On Generalized (m, n) -Jordan Derivations and Centralizers of Semiprime Rings

Driss Bennis^{1,a}, Basudeb Dhara² and Brahim Fahid^{1,b}

1: Centre de Recherche de Mathématiques et Applications de Rabat (CeReMAR), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco a: d.bennis@fsr.ac.ma; driss bennis@hotmail.com b: fahid.brahim@yahoo.fr 2: Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., India. basu dhara@yahoo.com

Abstract. In this paper we give an affirmative answer to two conjectures on generalized (m, n) -Jordan derivations and generalized (m, n) -Jordan centralizers raised in $[S.$ Ali and A. Fošner, On Generalized (m, n) -Derivations and Generalized (m, n) -Jordan Derivations in Rings, Algebra Colloq. 21 (2014) , 411–420 and [A. Fošner, A note on generalized (m, n) -Jordan centralizers, Demonstratio Math. 46 (2013), 254–262. Precisely, when R is a semiprime ring, we prove, under some suitable torsion restrictions, that every nonzero generalized (m, n) -Jordan derivation (resp., a generalized (m, n))-Jordan centralizer) is a derivation (resp., a two-sided centralizer).

2010 Mathematics Subject Classification. 16N60, 16W25

Key Words. semiprime ring, generalized (m, n) -derivation, generalized (m, n) -Jordan derivation, (m, n) -Jordan centralizer, generalized (m, n) -Jordan centralizer

1 Introduction

Throughout this paper, R will represent an associative ring with center $Z(R)$. We denote by $char(R)$ the characteristic of a prime ring R. Let $n \geq 2$ be an integer. A ring R is said to be *n*-torsion free if, for all $x \in R$, $nx = 0$ implies $x = 0$. Recall that a ring R is prime if, for any $a, b \in R$, $aRb = \{0\}$ implies $a = 0$ or $b = 0$. ring R is called semiprime if, for any $a \in R$, $aRa = \{0\}$ implies $a = 0$.

An additive mapping $d : R \longrightarrow R$ is called a derivation, if $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in \overline{R}$, and it is called a Jordan derivation, if $d(x^2) = d(x)x + xd(x)$ holds for all $x \in R$. An additive mapping $T: R \longrightarrow R$ is called a left (resp., right) centralizer if $T(xy) = T(x)y$ (resp., $T(xy) = xT(y)$) is fulfilled for all $x, y \in R$, and it is called a left (resp., right) Jordan centralizer if $T(x^2) = T(x)x$ (resp., $T(x^2) = xT(x)$ is fulfilled for all $x \in R$. We call an additive mapping $T: R \longrightarrow R$ a two-sided centralizer (resp., a two-sided Jordan centralizer) if T is both a left as well as a right centralizer (resp., a left and a right Jordan centralizer).

An additive mapping $F: R \longrightarrow R$ is called a generalized derivation if $F(xy) =$ $F(x)y + xd(y)$ holds for all $x, y \in R$, where $d: R \longrightarrow R$ is a derivation. The concept of generalized derivations was introduced by Brešar in [\[3\]](#page-8-0) and covers both the concepts of derivations and left centralizers. It is easy to see that generalized derivations are exactly those additive mappings F which can be written in the form $F = d + T$, where d is a derivation and T is a left centralizer.

The Jordan counterpart of the notion of generalized derivation was introduced by Jing and Lu in [\[10\]](#page-8-1) as follows: An additive mapping $F: R \longrightarrow R$ is called a generalized Jordan derivation if $F(x^2) = F(x)x + xd(x)$ is fulfilled for all $x \in R$, where $d : R \longrightarrow R$ is a Jordan derivation.

The study of relations between various sorts of derivations goes back to Herstein's classical result [\[9\]](#page-8-2) which shows that any Jordan derivation on a 2-torsion free prime ring is a derivation (see also [\[5\]](#page-8-3) for a brief proof of Herstein's result). In [\[7\]](#page-8-4), Cusack generalized Herstein's result to 2-torsion free semiprime rings (see also [\[2\]](#page-8-5) for an alternative proof). Motivated by these classical results, Vukman [\[17\]](#page-9-0) proved that any generalized Jordan derivation on a 2-torsion free semiprime ring is a generalized derivation.

In the last few years several authors have introduced and studied various sorts of parameterized derivations. In [\[1\]](#page-8-6), Ali and Fošner defined the notion of (m, n) derivations as follows: Let $m, n \geq 0$ be two fixed integers with $m + n \neq 0$. An additive mapping $d : R \longrightarrow R$ is called an (m, n) -derivation if

$$
(m+n)d(xy) = 2md(x)y + 2nxd(y)
$$
\n
$$
(1.1)
$$

holds for all $x, y \in R$.

Obviously, a (1, 1)-derivation on a 2-torsion free ring is a derivation.

In the same paper [\[1\]](#page-8-6), a generalized (m, n) -derivation was defined as follows: Let $m, n \geq 0$ be two fixed integers with $m + n \neq 0$. An additive mapping D: $R \longrightarrow R$ is called a generalized (m, n) -derivation if there exists an (m, n) -derivation $d: R \longrightarrow R$ such that

$$
(m+n)D(xy) = 2mD(x)y + 2nxd(y)
$$
\n(1.2)

holds for all $x, y \in R$.

Obviously, every generalized $(1, 1)$ -derivation on a 2-torsion free ring is a generalized derivation.

In [\[18\]](#page-9-1), Vukman defined an (m, n) -Jordan derivation as follows: Let $m, n \geq 0$ be two fixed integers with $m + n \neq 0$. An additive mapping $d : R \longrightarrow R$ is called an (m, n) -Jordan derivation if

$$
(m+n)d(x^2) = 2md(x)x + 2nxd(x)
$$
\n(1.3)

holds for all $x, y \in R$.

Clearly, every $(1, 1)$ -Jordan derivation on a 2-torsion free ring is a Jordan derivation.

Recently, in [\[11\]](#page-8-7), Kosi-Ulbl and Vukman proved the following result.

Theorem 1.1 ([\[11\]](#page-8-7), Theorem 1.5) Let $m, n \geq 1$ be distinct integers, R a mn(m+ $n||m-n|$ -torsion free semiprime ring an $d: R \longrightarrow R$ an (m, n) -Jordan derivation. Then d is a derivation which maps R into $Z(R)$.

The (m, n) -generalized counterpart of the notion of an (m, n) -Jordan derivation is introduced by Ali and Fošner in [\[1\]](#page-8-6) as follows: Let $m, n \geq 0$ be two fixed integers with $m + n \neq 0$. An additive mapping $F : R \longrightarrow R$ is called a generalized (m, n) -Jordan derivation if there exists an (m, n) -Jordan derivation $d : R \longrightarrow R$ such that

$$
(m+n)F(x^{2}) = 2mF(x)x + 2nxd(x)
$$
\n(1.4)

holds for all $x, y \in R$.

Based on some observations and inspired by the classical results, Ali and Fošner in [\[1\]](#page-8-6) made the following conjecture.

Conjecture 1.2 ([\[1\]](#page-8-6), Conjecture 1) Let $m, n \geq 1$ be two fixed integers, let R be a semiprime ring with suitable torsion restrictions, and let $F: R \longrightarrow R$ be a nonzero generalized (m, n) -Jordan derivation. Then F is a derivation which maps R into $Z(R)$.

The first aim of this paper is to give an affirmative answer to this conjecture. Namely, our first main result is the following theorem.

Theorem 1.3 Let $m, n \geq 1$ be distinct integers, let R be a k-torsion free semiprime ring, where $k = 6mn(m+n)|m-n|$, and let $F: R \longrightarrow R$ be a nonzero generalized (m, n) -Jordan derivation. Then F is a derivation which maps R into $Z(R)$.

On the other hand and in parallel, there are similar works which study relations between various sorts of Jordan centralizers and centralizers. Namely, in [\[20\]](#page-9-2), Zalar proved that any left (resp., right) Jordan centralizer on a 2-torsion free semiprime ring is a left (resp., right) centralizer. In [\[15\]](#page-8-8), Vukman proved that, for a 2-torsion free semiprime ring R, every additive mapping $T: R \longrightarrow R$ satisfying the relation " $2T(x^2) = T(x)x + xT(x)$ for all $x \in R$ " is a two-sided centralizer. Motivated by these results and inspired by his work [\[15\]](#page-8-8), Vukman in [\[19\]](#page-9-3) introduced the notion of an (m, n) -Jordan centralizer as follows: Let $m, n \geq 0$ be two fixed integers with $m+n \neq 0$. An additive mapping $T : R \longrightarrow R$ is called an (m, n) -Jordan centralizer if

$$
(m+n)T(x2) = mT(x)x + nxT(x)
$$
\n(1.5)

holds for all $x, y \in R$.

Obviously, a $(1,0)$ -Jordan centralizer (resp., $(0,1)$ -Jordan centralizer) is a left (resp., a right) Jordan centralizer. When $n = m = 1$, we recover the maps studied in [\[15\]](#page-8-8).

Based on some observations and results, Vukman conjectured that, on semiprime rings with suitable torsion restrictions, every (m, n) -Jordan centralizer is a twosided centralizer (see [\[19\]](#page-9-3)). Recently, this conjecture was solved affirmatively by Kosi-Ulbl and Vukman in [\[12\]](#page-8-9). Namely, they proved the following result.

Theorem 1.4 ([\[12\]](#page-8-9), Theorem 1.5) Let $m, n \geq 1$ be distinct integers, let R be an $mn(m + n)$ -torsion free semiprime ring, and let $T: R \longrightarrow R$ be an (m, n) -Jordan centralizer. Then T is a two-sided centralizer.

Inspired by the work of Vukman $[15, 19]$ $[15, 19]$, Fošner $[8]$ introduced more generalized version of (m, n) -Jordan centralizers as follows: Let $m, n \geq 0$ be two fixed integers with $m + n \neq 0$. An additive mapping $T : R \longrightarrow R$ is called a generalized (m, n) -Jordan centralizer if there exists an (m, n) -Jordan centralizer $T_0: R \longrightarrow R$ such that

$$
(m+n)T(x^2) = mT(x)x + nxT_0(x)
$$
\n(1.6)

holds for all $x \in R$.

Thus, a generalized $(1,0)$ -Jordan centralizer is a left Jordan centralizer.

In $[8]$, Fošner showed that, on a prime ring with a specific torsion condition, every generalized (m, n) -Jordan centralizer is a two-sided centralizer. This led Fošner to make the following conjecture.

Conjecture 1.5 ([\[8\]](#page-8-10), Conjecture 1) Let $m, n \geq 1$ be two fixed integers, let R be a semiprime ring with suitable torsion restrictions, and let $T: R \longrightarrow R$ be a generalized (m, n) -Jordan centralizer. Then T is a two-sided centralizer.

The second aim of this paper is to give an affirmative answer to Fo $\check{\rm so}$ ner's conjecture. Namely, our second main result is the following theorem.

Theorem 1.6 Let $m, n \geq 1$ be two fixed integers, let R be an $6mn(m+n)(2n+m)$ torsion free semiprime ring, and let $T: R \longrightarrow R$ be a nonzero generalized (m, n) -Jordan centralizer. Then T is a two-sided centralizer.

2 Proof of the main theorems

In the proof of our main results, Theorems [1.3](#page-2-0) and [1.6,](#page-4-0) we shall use the following results.

Lemma 2.1 ([\[1\]](#page-8-6), Lemma 1) Let $m, n \geq 0$ be distinct integers with $m + n \neq 0$, let R be a 2-torsion free ring, and let $F : R \longrightarrow R$ be a nonzero generalized (m, n) -Jordan derivation with an associated (m, n) -Jordan derivation d. Then, $(m + n)^2 F(xyx) = m(n - m)F(x)xy + m(3m + n)F(x)yx + m(m - n)F(y)x^2 +$ $A_{mnxd}(y)x+n(n-m)x^2d(y)+n(m+3n)xyd(x)+n(m-n)yxd(x)$ for all $x, y \in R$.

Lemma 2.2 ([\[6\]](#page-8-11), Theorem 3.3) Let $n \geq 2$ be a fixed integer and let R be a prime ring with $char(R) = 0$ or $char(R) \geq n$. If $T : R \longrightarrow R$ is an additive mapping satisfying the relation $T(x^n) = T(x)x^{n-1}$ for all $x \in R$, then $T(xy) =$ $T(x)y$ for all $x, y \in R$.

Lemma 2.3 ([\[8\]](#page-8-10), Lemma 1) Let $m, n \geq 0$ be distinct integers with $m + n \neq 0$, let R be a ring, and let $T: R \longrightarrow R$ be a nonzero generalized (m, n) -Jordan centralizer with an associated (m, n) -Jordan centralizer T_0 . Then, $2(m+n)^2T(xyx) =$ $mnT(x)xy + m(2m+n)T(x)yx - mnT(y)x^{2} + 2mnxT_{0}(y)x - mnx^{2}T_{0}(y) + n(m+n)T(x)xy$ $2n)xyT_0(x) + mnyxT_0(x)$ for all $x, y \in R$.

Lemma 2.4 ([\[16\]](#page-9-4), Lemma 3) Let R be a semiprime ring and let $T : R \longrightarrow R$ be an additive mapping. If either $T(x)x = 0$ or $xT(x) = 0$ holds for all $x \in R$, then $T=0$.

We shall use the relation between semiprime rings and prime ideals. Namely, it is well-known that a ring R is semiprime if and only if the intersection of all prime ideals of R is zero if and only if R has no nonzero nilpotent (left, right) ideals (see for instance Lam's book $[13]$ or the recent book of Bres̆ar $[4]$). Due to the classical Levitzki's paper [\[14\]](#page-8-14), several authors prefer to refer to a such result by Levitzki's lemma.

Let I be an ideal of R. For an element $x \in R$, we use \overline{x} to denote the equivalence class of x modulo I.

Lemma 2.5 Let R be both a 2-torsion free and a 3-torsion free semiprime ring and let $T: R \longrightarrow R$ be an additive map such that $T(x)x^3 = 0$ and $T(x^4) = 0$ for all $x \in R$. Then $T(xy) = T(x)y$ for all $x, y \in R$.

Proof. Let $x, y \in R$. We prove that $T(xy) = T(x)y$. We may assume that x and y are not 0. Let P be a prime ideal of R and set $\overline{R} = R/P$. Consider an element $p \in P$. By hypothesis, $0 = T(x+p)(x+p)^3 = (T(x)+T(p))(x^3+xp^2+px^2+p^2x+$ $(x^2p + xp^2 + pxp + p^3)$. Thus, $0 = T(x)(xpx + px^2 + p^2x + x^2p + xp^2 + pxp + p^3) + p^3$ $T(p)(x^3 + xpx + px^2 + p^2x + x^2p + xp^2 + pxp)$. Hence, $T(p)x^3 \in P$, equivalently $\overline{T(p)}\overline{x}^3 = 0$. By Levitzki's lemma, $\overline{T(p)}\overline{x} = 0$, and then $\overline{T(p)} = 0$ (since \overline{R} is a prime ring). Thus, $T(P) \subseteq P$, which implies that $T(x + P) = T(x) + P$. Then, the induced map $\overline{T}: R/P \to R/P$ such that $\overline{T}(\overline{x}) = \overline{T(x)}$ for every $x \in R$, is well defined. Now, since $\overline{T}(\overline{x})\overline{x}^3 = 0$ and $\overline{T}(\overline{x}^4) = 0$, $\overline{T}(\overline{x}^4) = \overline{T}(\overline{x})\overline{x}^3$. This shows, using Lemma [2.2,](#page-4-1) that $\overline{T}(\overline{xy}) = \overline{T}(\overline{x})\overline{y}$. Therefore, $T(xy) - T(x)y \in P$. Finally, by the semiprimeness of R , we get the desired result.

Now we are ready to prove the first main result.

Proof of Theorem [1.3.](#page-2-0) Let d be the associated (m, n) -Jordan derivation of F. Since R is a semiprime ring, d is a derivation which maps R into $Z(R)$ (by Theorem [1.1\)](#page-2-1). Let us denote $F - d$ by D. Then, we have $(m + n)D(x^2) = (m + n)D(x)$ $n(F(x^{2}) - (m+n)d(x^{2}) = 2mF(x)x + 2nxd(x) - 2md(x)x - 2nxd(x) = 2mD(x)x$ for all $x \in R$. Thus

$$
(m+n)D(x^2) = 2mD(x)x, \ x \in R.
$$
 (2.1)

Replacing x with x^2 in [\(2.1\)](#page-5-0), we get

$$
(m+n)D(x4) = 2mD(x2)x2, x \in R.
$$
 (2.2)

Multiplying by $m + n$ and then using (2.1) , we get

$$
(m+n)^{2}D(x^{4}) = 4m^{2}D(x)x^{3}, \ x \in R.
$$
 (2.3)

On the other hand, putting x^2 for y in the relation of Lemma [2.1](#page-4-2) and using the fact that D is a generalized (m, n) -Jordan derivation associated with the zero map as an (m, n) -Jordan derivation, we get

$$
(m+n)^{2}D(x^{4}) = m(n-m)D(x)x^{3} + m(3m+n)D(x)x^{3} + m(m-n)D(x^{2})x^{2}, x \in R.
$$
\n(2.4)

Multiplying both sides in [\(2.4\)](#page-5-1) by 2 we get

$$
2(m+n)^{2}D(x^{4}) = 2m(n-m)D(x)x^{3} + 2m(3m+n)D(x)x^{3} + 2m(m-n)D(x^{2})x^{2}, x \in R.
$$
\n(2.5)

Combining (2.2) and (2.5) , we get

$$
2(m+n)^{2}D(x^{4}) = 2m(n-m)D(x)x^{3} + 2m(3m+n)D(x)x^{3} + (m+n)(m-n)D(x^{4}), x \in R,
$$
\n(2.6)

which gives

$$
(m+n)(m+3n)D(x4) = 4m(m+n)D(x)x3, x \in R.
$$
 (2.7)

Multiplying both sides in (2.7) by $m + n$, we get

$$
(m+n)^{2}(m+3n)D(x^{4}) = 4m(m+n)^{2}D(x)x^{3}, x \in R.
$$
 (2.8)

Multiplying by $m + 3n$ in [\(2.3\)](#page-5-3), we get

$$
(m+n)^{2}(m+3n)D(x^{4}) = 4m^{2}(m+3n)D(x)x^{3}, x \in R.
$$
 (2.9)

By comparing (2.8) and (2.9) , we get

$$
4mn(m-n)D(x)x^3 = 0, \ x \in R.
$$
\n(2.10)

Since R is a $2mn|n-m|$ -torsion free ring, $D(x)x^3 = 0$ for all $x \in R$. Applying $D(x)x^3 = 0$ in equation [\(2.3\)](#page-5-3), we get $(m+n)^2D(x^4) = 0$ for all $x \in R$. By using the torsion free restriction, we have $D(x^4) = 0$ for all $x \in R$. Hence, $D(xy) = D(x)y$ for all $x, y \in R$ (by Lemma [2.5\)](#page-5-4). Applying this in [\(2.1\)](#page-5-0), yields $(m + n)D(x)x = 2mD(x)x$ for all $x \in R$, equivalently $(m - n)D(x)x = 0$. Since R is an $|m - n|$ -torsion free ring, $D(x)x = 0$ for all $x \in R$. Therefore, by Lemma [2.4,](#page-4-3) $D = 0$. This completes the proof.

The second main result is proved similarly. Nevertheless, we include a proof for completeness.

Proof of Theorem [1.6.](#page-4-0) Let T_0 be the associated (m, n) -Jordan centralizer of T. Since R is a semiprime ring, T_0 is a two-sided centralizer (by Theorem [1.4\)](#page-3-0). Let us denote $T-T_0$ by D. Then, we have $(m+n)D(x^2) = (m+n)T(x^2) - (m+n)T_0(x^2) =$ $m(x)x + nxT_0(x) - mT_0(x)x - nxT_0(x) = m(x)x$ for all $x \in R$. Thus

$$
(m+n)D(x^2) = mD(x)x, \ x \in R.
$$
 (2.11)

Replacing x with x^2 in [\(2.11\)](#page-6-4), we get

$$
(m+n)D(x4) = mD(x2)x2, x \in R.
$$
 (2.12)

Multiplying by $m + n$ and then using (2.11) , we get

$$
(m+n)^{2}D(x^{4}) = m^{2}D(x)x^{3}, \ x \in R.
$$
 (2.13)

On the other hand, if we put $y = x^2$ in the relation of Lemma [2.3,](#page-4-4) we get

$$
2(m+n)^{2}D(x^{4}) = mnD(x)x^{3} + m(2m+n)D(x)x^{3} - mnD(x^{2})x^{2}, x \in R.
$$
 (2.14)

Multiplying both sides in [\(2.13\)](#page-7-0) by 2 we get

$$
2(m+n)^{2}D(x^{4}) = 2m^{2}D(x)x^{3}, \ x \in R.
$$
 (2.15)

Combining (2.12) and (2.14) , we get

$$
2(m+n)^{2}D(x^{4}) = mnD(x)x^{3} + m(2m+n)D(x)x^{3} - n(m+n)D(x^{4}), x \in R, (2.16)
$$

which implies

$$
(m+n)(2m+3n)D(x4) = 2m(m+n)D(x)x3, x \in R.
$$
 (2.17)

Multiplying both sides of above relation by $m + n$, we have

$$
(m+n)^{2}(2m+3n)D(x^{4}) = 2m(m+n)^{2}D(x)x^{3}, x \in R.
$$
 (2.18)

Multiplying by $(2m + 3n)$ in (2.13) , we get

$$
(m+n)^{2}(2m+3n)D(x^{4}) = m^{2}(2m+3n)D(x)x^{3}, x \in R.
$$
 (2.19)

By comparing (2.18) and (2.19) , we get

$$
mn(2n+m)D(x)x^3 = 0, \ x \in R.
$$
\n(2.20)

Since R is a $mn(2n + m)$ -torsion free ring, $D(x)x^3 = 0$ for all $x \in R$. Applying $D(x)x^3 = 0$ in equation [\(2.13\)](#page-7-0) and then using $(m + n)$ -torsion freeness of R, we get $D(x^4) = 0$ for all $x \in R$. Moreover, since R is a 2 and a 3-torsion free ring, by Lemma [2.5,](#page-5-4) we get $D(xy) = D(x)y$ for all $x, y \in R$. Applying this in [\(2.11\)](#page-6-4), yields $(m+n)D(x)x = mD(x)x$ for all $x \in R$. So $nD(x)x = 0$, which implies that $D(x)x = 0$ for all $x \in R$. Therefore, by Lemma [2.4,](#page-4-3) $D = 0$. This completes the proof. \blacksquare

Acknowledgements. The authors would like to thank Professor Abdellah Mamouni for useful discussions.

References

- [1] S. Ali and A. Fošner, On Generalized (m, n) -Derivations and Generalized (m, n) -Jordan Derivations in Rings, Algebra Colloq. 21 (2014), 411–420.
- [2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006.
- $[3]$ M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasg. Math. J. 33 (1991), 89–93.
- [4] M. Brešar, *Introduction to noncommutative algebra*, Universitext, Springer, 2014.
- [5] M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Aust. Math. Soc. 37 (1988), 321–322.
- [6] D. Benkovič and D. Eremita, *Characterizing left centralizers by their action* on a polynomial, Publ. Math. Debercen 64 (2004), 343–351.
- [7] J. Cusak, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321–324.
- [8] A. Fošner, A note on generalized (m, n) -Jordan centralizers, Demonstratio Math. 46 (2013), 254–262.
- [9] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1119.
- [10] W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math. 7 (2003), 605–613.
- [11] I. Kosi-Ulbl and J. Vukman, A note on (m, n) -Jordan derivation of rings and banach algebras, Bull. Aust. Math. Soc. 93 (2016), 231–237.
- [12] I. Kosi-Ulbl and J.Vukman, $On (m, n)$ -Jordan centralizers of semiprime rings, Publ. Math. Debrecen 7490 (2016), 1–9.
- [13] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, 123, Springer-Verlag, New York, 1991.
- [14] J. Levitzki, Prime ideals and the lower radical, Amer. J. Math. 73 (1951), 25–29.
- [15] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (1999), 447–456.
- [16] J. Vukman, Identities with derivations and automorphisms on semiprime rings, Int. J. Math. Math. Sci. 7 (2005), 1031–1038.
- [17] J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), 367–370.
- [18] J. Vukman, $On (m, n)$ -Jordan derivations and commutativity of prime rings, Demonstratio Math. 41 (2008), 773–778.
- [19] J. Vukman, On (m, n) -Jordan centralizers in rings and algebras, Glasg. Math. J. 45 (2010), 43–53.
- [20] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609–614.