelian scheme A/KerFrA/X → X (with extra structures), where FrA/X is

the relative Frobenius. We may then pull back this situation to X(ǫ) to obtain the following analogue of

[Sch15, Lemma 3.2.14].

Lemma 3.1.6. Let 0 ≤ ǫ < 1/2. The isomorphism X
(q) ∼= X induces an isomorphism X(q−1ǫ)(q) ∼=

X(ǫ), and the composition X(q−1ǫ)
Fr
−→ X(q−1ǫ)(q) ∼= X(ǫ) is induced from the abelian scheme

A(q−1ǫ)/KerFrA(q−1ǫ)/X(q−1ǫ) → X(q−1ǫ) (with extra structures) together with the q-th power of the

universal section on X(q−1ǫ).

Proof. That X
(q) ∼= X induces an isomorphism X(q−1ǫ)(q) ∼= X(ǫ) follows (for example) by explicit

calculation in the local coordinates of the proof of Corollary 3.1.3, assuming in addition that the ring R/̟
in that proof as well as the non-vanishing section η comes by base change from k. It then follows that

A(ǫ) pulls back to A(q−1ǫ)/KerFrA(q−1ǫ)/X(q−1ǫ) via the map X(q−1ǫ) → X(ǫ) since A pulls back

to A/KerFrA/X via Fr : X → X (with extra structures). Finally, one identifies the pullback of the

universal section by explicit calculation in the local coordinates used in the first part of the proof. �

3We apologise that the notation for Frobenius maps in this section differs slightly from the notation in section 2.
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We will abuse the terminology and write Fr for the map X(q−1ǫ)→ X(ǫ), and refer to it as the relative

Frobenius.

Theorem 3.1.7. Let 0 ≤ ǫ < 1/2.

(1) There is a unique morphism F̃ : X̂(q−1ǫ) → X̂(ǫ) which is equal to the relative Frobenius

X(q−1ǫ)→ X(ǫ) modulo ̟1−ǫ. F̃ is finite, and its generic fibre is finite flat of degree qn−1.

(2) For any integer m ≥ 1, the Barsotti–Tate OK-module G
Â(q−mǫ) admits a canonical subgroup

Cm of level m, and hence the abelian variety Â(q−mǫ) admits a canonical subgroup Dm of

level m. This induces an open immersion X (q−mǫ) → XU0(̟m) given by the abelian variety

A(q−mǫ)/Dm, the OK-subgroup GA(q−mǫ)[̟
m]/Cm, plus the induced extra structures. More-

over, the diagram

X (q−m−1ǫ) //

F̃

��

XU0(̟m+1)

��

X (q−mǫ) // XU0(̟m)

commutes and is cartesian.

(3) There is a weak canonical subgroup C ⊆ G
Â(ǫ) of level 1. The open immersion X (q−1ǫ) →

XU0(̟) identifies X (q−1ǫ) with the open subset XU0(̟)(ǫ)a of XU0(̟) where the Hasse invariant

has valuation≤ ǫ and the OK-subgroup C′ ⊆ G[̟] satisfies C ∩ C′ = 0.

Proof. We start by proving (1). By Proposition 2.3.2 there is a strong canonical subgroupC of G
Â(q−1ǫ) (of

level 1), and hence a strong canonical subgroupD of Â(q−1ǫ). This gives an abelian variety Â(q−1ǫ)/D →

X̂(q−1ǫ) with extra structures, and hence a morphism X̂(q−1ǫ) → X̂. Note that Â(q−1ǫ)/D → X̂(q−1ǫ)
reduces to A(q−1ǫ)/KerFrA(q−1ǫ)/X(q−1ǫ) → X(q−1ǫ) modulo ̟1−ǫ by Proposition 2.3.2, so the map

X̂(q−1ǫ) → X̂ reduces to a map X(q−1ǫ) → X modulo ̟1−ǫ which lifts to the relative Frobenius

X(q−1ǫ)→ X(ǫ) modulo ̟1−ǫ by Lemma 3.1.6. Corollary 3.1.4 then gives us a lift F̃ : X̂(q−1ǫ)→ X̂(ǫ)
of the relative Frobenius modulo ̟1−ǫ. The uniqueness follows from the uniqueness of the canonical sub-

group (which establishes uniqueness of the lift X̂(q−1ǫ)→ X̂) and the uniqueness part of Corollary 3.1.4.

For finiteness, first note that the morphism is affine by construction. Finiteness of F̃ then follows from

the fact that F̃ is finite modulo ̟1−ǫ, since it is the relative Frobenius of a morphism of finite presentation

(see e.g. [Sta, Tag 0CCD] for the case q = p). To prove that the generic fibre is finite flat of degree qn−1,

we first do the case ǫ = 0. In this case X(0) is smooth of relative dimension n− 1 (Remark 3.1.5), so the

relative Frobenius is finite and locally free of degree qn−1 (see e.g. [Ill96, Proposition 3.2] when q = p),

and hence the same is true for F̃ and its generic fibre. For general ǫ, the generic fibre is a finite surjective

morphism between smooth rigid spaces, hence flat. To compute the degree, we use that the diagram

X (0) //

F̃
��

X (q−1ǫ)

F̃
��

X (0) // X (ǫ)

is cartesian; then the right vertical morphism has the same degree as the left vertical morphism, which we

already know has degree qn−1.

We now turn to part (2). The existence of canonical subgroups Cm of level m again follows from

Proposition 2.3.2. The formula in the proposition then defines a morphism X (q−mǫ) → XU0(̟m) by

Proposition 2.3.7(4). To see that it is an open immersion, we consider the map π2 : XU0(̟m) → X sending

a pair (A,C′) (with extra structures) to A/D′ (with extra structures), where D′ ⊆ A[p∞] corresponds to

the OK-subgroup

(C′)⊕n ⊕A[wm
2 ]⊕ . . . A[wm

r ]⊕ ((C′)⊥)⊕n ⊕ 0⊕ · · · ⊕ 0.

The compositionX (q−1ǫ)→ XU0(̟m)
π2→ X sends an abelian varietyA (with extra structures) to A/A[pm]

(with extra structures) by direct computation. It follows that the composition is equal to the forgetful map
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X (q−1ǫ) → X (which is an open immersion) followed by an isomorphism of X (which only changes

the level structures away from w), and is hence an open immersion. Since π2 is étale, it follows that

X (q−1ǫ)→ XU0(̟m) is an open immersion as desired.

The commutation of the diagram in (2) follows from Proposition 2.3.7. To see that it is cartesian we

argue as follows. The horizontal maps are open embeddings, and the right vertical map is finite étale of

degree qn−1. Since the left vertical map is finite flat of degree qn−1 by part (1), it follows that the induced

map X (q−m−1ǫ) → X (q−mǫ) ×XU0(̟
m)
XU0(̟m+1) is a finite surjective morphism of degree 1 between

smooth rigid spaces, and hence an isomorphism. In particular, F̃ is étale, and the diagram is cartesian. This

finishes the proof of (2).

For (3), we first need to establish that X (q−1ǫ) → XU0(̟) has image inside XU0(̟)(ǫ)a. This is done

as in the last part of the proof of [Sch15, Theorem 3.2.15]. After this, we look at the diagram

X (q−1ǫ) //

F̃

��

XU0(̟)(ǫ)a

��

X (ǫ)
id

// X (ǫ).

As in the proof of part (2), it commutes. We claim that it is cartesian; since the bottom horizontal arrow is

the identity this gives the desired conclusion. The left vertical map is finite of degree qn−1, and one checks

that the right vertical map is finite étale of degree qn−1. An argument as in the proof of (2) then shows that

the diagram is cartesian, and finishes the proof. �

For the next result, which is the main result of this subsection, we use the notion X ∼ lim
←−i

Xi for an

adic space X with a collection of compatible maps to a cofiltered inverse system of adic spaces (Xi) from

[SW13, Definition 2.4.1].

For m ≥ 1 we define XU0(̟m)(ǫ)a as the image of X (q−mǫ) in XU0(̟m).

Theorem 3.1.8. Fix 0 ≤ ǫ < 1/2. There is a unique (affinoid) perfectoid space XP (OK)(ǫ)a over Kcycl

such that

XP (OK)(ǫ)a ∼ lim
←−
m

XU0(̟m)(ǫ)a.

Proof. We start by showing the existence of such a perfectoid space XP (OK)(ǫ)a. By Theorem 3.1.7 we

may identify the tower (XU0(̟m)(ǫ)a)m≥0 with (X (q−mǫ))m≥0, with transition maps given by F̃ . This

gives us a formal model (X̂(q−mǫ))m≥0 for this tower, and we may take the inverse limit

X̂∞ := lim
←−
m≥0

X̂(q−mǫ)

in the category of ̟-adic formal schemes since the transition maps are affine. We define XP (OK)(ǫ)a to

be the generic fibre of X̂∞ in the sense of [SW13, §2.2]. Since the transition maps agree with Frobenius

modulo ̟1−ǫ, we may argue as in the proof of [Sch15, Corollary 3.2.19] to conclude that XP (OK)(ǫ)a is

perfectoid and that XP (OK)(ǫ)a ∼ lim
←−m

XU0(̟m)(ǫ)a.

Finally, to show thatXP (OK)(ǫ)a is affinoid perfectoid, one may argue using tilts as in [Sch15, Corollary

3.2.19, Corollary 3.2.20]. Since this additional information is not needed for the results of this paper we

will not give further details. �

3.2. The Hodge–Tate period map. We now introduce some notation for more general ‘infinite level

Shimura varieties’. These will be defined (a priori) as diamonds, and we refer to [Sch17] for the defi-

nitions and terminology concerning diamonds. Let Hv ⊆ GLn(OK) be a closed subgroup. We define

XHv
:= lim
←−

Hv⊆Uv

X♦
Uv

,

where Uv ranges through all the open subgroups Uv ⊆ GLn(OK) containing Hv, and Y 7→ Y ♦ is the

‘diamondification functor’ on rigid spaces [Sch17, Definition 15.5]. We remark that each X♦
Uv

is a spatial
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diamond, and that the inverse limits above exist (as diamonds) and are spatial by [Sch17, Lemma 11.22],

which also says that the natural map

|XHv
| → lim

←−
Hv⊆Uv

|X♦
Uv
| = lim

←−
Hv⊆Uv

|XUv
|

is a homeomorphism, where |Y | denotes the underlying topological space of an adic space or a diamond

[Sch17, Definition 11.14] (and the equality follows from [Sch17, Lemma 15.6]). Note that if Hv = Uv is

open, our definition above is essentially saying that we will conflate XUv
with its corresponding diamond;

this abuse of notation is mostly harmless since the diamondification functor is fully faithful on the category

of normal rigid spaces (over a fixed nonarchimedean field, remembering the structure morphism).

Thus, writing 1 ⊆ GLn(OK) for the trivial subgroup, we have a diamond X1 = lim
←−
XUv

with an

action of GLn(OK), which extends to an action of GLn(K) by using the maps g : XgUvg−1 → XUv
for

g ∈ GLn(K) and any open Uv such that Uv, gUvg
−1 ⊆ GLn(OK). Our goal is to show that a certain

open subset X comp
P (OK) ⊆ XP (OK) (containing XP (OK)(ǫ)a for sufficiently small ǫ > 0) is perfectoid.

To do this, we proceed from the previous subsection by going further up the tower. Recall that if (Yi)i∈I

is a filtered inverse system of adic spaces over a perfectoid field with qcqs transition maps and Y is a

perfectoid space with compatible maps Y → Yi such that Y ∼ lim
←−i

Yi, then by [SW13, Proposition 2.4.5]

and the definition of the diamondification functor we have Y = lim
←−i

Y ♦
i as diamonds (here and elsewhere,

if Y is a perfectoid space, we simply write Y for the corresponding diamond as well). Thus, by Theorem

3.1.8, we have

XP (OK)(ǫ)a = lim
←−
m≥0

XU0(̟m)(ǫ)
♦
a ,

and XP (OK)(ǫ)a is naturally an open subdiamond of XP (OK).

Proposition 3.2.1. Let 0 ≤ ǫ < 1/2 and let Hv ⊆ GLn(OK) be a closed subgroup contained in P (OK).
Then the spatial diamond XHv

(ǫ)a := XP (OK)(ǫ)a ×XP(OK )
XHv

is an (affinoid) perfectoid space.

Proof. First assume that Hv has finite index inside P (OK). Then XHv
(ǫ)a → XP (OK)(ǫ)a is finite étale,

and the result then follows. In generalXHv
(ǫ)a = lim

←−H′
v

XH′
v
(ǫ)a where H ′

v ranges over closed subgroups

with Hv ⊆ H ′
v ⊆ P (OK) and H ′

v ⊆ P (OK) has finite index, and the result follows. �

To continue, we construct the Hodge–Tate period map X1 → (Pn−1)♦ on diamonds; this is the content

of the following proposition. We keep the statement vague; the meaning of the name ‘Hodge–Tate period

map’ should be clear from the construction.

Proposition 3.2.2. There exists a GLn(K)-equivariant Hodge–Tate period map πHT : X1 → (Pn−1)♦

over (Kcycl,Ocycl
K ).

Proof. By the definitions, we may regard X1 and (Pn−1)♦ as sheaves on the pro-étale site of perfec-

toid spaces over Kcycl, so to construct a map of sheaves it suffices to work with a basis for the topol-

ogy. Let Spa(R,R+) be a strictly totally disconnected perfectoid space over (Kcycl,Ocycl
K ). A map

Spa(R,R+) → X1 is the same as a compatible system of maps Spa(R,R+) → XU(̟m) for all m, and

we may assume that the map Spa(R,R+)→ X factors through an affinoid open subset Spa(A,A◦) ⊆ X ,

where Spf(A◦) ⊆ X̂ is open affine (note that this is possible since X̂ is normal, by [dJ95, Theorem 7.4.1]).

The map Spa(R,R+) → Spa(A,A◦) is then the generic fibre of a map Spf(R+) → Spf(A◦) of ̟-adic

formal schemes, and we may pull back the universal Barsotti–TateOK-module over Spf(A◦) to a Barsotti–

Tate OK-module GR over R+. Since Spa(R,R+) is strictly totally disconnected, we may apply [SW13,

Proposition 4.3.6]4 to see that GR has an exact Hodge–Tate sequence

0→ Lie(GR)(1)⊗R+ R→ TGR(R
+)⊗Zp

R→ (Lie(G∨R))
∨ ⊗R+ R→ 0

of finite projective R-modules. By the compatibility of GR and the fact that it has dimension 1,

Lie(GR)(1)⊗R+ R

4The proof of [SW13, Proposition 4.3.6] does not require the assumption, in the notation of that reference, that Spec T is

connected.
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hasR-rank 1 and embeds into TGR(R+)⊗Ocycl
K

R (which is anR-module direct summand of TGR(R+)⊗Zp

R). Using the compatible trivialisations GR[̟m](R+) = GR[̟m](R) ∼= (OK/̟m)n coming from the

maps Spa(R,R+)→ XU(̟m), the inclusion Lie(GR)(1)⊗R+ R ⊆ TGR(R+)⊗Ocycl
K

R ∼= Rn defines an

(R,R+)-point of Pn−1. This gives the desired map, and GLn(K)-equivariance is clear from the construc-

tion. �

We remark that any map between spatial diamonds induces a spectral map of the underlying spectral

topological spaces, so πHT is spectral. The next lemma characterises the image of the µ-ordinary locus

under the Hodge–Tate period map. For more general results under the assumption that K/Qp is unramified,

see [Her18, §11].

Lemma 3.2.3. Let C be a complete algebraically closed extension of K with valuation ring OC and

residue field kC . Let G be a compatible Barsotti–Tate OK-module over OC of dimension 1 and height n.

Then the special fibre G ×OC
kC is µ-ordinary if and only if the subspace Lie(G)⊗OC

C(1) ⊆ TG ⊗Zp
C

is K-rational (here TG is the Tate module of G).

Proof. We use the Scholze–Weinstein classification of Barsotti–Tate groups over OC [SW13, §5]. To

simplify the notation, we will take the linear algebra data (T,W ) in the Scholze–Weinstein equivalence

[SW13, Theorem 5.2.1] to be a finite free Zp-module T together with a C-subspace W ⊆ T ⊗Zp
C

rather than a subspace of T ⊗Zp
C(−1) (from the point of view of Barsotti–Tate groups G, we take W

to be Lie(G) ⊗OC
C(1) rather than Lie(G) ⊗OC

C). We start by assuming that the special fibre of G is

µ-ordinary, and consider the connected-étale sequence

0→ G0 → G → Get → 0

of G, which is an exact sequence of compatible Barsotti–TateOK-modules. By [SW13, Proposition 5.2.8],

this exact sequence induces an exact sequence

0→ TG0 → TG → TGet → 0

and an equality Lie(G0) ⊗OC
C = Lie(G) ⊗OC

C (since Lie(Get) = 0), so it suffices to show that

Lie(G0)⊗OC
C(1) ⊆ TG0 is K-rational. Since the special fibre is µ-ordinary, G0 has height 1 (using that

the connected-étale sequence is compatible with reduction). But, by the Scholze–Weinstein classification

[SW13, Theorem 5.2.1], there is a unique compatible Barsotti–Tate OK-module LT of dimension 1 and

height n overOC , given by the linear algebra datum (T = OK ,W = Cσ) where

T ⊗Zp
C =

∏

τ∈Hom(K,C)

Cτ

and σ : K → C is the inclusion (recall that C was defined to be an extension of K), and this W is visibly

K-rational. Note that LT is the unique lift of the Lubin–TateOK-module of height 1 over kC .

For the converse, assume that (T = On
K ,W ) is the linear algebra datum of G, assume that W is K-

rational and use the notation established in the previous paragraph. Write W = WK ⊗K C with WK a

K-rational structure on W . We can canonically identify T [1/p] = Kn with the K-rational structure on

(T ⊗Zp
C)σ and hence think of WK as a subspace of T [1/p]; the intersection WOK

= WK ∩ T is then an

OK-module direct summand of T of rank 1; let T ′ ⊆ T be a complement. It follows that we can write

(T,W ) = (WOK
,W )⊕ (T ′, 0)

compatibly with the OK-action. It then follows from the Scholze–Weinstein equivalence that G is isomor-

phic to LT × (K/OK)n−1 as a Barsotti–Tate OK-module, and hence has µ-ordinary reduction. �

Let us now define

Pn−1(K)a :=
{
(a1 : · · · : an) ∈ Pn−1(OK) | an ∈ O

×
K

}
.

We then get the following corollaries.

Corollary 3.2.4. We have πHT (|X1(0)a|) = Pn−1(K)a and π−1
HT (P

n−1(K)a) is equal to the closure

|X1(0)a| of |X1(0)a| in |X1|.
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Proof. Form now on, to ease the notation we will often drop the | − | when discussing topological spaces

of adic spaces or diamonds; what we mean should hopefully be clear from the context. By Lemma 3.2.3

the rank one points of π−1
HT (P

n−1(K)) are precisely the rank one points of the µ-ordinary locus X1(0), so

it follows that π−1
HT (P

n−1(K)) is precisely the set of specializations of points in X1(0). Since X1(0) is

a quasicompact open subset of X1, the set of such specializations is precisely X1(0). Moreover X1(0) is

GLn(OK)-stable and Pn−1(K) is a GLn(OK)-orbit, so by equivariance of πHT the image of X1(0) has

to be all of Pn−1(K). Finally, to deduce the corollary from this one checks easily that the anticanonical

condition on a rank 1 point is equivalent to the image under πHT being in Pn−1(K)a, and then we argue

similarly using that X1(0)a is also quasicompact and open. �

Corollary 3.2.5. For every 0 < ǫ < 1/2 there exists a quasicompact open subset U ⊆ Pn−1 contain-

ing Pn−1(K)a such that π−1
HT (U) ⊆ X1(ǫ)a. Conversely, for every open subset V ⊆ Pn−1 containing

Pn−1(K)a, we have X1(ǫ)a ⊆ π−1
HT (V ) for all sufficiently small ǫ > 0.

Proof. We may write Pn−1(K)a =
⋂
U , where U runs through the quasicompact open subsets of Pn−1

containing Pn−1(K)a. Fix ǫ > 0 small enough. We have X1(0)a ⊆ X1(ǫ)a, so by Corollary 3.2.4 we

have X1(ǫ)a ⊇
⋂
π−1
HT (U), and it follows (by a short argument using the constructible topology) that

π−1
HT (U) ⊆ X1(ǫ)a for some U since the π−1

HT (U) are quasicompact opens (since πHT is spectral). This

proves the first part, and the converse is proved in exactly the same way using the fact that X1(0)a =⋂
ǫ>0 X1(ǫ)a. �

3.3. Perfectoid spaces. In this subsection we will prove the (global) perfectoidness results that we will

need in this paper. We start with some remarks on the geometry of Pn−1, to set up notation. We have a

cover of Pn−1 by open affinoid subsets

Vi = {(a1 : · · · : an) | |aj| ≤ |ai| j 6= i}.

Note also that the Vi are translates of one another under the action of the Weyl group of GLn (with respect

to the diagonal torus). We have a similar ‘algebraic’ cover by open subsets

Vi = {(a1 : · · · : an) | |ai| 6= 0}.

Let γ = diag(̟, . . . , ̟, 1) ∈ GLn(K). We then have the following elementary lemma. Recall that we

are using the right action of GLn on Pn−1 which is the inverse of the usual left action.

Lemma 3.3.1. We have Vn =
⋃

k≥0 Vnγ
k, and the sets Vnγ−k, k ≥ 0, form a basis of quasicompact open

neighbourhoods of (0 : . . . 0 : 1) ∈ Pn−1.

Next, we define X comp
1

, the ‘complementary locus’, to be the open subdiamond π−1
HT (Vn) ⊆ X1.

Corollary 3.3.2. Let ǫ > 0 be sufficiently small. We have X comp
1

=
⋃

k≥0 X1(ǫ)aγ
k, and hence X comp

1
is

a perfectoid space.

Proof. By Corollary 3.2.5 and the second part of Lemma 3.3.1 we can choose a U , and ǫ > 0 and a k ≥ 0
such that π−1

HT (U) ⊆ X1(ǫ)a ⊆ X
comp
1

and Vnγ−k ⊆ U . The first assertion of this corollary then follows

from the first part of Lemma 3.3.1 (using the equivariance of πHT ), and the second part of the corollary is

immediate from the first and Proposition 3.2.1. �

As an aside, which won’t be used in this paper, we note the following theorem.

Theorem 3.3.3. X1 is a perfectoid space and πHT comes from a unique map X1 → Pn−1 of adic spaces.

Proof. The fact that X1 is a perfectoid space follows Corollary 3.3.2 and the fact that

|X1| =
⋃

g∈GLn(OK)

|X comp
1

|g

(which is immediate from equivariance of πHT and Pn−1 = V1 ∪ · · · ∪ Vn). The second part then follows

immediately, since any map of diamonds from a perfectoid space S to the diamond Z♦ of a rigid space Z
corresponds to a unique map of adic spaces S → Z , by the definition of the diamondification functor. �
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We now turn to the main result of this section. The natural map |X1| → |XP (OK)| is open, so we may

define X comp
P (OK) ⊆ XP (OK) to be the open subdiamond given as the image of |X comp

1
|. Note that X comp

1
is

P (OK)-stable. From the next lemma, we see that X comp
1

→ X comp
P (OK) is a P (OK)-torsor.

Lemma 3.3.4. Assume that H ′
v ⊆ Hv are closed subgroups of GLn(OK), and that H ′

v is normal in Hv.

Then XH′
v
→ XHv

is a Hv/H
′
v-torsor in the sense of [Sch17, Definition 10.12].

Proof. Set Uv,m = HvU(̟m), U ′
v,m = H ′

vU(̟m). Then XU ′
v,m
→ XUv,m

is a Uv,m/U ′
v,m-torsor, com-

patibly in m. Diamondification preserves torsors by finite groups, so we have compatible isomorphisms

XU ′
v,m
× Uv,m/U ′

v,m
∼
−→ XU ′

v,m
×XUv,m

XU ′
v,m

for all m. Taking the inverse limit over m then gives the result. �

Let us recall that Huber defined the category of adic spaces as a full subcategory of a category he called

V in [Hub94]. This category has quotients by arbitrary group actions, cf. [Lud17, §2.2]. Let us explicitly

record the following link between torsors and group quotients in V , in the case of perfectoid spaces.

Lemma 3.3.5. Let H be a profinite group and let X̃ → X be a map of perfectoid spaces which is a

H-torsor in the sense of [Sch17, Definition 10.12]. Then X is the quotient of X̃ by H in the category V .

Proof. It suffices to check that |Ũ |/H = |U | and OX̃(Ũ)H = OX(U) for a basis of open subsets U of X ,

with Ũ := X̃ ×X U . So take U = Spa(R,R+) ⊆ X affinoid perfectoid. By [Sch17, Lemma 10.13] we

may then write Ũ as an inverse limit Ũ = lim
←−K

ŨK → U of finite étale (and hence affinoid perfectoid)

ŨK → U for open normal subgroups K ⊆ H which are H/K-torsors. Write ŨK = Spa(RK , R+
K) and

Ũ = Spa(S, S+). If π is a pseudouniformizer for R we then have (R+
K/πm)H/K =a R+/πm for all m,

compatibly in K (=a for almost equal). This implies that SH = R and that (R
H/K
K , (R+

K)H/K) = (R,R+)

compatibly in K . The latter implies that |ŨK |/(H/K) = |U | compatibly in K (e.g. by [Han16, Theorem

1.2]) which implies that |Ũ |/H = |U | as desired. �

Theorem 3.3.6. X comp
P (OK) is a perfectoid space. More precisely, for ǫ > 0 sufficiently small, |X comp

P (OK)| is

covered by the open subsets |X1(ǫ)aγ
k|/P (OK) for k ≥ 0, and the corresponding open subdiamonds are

(affinoid) perfectoid spaces. Moreover, X comp
P (OK) is the quotient of X comp

1
by P (OK) in Huber’s category

V .

Proof. We have an isomorphism

γ−k : XP (OK) → XγkP (OK)γ−k

of diamonds, which sends the open subset |X1(ǫ)aγ
k|/P (OK) of |XP (OK)| to the open subset

|X1(ǫ)a|/γ
kP (OK)γ−k

of |XγkP (OK)γ−k |. Let us denote the open subdiamond corresponding to |X1(ǫ)a|/γkP (OK)γ−k by

XγkP (OK)γ−k(ǫ)a. By direct computation γkP (OK)γ−k is a finite index open subgroup of P (OK), so

we have a natural finite étale map XγkP (OK)γ−k(ǫ)a → XP (OK)(ǫ)a. It follows that XγkP (OK)γ−k(ǫ)a is

(affinoid) perfectoid, and hence that the diamond corresponding to |X1(ǫ)aγ
k|/P (OK) is (affinoid) per-

fectoid. This proves the theorem, except for the ‘moreover’ part, which then follows from Lemma 3.3.5

since X comp
1

→ X comp
P (OK) is a P (OK)-torsor. �

4. THE LUBIN–TATE TOWER

In this section we prove our geometric results on the Lubin–Tate tower.
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4.1. Preliminaries. We begin by recalling the Lubin–Tate spaces that we will be working with, cf. [HG94,

RZ96]. Let G0 be the unique one-dimensional compatible Barsotti–Tate OK-module of OK-height n and

with Get0 = 0 over k, and set K̆ = K ⊗W (k) W (k). The Lubin–Tate space M is the formal scheme

over OK̆ whose R-points, for R an OK̆-algebra with ̟ nilpotent, is the set of pairs (G, ρ) where G is a

one-dimensional compatible Barsotti–Tate OK-module over R and ρ : G0 ⊗k R/̟ → G ⊗R R/̟ is an

OK-linear quasi-isogeny. M decomposes as a disjoint union

M =
⊔

d∈Z

M(d)

according to the degree qd of the quasi-isogeny ρ, and ρ is an isomorphism if d = 0. In particular, M(0) is

the formal deformation space of G0. LetM andM(d) be the generic fibre of M and M(d), respectively.

There is a tower of rigid analytic varieties (MU )U overM =MGLn(OK), where U ranges over the open

subgroups of GLn(OK). All transition maps are finite étale, and the tower carries an action of GLn(K).

We also setM
(d)
U :=MU ×MM(d) for all d ∈ Z. Similarly to our notation for Shimura varieties in the

previous section, we set

MH := lim
←−
U⊇H

M♦
U

for any closed subgroup H ⊆ GLn(OK); here U ranges over the open subgroups containing H (we define

M
(d)
H similarly). We have two period maps; the Gross–Hopkins period map πGH :MGLn(OK) → Pn−1

and the Hodge–Tate period map πHT :M1 → Pn−1. The map πGH is étale, surjective and admits local

sections5. Moreover, the composite

M1 →MGLn(OK)
πGH−→ Pn−1

is a GLn(K)-torsor in the sense of [Sch17, Definition 10.12]. The image of the Hodge–Tate period map

πHT is the Drinfeld upper halfspace Ωn−1 ⊆ Pn−1.

We now relate our Lubin–Tate spaces to the Shimura varieties from the previous section. We use the

notation and conventions of the previous sections freely, except that we will base change all analytic adic

spaces to a complete and algebraically closed non-archimedean field extension C of K (e.g. Cp), all formal

schemes to OC , and all reductions to the residue field kC of C or OC/̟ as appropriate. Then, we choose

once and for all a closed point x in X
(0)

(which is non-empty by [HT01, Lemma III.4.3]). By [HT01,

Lemma III.4.1(1)], this realises M(0) as the completed local ring of X at x. Taking generic fibres, we

obtain an open immersion

M(0) →֒ X

and taking level structures we obtain compatible embeddings

M
(0)
U →֒ XU

for all open subgroups U ⊆ GLn(OK), and this map of towers is compatible with the Hecke actions.

Taking inverse limits (as diamonds), we get more generally open immersions

M
(0)
H →֒ XH

for all closed subgroups H ⊆ GLn(OK). The fact that these are open immersions follows from the fact

that M
(0)
U = M(0) ×X XU for all open U ⊆ GLn(OK) (and this identity then extends to all closed

H ⊆ GLn(OK)). We also have a compatibility between the local and global Hodge–Tate period maps:

Composing the immersionM1 →֒ X1 and the global πHT : X1 → Pn−1 gives the local πHT : M1 →
Pn−1. Since the Drinfeld upper halfspace Ωn−1 is contained in the ‘complementary locus’ Vn ⊆ Pn−1

from Subsection 3.3, we obtain M
(0)
1
⊆ X comp

1
and hence M

(0)
P (OK) ⊆ X

comp
P (OK). Theorems 3.3.2 and

3.3.6, together with Lemma 3.3.4 then directly imply the following local analogue.

Proposition 4.1.1. M
(0)
1

and M
(0)
P (OK) are perfectoid spaces over C, and M

(0)
P (OK) is the quotient of

M
(0)
1

by P (OK) in Huber’s category V .

5When K = Qp this is a special case of [SW13, Lemma 6.1.4], but the argument there works in general.
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4.2. The main result. We now turn to the task of showing thatMP (K) :=M1/P (K) is a quasicompact

perfectoid space, which is the main result of this section. This will follow from Proposition 4.1.1 precisely

as in [Lud17, §3.6] in the case n = 2, F = Qp. To clarify, the quotient above is taken in the category V ;

this makes sense sinceM1 is a perfectoid space (using Proposition 4.1.1 and the GLn(K)-action). Set

G′ := {g ∈ GLn(K) | det(g) ∈ O×
K}.

This is the kernel of the homomorphism GLn(K) → Z given by g 7→ vK(det(g)), where vK is the

normalised valuation on K , and this homomorphism is split. Moreover, for g ∈ GLn(K), one has

M
(0)
1

.g =M
(vK(det(g)))
1

by looking at the degree of the quasi-isogeny. From this we see that G′ is the stabiliser of the component

M
(0)
1

, and it also follows that the natural map

M
(0)
1

/P ′ →M1/P (K) =MP (K)

in V , where P ′ := P (K) ∩G′, is an isomorphism.

Theorem 4.2.1. The quotientMP (K) is a perfectoid space over C. The natural mapM
(0)
P (OK) →MP (K)

has local sections.

Proof. We follow the proof of [Lud17, Theorem 3.14], indicating the details. By the remarks above

MP (K)
∼=M

(0)
1

/P ′, so it suffices to show that the latter is a perfectoid space. Let pr :M
(0)
1
→M(0) de-

note the map that forgets level structures, and let U ⊆M(0) be an open subset such that the Gross–Hopkins

period map πGH |U restricted to U is an isomorphism onto its image U . The preimage pr−1(U) ⊆ M
(0)
1

is stable under P (OK), so we may form the object

pr−1(U)×P (OK) P ′ := (pr−1(U)× P ′)/P (OK) ∈ V ;

we refer to [Lud17, §2.4] for the details of this construction. By [Lud17, Lemma 2.16] and the way we

have chosen U , there is an open immersion

pr−1(U)×P (OK) P ′ →֒ M
(0)
1

.

Since taking quotients is compatible with open immersions by construction, we get an open immersion

(pr−1(U)×P (OK) P ′)/P ′ →֒ M
(0)
1

/P ′.

By [Lud17, Proposition 2.14], (pr−1(U) ×P (OK) P ′)/P ′ ∼= pr−1(U)/P (OK) and the latter is an open

subset ofM
(0)
P (OK) , hence perfectoid. SinceM

(0)
1

/P ′ is covered by opens of the form (pr−1(U)×P (OK)

P ′)/P ′,M
(0)
1

/P ′ is perfectoid as desired. This also shows that there is a cover ofMP (K) by open subsets

of the form (pr−1(U) ×P (OK) P ′)/P ′ ∼= pr−1(U)/P (OK), that embed intoM
(0)
P (OK) and give sections

of the natural projection map. �

Since the Gross–Hopkins period mapM1 → Pn−1 is GLn(K)-equivariant for the trivial action on the

target, it factors overM1 →MP (K); we write

πGH :MP (K) → Pn−1

for this factorization. We get the following generalization of [Lud17, Proposition 3.15], by exactly the

same proof.

Proposition 4.2.2. πGH is quasicompact. As a consequence,MP (K) is quasicompact. Moreover,MP (K)

is quasiseparated.

Proof. The proof that πGH is quasicompact is identical to the proof of the special case [Lud17, Proposition

3.15] when n = 2 and K = Qp; we recall it briefly since the argument also proves that MP (K) is

quasiseparated. In short, since πGH has local sections, Pn−1 is covered by quasicompact open subsets V
for which there exists an open U ⊆M(0) such that πGH |U is an isomorphism onto V . By the argument in

the proof of Theorem 4.2.1,

π−1
GH(V ) ∼= (pr−1(U)×P (OK) P ′)/P ′ ∼= pr−1(U)/P (OK),
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which is quasicompact, so πGH is quasicompact (and hence so isMP (K) since Pn−1 is quasicompact). To

show thatMP (K) is quasiseparated we first show that π−1
GH(V ) is qcqs. To see this, note that pr−1(U) is

an inverse limit of qcqs spaces, hence qcqs and therefore a spectral space. It then follows that the quotient

π−1
GH(V ) ∼= pr−1(U)/P (OK) is a spectral space by [BFH+18, Lemma 3.2.3], so in particular qcqs. The

intersection of two such subsets ofMP (K) is also quasicompact (π−1
GH(V1)∩π

−1
GH(V2) = π−1

GH(V1 ∩V2)),
soMP (OK) is quasiseparated by [AGV71, VI, Corollaire 1.17]. �

Thus we have shown that |MP (K)| is a spectral space. We will also need the fact that it has Krull

dimension n − 1, i.e., that the supremum of all lengths k of generalizations x0 ≺ · · · ≺ xk is equal to

n− 1. To make the proof transparent, we record a few simple observations on Krull dimensions.

Lemma 4.2.3. Let X and Y be locally spectral spaces.

(1) If X is a cofiltered inverse limit lim
←−i

Xi of locally spectral spaces, then dimX ≤ supi dimXi.

(2) If f : X → Y is a surjective and generalizing continuous map, then dimX ≥ dimY .

Proof. We start with (1). Write qi : X → Xi for the natural map. If x0 ≺ · · · ≺ xn is a chain of distinct

generalizations in X , then qi(x0) � · · · � qi(xn) is a chain of generalizations in Xi for any i, and the

qi(xj) will be distinct for some i. This proves (1).

For (2), let y0 ≺ · · · ≺ ym be a chain of distinct generalizations in Y . Then we can lift y0 to a point

x0 ∈ X by surjectivity of f , and then successively lift the yi, i ≥ 2, using that f is generalizing, to obtain

a chain x0 ≺ · · · ≺ xm in X , proving (2). �

Proposition 4.2.4. |MP (K)| is a spectral space of Krull dimension n− 1.

Proof. SinceM1 is an inverse limit of rigid analytic varieties of dimension n−1, it has dimension≤ n−1
by Lemma 4.2.3(1). Applying Lemma 4.2.3(2) to the surjective and generalizing6 mapsM1 → M and

M1 →MP (K), we see that dimM1 = n− 1 and that dimMP (K) ≤ n− 1. To prove equality, one may

argue exactly as at the end of the proof of [BFH+18, Lemma 3.2.3], using thatMP (K) is the quotient of

M1 by P (K) in the category V . �

We will end this section by showing thatM1 is a P (K)-torsor overMP (K). For this, we first record

two lemmas concerning the pushouts defined in [Lud17, §2].

Lemma 4.2.5. Let G be a locally profinite group and let H ⊆ G be a compact open subgroup. Assume

that H acts on a perfectoid space X , that G acts on a perfectoid space Y and that we have an H-invariant

map of perfectoid spaces X → Y . Then there is a natural G-invariant map X ×H G→ Y , and if Z → Y
is a map of perfectoid spaces then the natural map (X×Y Z)×HG→ (X×HG)×Y Z is a G-equivariant

isomorphism.

Proof. The existence of X ×H G→ Y is [Lud17, Lemma 2.16]. For the compatibility with fibre products

we note that there is indeed a natural map (X×Y Z)×G→ (X×HG)×Y Z given by (x, z, g)→ (x, g, z).
It is easily checked to be both H-invariant for the action (x, z, g).h = (xh, z, h−1g) on (X×Y Z)×G, and

G-equivariant for the action given by acting by right translation on the G-factor on the target and source.

These actions commute and so induce the natural G-equivariant map (X×Y Z)×HG→ (X×HG)×Y Z .

To see that it is an isomorphism, use the description of the pushout from [Lud17, Proposition 2.15] and the

fact that disjoint unions commute with fibre products. �

Lemma 4.2.6. Let G be a locally profinite group and let H ⊆ G be a compact open subgroup. If X → Y
is an H-torsor of perfectoid spaces, then X ×H G→ Y is a G-torsor of perfectoid spaces.

Proof. X → Y is a v-cover, so it suffices to show that (X×H G)×Y X ∼= X×G, G-equivariantly. Using

Lemma 4.2.5 and the fact that X → Y is an H-torsor we see that

(X ×H G)×Y X ∼= (X ×Y X)×H G ∼= (X ×H)×H G ∼= X ×G

and one checks that these isomorphisms are all G-equivariant. �

Using these we can now prove thatM1 is a P (K)-torsor overMP (K).

6Any map of analytic adic spaces is generalizing.
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Proposition 4.2.7. M1 is a P (K)-torsor overMP (K).

Proof. The statement is local onMP (K), so we may restrict to the types of open subsets

pr−1(U)×P (OK) P (K)/P (K) ∼= pr−1(U)/P (OK)

used in the proof of Theorem 4.2.1, which have preimage pr−1(U) ×P (OK) P (K) in M1. Then, by

Lemma 4.2.6, we see that it suffices to show that pr−1(U) → pr−1(U)/P (OK) is a P (OK)-torsor, but

this follows by construction (arguing as in, or using, Lemma 3.3.4). �

As a consequence, we note thatMH → MP (K) is (separated and) étale for any open subgroup H ⊆
P (OK), by [Sch17, Lemma 10.13].

5. APPLICATION TO SCHOLZE’S FUNCTOR

5.1. Recollections. We recall some results of [Sch18]. Let D/K be a central division algebra of invariant

1/n. For a smooth admissible representation π of GLn(K) on a Fp-vector space, Scholze defines a sheaf

Fπ on (Pn−1)ét by

Fπ(U) = Mapcont,GLn(K)(|U ×Pn−1M1|, π)

(where U → Pn−1 is an étale map) and shows that the cohomology groups

Si(π) := Hi
ét(P

n−1,Fπ), i ≥ 0,

are admissible D×-representations which carry an action of Gal(K/K) and vanish in degree i > 2(n− 1)
([Sch18, Theorem 1.1]). The main result of this section is Theorem 5.3.1, which shows that in fact Si(π) =
0 for i > n− 1 whenever π is induced from the parabolic P .

5.2. Some cohomological calculations. In preparation for Theorem 5.3.1, we carry out some auxiliary

calculations. We begin with some remarks about the geometric fibres of πGH . Let x : Spa(E,E+) →
Pn−1 be a geometric point. We define the fibre (MP (K))x as the fibre product

(MP (K))x :=MP (K) ×(Pn−1)♦ Spa(E,E+)

in the category of diamonds. Since M1 → Pn−1 is a GLn(K)-torsor andM1 → MP (K) is a P (K)-
torsor (by Proposition 4.2.7), the geometric fibres of πGH are profinite sets

(MP (K))x ∼= x× S,

with S = GLn(K)/P (K) = GLn(OK)/P (OK) (we refer to e.g. [Lud17, Proposition 2.10] for a defini-

tion of the notation x× S; see also [Sch17, Example 11.12]).

Lemma 5.2.1. Let F be a sheaf of abelian groups on (MP (K))ét. Then

Hi
ét(MP (K),F) = Hi

ét(P
n−1, πGH,∗F)

for all i ≥ 0.

Proof. This is proved exactly as [Lud17, Proposition 4.4], using Proposition 4.2.2 and the fact that the

geometric fibres (MP (K))x are profinite sets over x. �

Proposition 5.2.2. Let F be a sheaf of Fp-vector spaces on (MP (K))ét. We have an isomorphism of

sheaves on (Pn−1)ét
(πGH,∗F)⊗O

+
Pn−1/p ∼= πGH,∗(F ⊗O

+
MP (K)

/p).

Proof. We give a slightly different proof than in [Lud17, Lemma 4.5]. There is a natural map

(πGH,∗F)⊗O
+
Pn−1/p→ πGH,∗(F ⊗O

+
MP (K)

/p),

so we can check the assertion on stalks at geometric points. For that let x = Spa(E,E+) be a geometric

point of Pn−1. On the one hand

((πGH,∗F)⊗O
+
Pn−1/p)x ∼= (πGH,∗F)x ⊗ (O+

Pn−1/p)x
∼= H0

ét(
(
MP (K)

)
x
,F)⊗ E+/p,
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by [CGH+20, Proposition 2.2.4]. On the other hand, applying that same proposition we get

πGH,∗(F ⊗O
+
MP (K)

/p)x ∼= H0
ét

((
MP (K))

)
x
,F ⊗O+

MP (K)
/p
)
.

We have
(
MP (K)

)
x
∼= x× S with S a profinite set, so we are left to show that the natural map

(5.2.1) H0
ét(x× S,F)⊗ E+/p→ H0

ét

(
x× S,F ⊗O+

x×S/p
)

is an isomorphism. For that write S as an inverse limit S = lim←−Si of finite sets Si and denote by qi :
x × S → x × Si the natural projection morphism. By [AGV71, VI, 8.3.13], any sheaf on x × S can be

written as a filtered colimit lim
−→j∈J

F j of sheaves F j that arise as the inverse image of a system of sheaves

F j
i on the spaces (x×Si)ét. The topos (x×S)ét is coherent, so (étale) cohomology commutes with direct

limits. As tensor products also commute with direct limits it suffices to prove (5.2.1) for sheaves of the

form F ∼= lim
−→

q−1
i Fi for some sheaves Fi on (x× Si)ét.

Note that O+
x×S/p

∼= lim
−→

q−1
i (O+

x×Si
/p)7. Using [SW13, Theorem 2.4.7] we see that we can rewrite

(5.2.1) as

lim
−→

H0
ét(x× Si,Fi)⊗ E+/p→ lim

−→
H0

ét

(
x× Si,Fi ⊗O

+
x×Si

/p
)
,

and we see this map is indeed an isomorphism as the spaces x×Si are just finite disjoint unions of geometric

points with the same underlying affinoid field (E,E+). �

Next, let σ be a smooth admissible representation of P (K). Define a sheaf Fσ on (MP (K))ét by

Fσ(U) = Mapcont,P (K)(|U ×MP(K)
M1|, σ)

for U → MP (K) étale. Similarly, if τ is a smooth admissible representation of P (OK), then we may

define a sheaf Fτ onMP (OK) by

Fτ (V ) = Mapcont,P (OK)(|V ×MP (OK )
M1|, τ),

where V →MP (OK) is étale. Since the natural map q :MP (OK) →MP (K) is étale, we have a natural

map

q−1Fσ → Fσ|P(OK )

for any smooth admissible P (K)-representation σ and its restriction σ|P (OK) to P (OK).

Lemma 5.2.3. The natural map q−1Fσ → Fσ|P(OK )
is an isomorphism.

Proof. We may check on stalks, so let x → MP (OK) be a geometric point. We may assume that x =
lim
←−U→MP (OK )

U , where the limit ranges over U →MP (OK) étale over which x→MP (OK) factors (see

[CGH+20, §2.2]). We then have

(q−1Fσ)x = lim
−→
U

Mapcont,P (K)(|U ×MP(K)
M1|, σ)

∼= Mapcont,P (K)(lim←−
U

|U ×MP(K)
M1|, σ)

∼= Mapcont,P (K)(|x ×MP(K)
M1|, σ)

∼= Mapcont,P (K)(|x| × P (K), σ) ∼= σ

upon choosing an element in P (K); here we have used Proposition 4.2.7 to get the second to last iso-

morphism. We similarly have (Fσ|P(OK )
)x ∼= σ (choosing the same element and the map (q−1Fσ)x →

(Fσ|P (OK )
)x corresponds to the identity σ → σ, and is therefore an isomorphism. �

Proposition 5.2.4. Let λ : (MP (K))ét → |MP (K)| denote the natural morphism of sites. For any admis-

sible smooth representation σ of P (K) we have an almost isomorphism

Hi
ét(MP (K),Fσ ⊗O

+/p) ∼=a Hi(|MP (K)|, λ∗(Fσ ⊗O
+/p)).

7One checks this by calculating sections on the basis for the topology consisting of open affinoid perfectoids U of the form

U = lim
←−

Ui, for open affinoid perfectoid Ui ⊂ x× S, using the fact that those don’t have any higher étale cohomology.
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Proof. (Cf. proof of [Sch18, Theorem 3.2] on p. 18 for a similar argument.) We show that (Rqλ∗(Fσ ⊗
O+/p)) =a 0 for all q > 0 . For this we calculate the stalks. Let x : Spa(K,K+)→MP (K) be a point.

Then, by definition,

(Rqλ∗(Fσ ⊗O
+/p))x = lim

−→
x∈U

Hq
ét(U,Fσ ⊗O

+/p),

where the direct limit runs over all open U ⊆MP (K) containing x, and we can restrict it to those U which

are affinoid perfectoid. SinceM
(0)
P (OK) →MP (K) has local sections, we may furthermore assume that U

is (isomorphic to) an open subset ofM
(0)
P (OK). On such a U , Lemma 5.2.3 implies that Fσ

∼= lim
−→V

FσV ,

where V runs over the open normal subgroups of P (OK). Then

Hq
ét(U,Fσ ⊗O

+/p) ∼= lim
−→
V

Hq
ét(U,FσV ⊗O+/p),

as the étale site of U is coherent and direct limits commute with tensor products. But for any open normal

subgroup V ⊂ P (OK), the sheaf FσV is a local system of finite rank, and therefore we have

Hq
ét(U,FσV ⊗O+/p) =a 0

for all q > 0, by [Sch13, Lemma 4.12]. �

5.3. The vanishing result. We now prove our vanishing result.

Theorem 5.3.1. Let P ∗ ⊂ GLn be a parabolic subgroup contained in P . Let σ be a smooth admissible

representation of P ∗(K). Let π := Ind
GLn(K)
P∗(K) σ be the parabolic induction (which is a smooth admissible

representation of GLn(K)). Then

Si(π) = 0 for all i > n− 1.

Proof. Transitivity of parabolic induction immediately implies that we can reduce to the case P ∗ = P . We

then follow the proof of [Lud17, Theorem 4.6]. It suffices to show that

Hi
ét(P

n−1,Fπ)⊗O
+/p

is almost zero for all i > n− 1. We have isomorphisms

Hi
ét(P

n−1,Fπ)⊗O
+/p ∼=a Hi

ét(P
n−1, (πGH,∗Fσ)⊗O

+/p)(5.3.1)

∼= Hi
ét(P

n−1, πGH,∗(Fσ ⊗O
+/p))(5.3.2)

∼= Hi
ét(MP (K),Fσ ⊗O

+/p),(5.3.3)

where the first almost isomorphism follows from [Sch18, Theorem 3.2] and the fact that πGH,∗Fσ
∼= Fπ,

which one proves just like [Lud17, Lemma 4.3]. The second isomorphism is Proposition 5.2.2 above, the

third is Lemma 5.2.1. By Proposition 5.2.4, the étale cohomology group Hi
ét(MP (K),Fσ ⊗ O+/p) is

almost isomorphic to the analytic cohomology group Hi(|MP (K)|, λ∗(Fσ ⊗O+/p)).
As we have seen in Section 4, |MP (K)| is a spectral space of Krull dimension n − 1, therefore by

[Sch92, Theorem 4.5]

Hi(|MP (K)|, λ∗(Fσ ⊗O
+/p)) = 0

for all i > n− 1. �

Corollary 5.3.2. Let π be a representation of GLn(K) that appears as a quotient of a parabolically

induced representation Ind
GLn(K)
P∗ σ, for some parabolic subgroup P ∗ ⊂ P . Then

S2(n−1)(π) = H
2(n−1)
ét (Pn−1,Fπ) = 0.

Proof. This follows from exactness of the functor π 7→ Fπ, Theorem 5.3.1 and the long exact sequence in

cohomology. �

Remark 5.3.3. We finish with some remarks on our results.
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(1) The bound on cohomological vanishing in Corollary 5.3.2 (combined with [Sch18, Theorem 3.2])

is sharp in general, and for general subquotients of representations induced from P (K) the bound

from [Sch18, Theorem 3.2] cannot be improved. To see these two things (simultaneously), con-

sider the trivial representation 1 and the exact sequence

0→ 1→ σ = Ind
GLn(K)
P (K) 1→ Q→ 0,

where Q is simply defined to be the quotient; Q is then a generalized Steinberg representation and

known to be irreducible (and admissible). From this we get an exact sequence of étale sheaves

0→ F1 → Fσ → FQ → 0

on Pn−1. Note that F1 is the trivial local system on Pn−1, so S2(n−1)(1) 6= 0; this shows the sec-

ond point. The long exact sequence then shows (using Theorem 5.3.1) that S2n−3(Q) surjects onto

S2(n−1)(1), so S2n−3(Q) 6= 0 as well, proving the first point. Thus, the vanishing result of The-

orem 5.3.1 does not hold in general for admissible representations not induced from P (K) when

n ≥ 3, even for ‘reasonable’ representations like generalized Steinberg representations (which are

irreducible, and infinite-dimensional).

Note also that, as a consequence of Corollary 5.3.2, the trivial representation cannot be written

as a quotient of a representation induced from P (K). We thank Florian Herzig for informing

us that this is well known, and is easily proved using the adjunction formula between parabolic

induction and Emerton’s ordinary parts functor.

(2) Elaborating further on the previous item, it seems interesting to understand in which degrees Si(π)
vanish for different classes of admissible representations π. A natural question is whether the

analogue of Theorem 5.3.1 holds for other maximal (standard) parabolics Q 6= P . By Theorem

A.1.5, the quotientMQ(K) is not a perfectoid space, and so the method for proving Theorem A.1.5

breaks down. One could ask whether the vanishing theorem could still be salvaged by geometric

methods (such as in [CGH+20], where a vanishing result is proven in a situation where the space

in question is not perfectoid), but we currently see no way of doing this (in particular, we see no

way of adapting the method of [CGH+20]).

(3) It is also natural to ask about vanishing below the middle degree, but here things seem to be much

more unclear. For S0, we have S0(π) = S0(πSLn(K)) by [Sch18, Proposition 4.7], so e.g. when π
is irreducible and infinite-dimensional we know that S0(π) = 0. When n = 2 the middle degree is

1, so in this case (for arbitraryK), we can say that Si(π) is concentrated in degree 1 for irreducible

π = Ind
GLn(K)
P (K) σ.

As a referee emphasized, it seems natural to ask if there is some form of Poincaré duality for Si

that could relate the degrees below the middle to degrees above the middle. The following remark

is due to David Hansen; we thank him for allowing us to include it here. First, note that such a du-

ality would presumably require the notion of a ‘dual’ local systemF∨
π , and presumablyF∨

π = Fπ∨

where π∨ is the ‘dual’ representation of π. However, such a formulation seems much too naive,

as duality is much more subtle in characteristic p than in characteristic 6= p. Kohlhaase [Koh17]

has defined a derived duality functor on the derived category of smooth G(Qp)-representations in

characteristic p (where G/Qp is, momentarily, an arbitrary connected reductive group), and one

could ask how a derived versionRS of Scholze’s functor interacts with Kohlhaase’s duality functor

for GLn(K). It seems, however, that this interaction will also involve Kohlhaase’s duality functor

for D×, and it is unclear if such considerations can be used to reduce the study of low degrees to

high degrees.

(4) We end by remarking that Paškūnas [Paš18] has used the results of [Lud17] to show a non-

vanishing result in degree one for (a version of) Scholze’s functor for Banach space represen-

tations of GL2(Qp) corresponding to residually reducible two-dimensional representations of

Gal(Qp/Qp) via the p-adic local Langlands correspondence (we refer to [Paš18] for precise state-

ments). It would be interesting to see similar consequences for GL2(K), where K/Qp is arbitrary.

However, Paškūnas informs us that our results would not be sufficient even assuming a p-adic local

Langlands correspondence for GL2(K), as it is expected that supersingular representations will
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contribute to the Banach space representation corresponding to reducible two-dimensional repre-

sentations of Gal(K/K) when K 6= Qp. Nevertheless, we hope that our results will be useful for

the further study of Scholze’s functor.

APPENDIX A. PERFECTOID QUOTIENTS OF THE LUBIN–TATE TOWER, REVISITED

BY DAVID HANSEN

A.1. Statement of results. As in the main text of the paper, fix a finite extension K/Qp with residue field

k ∼= Fq. Let K̆ be the completed maximal unramified extension of K , and fix some complete algebraically

closed extension C/K̆. For simplicity, we will write SpaR := Spa(R,R◦) and SpdR := Spa(R,R◦)♦

whenever R is a Huber ring over Zp. Here Spa(R,R◦)♦ is the v-sheaf defined in [SW18, Definition 18.1],

generalizing the diamondification functor. Moreover, a perfectoid space S over R (as above) always means

a perfectoid space S with a map (R,R◦)→ (OS(S),O
+
S (S)).

Let Pn−d,d ⊂ GLn denote the usual block upper-triangular maximal parabolic with upper left (resp.

lower right) diagonal block sizes n − d (resp. d), and set P = Pn−1,1 . For U ⊂ GLn(K) any open

compact subgroup, letMU denote the base change along K̆ → C of the generic fiber of the Lubin–Tate

space with U -level structure. By the results in [SW13], there is a unique perfectoid spaceM1 over C with

a GLn(K)-action such thatM1 ∼ lim
←−U

MU , in the notation of [SW13, §2.4].

In this appendix we study the sheaf quotientM1/P (K) (withM1 viewed as a diamond), and variants

for other parabolics, by purely local methods. In particular, when n = 2, we give a direct proof that

M1/P (K) is a perfectoid space, avoiding any reference to the p-adic geometry of Shimura varieties. Our

main tool is a p-adic Hodge-theoretic description ofM1 in terms of vector bundles on the Fargues–Fontaine

curve, due to Weinstein and Scholze–Weinstein.

Our first result is a moduli-theoretic description of these quotients. For this, recall that for any charac-

teristic p perfectoid space S/k there is an associated (adic, relative) Fargues–Fontaine curve XS = XS,K

defined functorially in S, cf. [KL15, Ch. 8]. Moreover for any reduced rational number λ = d/r, this

curve comes with a canonical vector bundleO(λ) of rank r and degree d, defined functorially in S.

Theorem A.1.1. As a functor on perfectoid spaces over C, the diamond quotientM1/P (K) is canonically

equivalent to the functor sending any S → SpaC to the set of sub-vector bundles E ⊂ O(1/n) over XS♭

such that after pullback along any geometric point x → S♭, the map Ex → O(1/n)x is injective and

Ex ≃ On−1.

Curiously, this description shows thatM1/P (K) is the base change along SpdC → Spd k of a natu-

rally defined functor on all perfectoid spaces over k. We also note that, by Proposition 4.2.7, the diamond

quotient M1/P (K) coincides a posteriori with the perfectoid space MP (K), so there is little harm in

switching between these points of view.

Corollary A.1.2. As a diamond over SpdC,M1/P (K) is proper and ℓ-cohomologically smooth for any

ℓ 6= p.

By [Sch17, Theorem 1.12], this implies very strong finiteness properties for the Fℓ-étale cohomology of

M1/P (K). On the other hand,M1/P (K) is a perfectoid space by Theorem A. ThusM1/P (K) is an

example of an interesting and naturally occurring perfectoid space with reasonable étale cohomology.

When n = 2, the description ofM1/P (K) can be unwound further.

Theorem A.1.3. If n = 2, thenM1/P (K) can be presented as the quotient
(
SpdL♭ ×SpdFq2

SpdC
)
/(ϕ× id)Z

for a certain perfectoid field L♭/Fq2 , where ϕ is the q2-power Frobenius on L♭.

Combining this description with some formalism of diamonds, we obtain a purely local proof of (a

generalization of) the main result of [Lud17], avoiding the global p-adic geometry of modular curves.

Corollary A.1.4. When n = 2, the quotientM1/P (K) is a perfectoid space over C.
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In fact, it turns out that our methods give some information about the more general quotientsM1/Pn−d,d(K).

In particular, we prove the following result, which shows that Theorem A in the paper is essentially optimal.

Theorem A.1.5. As a diamond over SpdC,M1/Pn−d,d(K) is proper and ℓ-cohomologically smooth for

any 1 ≤ d < n. However, when d > 1, this quotient is never a perfectoid space.

Again, we deduce this from a moduli-theoretic description of these more general quotients in terms of

vector bundles on the curve, which recovers Theorem A.1.1 when d = 1. When d > 1 this description is

slightly more complicated, cf. Proposition A.3.3 below.

It’s unclear to me how far these ideas can be extended beyond the specific case of the Lubin–Tate

tower. As an illustrative example, let N∞ be the infinite-level perfectoid space over C associated with

the Rapoport-Zink tower for an isoclinic ̟-divisible OK-module of height 5 and dimension 2. There is a

natural action of GL5(K) onN∞, and one can check (by adapting the arguments below) that the quotients

N∞/Pi,5−i(K) are ℓ-cohomologically smooth over SpdC for i ∈ {1, 2, 4}. However, for i = 3, the

method breaks down, and I don’t know whether the quotient is smooth in that case.

Acknowledgments. I’m very grateful to Christian Johansson and Judith Ludwig for their invitation to write

this appendix, and for some very interesting conversations about this circle of ideas. This appendix grew out

of the (re)proof of Corollary A.1.4 given below, and I’d like to thank Jared Weinstein for some stimulating

initial conversations around the question of whether this result could be proved by purely local methods. I

would also like to thank an anonymous referee for useful comments and corrections.

A.2. Preliminaries. For any perfectoid space S/k, we write XS = XS,K for the associated relative

Fargues–Fontaine curve, regarded as an adic space over K . If S = T ♭ arises as the tilt of some per-

fectoid space T/K , XT ♭ comes equipped with a canonical closed immersion ι : T → XT ♭ . Aside from the

original reference [FF18], some relevant background on the curve is given in [KL15, Ch. 8] and [Han18,

§2.3]. One might also look at [CS17, §3.2-3.3] or at some portions of [BFH+18].

We say that S is a point if S = Spa(L,L+) where L is a perfectoid field and L+ ⊂ L is an open

valuation subring consisting of powerbounded elements. Moreover, we say S is a rank one point if L+ =
L◦.

Now, when S is a rank one point, XS is a Noetherian adic space of dimension one [Ked16], with

a good theory of slopes and Harder–Narasimhan filtrations. Moreover, it is reduced and all of its lo-

cal rings are fields or discrete valuation rings, so any coherent OXS
-module F has a canonical filtration

0 → Ftors → F → Ffree → 0 where Ftors is a torsion coherent sheaf and Ffree is a vector bun-

dle. In particular, given any vector bundle F , any coherent subsheaf E ⊂ F is also a vector bundle,

and admits a canonical saturation Esat ⊂ F , defined as the preimage of (F/E)tors ⊂ F/E in F . This

is the minimal subbundle of F containing E such that F/Esat is also a vector bundle. Note also that

deg(Esat) = deg(E) + length(F/E)tors. If E = Esat, we say that E is saturated. Moreover, all of

these considerations extend to the case of XS for S a general point, not necessarily of rank one, thanks

to the following general observation: for any point S = Spa(L,L+), pullback along the natural inclusion

XSpa(L,L◦) → XSpa(L,L+) induces an equivalence of categories on coherentOX -modules.

With these preparations, we can state a trivial lemma, which nevertheless is frequently very useful.

Lemma A.2.1. Suppose that S is a point, and that E → F is an injective map of vector bundles on XS .

Suppose that the point (rank(E), deg(E) + 1) lies above the Harder–Narasimhan polygon of F . Then E is

automatically saturated.

In particular, if F is semistable and
deg(E)+1
rank(E) > µ(F), then E is automatically saturated.

Proof. Immediate from the fact that HN(Esat) lies on or below HN(F), and from the fact that deg(Esat) ≥
deg(E) + 1 if E is non-saturated. �

If i : E → F is any injective map of vector bundles (or arbitrary OXS
-modules) over a relative curve

XS , we say that i is stably injective if it remains injective after base change along XT → XS for T → S
any map of perfectoid spaces. This is equivalent to the a priori weaker condition that E → F remains
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injective after base change along Xx → XS for any geometric point x → S. This condition automatically

holds if the quotient F/E is a vector bundle, but in general it is weaker.

Lemma A.2.2. Let E → F be a stably injective map of vector bundles over a relative curve XS , such that

E ≃ Om and F ≃ O(1/n) at all geometric points of S, for some fixed integers m < n. Then the quotient

F/E is a vector bundle, with F/E ≃ O(1/(n−m)) at all geometric points of S.

Proof. When S is a geometric point, the claim follows from the Fargues–Fontaine classification of vector

bundles on XS . Indeed, consider an injective map i : Om → O(1/n) with m < n. Since O(1/n) is

stable, the previous Lemma implies that coker i is automatically a vector bundle, which necessarily has

rank n −m and degree 1. Moreover, all the Harder–Narasimhan slopes of coker i are ≥ 1/n (using the

stability of O(1/n) again), so in particular, they are all positive, so the degree of coker i is bounded below

by its number of distinct Harder–Narasimhan slopes. Thus coker i has a unique slope, which must be

1/(n−m), so coker i ≃ O(1/(n−m)).

The result when S is a (not necessarily geometric) point now follows by an easy descent (use that any

injective map of Dedekind domains is flat). To check that F/E is a vector bundle in general, note that our

arguments so far imply that for any S and any point x ∈ |XS |, the k(x)-rank of the fiber (F/E)⊗OXS
k(x)

is n − m. Indeed, let y ∈ |S| be the image of x under the map |XS | → |S|; then formation of the

k(x)-fiber factors over the pullback of E → F along Xy = XSpa(k(y),k(y)+) → XS , in the sense that

(F/E)x ∼= (Fy/Ey) ⊗OXy
k(x). By our previous arguments, Fy/Ey is a vector bundle of rank n −m, so

rankk(x)(F/E)⊗OXS
k(x) is constant as a function of x. Since XS is a stably uniform adic space, we then

deduce from [KL15, Proposition 2.8.4] that F/E is a finite locally freeOXS
-module. �

Remark A.2.3. The argument in the preceding proof shows more generally that if i : E → F is any stably

injective map of vector bundles over a relative curve XS such that coker ix is torsion-free after pullback

along any geometric point x→ S, then coker i is a vector bundle.

A.3. General results. In this section we prove Theorems A.1.1 and A.1.5, and Corollary A.1.2. Our

starting point is the following result of Scholze–Weinstein, which is a special case of [SW18, Cor. 23.2.2

and Cor. 24.3.5] (cf. also [SW13]).

Proposition A.3.1. As a functor on perfectoid spaces over C,M1 is canonically identified with the functor

sending any S → SpaC to the set of stably injective maps α : On → O(1/n) over XS♭ such that

cokerα ≃ ι∗W for some rank one projective OS-module W .

Next, we note that for a closed subgroup H ⊂ GLn(K), it is easy to tell whetherM1/H → SpdC is

proper.

Proposition A.3.2. If H ⊂ GLn(K) is any closed subgroup, the structure map M1/H → SpdC
is separated; moreover, it is proper if and only if GLn(K)/H is compact. In particular, any quotient

M1/Pn−d,d(K) is proper over SpdC.

Proof. For any such quotient, the structure map to SpdC factors over a (surjective!) map q :M1/H →

P
n−1,♦
C induced by the Gross-Hopkins period map. The pullback of q along the v-coverM1 → P

n−1,♦
C

is then canonically identified with the projection map q̃ : GLn(K)/H ×M1 → M1. The latter map is

always separated, so q is separated by [Sch17, Proposition 10.11(ii)]; since the target of q is separated over

SpdC, this shows that the source is too. Likewise, q is quasicompact if and only if q̃ is quasicompact, and

the latter clearly holds if and only if GLn(K)/H is compact. �

We begin by analyzing the general quotientsM1/Pn−d,d(K).

Proposition A.3.3. Fix any 1 ≤ d < n. Then the diamond quotient M1/Pn−d,d(K) is canonically

identified with the functor Xn,d on perfectoid spaces over C sending any S to the set of (isomorphism

classes of) diagrams

O(1/n) ։ E ←֓ F

of vector bundles over XS♭ such that E ≃ O(1/d) and F ≃ Od at all geometric points and such that

coker(F → E) ≃ ι∗W for some projective rank one OS-module W .
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Proof. First, observe that there is a natural map M1 → Xn,d, given by sending any {α : On →
O(1/n)} ∈ M1(S) to the diagram

O(1/n) ։ O(1/n)/α(On−d ⊕ 0) ←֓ α(On)/α(On−d ⊕ 0)

of vector bundles over XS♭ . For this, observe that the quotient O(1/n)/α(On−d ⊕ 0) is isomorphic to

O(1/d) at all geometric points by Lemma A.2.2, and the remaining conditions are clearly satisfied. The

datum of this diagram only depends on the Pn−d,d(K)(S)-orbit of α, so this map factors over a natural

transformationM1/Pn−d,d(K)→ Xn,d, and we claim this transformation is actually an isomorphism.

It clearly suffices to check thatM1 → Xn,d is a Pn−d,d(K)-torsor. For this, let O(1/n) ։ E ←֓ F be

any S-point of Xn,d. Let V ⊂ O(1/n) be the rank n sub-vector bundle defined by the cartesian diagram

V
γ

//

��

F

��

O(1/n) // E

so V → O(1/n) is stably injective andO(1/n)/V = E/F ≃ ι∗W . Moreover, at any geometric point of S,

V has degree zero and all HN slopes≤ 1/n, so in fact V ≃ On at all geometric points. Now, the ambiguity

in lifting our givenS-point ofXn,d to an S-point ofM1 is exactly the ambiguity of choosing a trivialization

On ∼
→ V which maps On−d ⊕ 0 isomorphically onto ker γ, and the space of such trivializations is clearly

a Pn−d,d(K)-torsor over Xn,d, as desired. �

Proposition A.3.4. Fix any 1 ≤ d < n. Then the diamondM1/Pn−d,d(K) ∼= Xn,d is isomorphic to the

quotient (
Surj(O(1/n),O(1/d))×SpdC P

d−1,♦
C

)
/D×

1/d.

Here Surj(O(1/n),O(1/d)) is the functor on perfectoid spaces over C parametrizing surjective maps

O(1/n)→ O(1/d), and D1/d is the division algebra over K of invariant 1/d, with D×
1/d acting diagonally

on the two factors.

Proof. Let X̃n,d be the D×
1/d-torsor over Xn,d which (in the notation of Proposition A.3.3) parametrizes

trivializationsO(1/d)
∼
→ E . Then X̃n,d clearly decomposes as

Surj(O(1/n),O(1/d))×SpdC Y

where Y is the functor whose S-points parametrize subbundlesF ⊂ O(1/d) such that O(1/d)/F ≃ ι∗W
for some projective rank oneOS-module W . The data of such an F is obviously equivalent to the data of a

rank one projective OS-module quotient ι∗O(1/d)→ W : the functor in one direction is obvious, and the

functor in the other direction sends ι∗O(1/d)→W to

ker(O(1/d)→ ι∗ι
∗O(1/d)→ ι∗W ).

Finally, ι∗O(1/d) is canonically identified with Od
S . Putting these observations together, Y identifies with

the functor sending S to the set of rank one locally freeOS-module quotientsOd
S = ι∗O(1/d)→W . The

latter functor is obviously represented by P
d−1,♦
C , as desired. �

Proof of Theorem A.1.5. Properness follows from Proposition A.3.2. For cohomological smoothness, com-

bining the Proposition A.3.4 with [Sch17, Proposition 24.2] reduces us to showing that

Surj(O(1/n),O(1/d))×SpdC P
d−1,♦
C → SpdC

is cohomologically smooth. This reduces to the smoothness of each factor over SpdC. The projec-

tive space factor is immediately handled by [Sch17, Proposition 24.4]. For the first factor, we note that

Surj(O(1/n),O(1/d)) is an open subfunctor of H0(O(1/d) ⊗ O(−1/n)), cf. [BFH+18, Proposition

3.3.6]. SinceO(1/d)⊗O(−1/n) has slopes strictly between 0 and 1, the latter functor is representable by

an open perfectoid ball in n − d variables over C, so now smoothness follows from [Sch17, Proposition

24.1].
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Finally, suppose that M1/Pn−d,d(K) is a perfectoid space. By Proposition A.3.4, we have a D×
1/d-

torsor

Surj(O(1/n),O(1/d))×SpdC P
d−1,♦
C →M1/Pn−d,d(K).

By assumption, the target is perfectoid, so then the source is perfectoid as well by [Sch17, Proposition

10.11]. Intuitively, we now expect a contradiction if d > 1, because the projective space factor should

contribute “non-perfectoid directions” to the source. To make this precise, choose some perfectoid field

C′/C and a map SpdC′ → Surj(O(1/n),O(1/d)). We’ve already observed that Surj(O(1/n),O(1/d))
is perfectoid, so

SpdC′ ×Surj(O(1/n),O(1/d))

(
Surj(O(1/n),O(1/d))×SpdC P

d−1,♦
C

)

is a fiber product of perfectoid spaces, and thus is perfectoid. On the other hand, this fiber product is

just P
d−1,♦
C′ . Putting things together, we’ve shown that if M1/Pn−d,d(K) is perfectoid, then P

d−1,♦
C′ is

necessarily perfectoid, which forces d = 1, as desired. �

Proof of Theorem A.1.1. Specializing Proposition A.3.4 to the situation where d = 1, we get a canonical

identification

M1/P (K) ∼= Surj(O(1/n),O(1))/K×.

This is nothing more than the functor parametrizing quotients O(1/n) ։ L where L is a line bundle of

degree one. It remains to identify this functor with the functor parametrizing subbundles E ⊂ O(1/n) as

specified in Theorem A.1.1.

For this, note that sending any such E ⊂ O(1/n) to the quotientO(1/n) ։ O(1/n)/E defines a natural

transformation in one direction, since O(1/n)/E is a line bundle of degree one by Lemma A.2.2. We also

have a transformation in the other direction, sending any q : O(1/n) ։ L to the inclusion ker q ⊂ O(1/n):
one easily checks that, at any geometric point, ker q has rank n−1, degree zero, and all Harder–Narasimhan

slopes ≤ 1/n, so ker q ≃ On−1 at any geometric point. These two natural transformations are mutually

inverse to each other, as desired. �

A.4. The case n = 2. In this section we prove Theorem A.1.3 and Corollary A.1.4. In particular, we

assume n = 2 throughout. As in the body of the paper, fix a uniformizer ̟ ∈ OK . Let E be the

unramified quadratic extension of K , and let G = GE be the unique Lubin–Tate formal OE-module for

which multiplication by ̟ is given by the polynomial f(T ) = T q2 + ̟T . Let Ẽ/K be the completion

of the extension obtained by adjoining all ̟-division points of G to E. By Lubin–Tate theory, Ẽ is (the

completion of an extension which is) Galois over E with Galois groupO×
E , and Ẽ is a perfectoid field.

Lemma A.4.1. The fixed field L = ẼO×

K is a perfectoid field.

Proof. By the basic definitions, L is the completion of a Galois extension of E with Galois groupO×
E/O

×
K .

This is an abelian p-adic Lie group of dimension [K : Qp] > 0, so L is perfectoid by a theorem of Sen

[Sen72]. (Alternately, up to a finite extension, L is the completion of a compositum of totally ramified

Zp-extensions of E, so we could appeal to Tate’s original results [Tat67].) �

Let G̃ = lim
←−[̟]

G be the universal cover of G (as in [SW13, §3.1]), and let G̃0 be its reduction modulo

̟. As in [Wei17, §3.5], there is an identification G̃0 = Spf Fq2 [[T
1/p∞

]]. This is a formal E-vector space

in the category of formal schemes over Fq2 .

To relate this object to vector bundles, let Y be the functor on perfectoid spaces over Fq2 sending any S
to H0(XS,K ,O(1/2)) = H0(XS,E,O(1)), and let Y × ⊂ Y be the open subfunctor of nowhere-vanishing

sections. By Theorem A.1.1, there is a natural identification

M1/P (K) ∼= Y ×/K× ×SpdFq2
SpdC.

Proposition A.4.2. There are compatible K×-equivariant isomorphisms Y ∼= G̃0 and Y × ∼= G̃0 r {0}.
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Proof. The first isomorphism follows from the fact that Y and G̃0 are both naturally identified with the

functor B
+,ϕq2=̟

crys,E . For Y this identification is immediate from the definition ofO(1) overXS,E as the de-

scent of a ϕq2 -equivariant bundle on the usual cover YS,E → XS,E . For G̃0 this identification follows from

[SW13], cf. Theorem 4.1.4 and the first line in the proof of Proposition 6.3.9. In fact, this identification can

be given by an explicit formula: an (R,R+)-point of G̃0 is the same as an element x ∈ R◦◦, and we map x
to the element logG({x}), where {x} = lim

n→∞
[̟n](ϕ−n

q2 (x̃)) with x̃ ∈WOE
(R+) = W (R+)⊗W (Fq2)

OE

any lift of x. The second isomorphism is then immediate. �

On the other hand, we have

Proposition A.4.3. There are compatible E×-equivariant isomorphisms G̃0 ∼= SpaO♭
Ẽ

and G̃0 r {0} ∼=

Spa Ẽ♭, where on the right-hand sides O×
E ⊂ E× acts through its natural identification with Gal(Ẽ/E)

and ̟ acts as the q2-power Frobenius.

Proof. This follows from [Wei17, Proposition 3.5.3]. �

Putting these two propositions together, we get a K×-equivariant isomorphism

Y × ×SpdFq2
SpdC ∼= Spd Ẽ♭ ×SpdFq2

SpdC.

Passing to the quotient by the action of O×
K gives

Y ×/O×
K ×SpdFq2

SpdC ∼= (Spd Ẽ♭)/O×
K ×SpdFq2

SpdC

∼= Spd(Ẽ♭)O
×

K ×SpdFq2
SpdC

∼= SpdL♭ ×SpdF
q2

SpdC

where in the second line we’ve used Lemma A.4.1. Note that this diamond is the fiber product of two

characteristic p perfectoid spaces over a discrete field. Nevertheless we have the following result.

Proposition A.4.4. Let k be a discrete field, and let X and Y be perfectoid spaces over k. Then the product

X × Y is representable by a perfectoid space over k, where the product is taken in the category of sheaves

of sets on Perfk.

By this result, SpdL♭ ×SpdFq2
SpdC is representable by a perfectoid space over Fq2 , which moreover

comes equipped with a canonical map to SpdC = SpaC♭. Moreover, writing ϕ : SpdL♭ → SpdL♭ for

the q2-power Frobenius, we easily see that ϕ × id acts properly discontinuously on this product, so the

quotient

(SpdL♭ ×SpdFq2
SpdC)/(ϕ× id)Z

is representable by a perfectoid space over Fq2 with a map to SpdC. This has a unique untilt to a perfectoid

space over C. On the other hand, summarizing the analysis above, we have canonical isomorphisms

(SpdL♭ ×SpdF
q2

SpdC)/(ϕ× id)Z ∼= Y ×/K× ×SpdF
q2

SpdC ∼=M1/P (K),

soM1/P (K) is a perfectoid space, as desired. This finishes the proof of Theorem A.1.3 and Corollary

A.1.4.
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[Paš18] Vytautas Paškūnas. Some consequences of a theorem of J. Ludwig. 2018. arXiv:1804.07567.

[RZ96] M. Rapoport and Th. Zink. Period spaces for p-divisible groups, volume 141 of Annals of Mathematics Studies. Princeton

University Press, Princeton, NJ, 1996.

[Sch92] Claus Scheiderer. Quasi-augmented simplicial spaces, with an application to cohomological dimension. J. Pure Appl.

Algebra, 81(3):293–311, 1992.

[Sch13] Peter Scholze. p-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi, 1:e1, 77, 2013.

[Sch15] Peter Scholze. On torsion in the cohomology of locally symmetric varieties. Ann. of Math. (2), 182(3):945–1066, 2015.

[Sch17] Peter Scholze. Étale cohomology of diamonds. 2017. arXiv:1709.07343.

[Sch18] Peter Scholze. On the p-adic cohomology of the Lubin-Tate tower. Ann. Sci. Éc. Norm. Supér. (4), 51(4):811–863, 2018.
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