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Abstract

Using the new extension of the zero-divisor graph Γ̃(R) introduced
in [6], we give an approach of the diameter of Γ(R) and Γ(R[X]) other
than given in [11] thus we give a complete characterization for the
possible diameters 1, 2 or 3 of Γ(R) and Γ(R[x]).

Introduction

The idea of a zero-divisor graph was introduced by I. Beck in [5] while he was
mainly interested in colorings. In beck’s work, the graph Γ0(R) associated
with a nontrivial commutative unitary ring R is the undirected simple graph
where the vertices are all elements of R and two vertices x and y are adjacent
if and only if xy = 0.
the study of the interaction between the properties of ring theory and the
properties of graph theory begun with the article of D.F. Anderson and P.S.
Livingston where they modified the graph considering the zero-divisor graph
Γ(R) with vertices in Z(R)⋆ = Z(R) \ {0}, where Z(R) is the set of zero-
divisors of R, and for distinct x, y ∈ Z(R)⋆, the vertices x and y are adjacent
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if and only if xy = 0 [4]. Also, D. F Anderson and A. Badawi introduced
the total graph T (Γ(R)) of a commutative ring R with all elements of R as
vertices and for distinct x, y ∈ R, the vertices x and y are adjacent if and
only if x+ y ∈ Z(R) [3].

In [6], we introduced a new graph, denoted Γ̃(R), as the undirected sim-
ple graph whose vertices are the nonzero zero-divisors of R and for distinct
x, y ∈ Z(R)⋆, x and y are adjacent if and only if xy = 0 or x+ y ∈ Z(R).
Recall that a path P in the graph G = (V,E) is a finite sequence (x0, . . . , xk)
of distinct vertices such that for all i = 0, . . . , k − 1, xixi+1 is an edge. In
this case, we said that x0 and xk are linked by P = x0 − xk and the length
of P is k, i.e., the number of its edges. G is said to be connected if each
pair of distincts vertices belongs to a path. Also, if G has a path x − y,
then the distance between x and y, written dG(x, y) or simply d(x, y) is the
least length of a x − y path. If G has no such path, then d(x, y) = ∞. The
diameter of G, denoted diam(G), is the greatest distance between any two
vertices in G. A graph G is complete if each pair of distinct vertices forms
an edge, i.e., if diam(G) = 1.
R is a nontrivial commutative unitary ring and general references for com-
mutative ring theory are [1] and [10].

In [11], T. G. Lucas has studied situations where diam(Γ(R)) and
diam(Γ(R[x])) are = 1, 2 or 3 and gave a complete characterization of these
diameter strictly in terms of properties of the ring R.

In this paper, we give another approach of this problem using the prop-
erties of the new graph Γ̃(R). In the first section, we begin by showing the

link between the non-completeness of Γ̃(R) and the diameter of diam(Γ(R))
and we give a complete characterization of the diameter of diam(Γ(R)) us-
ing the nature of the ring R. In the second section, we give some examples
illustrating cases where the diameter of Γ(R) is 1, 2 or 3. The third section
is reserved for characterization of the diam(Γ(R[X ])) in terms of the nature
of the ring R.

We recall that |Z(R)⋆| = 1 if and only if R ≃ Z4 or R ≃ Z[X ]/(X2)
(cf. Example 2.1, [4]) so we assume, along this paper, that R is such that
|Z(R)⋆| > 1.
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1 diameter of Γ(R)

This section is devoted to the study of diameter of Γ(R). We begin by
recalling the Lucas’s result:

Theorem 1.1. ( cf. theorem 2.6, [11]) Let R be a ring.

(1) diam(Γ(R)) = 0 if and only if R is (nonreduced and) isomorphic to
either Z4 or Z2[y]/(y

2).

(2) diam(Γ(R)) = 1 if and only if xy = 0 for each distinct pair of zero
divisors and R has at least two nonzero zero divisors.

(3) diam(Γ(R)) = 2 if and only if either (i) R is reduced with exactly two
minimal primes and at least three nonzero zero divisors, or (ii) Z(R) is
an ideal whose square is not (0) and each pair of distinct zero divisors
has a nonzero annihilator.

(4) diam(Γ(R)) = 3 if and only if there are zero divisors a 6= b such that
(0 : (a, b)) = (0) and either (i) R is a reduced ring with more than two
minimal primes, or (ii) R is nonreduced.

Remark 1.2. As stated above, we assume that R is such that diam(Γ(R)) 6=
0, i.e., R 6≃ Z4 and R 6≃ Z2[X ]/(X2). Also, we recall that diam(Γ(R)) ≤ 3
(cf. theorem 2.3, [4]) whose next lemma is an immediate consequence.

Lemma 1.3. Let x, y ∈ Z(R)⋆. If dΓ(x, y) > 2, then dΓ(x, y) = 3.

Using the new graph Γ̃(R), we obtain some cases where diam(Γ(R)) = 3:

Theorem 1.4. If Γ̃(R) is not complete, then diam(Γ(R)) = 3.

Proof. Since Γ̃(R) is not complete, then diam(Γ̃(R)) = 2 ((cf. [6], theorem
2.1), so there exists x, y ∈ Z(R)⋆ such that dΓ̃(x, y) = 2 hence xy 6= 0 and
x + y /∈ Z(R) thus ann(x) ∩ ann(y) = (0) therefore dΓ(x, y) > 2 and thus,
by the previous lemma, diam(Γ(R)) = 3.

Corollary 1.5. If Z(R) is not an ideal of R and R is neither boolean nor
(up to isomorphism) a subring of a product of two integral domains, then
diam(Γ(R)) = 3.

3



Proof. Since Z(R) is not an ideal of R and R is neither boolean nor a subring

of a product of two integral domains, then, by theorem 1.7 [7], Γ̃(R) is not
complet and, by the previous theorem, diam(Γ(R)) = 3.

Remark 1.6. The previous theorem gives a method to construct graphs Γ(R)
of diameter 3: for example, diam(Γ(Z12)) = 3 because Z(Z12) is not an ideal
(2+3 /∈ Z(Z12)) and Z12 is neither boolean ( Z12 is not isomorph to Z

n
2) nor

a subring of a product of two integral domains (Z12 is not reduced).

We know that Γ̃(R) is not complete if and only if Z(R) is not an ideal
of R and R is neither boolean nor (up to isomorphism) a subring of a prod-
uct of two integral domains (cf. [7], theorem 1.7) so it is enough to treat

the cases where Γ̃(R) is complete to give a ring characterizations such that
diam(Γ(R)) = 1, 2 or 3, i.e., the cases where Z(R) is an ideal of R or R is
boolean or R is (up to isomorphism) a subring of a product of two integral
domains.

We have the following preliminary lemma:

Lemma 1.7.

(1) If Z(R)2 = (0), then Z(R) is an ideal.

(2) Let R such that Z(R) is an ideal. If Z(R)2 6= (0), then there exist a
distinct pair of non-zero-divisors x, y such that xy 6= 0.

(3) Let R such that Z(R) is an ideal. If there exist a pair of zero-divisors x, y
such that ann(x, y) = (0), then x, y is distinct pair of non-zero-divisors
such that xy 6= 0.

Proof. (1) Suppose that Z(R)2 = (0) so Z(R) ⊂ Nil(R), where Nil(R) is
the nilradical of R, then Z(R) = Nil(R) hence Z(R) is an ideal.
(2) Let x ∈ Z(R)⋆ such that x2 6= 0. It is clear that if 2x 6= 0, then x,−x
is a distinct pair of non-zero-divisors x, y = −x such that xy 6= 0. Suppose
that 2x = 0 and let a ∈ Z(R)⋆ such that ax = 0. Let y = a + x so
y ∈ Z(R) because Z(R) is an ideal. Also, y 6= x and yx = (a + x)x =
x2 6= 0 then x, y is a distinct pair of zero-divisors such that xy 6= 0 thus
diam(Γ(R)) > 1 therefore diam(Γ(R)) = 2 because for each pair of zero-
divisors x, y, ann(x, y) 6= (0).
(3) Suppose that there exist a pair of zero-divisors x, y such that ann(x, y) =
(0) so x 6= 0, y 6= 0 and x 6= y. Also, x + y ∈ Z(R) because Z(R) is an
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ideal so there exist a ∈ R \ {0} such that a(x + y) = 0 then ax = −ay. We
claim that xy 6= 0, indeed, if xy = 0, so (ax).x = −ayx = 0 and (ax)y = 0
hence ax ∈ ann(x, y) = (0). Also, (ay)x = 0 and (ay)y = −axy = 0 then
ay ∈ ann(x, y) = (0) therefore a ∈ ann(x, y) = (0).

Proposition 1.8.

(1) Let R such that Z(R) is an ideal and Z(R)2 6= (0). If for each distinct
pair of zero-divisors x, y, ann(x, y) 6= (0), then diam(Γ(R)) = 2.

(2) Let R such that Z(R) is an ideal. If there exist a pair of zero-divisors
x, y such that ann(x, y) = (0), then diam(Γ(R)) = 3.

Proof. (1) By lemma 1.7, there exist a distinct pair of zero-divisors a, b such
that ab 6= 0 then diam(Γ(R)) > 1. Let x, y ∈ Z(R)⋆ such that dΓ(x, y) > 1
so ann(x, y) 6= (0) hence dΓ(x, y) = 2.
(2) Suppose that there exist a pair of zero-divisors x, y such that ann(x, y) =
(0), then, by the previous lemma, x, y is distinct pair of non-zero-divisors such
that xy 6= 0 so diam(Γ(R)) > 1 and since ann(x, y) = (0), diam(Γ(R)) > 2
then diam(Γ(R)) = 3.

Remark 1.9. Let R such that Z(R) is an ideal. By the previous proof, if
there exist a pair of zero-divisors x, y such that ann(x, y) = (0) so xy 6= 0
then then Z(R)2 6= 0.

Proposition 1.10. If R is (up to isomorphism) a subring of a product of
two integral domains and R 6≃ Z

2
2, then diam(Γ(R)) = 2.

Proof. Since R is a subring of a product of two integral domains and R is
not an integral domain, there exists a = (a1, 0), b = (0, a2) ∈ Z(R)⋆.
We claim that |Z(R)⋆| ≥ 3, indeed, if |Z(R)⋆| = 2, R ≃ Z9 or Z

2
2 or

Z3[X ]/(X3) then R ≃ Z9 or Z3[x]/(x
3) (because R 6≃ Z

2
2). However, Z9

and Z3[x]/(x
3) are not reduced but R is reduced then |Z(R)⋆| ≥ 3.

Let x ∈ Z(R)⋆\{a, b} and suppose that x = (x1, 0) (the other case is similar).
Since x 6= a and ax 6= 0 so diam(Γ(R)) > 1. Also, let z, t ∈ Z(R)⋆ such that
dΓ(R)(z, t) > 1 so we can suppose that z = (z1, 0) and t = (t1, 0) then z−b− t
hence dΓ(z, t) = 2 and thus diam(Γ(R)) = 2.
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Proposition 1.11. Let R be a boolean ring. If R 6≃ Z
2
2, then diam(Γ(R)) =

3.

Proof. Since R is boolean and R 6≃ Z2, there exists e ∈ R \ {0, 1} such that
R ≃ Re ⊕ R(1 − e). Also, since R 6≃ Z

2
2, we can suppose that Re 6≃ Z2

thus, since Re is boolean, there exists e′ ∈ Re \ {0, 1} such that Re ≃
Re′ ⊕ R(1 − e′) therefore we can suppose that R ≃ R1 ⊕ R2 ⊕ R3, with
R1, R2, R3 boolean rings. Let x = (1, 1, 0), y = (1, 0, 1) ∈ Z(R)⋆ so x 6= y,
xy 6= 0 and ann(x)∩ ann(y) = (0) then dΓ(R)(x, y) > 2 hence, by lemma 1.3,
diam(Γ(R)) = 3.

Theorem 1.12.

(1) diam(Γ(R)) = 1 if and only if R ≃ Z
2
2 or Z(R)2 = (0).

(2) diam(Γ(R)) = 2 if and only if (R is (up isomorphism) a subring of
a product of two integral domains and R 6≃ Z

2
2) or (Z(R) is an ideal,

Z(R)2 6= (0) and for each distinct pair of zero-divisors x, y, ann(x, y) 6=
(0).

(3) diam(Γ(R)) = 3 if and only if (R is boolean and R 6≃ Z
2
2) or (Z(R) is

not an ideal and R is neither boolean nor a subring of a product of two
integral domains) or (Z(R) is an ideal and there there exist a pair of
zero-divisors x, y such that ann(x, y) = (0)).

Proof. Suppose that Z(R) is not an ideal and R is neither boolean nor a
subring of a product of two integral domains. Then, according to theorem
1.7 [7], Γ̃(R) is not complete and thus, by theorem 1.4, diam(Γ(R)) = 3.
Suppose that R is a boolean ring. It is obvious that if R ≃ Z

2
2, then (Γ(R))

is complete. If R 6≃ Z
2
2, then, by proposition 1.11, diam(Γ(R)) = 3.

Suppose that R is a subring of a product of two integral domains and R 6≃ Z
2
2,

then, by proposition 1.10, diam(Γ(R)) = 2.
Suppose that Z(R) is an ideal of R:
It is obvious that if Z(R)2 = (0), then diam(Γ(R)) = 1.
Suppose that Z(R)2 6= (0) then, by proposition 1.8, if for each distinct pair
of zero-divisors x, y, ann(x, y) 6= (0), diam(Γ(R)) = 2.
If Z(R) is an ideal and there exist a pair of zero-divisors x, y such that
ann(x, y) = (0), then by proposition 1.8, diam(Γ(R)) = 3. Also, we recall
that, by remark 1.9, Z(R)2 6= (0).
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We recall that R is a McCoy ring (or satisfy the property A) (cf. [9]) if
each finitely generated ideal contained in Z(R) has a nonzero annihilator.

Corollary 1.13. Let R be a McCoy ring.

(1) diam(Γ(R)) = 1 if and only if R ≃ Z
2
2 or Z(R)2 = (0).

(2) diam(Γ(R)) = 2 if and only if (R is (up isomorphism) a subring of
a product of two integral domains and R 6≃ Z

2
2) or (Z(R) is an ideal,

Z(R)2 6= (0)).

(3) diam(Γ(R)) = 3 if and only if (R is boolean and R 6≃ Z
2
2) or (Z(R) is

not an ideal and R is neither boolean nor a subring of a product of two
integral domains).

Proof. Suppose that Z(R) is an ideal of R such that Z(R)2 6= (0). Let a
distinct pair of zero-divisors x, y so (x, y) ⊂ Z(R) because Z(R) is an ideal
and since R is a McCoy ring, ann(x, y) 6= 0.

Lemma 1.14. R is a noetherian boolean ring if and only if R ≃ Z
n
2 .

Proof. ⇒) Since R is boolean, then dimR = 0 so R is artinian hence R
has a finite number of maximal ideals m1, . . . ,mn. Since R is boolean, R is

reduced then
n⋂

i=1

mi = (0) so R ≃
n∏

i=1

R/mi therefore R ≃ Z
n
2 because R/mi

are boolean fields. The other implication is obvious.

Since a noetherain ring is a McCoy ring (cf. theorem 82, [10]), using the
previous lemma, we obtain:

Corollary 1.15. Let R a noetherian ring.

(1) diam(Γ(R)) = 1 if and only if R ≃ Z
2
2 or Z(R)2 = (0).

(2) diam(Γ(R)) = 2 if and only if (R is (up isomorphism) a subring of
a product of two integral domains and R 6≃ Z

2
2) or (Z(R) is an ideal,

Z(R)2 6= (0).

(3) diam(Γ(R)) = 3 if and only if (R ≃ Z
n
2 , with n > 2) or (Z(R) is not an

ideal and R is neither Z
n
2 , with n > 2 nor a subring of a product of two

integral domains).

Using theorem 2.4 [6], we obtain when R is a finite ring:
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Corollary 1.16. Let R be a finite ring.

(1) diam(Γ(R)) = 1 if and only if R ≃ Z
2
2 or (R is local and m2 = (0)).

(2) diam(Γ(R)) = 2 if and only if R is a product of two fields or (R is local
and m2 6= (0).

(3) diam(Γ(R)) = 3 if and only if (R 6≃ Z
n
2 and R is neither a product of

two fields nor local) or (R ≃ Z
n
2 , with n > 2).

Corollary 1.17. Let n > 1 a composite integer.

(1) diam(Γ(Zn)) = 0 if and only if n = 4.

(2) Γ(Zn) = 1 If and only if if n = p2 with p is an odd prime.

(3) diam(Γ(Zn)) = 2 if and only if n = pk with k > 2 and p is prime or n
is a product of two distinct primes.

(4) diam(Γ(Zn)) = 3 if and only if n is neither a power of a prime number
nor a product of two distinct primes.

2 examples

in this section, we give examples of the situations described in the theorem.
We begin by giving an example where diam(Γ(R)) = 1.

Example 2.1. Let R = R[X ]/(X2). It is obvious that Z(R) = (X + (X2))
and Z(R)2 = (0) then diam(Γ(R)) = 1.

For the case where diam(Γ(R)) = 2, we give the following two examples:

Example 2.2. Let R = Z
2 so diam(Γ(R)) = 2.

Example 2.3. Let R = k[X, Y ]/(X2, XY ). It is obvious that the Z(R) =
(X + (X2, XY ), Y + (X2, XY )) is an ideal of R and since Y + (X2, XY ) ∈
Z(R) and (Y +(X2, XY ))2 6= 0 in R, Z(R)2 6= (0). Also R is noetherian so,
by corollary 1.14, diam(Γ(R)) = 2.

For the case where diam(Γ(R)) = 3, we give also the following three
examples:

8



Example 2.4. Let R = Z
n
2 , where n > 2 is an integer, so R is boolean then

diam(Γ(R)) = 3.

Example 2.5. Let R = Z
3. It is obvious that Z(R) is not an ideal and R

is neither boolean nor a subring of a product of two integral domains hence
diam(Γ(R)) = 3.

Example 2.6. As in [11], we will use a variation of the construction ”A+B”
described in [9] and [2] to give an example of a ring R such that Z(R) is an
ideal and there exist a pair of zero-divisors r, s such that ann(r, s) = 0 (then
by remark 1.9, Z(R)2 6= (0)): Let M the maximal ideal of A = k[X, Y ](X,Y )

and P = {pα/α ∈ Γ} the set of height one primes of A. For every i = (α, n) ∈
I = Γ × N, let pi = pα and Mi = M/pi. It is obvious that B =

⊕
i∈I

Mi is a

non-unital ring and is a unitary A-module. As in theorem 2.1 [2], define on
R = A×B: (a, x)+(b, y) = (a+ b, x+y) and (a, x)(b, y) = (ab, ay+ bx+xy)
then R is a commutative ring with identity 1R = (1, 0) and is noted R =
A+B.
We claim that Z(R) = {(m, b)/m ∈ M, b ∈ B} and consequently Z(R) is an
ideal: Let (a, x) ∈ R such that a /∈ M and x = (xi + pi)i∈I ∈ B so ∀m ∈ M ,
a+m 6∈ inM and since A is local and M is the maximal ideal of A, a+m is
unit in A. For every i ∈ I, let yi = −a−1(a+xi)

−1xi so y = (yi+pi) ∈ B and
we have (a, x)(a−1, y) = 1R hence (a, x) 6∈ Z(R). Conversely, let (a, x) ∈ R
such that a ∈ M and x = (xi + pi)i∈I ∈ B. It follows from the Krull’s
principal ideal theorem that there exist β ∈ Γ such that a ∈ pβ so there
exist j ∈ I such that a ∈ pj and x ∈ pj (because {i ∈ I/a ∈ pi} is infinite

and {i ∈ I/xi 6∈ pi} is finite). Let v ∈ M \ pj and yi =

{
v si i = j
0 si i 6= j

so

y = (yi + pj) ∈ B \ {0} and (a, x)(0, y) = 0 thus (a, x) ∈ Z(R).
Also, we claim that there exist (r, s) ∈ Z(R)2 such that ann(r, s) = (0): let
r = (X, 0) and s = (Y, 0). If (a, x) ∈ ann(r) ∩ ann(s), where a ∈ A and
x = (xi + pi)i∈I ∈ B, so r(a, x) = s(a, x) = 0 then a = 0 and ∀i ∈ I,
Xxi ∈ pi and Y xi ∈ pi then ∀i ∈ I, xi ∈ pi, if not ∃j ∈ I such that xj 6∈ pj

so M = (X, Y ) = pj, contradiction, because ht(M) = 2. Thus a = 0 and
x = 0.
By the previous theorem, we obtain diam(Γ(R)) = 3.
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3 diameter of Γ(R[X ])

Lucas gave a following characterization of the diameter of Γ(R[X ]) (see the-
orem 3.4, [11] ):

Theorem 3.1. Let R be a ring.

(1) diam(R[X ]) ≥ 1.

(2) diam(R[X ]) = 1 if and only if R is a nonreduced ring such that Z(R)2 =
(0).

(3) diam(R[X ]) = 2 if and only if either (i) R is a reduced ring with exactly
two minimal primes, or (ii) R is a McCoy ring and Z(R) is an ideal
with Z(R)2 6= (0).

(4) diam(R[X ]) = 3 if and only if R is not a reduced ring with exactly two
minimal primes and either R is not a McCoy ring or Z(R) is not an
ideal.

In this section, we will use the results of the study of the graph Γ̃(R[X ])
[7] to approach the same problem. We recall that R[X ] is a McCoy ring (cf.
Theorem 2.7, [9]). We note also that R[X ] is not boolean and if R is not an
integral domain, then |Z(R[X ])| > 2.

Lemma 3.2. Z(R[X ])2 = 0 if and only if Z(R)2 = 0.

Proof. (1) Since Z(R) ⊂ Z(R[X ]), if Z(R[X ])2 = 0 then Z(R)2 = 0. Con-
versely, since Z(R[X ]) ⊂ (Z(R))[X ] (cf. Exercise 2, iii), page 13, [1]), if
Z(R)2 = 0, then Z(R[X ])2 = 0.

Using corollary 1.13 and the previous lemma, we obtain:

Theorem 3.3. Let R a ring such that R is not an integral domain.

(1) diam(Γ(R[X ])) = 1 if and only if Z(R)2 = (0).

(2) diam(Γ(R[X ])) = 2 if and only if (R is (up isomorphism) a subring of a
product of two integral domains or (R is a McCoy ring and Z(R) is an
ideal such that Z(R)2 6= (0)).
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(3) diam(Γ(R[X ])) = 3 if and only if (R is not a McCoy ring or Z(R) is not
an ideal) and R is not a subring of a product of two integral domains.

Proof. (1) The result is a consequence of the lemma 3.2 and the fact that
R[X ] 6≃ Z

2
2.

(2) By corollary 1.13, diam(Γ(R[X ])) = 2 if and only if R[X ] is (up isomor-
phism) a subring of a product of two integral domains and R[X ] 6≃ Z

2
2)

or (Z(R[X ]) is an ideal, Z(R[X ])2 6= (0). It is obvious that R[X ] is (up
isomorphism) a subring of a product of two integral domains if and only
if R is (up isomorphism) a subring of a product of two integral domains.
On the other hand, by lemma 1.10 [7], Z(R[X ]) is an ideal such that
Z(R[X ])2 6= (0) if and only if R is a McCoy ring and Z(R) is an ideal
such that Z(R)2 6= (0).

(3) Also, by corollary 1.13, diam(Γ(R[X ])) = 3 if and only if (R[X ] is
boolean and R[X ] 6≃ Z

2
2) or (Z(R[X ]) is not an ideal and R[X ] is nei-

ther boolean nor a subring of a product of two integral domains). It is
obvious that R[X ] is not boolean and R[X ] is not a subring of a product
of two integral domains if and only if R is not a subring of a product of
two integral domains. Also, by lemma 1.10 [7], Z(R[X ]) is not an ideal
if and only if R is not a McCoy ring or Z(R) is not an ideal.

Remark 3.4. We recall that, by lemma 1.9 [7], Z(R[X ]) is an ideal of R[X ]
if and only if Z(R) is an ideal of R and R is a McCoy ring if and only if for
any ideal I of R generated by a finite number of zero-divisors, ann(I) 6= (0).
If R is noetherian so R is a McCoy ring, then Z(R[X ]) is an ideal of R[X ]
if and only if Z(R) is an ideal of R.

Corollary 3.5. Let R a noetherian ring such that R is not an integral do-
main.

(1) diam(Γ(R[X ])) = 1 if and only if Z(R)2 = (0).

(2) diam(Γ(R[X ])) = 2 if and only if (R is (up isomorphism) a subring of a
product of two integral domains or (Z(R) is an ideal and Z(R)2 6= (0)).

(3) diam(Γ(R[X ])) = 3 if and only if Z(R) is not an ideal and R is neither
boolean nor a subring of a product of two integral domains.
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Corollary 3.6. Let R a finite ring such that R is not a field.

(1) diam(Γ(R[X ])) = 1 if and only if R is local and m2 = (0).

(2) diam(Γ(R[X ])) = 2 if and only if R is a product of two fields or (R is
local and m2 6= (0).

(3) diam(Γ(R[X ])) = 3 if and only if R is not local and R is not a product
of two fields.

Corollary 3.7. Let n > 1 a composite integer.

(1) Γ(Zn[X ]) = 1 If and only if if n = p2 with p is prime.

(2) diam(Γ(Zn[X ])) = 2 if and only if n is a product of two distinct primes
or n = pk with k > 2 and p is prime.

(3) diam(Γ(Zn[X ])) = 3 if and only if n is neither a power of a prime number
nor a product of two distinct primes.
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