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A QUOTIENT OF THE LUBIN-TATE TOWER II

CHRISTIAN JOHANSSON AND JUDITH LUDWIG
WITH AN APPENDIX BY DAVID HANSEN

ABSTRACT. In this article we construct the quotient M7 /P (K) of the infinite-level Lubin-Tate space M1
by the parabolic subgroup P(K) C GL (K) of block form (n — 1, 1) as a perfectoid space, generalizing
the results of [Lud17] to arbitrary n and K /Qp finite. For this we prove some perfectoidness results for
certain Harris—Taylor Shimura varieties at infinite level. As an application of the quotient construction we show
a vanishing theorem for Scholze’s candidate for the mod p Jacquet-Langlands and mod p local Langlands
correspondence. An appendix by David Hansen gives a local proof of perfectoidness of M1 /P(K) when
n = 2, and shows that M1 /Q(K) is not perfectoid for maximal parabolics @ not conjugate to P.

1. INTRODUCTION

This article generalises the main results of [Lud17]. Let K//Q,, be a finite extension with ring of integers
Ok, uniformizer w and residue field k. Fix an algebraically closed and complete non-archimedean field C'
containing K. Let M7 denote the infinite-level Lubin-Tate space over C'. By work of Weinstein, M is a
perfectoid space equipped with an action of GL,,(K). Let P C GL,, be the parabolic subgroup consisting
of upper triangular block matrices of block size (n — 1, 1). In this article we prove the following theorem.

Theorem A. The quotient M p () := M1 /P(K) is a perfectoid space over C of Krull dimension n — 1.

Here we take the quotient in Huber’s category ) of locally v-ringed spaces, as in [Lud17]. The con-
struction of the perfectoid structure on M p () follows the strategy via globalisation from [Lud17], where
the quotient was constructed in the case when n = 2 and K = Q. In that case, modular curves were used
to globalise and one could rely on the perfectoidness results of [Sch15]. For our generalisation we make
use of the Shimura varieties studied by Harris—Taylor in their proof of the local Langlands correspondence
for GL,, [HTO1], and this necessitates some new perfectoidness results.

Let us now describe the strategy of [Lud17] and this paper in slightly more detail; the reader may also
consult the introduction to [Lud17]. The space M; has a GL,, (O )-equivariant decomposition My =
Licz M(f) into pairwise isomorphic spaces (coming from the decomposition of the Lubin—Tate space
at level 0 into connected components). As in [Lud17] we reduce the construction of My /P(K) to the
construction of M(lo) /P(Ok) using the geometry of the Gross—Hopkins period map. We can realize M(lo)
as an open subspace of a certain infinite level perfectoid Harris—Taylor Shimura variety X3. The image
lands inside what we call the “complementary locus” X7, which is a subspace of X7 defined in terms
of the Hodge-Tate period map. We show that the quotient X"/ P(Ok) exists and is perfectoid, and
existence and perfectoidness of M(lo) /P(Ok) is then a direct consequence. The main ingredient of the
proof is the construction of a perfectoid overconvergent anticanonical tower for our Harris—Taylor Shimura
varieties (analogous to [Sch15, Corollary 3.2.20]), and this forms the technical heart of this paper.

Theorem A has the following application. Let D* be the group of units in the central division algebra D
over K with invariant 1/n. In [Sch18], Scholze constructs a functor that is expected to be simultaneously
related to a conjectural mod p local Langlands correspondence for the group GL,,(K) and an equally
conjectural mod p Jacquet-Langlands transfer between GL,,(K) and D*. For any admissible smooth
representation 7 of GL,, (K) on a F,-vector space, Scholze constructs an étale sheaf 7. on P"~! using the
Gross—Hopkins period morphism My — P"~!. The cohomology groups

Si(m) :== HL (P Fr), i >0,
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are admissible D* -representations which carry an action of Gal(K /K ) and vanish in degree i > 2(n — 1)
([Sch18, Theorem 1.1]). As an application of the construction of M p(x) we prove the following vanishing
result.

Theorem B (Theorem 5.3.1). Let P* C GL,, be a parabolic subgroup contained in P and let o be
a smooth admissible representation of P*(K) with parabolic induction 7 := Indglj&(gf)a to GL,(K).
Then

S'(m) =0 foralli>n—1.

This theorem generalises [Lud17, Theorem 4.6], which is the special case whenn = 2, K = Q, and o
is a character.

The paper also features an appendix, written by David Hansen, in which the space M p ) is studied in
Scholze’s category of diamonds from a purely local point of view, using the moduli-theoretic description of
M due to Scholze—Weinstein in terms of vector bundles on the Fargues—Fontaine curve. The main results
of the appendix can be summarized as follows; we refer to the introduction to the appendix for further
details.

Theorem C (Hansen; Corollary A.1.4 and Theorem A.1.5). Let Q C GL,, be a standard (block upper
triangular) maximal parabolic subgroup of GL,,. Then the diamond quotient M1 /Q(K) is proper and
C-cohomologically smooth (in the sense of [Sch17]) for all primes ¢ # p, but not a perfectoid space if
Q # P. Moreover; in the special case n = 2, Theorem A may be proved by purely local methods'.

Let us now describe the contents of this paper. Sections 2 and 3 are devoted to proving the perfectoidness
results for the Harris—Taylor Shimura vartieties that we need. While it might be possible to deduce what we
need from [Sch15], certain technicalities made such an approach seem very cumbersome and unsatisfactory
to us. We have therefore elected to construct the anticanonical tower in the Harris—Taylor setting directly,
following the approach in [Sch15] (simplified by the absence of a boundary). Scholze’s approach relies
on an integral theory of canonical subgroups and on the Hasse invariant, so we need a version of these
notions for our Harris—Taylor Shimura varieties (which have empty ordinary locus in general). Section 2
develops a theory of p-ordinary Hasse invariants and canonical subgroups for one-dimensional compatible
Barsotti-Tate O -modules G/S of height n, where S is a k-scheme. We use a Hasse invariant due to Ito
[Ito, Ito06] which turns out to be perfect for adapting Scholze’s approach to canonical subgroups based on
Illusie’s deformation theory for group schemes [I1185]. We refer to Remark 2.2.4 for further discussion of
the Hasse invariants used in this paper.

Equipped with a theory of canonical subgroups, Section 3 proceeds to construct the e-neighbourhoods
of the anticanonical tower in our setting. It is a tower of formal schemes (%(G)m,a)mZO whose generic
fibres X'(€),n,, embed into the adic Shimura varieties X7y, (m), where the level at the important prime is
Up(w™) := {g € GL,(Ok) | g mod w™ € P(O/w™)}; we refer to the main body of the paper for
precise definitions. In the limit we get a perfectoid space (Theorem 3.1.8). This then allows us to prove the
analogues of the main geometric results of [Sch15], importantly including the construction of a Hodge—
Tate period map myr : X1 — P~ (see Theorem 3.3.3). For this we have found it convenient to use the
language of diamonds [Sch17]. We end Section 3 by using the geometry of the Hodge—Tate period map to
show that the quotient X;°"? / P(O[ ) of the complementary locus is perfectoid (Theorem 3.3.6).

Section 4 then uses the results of Section 3 to prove Theorem A and deduce some properties of the
space M p(g). The Gross—Hopkins period map plays a prominent role in the proofs, and it induces a
quasicompact map T : Mp(x) — P L

The main part of the paper then finishes with section 5, which proves Theorem B. The calculations
follow the same path as Section 4 of [Ludl7], the idea being that pushforward along the map Tgny
Mpry — P"~! is a geometric realisation of the parabolic induction functor, so étale cohomology of
Fr on P! is equal to étale cohomology of an analogously defined sheaf F,, on M p(x)- For the reader
familiar with [Lud17], we mention that our argument deviates somewhat from that of [Lud17]. The most

'We remark that if either M p(k) or M1 /P(K) is perfectoid, then they are equal. In particular, Theorems A and C a posteriori
concern the same space (when P = Q).
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important point is that, by invoking a general result of Scheiderer [Sch92] on the cohomological dimen-
sion of spectral spaces, it suffices for us to relate the étale cohomology of F; on Mp(x) to an analytic
cohomology group on M p(g. In [Lud17] it was instead related to an analytic cohomology group on P!,
which necessitated the study of the fibres of 7 7. Moreover, to deal with the fact that o will typically be
infinite-dimensional, we use some additional limit arguments.

The paper then finishes with Hansen’s appendix; we refer to its introduction for a detailed overview of
its results and methods.
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2. HASSE INVARIANTS AND CANONICAL SUBGROUPS

2.1. Global setup. We start by introducing some notation which will be in place throughout the paper.
Fix, once and for all, a prime p and an integer n > 2. We also fix a finite extension K /Q, with ring of
integers O, uniformizer w, residue field %, ramification index e, and inertia degree f. Set ¢ = p/. As
in [HTO1], we choose a totally real field F'* of degree d, with primes v = vy, v, ..., v, above p, such
that FiF = K (we fix such an isomorphism and think of it as an equality). We then choose an imaginary
quadratic field £ in which p splits as p = uu, where ¢ denotes complex conjugation, and let F' = EF™;
this is a CM field. We let w;, ¢ = 1, ..., r, denote the unique prime in F' above u and v;, and put w = wy.

Let us now recall the setup of [HTO01], to which we refer for more details. Following [HTO01, §1.7], we
let B/F denote a central division algebra of dimension n? such that
The opposite algebra B°? is isomorphic to B Qp,. F;
B is split at w;
if z is a place of F whose restriction to ' does not splitin F'/FT, B, is split;
if z is a place of F' whose restriction to F'T splits in F'/ F'T, B, is either split or a division algebra;
if n is even, then the number of finite places of F'™ above which B is ramified is congruent to
1+ dn/2 modulo 2.

Choose an involution * of the second kind on B. Let V = B and consider it as a B ® p B°P-module.
For any 3 € B with * = —f, we can define an alternating *-Hermitian pairing V' x V' — Q by

(z,y) = trptrg p(zBy”)
where trp,r denotes the reduced trace. We fix a 8 € B with 3* = —3. We define another involution #
of the second kind on V by 2% = Bz*371. We let G//Q be the reductive group with the functor of points
(R any Q-algebra)

G(R) = {(g.\) € (B @g R)* x R* | gg% = A}.

The map (g,A) — A defines a homomorphism v : G — G, (the similitude factor) and we denote
its kernel by G;. If x is a prime in Q which splits as z = yy° in F, then y induces an isomorphism
G(Qz) = (ByP)* x Q. In particular, u induces an isomorphism

G(Qy) = (BF) x @y = qy = [[(BI)*.
i=1

We will assume (see [HTO1, Lemma 1.7.1] and the discussion following it; we assume that 3 is chosen so
that this applies) that
e if x is a prime in Q which does not split in F, then G x Q,, is quasi-split;
e the pairing (—, —) on V ®g R has invariants (1,n — 1) at one embedding F'* < R and (0, n) at
all other embeddings F'™ < R.
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Next, fix a maximal order A; = Op ., C B, foreachi =1,...,r. The pairing (—, —) gives a perfect
duality between V,,,, := Vi, F,,, and le@, and we let A;’ - le@ denote the dual of A;. We get a Zj,-lattice

A=PrePArl CvVeqQ,.

i=1 i=1

and (—, —) restricts to a perfect pairing A x A — Z,. We fix an isomorphism Op ,, = M, (Ok), and
we compose it with the transpose map to get an isomorphism O%”,w ~ M, (Ok). If e € M, (OFp,,) is the
idempotent which has 1 in the (1, 1)-entry and 0 everywhere else; € induces an isomorphism

A11 = GOB,w = (OnK)v

Finally, we let Op denote the unique maximal Z,)-order in B which localizes to Op ., for all i and
satisfies O = Op (see [HTO1, p. 56-57] for further discussion).

Let us now recall the integral models of the Shimura varieties for G; we refer to [HTO1, §111.4] for more
details. We remark that we will only need integral models in the case m; = 0 below, when the models
are smooth, but we recall the definitions in the general case. If S is an O -scheme and A/S is an abelian
scheme with an injective homomorphism ¢ : Op < End(A) ®7 Z(p), we write G for the p-divisible
group

Ga = eA[w™].

Fix a sufficiently small compact open subgroup U? C G(A*?) and a tuple m = (mq,...,m,) € ZZ,,.
The moduli functor X,, (we suppress UP from the notation) is defined as follows: If S is a connected
locally noetherian Og-scheme and s is a geometric point of S, X,, is the set of equivalence classes of
(r 4+ 4)-tuples (A4, \, 4, 7", ;) where

e A/S is an abelian scheme of dimension dn?;

e \: A — AV isaprime-to-p polarization;

e i: Op — End(A) ®z Z(,) is a homomorphism such that (A,4) is compatible and A o i(b) =
i(b*)V o X forallb € Op;

e 7P is a 1 (S, s)-invariant UP-orbit of isomorphisms of B ®g A°P-modules n? : V ®@g AP —
VP A, which take the pairing (—, —) on V ®g AP to a (A°P)* -multiple of the \-Weil pairing
on VPA,;

e oy :w ™A1 /A1 — Ga[w™] is a Drinfeld ™! -level structure;

o fori = 2,....r, o : (w; ™A;/N;)s — Aw;"] is an isomorphism of S-schemes with Op-
actions.

Here w = w1, . .., w, are uniformizers of O ,,,. Two (r+4)-tuples (A, \, 7,77, o;) and (A, X', 7', (77)', o)
are equivalent if there is a prime-to-p isogeny 6 : A — A’ anda~y € Z(Xp) such that ¢ carries A to v\, 7 to
i, P to (7P)’, and o to . X, (S, s) is canonically independent of the choice of s, and we get a functor
on all locally noetherian O i -schemes by requiring that

Xm (]_[ Si> =[] %m(5)

This functor is representable by a projective scheme over O, which is smooth when m; = 0. By abuse
of notation, we will denote it by X,,,. If m’ > m (by which we mean mg > my, for all 7), then the natural
map X,y — X, is finite and ﬂat;?noreover it is étale if m} = my. See [HTO1, pp. 109-112]. We will
denote the special fibre of X,,, by X ,,,, and the generic fibre by X,,,. Over X, we have a universal abelian
scheme Zm and the associated Barsotti—-Tate O g -module gzm, which we will denote by Gy, or just G if

the context is clear. One defines a locally closed subscheme anj) by requiring that the étale part G¢* of

G has constant Ok -height h, where 0 < h < n — 1. Then anj)
Corollary I11.4.4].

is smooth of pure dimension h [HTOI,
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2.2. Hasse invariants. In this section, we let .S be a scheme over k and we let G/S be a compatible
Barsotti-Tate O -module of dimension 1 and height n (throughout this article, heights are O -heights
unless otherwise specified). Let us briefly recall the notion of compatibility, referring to [HTO01, p. 59] for
more details. The Lie algebra Lie G of G is locally free Og-module and a priori carries two actions of Of.
One comes from the O -action map Ox — Endg(G), and the second action comes from the natural map
Ok — k — Og together with the Og-module structure on Lie G. Compatibility then means that these
two O -actions agree. The goal of this section is to define a so-called p-ordinary Hasse invariant for G/S.
The topic of generalized Hasse invariants has received a lot of attention recently. In the case of p-ordinary
Hasse invariants we mention the works [GN17, KW18, Her18, BH17]; moreover the works [GK19, Box15]
construct generalized Hasse invariants on all Ekedahl-Oort strata (in the cases when they apply). In par-
ticular, p-ordinary Hasse invariants have been defined in large generality (including the cases needed here)
by Bijakowski and Hernandez [BH17]. We have nevertheless opted for a direct approach. It should be
noted that ‘Hasse invariants’, as the term exists in the literature, are not unique. The definition given here
is chosen because it is very well suited for adapting Scholze’s approach to the canonical subgroup to the
situation of our Harris—Taylor Shimura varieties, which is the topic of the next subsection. After writing
a first draft of this section, we learnt that the definition of a p-ordinary Hasse invariant we give here was
first given by Ito [Ito, Ito06]. Since we are not aware of any detailed account of Ito’s construction, we give
our construction (it seems very likely that they are the same, judging from the sketch in [Ito]). Ito did not
only construct a p-ordinary Hasse invariant but also ‘strata’ Hasse invariants on Harris—Taylor Shimura
varieties, and the construction below can easily be adapted to produce such Hasse invariants (see Remark
2.2.4).

We start with a description of some Dieudonné modules. Let  be an algebraically closed field contain-
ing k and assume that S = Spec k. Then we have G = G¢! x GY (étale and connected parts) and both
G° and G are Barsotti-Tate Ox-modules. Let h be the height of G¢, then 0 < h < n — 1. By the
Dieudonné-Manin theorem, G¢* and G° are determined up to isomorphism by their Dieudonné modules.
The Dieudonné module of G° is isomorphic to a Dieudonné module M,,_,, which we now describe. We
write W (k) for the Witt vectors of «, and o for the lift of the p-th power Frobenius. M,,_j, has a Frobenius
F and a Verschiebung V, and has a basis w, Fw, F?w, ..., F"~""1w over Og ®z, W (k), i..

n—h—1
My = @ (O ®z, W(k)).F'w.
i=0
To finish the description, we need to describe F', and we know that it is o-linear and it sends Fiwto Fitly
fori =0,...,n — h — 1, so it remains to determine F" 1. For this, we write
Ok ®z, W(k) = @ Ok @04, wor W(K),
TeT

where T = Gal(k/F,), Ky is the maximal unramified subextension of K/Q,, and ¢ : Ok, — W (k) is
the lift of the inclusion &k C k. Then

n—h—1
My_pn = @ @(OK Q0,107 W(k)).Flw.
=0 71€T

We then define

Frhy = (ar)rw,
where a;,g = w®1and a, = 1® 1if 7 #£ id. V is then defined uniquely by the condition FV =V F = p.
The Dieudonné module of G is

(Ok @z, W(k))"
with F' acting as ¢ ® y — = ® o(y) on every factor. Taking the direct sum gives us the Dieudonné module
of G.

Definition 2.2.1. Let S = Spec k, where k 2 k algebraically closed. We say that G is u-ordinary if G
has height n — 1. For a general S/k and G/S, we say that G is p-ordinary if G, is p-ordinary for every
geometric point x of S.
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We now give an axiomatic definition of the p-ordinary Hasse invariant. Here and elsewhere we use the
following piece of notation: For any integer m > 1, the twist G(¢") is defined as the pullback of G along
the absolute ¢"-th power Frobenius Fym : S — S. The relative ¢"'-power Frobenius will be denoted by
Frgm.

Definition 2.2.2. Let S/k be a scheme and let G/S be a one-dimensional compatible Barsotti—Tate O -
module of height n.
(1) If w : G — G factors through F'ry : G — G(9), then we denote by V the unique isogeny G(9 — G
such that Vo Fr, = w.
(2) In the situation in (1), V induces a pullback map v WG — Wga) = w?q on top differentials,
which corresponds to an element H € H(S, wg_l). We define H to be the p-ordinary Hasse
invariant.

The following proposition shows that we have p-ordinary Hasse invariants whenever S is reduced.

Proposition 2.2.3. Ler S be a reduced scheme over k and G/S a one-dimensional compatible Barsotti—
Tate Oy -module of height n. Then the isogeny w : G — G factors through the q-th power Frobenius
isogeny Frq : G — G,

Proof. The proposition is equivalent to showing that Ker F'r, C Kerw = G[w]. Both are finite locally
free subschemes of the finite locally free scheme G[qg], so we are in the situation where we have a finite
locally free scheme G over a reduced k-scheme S, and two finite locally free subschemes H, K C G and
we want to show that H C K. We claim that it is enough to check this on geometric points.

To see this we argue as follows. First, it is enough to check it Zariski-locally on .S. So without loss of
generality S = Spec(A) is affine, and G = Spec(B) where A — B is projective; moreover H = Spec(C)
and K = Spec(D) with A — C, D projective and B — C, D. Let I = Ker(B — C) and J = Ker(B —
D); we want J C I. J and I are also projective as A-modules, so localising further on S' we may assume
that I, J,C, D are all free over A (which implies that B is free as well, since B = I & C = J & D).
Choose abasis eq,...,¢e,,...,e; of Bover Asuchthateq,...,e, isabasis of I, and choose another basis
fis---s fsy. .., [t of Bover Asuchthat f1,..., fsis a basis for J. We can write

¢
fi= E aji€i
i=1

for unique aj; € A. To check that J C I we need to check that a;; = O when 1 < j < sand ¢ > r. But
this can be checked at geometric points of .S since S is reduced.

So, let us go back to our original situation. Let « : Spec(k) — S be a geometric point. We need to
show that @w : G, — G, factors through F'ry : G, — gi‘”. This follows from a direct calculation on the
Dieudonné module. In fact, if & is the height of Q;t, then F7("=1) acts as o/ (=) on the Dieudonné

module of G and as o7 (=1) on the Dieudonné module of G by the description of the Dieudonné modules
above; this implies what we want. O

Remark 2.2.4. The proof above works to give ‘strata’ Hasse invariants cutting out the Ekedahl-Oort strata,
in the sense of [Box15, GK19]. These strata Hasse invariants were already defined by Ito [Ito, [to06]. More
precisely, assume that there are no points s of S where G has height > h. Then the proof above shows

— . — J— n—h
that there exists an isogeny V', : G(4 ") = G such that VihoFrg—n =w,and V), : wg — wf  defines
n—h
a section H;, € HO(S, wg 71). Moreover, the proof of Proposition 2.2.5 adapts easily to show that the
non-vanishing locus of Hy, is precisely the open subset consisting of the points s where G¢! has height h.
. . . L . —(h
In the context of Harris—Taylor Shimura varieties, this gives sections defined on the closure of each X (m )

_ . . ~(h . . . —(h) . .
whose vanishing locus is precisely X (m 4 (we recall that the stratification given by the X (m ) is precisely the
Ekedahl-Ort stratification in this case, moreover it is also equal to the Newton stratification). This was the
main point of Ito’s work, and some further properties and applications are stated in [Ito] in the case when
Ft=Q.

Moving on, we record some basic properties of our Hasse invariants.
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Proposition 2.2.5. Let S/k be a scheme and let G/S be a one-dimensional compatible Barsotti-Tate
O -module of height n. Assume that the p-ordinary Hasse invariant of G exists and denote it by H €
HO(S,wE ™).
(1) Let ¢ : 8" — S be a k-morphism and let G' = G x5 S'. Then the p-ordinary Hasse invariant of
G’ exists and is equal to ¢* H.
(2) Assume that S = Spec k, where k is an algebraically closed field. Then H # 0 if and only if G is
w-ordinary.

Proof. The first part follows from the fact that both F'r; and @ are functorial, so the factorization VoFrq =
@ on S pulls back to a factorization ¢*V o Fr, = @ on S’

For the second part, we note that H # 0 if and only if V is étale. Let h denote the height of G¢*; by
the calculation in the proof of Proposition 2.2.3 we see that @ factors through F'r (—») so we must have
h =n—1forV to be étale. The calculation also shows that if h = n — 1 then V is étale, which is what
we wanted. (]

In particular, we have a p-ordinary Hasse invariant whenever G/S comes by pullback from some G'/.S’
with S’ reduced, and the non-vanishing locus is precisely the open whose geometric points 2 are those for
which G, is p-ordinary.

Remark 2.2.6. We note a particular consequence of Proposition 2.2.5(1). Let G/.S be a one-dimensional
Barsotti-Tate O x-module of height n over a k-scheme S, and assume that the p-ordinary Hasse invariant
H(G) exists. Let m > 1 and consider the ¢"-power Frobenius twist G (qm), which is the pullback of G
under the absolute ¢"*-th power Frobenius map Fym : S — S. Then Proposition 2.2.5(1) implies that
H(G'")) = F;.H(G) = H(G)?" . Note that the ¢"-power Frobenius isogeny Frym : G — G gives
a canonical isomorphism G/ Ker Frrym =2 G(4™), so we get that H(G/ Ker Frym) = H(G)?".

Let us now return to the setting of our Shimura varieties. Recall Yﬂ, which is reduced and has the

one-dimensional compatible Barsotti-Tate O x-module G on it, so we have a u-ordinary Hasse invariant

- - . . ==(n—1 . o

H € H' (X, wg 1). The p-ordinary locus is X(mn ). The following proposition is presumably well

known to experts. We state it for completeness and sketch the proof, though it is not necessary for the main
results of this paper.

1)

Proposition 2.2.7. In the setting above, wg is ample. As a consequence, 727 is affine.

Proof. When p is unramified in ' and m = (0, ..., 0) this is a special case of [LS12, Proposition 7.15],
but the proof of that result also works when p is ramified in F’, using that the models X,,, are smooth and
defined by a Kottwitz condition when m; = 0. The case of general m then follows since the natural map
o) is finite and surjective. O

.....

(h)

Remark 2.2.8. By Remark 2.2.4, it follows more generally that Ymh is affine forall0 < h <n — 1.

2.3. Canonical subgroups. Our goal in this section is to establish a theory of canonical subgroups for
one-dimensional Barsotti-Tate O g -modules of height n, under the assumption that the Hasse invariant
exists. We follow the approach of Scholze closely [Schl15, 3.2.1], which relies on Illusie’s deformation
theory for group schemes [I1172].

Let Q;yd denote the completion of the p-power cyclotomic extension of Q; this is a perfectoid field.
We let ZV denote the ring of integers of Q¢¥*. Set KV := K.Qg¢* and O = Ogeyer. Let
el = ged(e, (p — 1)p™), where we recall that e is the ramification index of K/Q,,. Let &’ = lim,,_, €/,
which exists since (e},),, is eventually constant. Then O?Cl contains elements of valuation € for any
€ € Q¢ of the form ae’/(p — 1)p™ for a,n € Z>( (here we normalise the valuation so that w has

valuation 1); we will let z“ denote such an element.

The following results are direct analogues of [Sch15, Corollary 3.2.2, Corollary 3.2.6].
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Proposition 2.3.1. Let R be a w-adically complete flat O?Cl-algebra. Let G be a finite locally free
commutative group scheme over R and let C1 C Gy := G ®r R/w be a finite locally free subgroup
scheme. Assume that multiplication by w® on the Lie complex EGI /¢, of G1/Cy is homotopic to zero,
where 0 < € < 1/2. Then there is a finite locally free subgroup scheme C C G such that C @ R/ww!~¢ =
(&5 OR/w R/wlfe.

Proof. The proof of [Sch15, Corollary 3.2.2] goes through verbatim (substituting @ for p). O
p y g g g p

Proposition 2.3.2. Let R be a w-adically complete flat (’)%’d-algebra and let G be a one-dimensional
compatible Barsotti-Tate O c-module of height n over R, with reduction Gy to R/w. Assume that the p-
ordinary Hasse invariant H(G1) exists and that H(gl)% divides w* for some ¢ < 1/2. Then there is a
unique finite locally free subgroup scheme Cy, C G[w™] such that Cy, g R/w"' ¢ = (Ker From) Qg /e
R/w!' ™.

For any w-adically complete flat O?Cl-algebra R’ with an (’)%’d-algebra map R — R', one has

(2.3.1) C(R) ={seG[@™|(R)|s=0 modw!~/d"}

Proof. The proof of [Sch15, Corollary 3.2.6] goes through with only superficial changes; we sketch it for
completeness. Fix m and set H; := Ker(V g<q ) G1) (which makes sense by assumption); then
there is an exact sequence

0 — Ker Frgm — Gi[@w™] - Hi — 0
by definition. By Lemma 2.3.4 below, the Lie complex of H; is isomorphic to

U = (Lie g™ Y% Tie gy,

We calculate the determinant of Lie V" to be H (G1) T using Remark 2.2.6. Multiplication by the

determinant Lie V" is then null-homotopic on the complex Lie g§qm Lﬂ) Lie G; (using the adjugate

endomorphism of Lie V™ as the chain homotopy), so multiplication by w* is null-homotopic using the as-
sumption that H(G,) =T divides o The existence of C,, then follows from Proposition 2.3.1. Unique-
ness is a consequence of the final statement of the proposition, which is proved in the same way as the
analogous part of [Sch15, Corollary 3.2.6], using Lemma 2.3.3. O

We have used the following two lemmas in the proof.

cycl

Lemma 2.3.3. Let R be a w-adically complete flat O3 -algebra. Let X /R be an affine scheme such that
QX/R is killed by @€, for some € > 0. Let s,t € X(R) be two sections withs =t € X (R/w®), for some
0 >c¢€ Thens =1t.

Proof. The proof of [Sch15, Lemma 3.2.4] goes through, replacing p¢ and p® by w® and @?, respectively.
O

Lemma 2.3.4. With notation as in the statement and proof of Proposition 2.3.2, the Lie complex EHI of Hy

g(q ) Lie V™"

is isomorphic to the complex Lie — Lie Gy (with terms in degrees 0 and 1).

Proof. We may identify Lie G; and Lie QYJ ") with Lie G, [«¥] and Lie gfqm) [c¥], respectively, for all large

enough k. Note that we have natural identifications Lie G ["] = 510[ « and Lie g<q )[ k] = vg(oqm)[ .

(cf. e.g. [11185, §2.1]; we regard modules as complexes concentrated in degree 0). We have exact seéluences
0— Hy — 69wk = ¢ )=k /H, — 0

for all large k, which give distinguished triangles

€H1 — Eg(q [ k] — gggqm)[wk]/Hl — .
Define A to be the complex Lie gl Lle—v> Lie G;. By the remarks above, we have

— j<0
A = cone (fgiqm)[w . — ggl[wk]) [—1]
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and hence a distinguished triangle A — Eéoqm) — l%lo[wk] —. We may then construct a commutative
1

("]
diagram

.

gy [k
o l

by — b gy T Lol ry

for all large enough k' > k, where the two unmarked vertical arrows are canonical and f then exists for
abstract reasons (we remark that we can and do choose f to be independent of £’). We claim that f is
an isomorphism; it suffices to check this on cohomology groups in degrees 0 and 1 (all other cohomology
groups vanish). Taking long exact exact sequences we get a commutative diagram (with exact rows)

00— HY(A) — Lie G\ [@wh] —— Lie G [@"] —— HY(A) ———>0

o A

0——> H%(ly,) — LieG\" ) |w*'| —— Lie G\") [@"'|/H) —— H'({y,) — H* (é

G =]

Now take the direct limit over &’ in the bottom row. We have hgk/ ot (Eg@m)[wk/]) = 0 by [I1I85,
1
Proposition 2.2.1(c)()], and the maps Lie G\*" ) [w*] — lim | Lie G ="' and
Lie G [w"] — liny (Lie Gl k] /Hl) > lim Lic Gy [
k/ k//

are both isomorphisms. This implies that H"(f) and H!(f) are both isomorphisms, which finishes the
proof. O

Remark 2.3.5. Morally, the Lemma above should be proven by taking the homotopy colimit of the trian-
gles / H — / G™ (b — 1 GU™ (] Hy — for large k. However, since homotopy colimits are poorly
behaved, such an argument seems to require some work to carry out. The argument above may be viewed
as an elementary workaround.

my

Using Proposition 2.3.2, we define canonical subgroups by analogy with [Sch15, Definition 3.2.7].

Definition 2.3.6. Let R be a w-adically complete flat O%d-algebra and let G be a one-dimensional com-
patible Barsotti-Tate O i -module of height n over R, with reduction G; to R/wo. We say that G has a weak

canonical subgroup of level m if the u-ordinary Hasse invariant H (G ) exists and H (gl)“?’ll divides @*
for some € < 1/2, and we then call the subgroup C,,, C G[w™] (given by Proposition 2.3.2) the weak
canonical subgroup of level m. If in addition H(G;)?" divides w¢, we call C,, the (strong) canonical
subgroup.

One then has the following analogue of [Sch15, Proposition 3.2.8], which is proved by exactly the same
arguments.

cyc

Proposition 2.3.7. Let R be a w-adically complete flat O l-algebm, and let G and H be one-dimensional
compatible Barsotti-Tate O i -modules of height n over R.

(1) If G has a (weak) canonical subgroup of level m, then it has a (weak) canonical subgroup of level
m/ for any m’ < m, and C,,,; C C,,.

2) Let f : G — H be a morphism of Barsotti-Tate O -modules. If both G and H have canonical
subgroups C,, and D,,, respectively, of level m, then f maps C,, into D,,. In particular, C,, is
stable under the action of O.

(3) Assume that G has a canonical subgroup C.,, of level my, and that H = G/C,y,,. Then H has a
canonical subgroup D, of level mo if and only if G has a canonical subgroup Cy,, 4m, of level
mq + mao. If so, there is a short exact sequence

0— Chn, = Coytms = Dy — 0
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which is compatible with 0 — C\,, = G — H — 0.

(4) Assume that G has a canonical subgroup C,, of level m and let x be a geometric point of Spec R[zw—1].
Then Cy,(z) = Ok /w™ as O -modules. In other words, the restriction of G to Spec R[] is
étale-locally isomorphic to O [w™ as a finite étale group scheme with an Ok -action.

3. PERFECTOID SHIMURA VARIETIES

In this section we prove our results about Harris—Taylor Shimura varieties. We first prove an analogue
of Scholze’s result [Sch15, Corollary 3.2.19] that the ‘anticanonical tower’ for Siegel modular varieties is
perfectoid at I'g (p°)-level; this is the main result of this section. Using this, we prove slight refinements? of
results of Scholze [Sch15] and Caraiani—Scholze [CS17] that the tower of Harris—Taylor Shimura varieties
is perfectoid at full infinite level and admits a Hodge-Tate period map to P"~!. For this, we follow
Scholze’s arguments for the Siegel case, but the situation is much simpler in our case due to the absence of
a boundary. We also take advantage of the formalism of diamonds, which provide a good setting in which
to carry out the arguments.

3.1. The anticanonical tower. Let us start by recalling a characteristic 0 version of the moduli problem
defining our Shimura varieties from [HTO1, §1I1.1]. For each i € {1,...,7}, let

UUi - (OOBp,wi)X

be a compact open subgroup and set

Up =25 x [[ U €G(Q)
i=1
and U = UPU, (recall that we have fixed a sufficiently small compact open subgroup U? C G(AP*°)
throughout this article). We define a contravariant functor Xy from locally noetherian K -schemes to sets
as follows. If S is a connected locally Noetherian K-scheme and s is a geometric point of S, we define
Xu (S, s) to be the set of equivalence classes of (r + 4)-tuples (A, A, 4,7, 7,;) where
e A is an abelian scheme over S of dimension dn?;
e \: A — AV isapolarization;
e i: B — Endg(A)®zQ is ahomomorphism such that (A, ) is compatible and Aoi(b) = i(b*)Y oA
forall b € B;
o 7P is a m (S, s)-invariant UP-orbit of isomorphisms of B ®g AP**°-modules 1 : V ®@q AP —
VP A, which take the standard pairing (—, —) on V' to a (A?>°°)*-multiple of the A\-Weil pairing

on VPA,;

e 7, is m1 (5, s)-invariant U,, -orbit of isomorphisms 7, : A1 ®z, Q, — V4, A, of K-modules;

e fori=2,...,r,7,;is am (S, s)-invariant U,,-orbit of isomorphisms of B,,,-modules 7; : A; ®z,
Qp — Vi, As.

Before defining equivalence, let us define compatibility. The map 7 induces an action of F on Lie A, and
we let Lie™ A denote the summand of Lie A where E acts in the same way as via the structure morphism
E — Og. We then say that (A, 4) is compatible if Lie™ A has rank n (over Og) and the actions of F* on
Lie™ A via i and via the structure morphism F'* — Og agree. Finally, two (r + 4)-tuples (A4, \, i,77,7;)
and (A, X, i/, 7'",7;) are equivalent if there is an isogeny o : A — A’ which takes A to a Q*-multiple
of )\, takes i to ¢/ and takes 7] to 7. Again the set X (S, s) is canonically independent of the choice
of s, giving Xy on connected .S, and one extends to disconnected S in the usual way. This functor is
representable by a smooth projective K-scheme which we will also denote by Xy. If m = (my,...,m,)
andU,, = 1+ w?"’(’)g’,wi, then X, is canonically isomorphic to the generic fibre X, of X,, ; see [HTO1,
pp- 93-94].

For the rest of this article, we will fix non-negative integers mao, . . ., m, and the corresponding compact
open subgroups U,,, = 1 + ;" O%ﬁwi for: = 2,...,r. We drop the levels U?, U,,, 1 = 2,...,r, and
Z,; from all notation and only indicate the level at v. In particular, we write X, for what was previously
called X (1, ms,...,m,)» €tC.

2The (very minor) refinement is the following: [Sch15, CS17] work over the full infinite level at all places dividing p, whereas we
only work with full infinite level at the place v.
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Let us now introduce the level subgroups Uy(zww™) C GL,(K) that we will use to define the anti-
canonical tower. Let P C GL,, denote the (n — 1,1)-block upper triangular parabolic. We define, for
m 20,

Up(w™) :={g € GL,(Ok) | g mod w™ € P(Og/w™)}.
Let us also put U(w™) = 1 + @™ M,(Ok). Consider Xy, (). It is the quotient of X,, by the free
action of the finite group Up(w™)/U(w™) = P(Ok /w™). Since the level structure at w defining X,
are isomorphisms
ar cw A /A — Gla™],
it follows that the level structure at w defining X, (m) are O -subgroup schemes H C G[w™] which
are étale-locally isomorphic to (O /™)L,

For the rest of this section we will base change all Shimura varietes X7 to KY*!. We will now define
some formal schemes whose generic fibres embed in the rigid analytification of Xy, (m) (for suitable m).
Set X := X and let X be the formal completion of X ®p O%Cl along w. Recall our conventions about
elements e € Q> and elements ¢ € O from §2.3.

Definition 3.1.1. Assume that 0 < ¢ < 1/2. Let .%(e) — X be the functor on w-adically complete flat
O;?Cl-algebras sending such an S to the set of equivalence classes of pairs (f,u), where f : Spf S — X is
a morphism and and u € H(Spf S, (f*w)'~9) is a section such that u(f*H) = w® € S/w, where H is
the p-ordinary Hasse invariant on %®o;§‘” O?d/w. Two pairs (f,u) and (f’, u') are equivalentif f = f’
and there is some h € S with v’ = u(1 + w!~h).

Proposition 3.1.2. :%(6) is representable by a flat formal scheme over (’)%’Cl which is affine over x.

Proof. 1t suffices to work Zariski locally on % so let Spf R C X be an affine open over which w?~!
is trivial. Choose a non-vanishing section 7 € w? ! and choose a lift H € H°(Spf R,wi™') of H.
We claim that .%(e) Xz Spf R is represented by Spf(R(T)/(T(Hn™') — @*)). The formal scheme
Spf(R(T)/(T(Hn™') — w*)) represents pairs (f, %) with f : Spf S — Spf R a morphism and @ €
HO(Spf S, (f*w)'~7) such that ’H = w® in S. There is a natural transformation from pairs (f, %) to
equivalence classes of pairs (f,u) parametrized by X(e) X % Spf R, and one shows that this is an isomor-
phism by the same argument as in [Sch15, Lemma 3.2.13]. This shows that %(e) is representable and is
affine over X.

It remains to show that R(T)/(T(Hn~") — @) is flat over O, for which it suffices to show that

it has no we-torsion. Set A = R(T) and ¢ = T(Hn~ ') — w®. Taking the long exact sequence of
cyel

0— A— A— A/g— 0 and using the O5¢“'-flatness of A shows that Tor?K (05! z¢, A/g) (which

is the w*-torsion in A/g) is the g-torsion in A/w*. Since g = T'(Hn~') in A/w® and Hn~! is not a zero

divisor in R/w*, the assertion follows. O

For any formal scheme whose notation involves X..., we will use X'... to denote its generic fibre, and
X ... the reduction modulo . We record two corollaries.

Corollary 3.1.3. The reduction X (¢) represents the functor on (’)%’Cl /wo-algebras sending such an S to
the set of pairs f : Spec S — X and u € H°(Spec S, (f*w)'~9) such that u(f*H) = @

Proof. Tt suffices to prove this locally on X, so we pick an open affine Spf R C X and n trivialising
w91 as in the proof of Proposition 3.1.2. Then, by the proof, X (¢) is represented over Spec R/w by
the O%d Jw-algebra (R/w)[T)/(T(H7~ ') — w®), where 7 denotes the reduction of 7. A morphism
(R/w)[T]/(T(Hn~ ') — @) — S then corresponds to a morphism R/ — S plus an element ¢ € S such
that t(H7 ') = w¢; setting u = t7~ ! gives the desired element of H°(Spec S, (f*w)!~%). One checks
that this is independent of the choice of 7, which finishes the proof. (I

Corollary 3.1.4. Let 0 < ¢ < 1/2. Let S be a w-adically complete and flat O%Cl-algebra and let
f : Spf S — X be a morphism. Assume that the reduction f : Spec S/w'~¢ — X Qoevet (9§§!'zl/w176
K
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lifts to a map g : Spec S/w'™¢ — X(¢) Opevel /o O?Cl/wl_s. Then there exists a unique map ¢ :
K
Spf S — X(e) lifting g such that the composition Spf S 2+ X () — X is f.

Proof. The assertion is local on the target and the source, so we may use the local description of %(e)
from the proof of Proposition 3.1.2; we use the notation of that proof. The problem then becomes to
prove the following: If h : R — S is an (’)%’Cl—algebra homomorphism and uy € S is an element such
that uoh(Hn™') = @ modulo !¢, then there is a unique v € S such that uh(Hn~') = @* and
u = up modulo w!~€. For existence, write uoh(fln_l) = w® + w! € for some v € S, then we can
set u = ug(1 + w'~20) 1. Since S is O5Y"-flat, existence shows that S is h(Hn~')-torsionfree, which
implies uniqueness. 0

Remark 3.1.5. Note that the map X(0) — X is an open immersion; it identifies X(0) with the open subset
{H # 0} of X. In particular, X(0) is formally smooth over 05! Note also that, for any 0 < e < 1/2, the
natural map %(0) — .%(e) (given by multiplying the section by @) is an open immersion, again identifying
%(0) as the subset {H # 0} C X(e). Similar remarks then apply modulo o, in particular X (0) is formally
smooth over O /e

Let 2 be the universal abelian (formal) scheme over X, with pullback () to X(e). We may define
canonical subgroups of 2(¢) whenever they exist for G5 (e)° 38 follows. Recall that we have a decomposition

U™ = 0Zr @A) &+ & A ] © (G5, & A wF] & & AOw]".

2A(e)
Here —V denotes the Cartier dual. If gﬁ(e) has a (weak) canonical subgroup C,, of level m, then we let
D,,, C A(€)[p™] be the subgroup corresponding to

CEMD0®- @0 (Cr)®" DA wE']” @ -+ @ Ae)[w]"]”
under the isomorphism above, where C is the annihilator of C,,, with respect to the duality pairing. We
say that D,, is the (weak) canonical subgroup of 2((¢). Note that D,,, modulo w is the kernel of the gth
power Frobenius on A(e) (since 2A(e)[wse] is étale fori = 2,...,7).

Next, we note that there is a natural isomorphism Y(q)

=~ X over (’)%’d /@ (or any other base), since
X comes by base change from k. Let F'r = FTY/(Ocycz/w) X — Y(q) be the relative (qth power)
K

Frobenius map?; note that the composition
— Fp — —
X I XWX

is the map coming from the abelian scheme A/ Ker Fr4 /X X (with extra structures), where Fr4 /X is

the relative Frobenius. We may then pull back this situation to X (¢) to obtain the following analogue of
[Sch15, Lemma 3.2.14].

Lemma 3.1.6. Ler 0 < € < 1/2. The isomorphism X' =~ X induces an isomorphism X (¢~ '¢€)(9) =
X(e) and the composition Y(q_le)_ﬂ X(qg~'e) D = X(e) is induced from the abelian scheme
A(g~te)/ Ker Frag-10/%@-10 — X (g~ te) (with extra structures) together with the q-th power of the

universal section on X (qLe).

Proof. That X' = X induces an isomorphism X (¢~ '€)(?) = X(¢) follows (for example) by explicit

calculation in the local coordinates of the proof of Corollary 3.1.3, assuming in addition that the ring R/
in that proof as well as the non-vanishing section 77 comes by base change from k. It then follows that
A(e) pulls back to A(g~"e)/ Ker Fro -1,y /541 Via the map X(¢~"¢) — X (e) since A pulls back
to A/ Ker Fry /X via Fr : X — X (with extra structures). Finally, one identifies the pullback of the
universal section by explicit calculation in the local coordinates used in the first part of the proof. (]

3We apologise that the notation for Frobenius maps in this section differs slightly from the notation in section 2.
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We will abuse the terminology and write F'r for the map X (¢~ '¢) — X (¢), and refer to it as the relative
Frobenius.

Theorem 3.1.7. Let 0 < e < 1/2.

(1) There is a unique morphism F : X(q~'¢) — X(e) which is equal to the relative Frobenius
X (¢ Ye) — X(¢) modulo w'=¢. I is finite, and its generic fibre is finite flat of degree ¢" .
(2) For any integer m > 1, the Barsotti-Tate Oy -module gﬁ(q,me) admits a canonical subgroup

Cyn of level m, and hence the abelian variety QAl(q_me) admits a canonical subgroup D, of
level m. This induces an open immersion X (q~"¢) — XUy (wm) given by the abelian variety
A(q™"€)/ D, the Oxc-subgroup G 4(q—me)[@™]/Crm, plus the induced extra structures. More-
over, the diagram

X(qufle) _— XUU(’W"H’I)

X(que) —_— XUo(wm)
commutes and is cartesian.

(3) There is a weak canonical subgroup C C gﬁ(e) of level 1. The open immersion X (q~'e) —

Xy, (w) identifies X (qYe) with the open subset Xy (@) (€)a of Xy, () Where the Hasse invariant
has valuation < e and the O -subgroup C' C G[w]| satisfies C N C' = 0.

Proof. We start by proving (1). By Proposition 2.3.2 there is a strong canonical subgroup C of gﬁ(q,le) (of

level 1), and hence a strong canonical subgroup D of Ql(q_le). This gives an abelian variety QAl(q_le)/D —
X (g~ te) with extra structures, and hence a morphism X(¢~'e) — X. Note that (¢ 'e)/D — X(q~t¢)
reduces to A(q ™€)/ Ker Fry(, 1) 5(4-10) — X (¢~ '€) modulo &'~ by Proposition 2.3.2, so the map

X(q7'€) — X reduces to a map X(¢~'¢) — X modulo !¢ which lifts to the relative Frobenius

X(q~'e) — X (€) modulo @' ~¢ by Lemma 3.1.6. Corollary 3.1.4 then gives us a lift F' : X(qg~'¢) — X(e)
of the relative Frobenius modulo zo! ~¢. The uniqueness follows from the uniqueness of the canonical sub-
group (which establishes uniqueness of the lift X(¢~*¢) — X) and the uniqueness part of Corollary 3.1.4.

For finiteness, first note that the morphism is affine by construction. Finiteness of F then follows from
the fact that F is finite modulo co ¢, since it is the relative Frobenius of a morphism of finite presentation
(see e.g. [Sta, Tag 0CCD] for the case ¢ = p). To prove that the generic fibre is finite flat of degree ¢" 1,
we first do the case € = 0. In this case X (0) is smooth of relative dimension n — 1 (Remark 3.1.5), so the
relative Frobenius is finite and locally free of degree "~ (see e.g. [11196, Proposition 3.2] when ¢ = p),
and hence the same is true for F' and its generic fibre. For general €, the generic fibre is a finite surjective
morphism between smooth rigid spaces, hence flat. To compute the degree, we use that the diagram

2(0) — X(g~'¢)

b
X(0) —— X(0)

is cartesian; then the right vertical morphism has the same degree as the left vertical morphism, which we
already know has degree ¢" 1.

We now turn to part (2). The existence of canonical subgroups C,, of level m again follows from
Proposition 2.3.2. The formula in the proposition then defines a morphism X' (¢~™¢) — Ay, (om) by
Proposition 2.3.7(4). To see that it is an open immersion, we consider the map 7y : Xy, (wm) — & sending
a pair (A4, C") (with extra structures) to A/ D’ (with extra structures), where D’ C A[p°] corresponds to
the Ok -subgroup

(O @ Alws] @ ... Alw" @ (C)H)*" @06 -~ ©0.
The composition X' (g~ '€) — Xy, (mm) —3 X sends an abelian variety A (with extra structures) to A /A[p™]
(with extra structures) by direct computation. It follows that the composition is equal to the forgetful map
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X (g 'e) — X (which is an open immersion) followed by an isomorphism of X (which only changes
the level structures away from w), and is hence an open immersion. Since o is étale, it follows that
X(q~'e) = Xy, (wm) is an open immersion as desired.

The commutation of the diagram in (2) follows from Proposition 2.3.7. To see that it is cartesian we
argue as follows. The horizontal maps are open embeddings, and the right vertical map is finite étale of
degree q" L. Since the left vertical map is finite flat of degree ¢" ! by part (1), it follows that the induced
map X (g ™ te) — X (g7 ™e) X Xy (wmy XUy (wm-+1) 18 @ finite surjective morphism of degree 1 between

smooth rigid spaces, and hence an isomorphism. In particular, F is étale, and the diagram is cartesian. This
finishes the proof of (2).

For (3), we first need to establish that X (¢~ 1e) — Xy, (=) has image inside Xy, () (€)q. This is done
as in the last part of the proof of [Sch15, Theorem 3.2.15]. After this, we look at the diagram

X(q7e) — Xy (=) (€)a

X(e) — L X(e).
As in the proof of part (2), it commutes. We claim that it is cartesian; since the bottom horizontal arrow is
the identity this gives the desired conclusion. The left vertical map is finite of degree ¢" !, and one checks

that the right vertical map is finite étale of degree ¢" ~'. An argument as in the proof of (2) then shows that
the diagram is cartesian, and finishes the proof. (|

For the next result, which is the main result of this subsection, we use the notion X ~ 'mi X; for an
adic space X with a collection of compatible maps to a cofiltered inverse system of adic spaces (X;) from
[SW13, Definition 2.4.1].

For m > 1 we define Xy, (m)(€)q as the image of X'(¢~™¢) in Xy (om)-

Theorem 3.1.8. Fix 0 < € < 1/2. There is a unique (affinoid) perfectoid space Xp(o,.)(€)q over K
such that

Xp(05)(€)a ~ T Xy, (cm) (€)a-

Proof. We start by showing the existence of such a perfectoid space Xp(o)(€)a. By Theorem 3.1.7 we

m

may identify the tower (X, (wm)(€)a)m>0 With (X'(¢~™€))m>0, With transition maps given by F. This

o~

gives us a formal model (X(q~""€))m>0 for this tower, and we may take the inverse limit

X := lim %(que)
W%O
in the category of w-adic formal schemes since the transition maps are affine. We define Xp (o )(€)a to
be the generic fibre of %OO in the sense of [SW13, §2.2]. Since the transition maps agree with Frobenius

modulo ! ~¢, we may argue as in the proof of [Sch15, Corollary 3.2.19] to conclude that XP(OK)(e)a is
perfectoid and that Xp(0,.)(€)a ~ hm Xy, (wm) (€)a-

Finally, to show that Xp(¢,.)(€)a is affinoid perfectoid, one may argue using tilts as in [Sch15, Corollary
3.2.19, Corollary 3.2.20]. Since this additional information is not needed for the results of this paper we
will not give further details. O

3.2. The Hodge-Tate period map. We now introduce some notation for more general ‘infinite level
Shimura varieties’. These will be defined (a priori) as diamonds, and we refer to [Sch17] for the defi-
nitions and terminology concerning diamonds. Let H,, C GL,,(Ok) be a closed subgroup. We define
XHU = %in X[<J>1,7
HU QUU
where U, ranges through all the open subgroups U, C GL, (Ox) containing H,, and Y ~— Y is the
‘diamondification functor’ on rigid spaces [Sch17, Definition 15.5]. We remark that each X(?U is a spatial
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diamond, and that the inverse limits above exist (as diamonds) and are spatial by [Sch17, Lemma 11.22],
which also says that the natural map

X, | = im0 [= lim |Ay,|
H,CU, H,CU,

is a homeomorphism, where |Y'| denotes the underlying topological space of an adic space or a diamond
[Sch17, Definition 11.14] (and the equality follows from [Sch17, Lemma 15.6]). Note that if H,, = U, is
open, our definition above is essentially saying that we will conflate A7;, with its corresponding diamond;
this abuse of notation is mostly harmless since the diamondification functor is fully faithful on the category
of normal rigid spaces (over a fixed nonarchimedean field, remembering the structure morphism).

Thus, writing 1 C GL,,(Ok) for the trivial subgroup, we have a diamond X; = @XUv with an
action of GL,,(Of ), which extends to an action of GL,,(K) by using the maps g : X, ;-1 — Xy, for
g € GL,(K) and any open U, such that U,, gU,g~! C GL,(Of). Our goal is to show that a certain
open subset X P(O ) S Xp(oy) (containing X'p(,.)(€) for sufficiently small € > 0) is perfectoid.

To do this, we proceed from the previous subsection by going further up the tower. Recall that if (Y;);e;
is a filtered inverse system of adic spaces over a perfectoid field with qcgs transition maps and Y is a
perfectoid space with compatible maps Y — Y; such that Y ~ Linz Y, then by [SW13, Proposition 2.4.5]
and the definition of the diamondification functor we have Y = ]gll Yi<> as diamonds (here and elsewhere,
if Y is a perfectoid space, we simply write Y for the corresponding diamond as well). Thus, by Theorem
3.1.8, we have

Xp(0x)(€)a = %XUO(W)(G)&

and Xp (o, (€), is naturally an open subdiamond of Xp(0,).

Proposition 3.2.1. Let 0 < e < 1/2 and let H, C GL,(Ox) be a closed subgroup contained in P(Ok).
Then the spatial diamond Xy, (€)a *= Xp(0y)(€)a X xp(o,., Xn, is an (affinoid) perfectoid space.

Proof. First assume that H,, has finite index inside P(Of ). Then X, (€)s — Xp(0)(€)q is finite étale,
and the result then follows. In general Xy, (€), = =lim , Xp, (€) where H ranges over closed subgroups

with H,, C H) C P(Ok) and H, C P(Ok) has ﬁmte mdex and the result follows. O

To continue, we construct the Hodge—Tate period map X; — (P"~1)® on diamonds; this is the content
of the following proposition. We keep the statement vague; the meaning of the name ‘Hodge—Tate period
map’ should be clear from the construction.

Proposition 3.2.2. There exists a GL,, (K )-equivariant Hodge—Tate period map wgr : X3 — (PP~1)©
over (K<, (9%’6[).

Proof. By the definitions, we may regard X3 and (P"~1)® as sheaves on the pro-étale site of perfec-
toid spaces over K°Y°!, 5o to construct a map of sheaves it suffices to work with a basis for the topol-
ogy. Let Spa(R, R") be a strictly totally disconnected perfectoid space over (K<v< O;?d). A map
Spa(R, RT) — A4 is the same as a compatible system of maps Spa(R, R*) — Xy (mm) for all m, and
we may assume that the map Spa(R, RT) — X factors through an affinoid open subset Spa(A4, A°) C X,
where Spf(A°) C Xis open affine (note that this is possible since Xis normal, by [dJ95, Theorem 7.4.1]).
The map Spa(R, RT) — Spa(A, A°) is then the generic fibre of a map Spf(R*) — Spf(A°) of w-adic
formal schemes, and we may pull back the universal Barsotti-Tate O x-module over Spf(A°) to a Barsotti—
Tate Ox-module G over RT. Since Spa(R, R™) is strictly totally disconnected, we may apply [SW13,
Proposition 4.3.6]* to see that G has an exact Hodge—Tate sequence

0 — Lie(Gr)(1) ®r+ R = TGr(R") ®z, R — (Lie(G}))” ®@p+ R — 0
of finite projective R-modules. By the compatibility of G and the fact that it has dimension 1,
Lie(Gr)(1) ®pr+ R

“The proof of [SW13, Proposition 4.3.6] does not require the assumption, in the notation of that reference, that Spec T is
connected.
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has R-rank 1 and embeds into TQR(R+)®O%,Cz R (which is an R-module direct summand of TGr(R™)®z,
R). Using the compatible trivialisations Gr[w™](R1) = Gr[w™](R) = (Ok /w™)™ coming from the
maps Spa(R, RT) — Xy (mm), the inclusion Lie(Gr)(1) ® g+ R € TGr(RT) ®pevert R = R" defines an
(R, R")-point of P" 1, This gives the desired map, and GL,, (K )-equivariance is clear from the construc-
tion. O

We remark that any map between spatial diamonds induces a spectral map of the underlying spectral
topological spaces, so w7 is spectral. The next lemma characterises the image of the p-ordinary locus
under the Hodge—Tate period map. For more general results under the assumption that & /Q),, is unramified,
see [Herl8, §11].

Lemma 3.2.3. Let C be a complete algebraically closed extension of K with valuation ring O¢c and
residue field kc. Let G be a compatible Barsotti-Tate O i -module over O¢ of dimension 1 and height n.
Then the special fibre G X o kc is p-ordinary if and only if the subspace Lie(G) ®o. C(1) C TG ®z, C
is K-rational (here T'G is the Tate module of G).

Proof. We use the Scholze—Weinstein classification of Barsotti-Tate groups over O¢ [SW13, §5]. To
simplify the notation, we will take the linear algebra data (7', W) in the Scholze—Weinstein equivalence
[SW13, Theorem 5.2.1] to be a finite free Z,-module 7" together with a C-subspace W C T ®z, C
rather than a subspace of T' ®z, C'(—1) (from the point of view of Barsotti-Tate groups G, we take W
to be Lie(G) ®o, C(1) rather than Lie(G) ®o,. C). We start by assuming that the special fibre of G is
p-ordinary, and consider the connected-étale sequence

05656 -6 =0

of G, which is an exact sequence of compatible Barsotti—Tate O i -modules. By [SW13, Proposition 5.2.8],
this exact sequence induces an exact sequence

057G =TG- TG =0

and an equality Lie(G") ®p, C = Lie(G) ®o. C (since Lie(G) = 0), so it suffices to show that
Lie(G°) ®o. C(1) C TG is K-rational. Since the special fibre is p-ordinary, G° has height 1 (using that
the connected-étale sequence is compatible with reduction). But, by the Scholze—Weinstein classification
[SW13, Theorem 5.2.1], there is a unique compatible Barsotti—Tate O -module LT of dimension 1 and
height n over O¢, given by the linear algebra datum (7' = Ok, W = C,) where

Tz, C= ][] ¢
T€Hom(K,C)

and o : K — (' is the inclusion (recall that C' was defined to be an extension of K), and this W is visibly
K-rational. Note that LT is the unique lift of the Lubin—Tate O -module of height 1 over k¢.

For the converse, assume that (7' = Or, W) is the linear algebra datum of G, assume that W is K-
rational and use the notation established in the previous paragraph. Write W = Wx ®x C with Wi a
K -rational structure on W. We can canonically identify T[1/p] = K™ with the K -rational structure on
(T ®z, C)o and hence think of W as a subspace of T'[1/p]; the intersection Wo,, = W N T is then an
O -module direct summand of T of rank 1; let 77 C T be a complement. It follows that we can write

(Tv W) - (WOK7W) D (T/v 0)

compatibly with the O -action. It then follows from the Scholze—Weinstein equivalence that G is isomor-
phic to LT x (K/Ok )"~ ! as a Barsotti-Tate O x-module, and hence has p-ordinary reduction. O

Let us now define
PN K)q i= {(a1 ) €PN Ok) | an € OF}.
We then get the following corollaries.

Corollary 3.2.4. We have myr(|X1(0),]) = P"~Y(K), and 7y (P" 1 (K),) is equal to the closure
[X1(0)al of |X1(0)a] in | X ].
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Proof. Form now on, to ease the notation we will often drop the | — | when discussing topological spaces
of adic spaces or diamonds; what we mean should hopefully be clear from the context. By Lemma 3.2.3
the rank one points of 7;1.(P"~!(K)) are precisely the rank one points of the y-ordinary locus X3 (0), so
it follows that 7;,(P"~!(K)) is precisely the set of specializations of points in X (0). Since X;(0) is
a quasicompact open subset of X7, the set of such specializations is precisely X7 (0). Moreover X7 (0) is
GL, (Ok)-stable and P"~1(K) is a GL,, (O )-orbit, so by equivariance of 7 the image of X3 (0) has
to be all of P*"~!(K). Finally, to deduce the corollary from this one checks easily that the anticanonical
condition on a rank 1 point is equivalent to the image under 7y being in P"~1(K),, and then we argue
similarly using that X3 (0), is also quasicompact and open. (|

Corollary 3.2.5. For every 0 < € < 1/2 there exists a quasicompact open subset U C P"~1 contain-
ing P"~Y(K), such that 7 (U) C Xi(€)a. Conversely, for every open subset V. C P"~' containing
P Y(K),, we have X1(¢), C ﬂ;fT(V)for all sufficiently small € > 0.

Proof. We may write P"~!(K), = (U, where U runs through the quasicompact open subsets of P"~*
containing P*"~1(K),. Fix ¢ > 0 small enough. We have X;(0), C Xi(€)a, so by Corollary 3.2.4 we
have Xy (€)a 2 (755 (U), and it follows (by a short argument using the constructible topology) that

7a(U) € Xi(e), for some U since the 755 (U) are quasicompact opens (since 77 is spectral). This

proves the first part, and the converse is proved in exactly the same way using the fact that A3 (0), =
ﬂe>0 Xl (6)11‘ U

3.3. Perfectoid spaces. In this subsection we will prove the (global) perfectoidness results that we will
need in this paper. We start with some remarks on the geometry of P"~!, to set up notation. We have a
cover of P"~! by open affinoid subsets

Vi={(a1:- 1 an) | o] <lai j # i}

Note also that the V); are translates of one another under the action of the Weyl group of GL,, (with respect
to the diagonal torus). We have a similar ‘algebraic’ cover by open subsets

Vi={(ar: - an) | Jas] # 0}

Let v = diag(w,...,w,1) € GL,(K). We then have the following elementary lemma. Recall that we
are using the right action of GL,, on P"~! which is the inverse of the usual left action.

Lemma 3.3.1. We have V,, = J,~, V¥, and the sets V,y =, k > 0, form a basis of quasicompact open
neighbourhoods of (0 : ...0: 1) € P~ 1,

Next, we define X", the ‘complementary locus’, to be the open subdiamond 7 ;;-(V;,) C Aj.

Corollary 3.3.2. Let € > 0 be sufficiently small. We have X;°™" = |J,~, X1(€)a7*, and hence X{°™7 is
a perfectoid space. -

Proof. By Corollary 3.2.5 and the second part of Lemma 3.3.1 we can choose a U, ande > Oandak > 0
such that WI;,lT (U) C X1(€)a € X°™ and V,,y~* C U. The first assertion of this corollary then follows
from the first part of Lemma 3.3.1 (using the equivariance of 7g7), and the second part of the corollary is
immediate from the first and Proposition 3.2.1. O

As an aside, which won’t be used in this paper, we note the following theorem.
Theorem 3.3.3. X} is a perfectoid space and 7T comes from a unique map X1 — P"~! of adic spaces.

Proof. The fact that X; is a perfectoid space follows Corollary 3.3.2 and the fact that
A= 1A
geGL, (OK)

(which is immediate from equivariance of 7y and P! =V, U---UV,). The second part then follows
immediately, since any map of diamonds from a perfectoid space S to the diamond Z© of a rigid space Z
corresponds to a unique map of adic spaces S — Z, by the definition of the diamondification functor. [J
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We now turn to the main result of this section. The natural map [X1| — |Xp(o,)| is open, so we may
define X575" \ © Xp(oy) to be the open subdiamond given as the image of [X7°"*"|. Note that X7 is

P(Ok)-stable. From the next lemma, we see that X;°""" — X Iio(gi  is a P(Of)-torsor.

Lemma 3.3.4. Assume that H!, C H, are closed subgroups of GL,,(Ok), and that H] is normal in H,.
Then XHL — Xp, is a H,/H| -torsor in the sense of [Sch17, Definition 10.12].

Proof. Set Uy, = H,U(w™), Uy, ,, = H,U(@w™). Then Xy~ — Xy, ,, is a Uy /U, ,,-torsor, com-
patibly in m. Diamondification preserves torsors by finite groups, so we have compatible isomorphisms

Xy, X Uon/ Uy — Xy, X, ,, Xy,
for all m. Taking the inverse limit over m then gives the result. t

Let us recall that Huber defined the category of adic spaces as a full subcategory of a category he called
V in [Hub94]. This category has quotients by arbitrary group actions, cf. [Lud17, §2.2]. Let us explicitly
record the following link between torsors and group quotients in V, in the case of perfectoid spaces.

Lemma 3.3.5. Let H be a profinite group and let X > Xbea map of perfectoid spaces which is a
H-torsor in the sense of [Sch17, Definition 10.12]. Then X is the quotient of X by H in the category V.

Proof. Tt suffices to check that |U|/H = |U| and Oi(l})H = Ox (U) for a basis of open subsets U of X,
with U := X x x U. So take U = Spa(R, R*) C X affinoid perfectoid. By [Sch17, Lemma 10.13] we
may then write U as an inverse limit U = 1&1 K ﬁK — U of finite étale (and hence affinoid perfectoid)
ﬁK — U for open normal subgroups K C H which are H/K-torsors. Write ﬁK = Spa(Rk, R}) and
U = Spa(S, S1). If 7 is a pseudouniformizer for R we then have (Rf /mm™)H/K =a RF /7™ for all m,
compatibly in K (=2 for almost equal). This implies that S = R and that (R/* (R})H/K) = (R, R*)
compatibly in K. The latter implies that |Ug|/(H/K) = |U| compatibly in K (e.g. by [Han16, Theorem

1.2]) which implies that |U|/H = |U]| as desired. O
Theorem 3.3.6. X ;O(gi ) is a perfectoid space. More precisely, for € > 0 sufficiently small, X;O(gf( )| is

covered by the open subsets | X1 (€)av*|/P(Ok) for k > 0, and the corresponding open subdiamonds are
(affinoid) perfectoid spaces. Moreover, X;‘Egi) is the quotient of X(°™ by P(Oy) in Huber’s category
V.

Proof. We have an isomorphism
7 Xp(0s) = Xy (o)

of diamonds, which sends the open subset | Xy (€)o7"|/P(Ox ) of [Xp (o, | to the open subset

|X1(€)al/V*P(OK)y*

of |X,kp(o,)y-+|- Let us denote the open subdiamond corresponding to | Xy (€)a|/7*P(Ox )y ™" by
Xk p(Or )y~ (€)a- By direct computation v* P(Of )y~ is a finite index open subgroup of P(Ok), so
we have a natural finite étale map X x p(0, )y —+(€)a —+ Xp(0y)(€)a- It follows that Xk p(o )y —+(€)q is
(affinoid) perfectoid, and hence that the diamond corresponding to | Xy (¢),v*|/P(O¥) is (affinoid) per-
fectoid. This proves the theorem, except for the ‘moreover’ part, which then follows from Lemma 3.3.5

since X7 — X;O(gi) is a P(O )-torsor. O

4. THE LUBIN-TATE TOWER

In this section we prove our geometric results on the Lubin—Tate tower.
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4.1. Preliminaries. We begin by recalling the Lubin—Tate spaces that we will be working with, cf. [HG94,
RZ96]. Let Gy be the unique one-dimensional compatible Barsotti—Tate O i-module of Ok -height n and
with G&* = 0 over %, and set K = K QW (k) W(E) The Lubin—Tate space ) is the formal scheme
over O whose R-points, for R an O;-algebra with w nilpotent, is the set of pairs (G, p) where G is a
one-dimensional compatible Barsotti-Tate O -module over R and p : Gy @z R/w — G @ R/w is an
O -linear quasi-isogeny. )1 decomposes as a disjoint union

m=| | m

deZ

according to the degree ¢ of the quasi-isogeny p, and p is an isomorphism if d = 0. In particular, D) is
the formal deformation space of Gy. Let M and M (%) be the generic fibre of 90t and M%), respectively.
There is a tower of rigid analytic varieties (M )y over M = Mgt (0,), Where U ranges over the open
subgroups of GL,, (Ok). All transition maps are finite étale, and the tower carries an action of GL,, (K).
We also set Mgi) = My x g M@ forall d € Z. Similarly to our notation for Shimura varieties in the
previous section, we set
MH = %in ./\/lg
UDH

for any closed subgroup H C GL,,(Of); here U ranges over the open subgroups containing H (we define
Mg) similarly). We have two period maps; the Gross-Hopkins period map 7gn : Mar, (0x) — pr—1
and the Hodge-Tate period map 7y : My — P"~1. The map 7 is étale, surjective and admits local
sections®. Moreover, the composite

M1 — MGLH(OK) m pr—1

is a GL,, (K)-torsor in the sense of [Sch17, Definition 10.12]. The image of the Hodge-Tate period map
g is the Drinfeld upper halfspace Q"~1 C P!,

We now relate our Lubin—Tate spaces to the Shimura varieties from the previous section. We use the
notation and conventions of the previous sections freely, except that we will base change all analytic adic
spaces to a complete and algebraically closed non-archimedean field extension C' of K (e.g. C,), all formal
schemes to O, and all reductions to the residue field k¢ of C' or O¢ /w as appropriate. Then, we choose

once and for all a closed point x in x (which is non-empty by [HTO01, Lemma I11.4.3]). By [HTOI,
Lemma II1.4.1(1)], this realises 9(*) as the completed local ring of X at . Taking generic fibres, we
obtain an open immersion

MO x

and taking level structures we obtain compatible embeddings
Mgv)) — XU

for all open subgroups U C GL,,(Ok), and this map of towers is compatible with the Hecke actions.
Taking inverse limits (as diamonds), we get more generally open immersions

Mgg) — XH

for all closed subgroups H C GL,,(Ok). The fact that these are open immersions follows from the fact
that /\/lg)) = MO % Xy for all open U C GL,(Ok) (and this identity then extends to all closed
H C GL,(Ok)). We also have a compatibility between the local and global Hodge-Tate period maps:
Composing the immersion My < A7 and the global mgpr : A7 — pr—1 gives the local g : M1 —
P"~1, Since the Drinfeld upper halfspace 2"~ is contained in the ‘complementary locus’ V,, C P!
from Subsection 3.3, we obtain M(lo) C X7 and hence /\/lgg()ok) - X;O(gf(). Theorems 3.3.2 and
3.3.6, together with Lemma 3.3.4 then directly imply the following local analogue.

Proposition 4.1.1. M(lo) and /\/lgg()ok) are perfectoid spaces over C, and /\/lgg()ok) is the quotient of
M(lo) by P(Og) in Huber’s category V.

SWhen K = Qp this is a special case of [SW13, Lemma 6.1.4], but the argument there works in general.
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4.2. The main result. We now turn to the task of showing that M p(x) := My /P(K) is a quasicompact
perfectoid space, which is the main result of this section. This will follow from Proposition 4.1.1 precisely
as in [Lud17, §3.6] in the case n = 2, F' = Q,,. To clarify, the quotient above is taken in the category V;
this makes sense since M3 is a perfectoid space (using Proposition 4.1.1 and the GL,, (K)-action). Set

G':={g € GL,(K) | det(g) € O} }.
This is the kernel of the homomorphism GL,,(K) — Z given by g +— vg(det(g)), where vk is the
normalised valuation on K, and this homomorphism is split. Moreover, for g € GL,,(K), one has
M(lo).g _ M(lvk(det(g)))

by looking at the degree of the quasi-isogeny. From this we see that G’ is the stabiliser of the component
M(O), and it also follows that the natural map

M(lo)/P/ — Ml/P(K) = MP(K)
in V, where P’ := P(K) NG, is an isomorphism.

Theorem 4.2.1. The quotient M p () is a perfectoid space over C. The natural map /\/lgg()ok) — Mpx)
has local sections.

Proof. We follow the proof of [Ludl7, Theorem 3.14], indicating the details. By the remarks above
Mp k) = /\/l(lo)/P’, so it suffices to show that the latter is a perfectoid space. Let pr : /\/l(lo) — M de-
note the map that forgets level structures, and let U C M be an open subset such that the Gross—Hopkins
period map 7|y restricted to U is an isomorphism onto its image U. The preimage pr—(U) C /\/l:(lo)
is stable under P(Of ), so we may form the object
pr=(U) xP©) P! = (pr~ ! (U) x P')/P(Ok) € V;
we refer to [Lud17, §2.4] for the details of this construction. By [Lud17, Lemma 2.16] and the way we
have chosen U, there is an open immersion
pr Y (U) xP©Ox) pr ey ./\/lgo).
Since taking quotients is compatible with open immersions by construction, we get an open immersion
(pr='(U) xP©) py/P" s M /P,
By [Lud17, Proposition 2.14], (pr—*(U) xF(©x) P} /P’ = pr=1(U)/P(Ok) and the latter is an open
subset of MES()OK
PP, M(lo)/P’ is perfectoid as desired. This also shows that there is a cover of M p () by open subsets
of the form (pr—(U) xP(©x) P")/P" = pr='(U)/P(Ok), that embed into MSDO()OK) and give sections
of the natural projection map. O

) » hence perfectoid. Since /\/l(lo)/P’ is covered by opens of the form (pr—!(U) x(Ox)

Since the Gross—Hopkins period map My — P"~! is GL,,(K)-equivariant for the trivial action on the
target, it factors over My — M p(; we write

ToH : MP(K) — pnt

for this factorization. We get the following generalization of [Lud17, Proposition 3.15], by exactly the
same proof.

Proposition 4.2.2. Tqy is quasicompact. As a consequence, M p () is quasicompact. Moreover, M p(x
is quasiseparated.

Proof. The proof that T jy is quasicompact is identical to the proof of the special case [Lud17, Proposition
3.15] when n = 2 and K = Qy; we recall it briefly since the argument also proves that Mp (k) is
quasiseparated. In short, since T¢y has local sections, P*~! is covered by quasicompact open subsets V'
for which there exists an open U C M guch that 7w |v 18 an isomorphism onto V. By the argument in
the proof of Theorem 4.2.1,

Tau(V) = (pr~ ' (U) x"©) P /P = pr~\(U)/P(Ok),



A QUOTIENT OF THE LUBIN-TATE TOWER II 21

which is quasicompact, so T 7 is quasicompact (and hence so is M p () since P~ is quasicompact). To
show that M p(x is quasiseparated we first show that 7oy (V) is qegs. To see this, note that pr=1(U) is
an inverse limit of qcgs spaces, hence qcgs and therefore a spectral space. It then follows that the quotient
Tony(V) = pr='(U)/P(Ok) is a spectral space by [BFH* 18, Lemma 3.2.3], so in particular qcgs. The
intersection of two such subsets of M p () is also quasicompact FTopy (Vi) NTgy (Vo) = o (Vi NVa)),
$0 M p(oy) is quasiseparated by [AGV71, VI, Corollaire 1.17]. O

Thus we have shown that | M p(x| is a spectral space. We will also need the fact that it has Krull
dimension n — 1, i.e., that the supremum of all lengths k of generalizations zy < --- < xj is equal to
n — 1. To make the proof transparent, we record a few simple observations on Krull dimensions.

Lemma 4.2.3. Let X andY be locally spectral spaces.
(1) If X is a cofiltered inverse limit ]&nl X of locally spectral spaces, then dim X < sup, dim Xj;.
) If f : X = Y is a surjective and generalizing continuous map, then dim X > dimY'.

Proof. We start with (1). Write ¢; : X — X for the natural map. If xp < --- < x,, is a chain of distinct
generalizations in X, then ¢;(xo) = -+ =< ¢;(z,,) is a chain of generalizations in X; for any ¢, and the
¢i(x;) will be distinct for some 4. This proves (1).

For (2), let yg < -+ < y.,, be a chain of distinct generalizations in Y. Then we can lift yy to a point
o € X by surjectivity of f, and then successively lift the y;, ¢ > 2, using that f is generalizing, to obtain
achainzg < -+ < 2, in X, proving (2). [l

Proposition 4.2.4. | M p k| is a spectral space of Krull dimensionn — 1.

Proof. Since M is an inverse limit of rigid analytic varieties of dimension n — 1, it has dimension < n —1
by Lemma 4.2.3(1). Applying Lemma 4.2.3(2) to the surjective and generalizing® maps M; — M and
M1 — Mp(k), we see that dim My = n — 1 and that dim M p(gy < n — 1. To prove equality, one may
argue exactly as at the end of the proof of [BFHT 18, Lemma 3.2.3], using that M P(K) is the quotient of
M3 by P(K) in the category V. O

We will end this section by showing that M is a P(K)-torsor over M p(k. For this, we first record
two lemmas concerning the pushouts defined in [Lud17, §2].

Lemma 4.2.5. Let G be a locally profinite group and let H C G be a compact open subgroup. Assume
that H acts on a perfectoid space X, that G acts on a perfectoid space Y and that we have an H -invariant
map of perfectoid spaces X — Y. Then there is a natural G-invariant map X x? G =Y, andif Z =Y
is a map of perfectoid spaces then the natural map (X xy Z) x1 G — (X x G) xy Z is a G-equivariant
isomorphism.

Proof. The existence of X x G — Y is [Lud17, Lemma 2.16]. For the compatibility with fibre products
we note that there is indeed a natural map (X xy Z) x G — (X x1 G) xy Z givenby (2, 2, g) — (z,9, 2).
It is easily checked to be both H-invariant for the action (z, 2, g).h = (zh,z,h~1g) on (X xy Z) x G, and
G-equivariant for the action given by acting by right translation on the G-factor on the target and source.
These actions commute and so induce the natural G-equivariant map (X xy Z) x 2 G — (X x"H G) xy Z.
To see that it is an isomorphism, use the description of the pushout from [Lud17, Proposition 2.15] and the
fact that disjoint unions commute with fibre products. (]

Lemma 4.2.6. Let G be a locally profinite group and let H C G be a compact open subgroup. If X —'Y
is an H-torsor of perfectoid spaces, then X x G — Y is a G-torsor of perfectoid spaces.

Proof. X — Y is av-cover, so it suffices to show that (X x G) xy X = X x G, G-equivariantly. Using
Lemma 4.2.5 and the fact that X — Y is an H-torsor we see that

(X xP Q) xy X2 (X xy X)x"G2(XxH)x"G=2Xxa
and one checks that these isomorphisms are all G-equivariant. (I

Using these we can now prove that M is a P(K)-torsor over M p ().

6Any map of analytic adic spaces is generalizing.
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Proposition 4.2.7. M is a P(K)-torsor over M p ().
Proof. The statement is local on M p(), so we may restrict to the types of open subsets
pr= ' (U) xPO%) P(K)/P(K) = pr~'(U)/P(Ok)

used in the proof of Theorem 4.2.1, which have preimage pr—(U) xP(©x) P(K) in M;. Then, by
Lemma 4.2.6, we see that it suffices to show that pr=1(U) — pr=1(U)/P(Of) is a P(Ok)-torsor, but
this follows by construction (arguing as in, or using, Lemma 3.3.4). (]

As a consequence, we note that My — M p( is (separated and) étale for any open subgroup H C
P(Ok), by [Sch17, Lemma 10.13].

5. APPLICATION TO SCHOLZE’S FUNCTOR

5.1. Recollections. We recall some results of [Sch18]. Let D/ K be a central division algebra of invariant
1/n. For a smooth admissible representation 7 of GL,, (/) on a F,-vector space, Scholze defines a sheaf
Fron (P"~1) by
]:ﬂ'(U) = Mapcont,GLn(K)(|U Xprn—1 M1|5 W)
(where U — P"~1 is an étale map) and shows that the cohomology groups
Si(ﬂ-) = Hét(Pn_la ‘Fﬂ')ai Z 07
are admissible D> -representations which carry an action of Gal(K /K ) and vanish in degree i > 2(n — 1)

([Sch18, Theorem 1.1]). The main result of this section is Theorem 5.3.1, which shows that in fact S* (m)
0 for ¢ > n — 1 whenever 7 is induced from the parabolic P.

5.2. Some cohomological calculations. In preparation for Theorem 5.3.1, we carry out some auxiliary
calculations. We begin with some remarks about the geometric fibres of T . Let T : Spa(FE, Et) —
P"~! be a geometric point. We define the fibre (M P(K))z as the fibre product

(MP(K))f = MP(K) X(Pn—l)(} Spa(E, E+)

in the category of diamonds. Since M1 — P"~!is a GL, (K)-torsor and My — M p(g is a P(K)-
torsor (by Proposition 4.2.7), the geometric fibres of T are profinite sets

(Mpry)z 2T x 9,
with S = GL,(K)/P(K) = GL,(Ok)/P(Ok) (we refer to e.g. [Lud17, Proposition 2.10] for a defini-
tion of the notation T x S see also [Sch17, Example 11.12]).
Lemma 5.2.1. Let F be a sheaf of abelian groups on (M pk))s;. Then
Hét(MP(K)v}-) = Hét(PnilaﬁGH,*}-)
foralli > 0.

Proof. This is proved exactly as [Ludl7, Proposition 4.4], using Proposition 4.2.2 and the fact that the
geometric fibres (M p(k))z are profinite sets over Z. O

Proposition 5.2.2. Let F be a sheaf of F,-vector spaces on (Mpk))e. We have an isomorphism of
sheaves on (P" 1)

(T« F) ® Ot /p = Tans(F @ Oxy, o /D)-
Proof. We give a slightly different proof than in [Lud17, Lemma 4.5]. There is a natural map

(ﬁGH,*}-) oy Ofp’;n—l p— ﬁGH,*(}- & OLP(K) /p),

so we can check the assertion on stalks at geometric points. For that let 7 = Spa(F, E1) be a geometric
point of P"~1. On the one hand

((fGH,*]:) Y O;nfl/]?)i

1%

(ﬁGH,*]:)E(@ (O;nq/p)i
Heg)t((MP(K))Ta‘F) & E+/pa

1%
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by [CGH™20, Proposition 2.2.4]. On the other hand, applying that same proposition we get
~ 770 +
TGH, «(F® OMP(K)/ p)r = Hg ((MP(K)))I’]:® OMP(K)/p) )
We have (/\/l P( K))E =7 x S with S a profinite set, so we are left to show that the natural map

(5.2.1) HE(T = 8, F)® E* [p — Hg (w x5, F® Ozxs/p)

is an isomorphism. For that write S as an inverse limit S = lim .S; of finite sets S; and denote by ¢; :
T x S — T x 9; the natural projection morphism. By [AGV71, VI, 8.3.13], any sheaf on T x S can be
written as a filtered colimit 1i_r>mj6 ; F7 of sheaves F7 that arise as the inverse image of a system of sheaves

}‘ij on the spaces (T x S;)¢t. The topos (T X S)¢t is coherent, so (étale) cohomology commutes with direct
limits. As tensor products also commute with direct limits it suffices to prove (5.2.1) for sheaves of the
form F = li_n)lqz_lfi for some sheaves Fion (T X S;)et-

Note that (’):Xs/p = H_r)nqi_ (O, /p)”. Using [SW13, Theorem 2.4.7] we see that we can rewrite
(5.2.1)as
ling HE, (T x Sy, Fi) ® BT [p — lim Hg, (T % Si, F; ® OF, 5, /p)
and we see this map is indeed an isomorphism as the spaces T x S; are just finite disjoint unions of geometric
points with the same underlying affinoid field (E, E7T). O

Next, let o be a smooth admissible representation of P(K). Define a sheaf F, on (M p(x)ss by
‘FO(U) = Mapcont,P(K)OU XMP(K) Ml" U)

for U — Mpk) étale. Similarly, if 7 is a smooth admissible representation of P(Of ), then we may
define a sheaf 7> on Mp o, by

]:T(V) = Mapcont,P(OK)(|V XMP(OK) M1|7T)7

where V. — Mp (o, is étale. Since the natural map q : Mpo,) — Mp(k) is étale, we have a natural
map
4 Fo = Folpo,

for any smooth admissible P(K)-representation o and its restriction o| p(o,) to P(Ok).

Lemma 5.2.3. The natural map ¢~ *F, — F, is an isomorphism.

lPog)

Proof. We may check on stalks, so let T — M p(o,) be a geometric point. We may assume that T =

@U%Mmom U, where the limit ranges over U — M p (o, étale over which ™ — M p (o, factors (see

[CGHT20, §2.2]). We then have

(q_l}—a)f = H_I)nMapcont,P(K)(lU X Mp (k) M1|,0')
U
= Mapcont,P(K)QiLn |U XMP(K) Mll? 0)
U

1%

1v[a'pcont,P(K)(|f X Mpx) Ml" U)
= Mapcont,P(K)(|f| x P(K)a J) =0
upon choosing an element in P(K); here we have used Proposition 4.2.7 to get the second to last iso-

morphism. We similarly have (F, 7 = o (choosing the same element and the map (¢~ *F, )z —
(o

|P<oK>)

lp o) )z corresponds to the identity o — o, and is therefore an isomorphism. (|

Proposition 5.2.4. Let \ : (Mp(k))et — |Mp(k)| denote the natural morphism of sites. For any admis-
sible smooth representation o of P(K) we have an almost isomorphism

H (Mp (i), Fo @ OF [p) = H (IMp eyl M (Fo @ OF /p)).

7One checks this by calculating sections on the basis for the topology consisting of open affinoid perfectoids U of the form
U= @ U, for open affinoid perfectoid U; C = X S, using the fact that those don’t have any higher étale cohomology.
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Proof. (Cf. proof of [Sch18, Theorem 3.2] on p. 18 for a similar argument.) We show that (RI\,.(F, ®
OT/p)) =" 0forall ¢ > 0. For this we calculate the stalks. Let x : Spa(K, K™) — M p(x) be a point.
Then, by definition,

(RIN(Fy © O /p)), = lim HY (U, Fp © OF Jp),
xzelU

where the direct limit runs over all open U C M p (g containing x, and we can restrict it to those U which

are affinoid perfectoid. Since Mﬁ?@OK) — M p(k) has local sections, we may furthermore assume that U

is (isomorphic to) an open subset of MES?OK). On such a U, Lemma 5.2.3 implies that F,, = li_n)lv Fov,
where V runs over the open normal subgroups of P(Of ). Then

Hgt(U, Fo® OJr/p) = hﬂHgt(Uv Fov ® OJr/p)a
%
as the étale site of U is coherent and direct limits commute with tensor products. But for any open normal
subgroup V' C P(Ok), the sheaf F,v is a local system of finite rank, and therefore we have
HE (U, Fov @ OF [p) =" 0
for all ¢ > 0, by [Sch13, Lemma 4.12]. O
5.3. The vanishing result. We now prove our vanishing result.

Theorem 5.3.1. Let P* C GL,, be a parabolic subgroup contained in P. Let o be a smooth admissible
(K)

representation of P*(K). Let m := IndSI:("K) o be the parabolic induction (which is a smooth admissible
representation of GL,,(K)). Then
S'(m) =0 foralli>n—1.

Proof. Transitivity of parabolic induction immediately implies that we can reduce to the case P* = P. We
then follow the proof of [Lud17, Theorem 4.6]. It suffices to show that

Hy (P, Fr) @ O /p

is almost zero for all ¢ > n — 1. We have isomorphisms

(5.3.1) HL (P L F)@O0t/p = HL(P" (Rau.Fo) @ O /p)
(5.3.2) = H (P Fan«(Fr @ OF/p))
(5.3.3) =~ Hi(Mp), Fo ® O /p),

where the first almost isomorphism follows from [Sch18, Theorem 3.2] and the fact that Tgy «Fo = Fr,
which one proves just like [Lud17, Lemma 4.3]. The second isomorphism is Proposition 5.2.2 above, the
third is Lemma 5.2.1. By Proposition 5.2.4, the étale cohomology group HZ (M p(r, Fo @ OF /p) is
almost isomorphic to the analytic cohomology group H' (| M p ()|, A (Fs @ OF /p)).
As we have seen in Section 4, | M p (x| is a spectral space of Krull dimension n — 1, therefore by
[Sch92, Theorem 4.5]
H' (IMp )|, M (Fo @ O /p)) = 0

forall?z >n — 1. O

Corollary 5.3.2. Let w be a representation of GL,,(K) that appears as a quotient of a parabolically

induced representation Indgg"(K)a, for some parabolic subgroup P* C P. Then

§20 D (m) = By (@ F) =0,

Proof. This follows from exactness of the functor m — F, Theorem 5.3.1 and the long exact sequence in
cohomology. (]

Remark 5.3.3. We finish with some remarks on our results.
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The bound on cohomological vanishing in Corollary 5.3.2 (combined with [Sch18, Theorem 3.2])
is sharp in general, and for general subquotients of representations induced from P(K) the bound
from [Sch18, Theorem 3.2] cannot be improved. To see these two things (simultaneously), con-
sider the trivial representation 1 and the exact sequence

0—-1—0= Indg(L;gK)l - Q —0,
where () is simply defined to be the quotient; () is then a generalized Steinberg representation and
known to be irreducible (and admissible). From this we get an exact sequence of étale sheaves

0—=F1—=Fs—=Fg—0

on P"~!. Note that F; is the trivial local system on P*~!, so S*(*~1)(1) # 0; this shows the sec-
ond point. The long exact sequence then shows (using Theorem 5.3.1) that S"~3(Q) surjects onto
S§2(=1)(1), so §2"~3(Q) # 0 as well, proving the first point. Thus, the vanishing result of The-
orem 5.3.1 does not hold in general for admissible representations not induced from P(K) when
n > 3, even for ‘reasonable’ representations like generalized Steinberg representations (which are
irreducible, and infinite-dimensional).

Note also that, as a consequence of Corollary 5.3.2, the trivial representation cannot be written
as a quotient of a representation induced from P(K). We thank Florian Herzig for informing
us that this is well known, and is easily proved using the adjunction formula between parabolic
induction and Emerton’s ordinary parts functor.

Elaborating further on the previous item, it seems interesting to understand in which degrees S ()
vanish for different classes of admissible representations 7. A natural question is whether the
analogue of Theorem 5.3.1 holds for other maximal (standard) parabolics () # P. By Theorem
A.1.5, the quotient M k) is not a perfectoid space, and so the method for proving Theorem A.1.5
breaks down. One could ask whether the vanishing theorem could still be salvaged by geometric
methods (such as in [CGH'20], where a vanishing result is proven in a situation where the space
in question is not perfectoid), but we currently see no way of doing this (in particular, we see no
way of adapting the method of [CGH™'20]).

It is also natural to ask about vanishing below the middle degree, but here things seem to be much
more unclear. For S°, we have S° () = S (755~ (X)) by [Sch18, Proposition 4.7], so e.g. when 7
is irreducible and infinite-dimensional we know that S°(7) = 0. When n = 2 the middle degree is
1, so in this case (for arbitrary K), we can say that S¢(7) is concentrated in degree 1 for irreducible

7 = Indi3 )"

As a referee emphasized, it seems natural to ask if there is some form of Poincaré duality for S*
that could relate the degrees below the middle to degrees above the middle. The following remark
is due to David Hansen; we thank him for allowing us to include it here. First, note that such a du-
ality would presumably require the notion of a ‘dual’ local system F.¥, and presumably FY = Fyv
where 7V is the ‘dual’ representation of . However, such a formulation seems much too naive,
as duality is much more subtle in characteristic p than in characteristic # p. Kohlhaase [Koh17]
has defined a derived duality functor on the derived category of smooth G(Q,)-representations in
characteristic p (where G/Q,, is, momentarily, an arbitrary connected reductive group), and one
could ask how a derived version RS of Scholze’s functor interacts with Kohlhaase’s duality functor
for GL, (K). It seems, however, that this interaction will also involve Kohlhaase’s duality functor
for D>, and it is unclear if such considerations can be used to reduce the study of low degrees to
high degrees.

We end by remarking that Paskiinas [Pas18] has used the results of [Ludl7] to show a non-
vanishing result in degree one for (a version of) Scholze’s functor for Banach space represen-
tations of GL2(Q)) corresponding to residually reducible two-dimensional representations of
Gal(@p /Qp) via the p-adic local Langlands correspondence (we refer to [Pas18] for precise state-
ments). It would be interesting to see similar consequences for GLo(K'), where K/Q),, is arbitrary.
However, Paskiinas informs us that our results would not be sufficient even assuming a p-adic local
Langlands correspondence for GLo(K), as it is expected that supersingular representations will
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contribute to the Banach space representation corresponding to reducible two-dimensional repre-
sentations of Gal(K /K) when K # Q,,. Nevertheless, we hope that our results will be useful for
the further study of Scholze’s functor.

APPENDIX A. PERFECTOID QUOTIENTS OF THE LUBIN-TATE TOWER, REVISITED
By DAVID HANSEN

A.1. Statement of results. As in the main text of the paper, fix a finite extension K/Q,, with residue field
k=T,. Let K be the completed maximal unramified extension of K, and fix some complete algebraically
closed extension C/K For simplicity, we will write Spa R := Spa(R, R°) and Spd R := Spa(R, R°)°
whenever R is a Huber ring over Z,. Here Spa(R, R")<> is the v-sheaf defined in [SW18, Definition 18.1],
generalizing the diamondification functor. Moreover, a perfectoid space S over R (as above) always means
a perfectoid space S with a map (R, R°) — (Os(S), 0% (S)).

Let P,,—q,q C GL,, denote the usual block upper-triangular maximal parabolic with upper left (resp.
lower right) diagonal block sizes n — d (resp. d), and set P = P,_1; . For U C GL,(K) any open
compact subgroup, let My; denote the base change along K — C of the generic fiber of the Lubin—Tate
space with U-level structure. By the results in [SW13], there is a unique perfectoid space M over C with
a GL, (K)-action such that My ~ @U My, in the notation of [SW13, §2.4].

In this appendix we study the sheaf quotient My /P(K) (with My viewed as a diamond), and variants
for other parabolics, by purely local methods. In particular, when n = 2, we give a direct proof that
M1 /P(K) is a perfectoid space, avoiding any reference to the p-adic geometry of Shimura varieties. Our
main tool is a p-adic Hodge-theoretic description of M in terms of vector bundles on the Fargues—Fontaine
curve, due to Weinstein and Scholze—Weinstein.

Our first result is a moduli-theoretic description of these quotients. For this, recall that for any charac-
teristic p perfectoid space S/k there is an associated (adic, relative) Fargues—Fontaine curve Xs = Xg i
defined functorially in S, cf. [KL15, Ch. 8]. Moreover for any reduced rational number A\ = d/r, this
curve comes with a canonical vector bundle O(\) of rank r and degree d, defined functorially in S.

Theorem A.1.1. As a functor on perfectoid spaces over C, the diamond quotient M / P(K) is canonically
equivalent to the functor sending any S — Spa C' to the set of sub-vector bundles € C O(1/n) over Xg»
such that after pullback along any geometric point T — S°, the map Ex — O(1/n)z is injective and

Ez ~ on—1,

Curiously, this description shows that My /P(K) is the base change along Spd C' — Spd k of a natu-
rally defined functor on all perfectoid spaces over k. We also note that, by Proposition 4.2.7, the diamond
quotient My /P(K) coincides a posteriori with the perfectoid space M p(k), so there is little harm in
switching between these points of view.

Corollary A.1.2. As a diamond over Spd C, M1 /P(K) is proper and {-cohomologically smooth for any
L #p.

By [Sch17, Theorem 1.12], this implies very strong finiteness properties for the IF,-étale cohomology of
My /P(K). On the other hand, M /P(K) is a perfectoid space by Theorem A. Thus My /P(K) is an
example of an interesting and naturally occurring perfectoid space with reasonable étale cohomology.

When n = 2, the description of M1 /P(K) can be unwound further.

Theorem A.1.3. Ifn = 2, then M1 /P(K) can be presented as the quotient

(Spd L’ xspar,, Spd 0) /(¢ x id)Z
for a certain perfectoid field Lb/qu, where  is the q>-power Frobenius on L°.

Combining this description with some formalism of diamonds, we obtain a purely local proof of (a
generalization of) the main result of [Lud17], avoiding the global p-adic geometry of modular curves.

Corollary A.1.4. When n = 2, the quotient My /P(K) is a perfectoid space over C.
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In fact, it turns out that our methods give some information about the more general quotients M1 /P, _4 4(K).

In particular, we prove the following result, which shows that Theorem A in the paper is essentially optimal.

Theorem A.1.5. As a diamond over Spd C, M1 /P,,_q.q4(K) is proper and {-cohomologically smooth for
any 1 < d < n. However, when d > 1, this quotient is never a perfectoid space.

Again, we deduce this from a moduli-theoretic description of these more general quotients in terms of
vector bundles on the curve, which recovers Theorem A.1.1 when d = 1. When d > 1 this description is
slightly more complicated, cf. Proposition A.3.3 below.

It’s unclear to me how far these ideas can be extended beyond the specific case of the Lubin—Tate
tower. As an illustrative example, let M, be the infinite-level perfectoid space over C' associated with
the Rapoport-Zink tower for an isoclinic w-divisible O -module of height 5 and dimension 2. There is a
natural action of GL5(K) on N, and one can check (by adapting the arguments below) that the quotients
Noo/P; 5—i(K) are £-cohomologically smooth over Spd C' for i € {1,2,4}. However, for i = 3, the
method breaks down, and I don’t know whether the quotient is smooth in that case.

Acknowledgments. I'm very grateful to Christian Johansson and Judith Ludwig for their invitation to write
this appendix, and for some very interesting conversations about this circle of ideas. This appendix grew out
of the (re)proof of Corollary A.1.4 given below, and I'd like to thank Jared Weinstein for some stimulating
initial conversations around the question of whether this result could be proved by purely local methods. I
would also like to thank an anonymous referee for useful comments and corrections.

A.2. Preliminaries. For any perfectoid space S/k, we write Xs = Xs g for the associated relative
Fargues—Fontaine curve, regarded as an adic space over K. If S = T” arises as the tilt of some per-
fectoid space T'/ K, Xp» comes equipped with a canonical closed immersion ¢ : T — Xp». Aside from the
original reference [FF18], some relevant background on the curve is given in [KL15, Ch. 8] and [Han18,
§2.3]. One might also look at [CS17, §3.2-3.3] or at some portions of [BFHT18].

We say that S is a point if S = Spa(L, L™) where L is a perfectoid field and L™ C L is an open
valuation subring consisting of powerbounded elements. Moreover, we say S is a rank one point if LT =
Le.

Now, when S is a rank one point, X5 is a Noetherian adic space of dimension one [Ked16], with
a good theory of slopes and Harder—Narasimhan filtrations. Moreover, it is reduced and all of its lo-
cal rings are fields or discrete valuation rings, so any coherent O x,-module F has a canonical filtration
0 — Fiors — F — Free — 0 where Fiops 1S a torsion coherent sheaf and Fp... iS a vector bun-
dle. In particular, given any vector bundle F, any coherent subsheaf £ C F is also a vector bundle,
and admits a canonical saturation £5** C F, defined as the preimage of (F/&)iors C F/E in F. This
is the minimal subbundle of F containing £ such that F/E%* is also a vector bundle. Note also that
deg(&%2) = deg(€) + length(F/E)tors. If € = £, we say that & is saturated. Moreover, all of
these considerations extend to the case of Xg for S a general point, not necessarily of rank one, thanks
to the following general observation: for any point S = Spa(L, L ™), pullback along the natural inclusion
Xspa(L,r°) = Xspa(r,r+) induces an equivalence of categories on coherent O x-modules.

With these preparations, we can state a trivial lemma, which nevertheless is frequently very useful.

Lemma A.2.1. Suppose that S is a point, and that & — F is an injective map of vector bundles on Xs.
Suppose that the point (rank (&), deg(E) + 1) lies above the Harder—Narasimhan polygon of F. Then & is
automatically saturated.

In particular, if F is semistable and % > w(F), then € is automatically saturated.
Proof. Immediate from the fact that HN(E%2!) lies on or below HN(F), and from the fact that deg (%) >
deg(€) + 1if & is non-saturated. O

If i : £ — F is any injective map of vector bundles (or arbitrary O x,-modules) over a relative curve
Xs, we say that i is stably injective if it remains injective after base change along Xr — Xg for T — S
any map of perfectoid spaces. This is equivalent to the a priori weaker condition that £ — F remains
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injective after base change along Xz — Xg for any geometric point T — S. This condition automatically
holds if the quotient F /£ is a vector bundle, but in general it is weaker.

Lemma A.2.2. Let £ — F be a stably injective map of vector bundles over a relative curve Xg, such that
E ~ O™ and F ~ O(1/n) at all geometric points of S, for some fixed integers m < n. Then the quotient
F/E is a vector bundle, with F /€ ~ O(1/(n — m)) at all geometric points of S.

Proof. When S is a geometric point, the claim follows from the Fargues—Fontaine classification of vector
bundles on Xs. Indeed, consider an injective map i : O™ — O(1/n) with m < n. Since O(1/n) is
stable, the previous Lemma implies that coker is automatically a vector bundle, which necessarily has
rank n — m and degree 1. Moreover, all the Harder—Narasimhan slopes of cokeri are > 1/n (using the
stability of O(1/n) again), so in particular, they are all positive, so the degree of coker i is bounded below
by its number of distinct Harder—Narasimhan slopes. Thus coker: has a unique slope, which must be
1/(n —m), so cokeri ~ O(1/(n —m)).

The result when S'is a (not necessarily geometric) point now follows by an easy descent (use that any
injective map of Dedekind domains is flat). To check that F /& is a vector bundle in general, note that our
arguments so far imply that for any S and any point z € |Xs|, the k(z)-rank of the fiber (F/&) @0 k(z)
is n — m. Indeed, let y € |S| be the image of x under the map |Xs| — |S|; then formation of the
k(x)-fiber factors over the pullback of & — F along X, = Xspak(y).k(y)+) — «s. in the sense that
(F/E)z = (Fy/Ey) ®on, k(z). By our previous arguments, F /&y is a vector bundle of rank n — m, so
ranky(,)(F/E) ®o., k() is constant as a function of x. Since X's is a stably uniform adic space, we then
deduce from [KL15, Proposition 2.8.4] that 7 /£ is a finite locally free O x,-module. O

Remark A.2.3. The argument in the preceding proof shows more generally that if ¢ : £ — F is any stably
injective map of vector bundles over a relative curve X’s such that coker iz is torsion-free after pullback
along any geometric point T — 5, then coker i is a vector bundle.

A.3. General results. In this section we prove Theorems A.l.1 and A.1.5, and Corollary A.1.2. Our
starting point is the following result of Scholze—Weinstein, which is a special case of [SW18, Cor. 23.2.2
and Cor. 24.3.5] (cf. also [SW13])).

Proposition A.3.1. As a functor on perfectoid spaces over C, My is canonically identified with the functor
sending any S — SpaC to the set of stably injective maps o : O™ — O(1/n) over Xq» such that
coker a >~ 1, W for some rank one projective Os-module W.

Next, we note that for a closed subgroup H C GL,,(K), it is easy to tell whether My /H — Spd C'is
proper.

Proposition A.3.2. If H C GL,(K) is any closed subgroup, the structure map M1/H — SpdC
is separated; moreover, it is proper if and only if GL,,(K)/H is compact. In particular, any quotient
M1 /Py _a,q(K) is proper over Spd C.

Proof. For any such quotient, the structure map to Spd C' factors over a (surjective!) map ¢ : My /H —
IP’Z_L<> induced by the Gross-Hopkins period map. The pullback of ¢ along the v-cover M1 — ]P’Z_l’<>
is then canonically identified with the projection map ¢ : GL,,(K)/H x My — M. The latter map is
always separated, so g is separated by [Sch17, Proposition 10.11(ii)]; since the target of ¢ is separated over
Spd C, this shows that the source is too. Likewise, ¢ is quasicompact if and only if ¢ is quasicompact, and
the latter clearly holds if and only if GL,,(K)/H is compact. O

We begin by analyzing the general quotients My /P,,_ g 4(K).

Proposition A.3.3. Fix any 1 < d < n. Then the diamond quotient M1 /P, _q 4(K) is canonically
identified with the functor X,, 4 on perfectoid spaces over C sending any S to the set of (isomorphism
classes of) diagrams

O(l/n) » &+ F
of vector bundles over X, such that £ ~ O(1/d) and F ~ O% at all geometric points and such that
coker(F — &) ~ 1, W for some projective rank one Og-module W.
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Proof. First, observe that there is a natural map My — X, 4, given by sending any {a : O" —
O(1/n)} € M1(S) to the diagram

O(1/n) - O(1/n)/a(O"* @ 0) +> a(O™) /(O™ & 0)
of vector bundles over Xg,. For this, observe that the quotient O(1/n)/a(O"~* @ 0) is isomorphic to
O(1/d) at all geometric points by Lemma A.2.2, and the remaining conditions are clearly satisfied. The
datum of this diagram only depends on the P,,_q 4(K)(S)-orbit of «, so this map factors over a natural
transformation M1 /P,,_q,4(K) — X, 4, and we claim this transformation is actually an isomorphism.

It clearly suffices to check that M1 — X, 4is a P,,_q q(K)-torsor. For this, let O(1/n) — £ <= F be
any S-point of X, 4. Let V C O(1/n) be the rank n sub-vector bundle defined by the cartesian diagram

V———>F

]

O(l/n)—>5

so ¥V — O(1/n) is stably injective and O(1/n)/V = £/F ~ 1.W. Moreover, at any geometric point of S,
V has degree zero and all HN slopes < 1/n, so in fact V ~ O™ at all geometric points. Now, the ambiguity
in lifting our given S-point of X, 4 to an S-point of M is exactly the ambiguity of choosing a trivialization
O™ 5 VY which maps O™~ ¢ @ 0 isomorphically onto ker v, and the space of such trivializations is clearly
a Py,_q,q(K)-torsor over X, 4, as desired. O

Proposition A.3.4. Fixany 1 < d < n. Then the diamond M1 /P, _q.4(K) = X, q is isomorphic to the
quotient

(Sui(0(1/m), 0(1/d)) xspac PEC) /D3

Here Surj(O(1/n),O(1/d)) is the functor on perfectoid spaces over C parametrizing surjective maps
O(1/n) = O(1/d), and D 4 is the division algebra over K of invariant 1 /d, with Dlx/d acting diagonally

on the two factors.

Proof. Let X n,d be the DlX / g-torsor over X, 5 which (in the notation of Proposition A.3.3) parametrizes

trivializations O(1/d) = €. Then X, 4 clearly decomposes as
Surj(O(1/n),0(1/d)) xspac'Y

where Y is the functor whose S-points parametrize subbundles 7 C O(1/d) such that O(1/d)/F ~ 1, W
for some projective rank one Og-module W. The data of such an F is obviously equivalent to the data of a
rank one projective Og-module quotient t*O(1/d) — W the functor in one direction is obvious, and the
functor in the other direction sends ¢*O(1/d) — W to

ker(O(1/d) — 1..*O(1/d) — 1, W).
Finally, .*O(1/d) is canonically identified with O¢. Putting these observations together, Y identifies with

the functor sending S to the set of rank one locally free Os-module quotients O = *O(1/d) — W. The
latter functor is obviously represented by Péﬁl"o, as desired. U

Proof of Theorem A.1.5. Properness follows from Proposition A.3.2. For cohomological smoothness, com-
bining the Proposition A.3.4 with [Sch17, Proposition 24.2] reduces us to showing that

Surj(O(1/n), O(1/d)) xspac PL ¢ = Spd C

is cohomologically smooth. This reduces to the smoothness of each factor over Spd C. The projec-
tive space factor is immediately handled by [Sch17, Proposition 24.4]. For the first factor, we note that
Surj(O(1/n),O(1/d)) is an open subfunctor of H°(O(1/d) ® O(—1/n)), cf. [BFHT 18, Proposition
3.3.6]. Since O(1/d) ® O(—1/n) has slopes strictly between 0 and 1, the latter functor is representable by
an open perfectoid ball in n — d variables over C, so now smoothness follows from [Sch17, Proposition
24.1].
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Finally, suppose that M1 /P, _4.q(K) is a perfectoid space. By Proposition A.3.4, we have a Dlx/d—
torsor
Surj(O(1/n),0(1/d)) xspac P& 0 = My /Pag.a(K).

By assumption, the target is perfectoid, so then the source is perfectoid as well by [Sch17, Proposition
10.11]. Intuitively, we now expect a contradiction if d > 1, because the projective space factor should
contribute “non-perfectoid directions” to the source. To make this precise, choose some perfectoid field
C’/C and amap Spd C" — Surj(O(1/n), O(1/d)). We’ve already observed that Surj(O(1/n), O(1/d))
is perfectoid, so

Spd c’ X Surj(O(1/n),0(1/d)) (Surj((?(l/n),(’)(l/d)) XSpdC Plé_l’o)

is a fiber product of perfectoid spaces, and thus is perfectoid. On the other hand, this fiber product is
just P'éTl’o. Putting things together, we’ve shown that if M /P, _4 4(K) is perfectoid, then IP’dCTI’O is
necessarily perfectoid, which forces d = 1, as desired. O

Proof of Theorem A.1.1. Specializing Proposition A.3.4 to the situation where d = 1, we get a canonical
identification

My /P(K) = Surj(O(1/n), O(1)) /K~

This is nothing more than the functor parametrizing quotients O(1/n) — L where L is a line bundle of
degree one. It remains to identify this functor with the functor parametrizing subbundles £ C O(1/n) as
specified in Theorem A.1.1.

For this, note that sending any such & C O(1/n) to the quotient O(1/n) — O(1/n)/E defines a natural
transformation in one direction, since O(1/n)/€ is a line bundle of degree one by Lemma A.2.2. We also
have a transformation in the other direction, sending any ¢ : O(1/n) — L to the inclusion ker ¢ C O(1/n):
one easily checks that, at any geometric point, ker ¢ has rank n— 1, degree zero, and all Harder—Narasimhan
slopes < 1/n, so ker g ~ O™~ ! at any geometric point. These two natural transformations are mutually
inverse to each other, as desired. (I

A.4. The case n = 2. In this section we prove Theorem A.1.3 and Corollary A.1.4. In particular, we
assume n = 2 throughout. As in the body of the paper, fix a uniformizer w € Og. Let E be the
unramified quadratic extension of K, and let G = Gg be the unique Lubin-Tate formal O g-module for
which multiplication by w is given by the polynomial f(7) = T? + wT. Let E /K be the completion
of the extension obtained by adjoining all wo-division points of G to E. By Lubin-Tate theory, E is (the
completion of an extension which is) Galois over £ with Galois group O, and Eisa perfectoid field.

Lemma A.4.1. The fixed field L = E%K isa perfectoid field.

Proof. By the basic definitions, L is the completion of a Galois extension of £ with Galois group O /O%.
This is an abelian p-adic Lie group of dimension [K : Q,] > 0, so L is perfectoid by a theorem of Sen
[Sen72]. (Alternately, up to a finite extension, L is the completion of a compositum of totally ramified
Z,-extensions of I, so we could appeal to Tate’s original results [Tat67].) O

Let G = @[w] G be the universal cover of G (as in [SW13, §3.1]), and let Go be its reduction modulo

w. As in [Weil7, §3.5], there is an identification Gy = Spf F2[[T/P™]]. This is a formal E-vector space
in the category of formal schemes over F 2.

To relate this object to vector bundles, let Y be the functor on perfectoid spaces over I > sending any S
to HY(Xs rc,0(1/2)) = H°(Xs g, O(1)), and let Y C Y be the open subfunctor of nowhere-vanishing
sections. By Theorem A.1.1, there is a natural identification

Ml/P(K)gYX/K_X XSpd]qu Spdc

Proposition A.4.2. There are compatible K * -equivariant isomorphisms Y = Go and Y* = Gy ~ {0}.
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Proof. The first isomorphism follows from the fact that Y and Go are both naturally identified with the
+ppp=w
crys,E

scent of a ,2-equivariant bundle on the usual cover Vs g — Xs,g. For _C’;o this identification follows from
[SW13], cf. Theorem 4.1.4 and the first line in the progf of Proposition 6.3.9. In fact, this identification can
be given by an explicit formula: an (R, RT)-point of Gy is the same as an element z € R°°, and we map x
to the element logg ({x}), where {z} = nhﬂn;o [@"](¢2" (%)) with @ € Wo,, (RT) = W(RT) Qw(r,.) Op
any lift of z. The second isomorphism is then immediate. (I

functor B . For Y this identification is immediate from the definition of O(1) over Xs g as the de-

On the other hand, we have

Proposition A.4.3. There are compatible E* -equivariant isomorphisms Go = Spa (9% and Gy ~ {0} =

Spa E°, where on the right-hand sides O}, C E* acts through its natural identification with Gal(E/E)
and w acts as the ¢>-power Frobenius.

Proof. This follows from [Weil7, Proposition 3.5.3]. O
Putting these two propositions together, we get a K *-equivariant isomorphism
Y Xspar,, SpdC = Spd E” Xgpar , Spd C.
Passing to the quotient by the action of O gives
Y /O Xspar,, Spd C = (Spd E°) /O Xspar,, Spd C
= Spd(E°)O% Xspar,, Spd C
= Spd L’ Xspar,, SpdC

where in the second line we’ve used Lemma A.4.1. Note that this diamond is the fiber product of two
characteristic p perfectoid spaces over a discrete field. Nevertheless we have the following result.

Proposition A.4.4. Let k be a discrete field, and let X and'Y be perfectoid spaces over k. Then the product
X XY is representable by a perfectoid space over k, where the product is taken in the category of sheaves
of sets on Perfy.

By this result, Spd L° XSpdF Spd C'is representable by a perfectoid space over IF;2, which moreover

comes equipped with a canonical map to Spd C' = Spa C”. Moreover, writing ¢ : Spd L* — Spd L” for
the ¢2-power Frobenius, we easily see that ¢ x id acts properly discontinuously on this product, so the
quotient

(Spd L’ xspar,, Spd C) /(¢ x id)”
is representable by a perfectoid space over IF ;> with a map to Spd C'. This has a unique untilt to a perfectoid
space over C'. On the other hand, summarizing the analysis above, we have canonical isomorphisms

(Spd L’ Xspar,, Spd C)/ (¢ x id)* 22 Y* /K> Xspar , Spd C = My /P(K),
so My /P(K) is a perfectoid space, as desired. This finishes the proof of Theorem A.1.3 and Corollary

A.l4.
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