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PERIODIC REPRESENTATIONS IN SALEM BASES

TOMÁŠ VÁVRA

Abstract. We prove that all algebraic bases β allow an eventually periodic repre-
sentations of the elements of Q(β) with a finite alphabet of digits A. Moreover, the
classification of bases allowing that those representations have the so-called weak
greedy property is given.

The decision problem whether a given pair (β,A) allows eventually periodic
representations proves to be rather hard, for it is equivalent to a topological property
of the attractor of an iterated function system.

1. Introduction

The authors of [3] studied the following problem: for which algebraic bases β,
|β| > 1, there is a finite alphabet of digits A, such that each x ∈ Q(β) can be
expressed as

x =
+∞∑

i=−L

aiβ
−i, ai ∈ A, (ai)

+∞
i=−L eventually periodic.

This problem is a generalization of a well known property of Pisot bases. Indeed,
K. Schmidt in [16] proved that the greedy β-expansions of Q(β) ∩ R+ are eventually
periodic. It is worth mentioning that Schmidt conjectured that this holds also for the
β-expansions in Salem bases, however, this has not been proved for a single instance
of a Salem base so far.

The problem was partially solved in [3] for a certain subclass of algebraic numbers.
In the subsequent paper [12], it was proved that all algebraic bases without conju-
gates on the unit circle allow eventually periodic representations with some alphabet.
The proofs relied heavily on the existence of parallel addition algorithms on (β,A)-
representations. The drawback of this method is that the parallel algorithms are not
available when the base has a conjugate on the unic circle, hence it cannot be used to,
for instance, Salem bases. Nevertheless, by generalizing the Fermat’s little theorem,
the authors in [12] were able to prove that in any algebraic base and a suitable digit
alphabet, the number 1

n
have an eventually periodic representation for any n ∈ N.

In this paper we will solve the problem completely, as we show that every alge-
braic base β allows eventually periodic representations of Q(β) with some finite digit
alphabet. We use a rather number theoretical approach. In particular, we consider
the embeddings of Q(β) corresponding to all places p such that |β|p > 1. A similar
approach for different problems connected to the theory of number systems was used
for example in [2] and [17].
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A related problem is to decide whether a given pair (β,A) allows eventually periodic
representations of Q(β). We show that this is related to attractors of certain iterated
function systems, as well as to a geometric property of the so-called spectrum of β
with the alphabet A.

2. Definitions and main results

Let the base β ∈ C be such that |β| > 1 and let A ⊂ C be a finite digit alphabet. By
a (β,A)-representation of x ∈ C we mean the expression of the form x =

∑+∞
i=−L aiβ

−i.

A particular representation is said to be eventually periodic if the sequence (ai)
+∞
i=−L

is eventually periodic. The set of numbers admitting an eventually periodic (β,A)-
representation is denoted PerA(β), i.e.

PerA(β) = {x ∈ C : x =
+∞∑

i=−L

aiβ
−i, (ai)

+∞
i=−L eventually periodic}.

There are several ways of constructing (β,A)-representations, most notable of them
being the well-known greedy β-expansions for real bases β > 1 introduced in [15]. A
rather general concept was given by Thurston [18]. For V ⊂ C bounded and A ⊂ C
finite, let the condition βV ⊆

⋃
a∈A(V + a) be satisfied. A (β,A)-representation of

an element of V can then be then constructed as follows. Define a transformation
T : V → V by

(1) T (x) = βx−D(x) with D(x) ∈ A.

Then x = D(x)β−1 + T (x)β−1, and by iterating this procedure and denoting ai =
D(T i−1(x)) we obtain x =

∑+∞
i=1 aiβ

−i. Moreover, it can be easily seen that if the
sequence (T n(x))n≥0 takes only finitely many values, then the corresponding (β,A)-
representation is eventually periodic. We will later prove the following result by
generalizing the Thurston’s construction.

Theorem 2.1. Let β ∈ C, |β| > 1 be an algebraic number. Then there exists A ⊂ Z
finite such that PerA(β) = Q(β).

Another property of representations studied in [3] was weak-greediness. In that
context, special classes of algebraic numbers turned to be important. An algebraic
integer β > 1 is called a Pisot number if its Galois conjugates β ′ satisfy |β ′| < 1. If
an algebraic integer β > 1 satisfies |β ′| ≤ 1 with at least one conjugate lying on the
unit circle, then β is called a Salem number. We call complex Pisot or complex Salem
numbers the corresponding complex analogies where β > 1 is replaced by |β| > 1
and where the condition on the Galois conjugates does not hold for the complex
conjugation.

Definition 2.2. We say that (β,A) admits weak-greedy eventually periodic represen-
tations of Q(β) if there is c > 0 such that every x ∈ Q(β), |x| < c allows an eventually
periodic (β,A)-representation of the form x =

∑+∞
i=1 aiβ

−i.
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Weak-greediness means, roughly speaking, existence of a representation whose high-
est power is proportional to the modulus of the represented number. It was shown
in [3] that if (β,A) admits weak-greedy eventually periodic representations of Q(β),
then β is either a (complex) Pisot or a (complex) Salem number, or all the conjugates
β ′ of β outside the unit circle satisfy |β ′| = |β|. Furthermore, it was shown that all
the (complex) Pisot bases allow weak-greedy eventually periodic representations. We
give the full classification in the following theorem.

Theorem 2.3. Given a base β ∈ C, there exists A ⊂ Q(β) such that (β,A) admits
weak-greedy eventually periodic (β,A)-representations of Q(β) if and only if β is an
algebraic integer without Galois conjugates outside of the unit circle other than itself
and its complex conjugate.

It is natural to ask whether a given pair (β,A) admits eventually periodic rep-
resentations of Q(β). We give several equivalent conditions in Theorem 2.5. Before
stating it, we will need to introduce some number theoretical notation. We will follow
the notation from [2] and [17], although there is a difference in the definition of Sβ

(because we will not be working only with expansive numbers).
Let β be an algebraic number, and denote K = Q(β) with the ring of integers OK .

Let βOK = a
b
with a, b being coprime ideals in OK . Define a set of places of K

Sβ = {p : p | ∞ and |β|p ≥ 1} ∪ {p : p | b}.

Furthermore, let Kβ =
∏

p∈Sβ
Kp where Kp denotes the completion of K with respect

to the p-adic norm. The space Kβ is endowed with the norm |x|β = max{|x|p : p ∈ Sβ}
and with the respective topology.

When we speak about elements of Q(β) in Kβ , we mean their images through the
diagonal embedding

Φβ : Q(β) → Kβ, x 7→
∏

p∈Sβ

x.

When no confusion is expected, the symbol Φβ will be ommited. Of course, a generic
point of Kβ does not correspond to any element of Q(β). Nevertheless, an approxi-
mation of Kβ by Q(β) is possible. The following proposition is a direct application of
the well known weak approximation theorem (see for instance Theorem 3.4 of [14]).

Proposition 2.4. Q(β) is dense in Kβ. In other words, for any ε > 0 and any
x ∈ Kβ there is z ∈ Q(β) such that |x− Φβ(z)|β < ε.

By the Hutchinson’s theorem on iterated function systems (see [11]), there exists
a unique non-empty compact set K(β,A) ⊂ Kβ satisfying

K(β,A) = β−1

(
⋃

a∈A

K(β,A) + a

)
.

The iterated funtion system consists of the contracting maps x 7→ β−1(x+ a) on the
complete metric space Kβ . The set K(β,A) is usually called the attractor of the
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iterated function system We see that the attractor can be alternatively described as

K(β,A) =

{
+∞∑

i=1

Φβ(aiβ
−i) : ai ∈ A

}
.

Note that the compactness of K(β,A) can be then alternatively proved, as in [17],
by K(β,A) being a continuous image of the compact space of infinite words AN =
{a1a2a3 · · · : ai ∈ A}.

Another notion we need to introduce is the spectrum of β with the alphabet A as
introduced by Erdős, Jóo, and Komornik in [6]. Note that the original definition was
given for 1 < β < 2, A = {0, 1} only.

Let β ∈ C, |β| > 1 and let A ⊂ C be finite. We set

XA(β) =

{
n∑

i=0

aiβ
i : n ∈ N, ai ∈ A

}
.

Many authors contributed to the study of XA(β), namely to the following two prop-
erties. We say that a set X ⊂ K is:

(1) uniformly discrete, if 0 is not an accumulation point of X −X ;
(2) relatively dense, if there exists R > 0 such that for every z ∈ K we have

BR(z) ∩X 6= ∅.

If both conditions are satisfied, then X is said to be a Delone set. The question when
is the spectrum of a real β > 1 with an integer alphabet {0, 1, . . . , m} a Delone set
in R+ was completely solved recently in [7]. Finer results on the structure of gaps of
XA(β), their lengths or frequencies, were given for instance in [5, 8, 13]. Spectra of
complex bases β with integer alphabet were considered in [20, 10].

Our result stated as Theorem 2.5 puts into relation the relative density of the spec-
trumXA(β), the attractorK(β,A), and the possibility of periodic (β,A)-representations
of Q(β) and Z[β].

Theorem 2.5. Let β be an algebraic number without conjugates on the unit circle,
and let A ⊂ Q(β) be finite. The following statements are equivalent.

(1) Q(β) ⊆ PerA(β);
(2) Z[β] ⊆ PerA(β);
(3) The spectrum XA(β) is relatively dense in Kβ.
(4) 0 ∈ int(K(β,A)) in Kβ.

The strength of Theorem 2.5 is that is connects objects that were already studied
in the literature. A special case of the equivalence of (3) and (4) in case Kβ = C was
stated in [9]. Tiling properties of the attractors K(β,A) with β expanding and with
specific digit alphabets were studied in [17].

3. Proofs of the main results

Before proving Theorem 2.1, we prove the following lemma.

Lemma 3.1. Let β be an algebraic number. Then
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(1) Z[β] is relatively dense in Kβ;
(2) XA(β) is uniformly discrete in Kβ for any A ⊂ Q(β) finite.

Proof. According to Lemma 3.2. of [17], Z[β] has a finite index in the set

OS̃β
= {x ∈ Q(β) : |x|p ≤ 1 for all p /∈ S̃β}

with S̃β = {p : p|∞ or |β|p > 1}. Moreover (Lemma 3.1. ibid.), OS̃β
is Delone in

K̃β =
∏

p∈S̃β
Kp. The relatively dense set OS̃β

in K̃β is also relatively dense in Kβ ,

because in Kβ it can be perceived through the projection

K̃β → Kβ : (xp)p∈S̃β
→ (xp)p∈Sβ

with Sβ ⊆ S̃β.
For the uniform discretness ofXA(β) we show that the origin is not an accumulation

point of XA(β) − XA(β) = XA−A(β) in Kβ . From the p-adic product formula we
have that ∏

p

|z|p =
∏

p∈Sβ

|z|p
∏

p/∈Sβ

|z|p = 1.

Notice that for any point of XA−A(β) the product over p /∈ Sβ is bounded from above
by a constant dependent on β and A. Thus the product over p ∈ Sβ cannot tend to
zero, implying that the origin of Kβ is not an accumulation point of XA−A(β). �

Proof of Theorem 2.1. Consider the set

Dm =
∏

p|∞
|β|p>1

B1(0)×
∏

p|∞
|β|p=1

Bm(0)×
∏

p∤∞
|β|p>1

Op ⊂ Kβ .

First we show that there is A ⊂ Q(β), such that βDm ⊆
⋃

a∈ADm + a holds for any
m ≥ 1.

Set m = 1, then we clearly have

βD1 =
∏

p|∞
|β|p>1

B|β|p(0)×
∏

p|∞
|β|p=1

B1(0)×
∏

p∤∞
|β|p>1

pνp(β),

where νp(x) is the valuation function. For the archimedean places it is obvious that
we can find Bp, such that B|β|p(0) ⊆

⋃
b∈Bp

B1(0) + b holds. For the non-archimedean

places even a stronger property holds: pνp(β) =
⋃

b∈Bp
Op+ b. Then a cover of βD1 can

be constructed through the cartesian product

βD1 ⊆
⋃

b∈B

D1 + b with B =
∏

p∈Sβ

Bp ⊂ Kβ .

For m > 1 and any archimedean place p such that |β|p = 1 we use the following.
If B1(0) ⊆

⋃
b∈Bp

B1(0) + b holds, then it also holds that Bm(0) ⊆
⋃

b∈Bp
Bm(0) + b

(with the same Bp). This is a simple consequence of the triangle inequality. Hence
the construction above yields βDm ⊆

⋃
b∈B Dm + b with B independent of m.
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Now we apply Proposition 2.4 to obtain an alphabet A ⊂ Q(β). To make use of
the approximation theorem, we need a cover with an “overlap”, in other words

(2) Dm + δ ⊆
⋃

b∈B

Dm + b for any |δ|β < ε.

Indeed, the condition (2) holds for the follwing reasons. For the archimedean places,
it is apparent from the construction. For the finite places it is also trivial that
Br(x) = Br(x) + δ for δ sufficiently small. Therefore the overlapping condition holds
in each embedding, and consequently also in (2). Applying Proposition 2.4, this
concludes that there is A ⊆ Q(β) such that

βDm ⊆
⋃

a∈A

Dm + a holds for any m ≥ 1.

Now we show how an eventually periodic (β,A)-representation is obtained. Fix
m ≥ 1. For x ∈ Dm we define

T (x) = βx−D(x) : Dm → Dm with D(x) ∈ A.

Defined in such way, we directly obtain that the sequence (|T n(x)|p)n∈N is bounded
for any p ∈ Sβ. Moreover, for the infinite places not belonging to Sβ we have that
|T n(x)|p = |βT n−1(x) − a|p < Const(β,A) eventually, because |β|p < 1. For the
finite places not belonging to Sβ we use the strong triangle inequality to obtain
|T n(x)|p < Const(x, β,A) eventually. For all places not contained in β, x,A (these
are all but finitely many places) we have |T n(x)|p = 1. Altogether (T n(x))n∈N is
finite. This shows that x ∈ Dm admits an eventually periodic (β,A)-representation
x =

∑+∞
i=1 aiβ

−i with ai = D(T i−1(x)).
Given x ∈ Q(β), we can find L ∈ N such that β−Lx ∈ Dm with

m = ε+max{|x|p : |β|p = 1, p | ∞}.

Hence every x has an eventually periodic (β,A)-representation
∑+∞

i=1 aiβ
−i+L. The

existence of an integer alphabet then follows from Lemma 8 of [3]. �

Proof of Theorem 2.3. Fix p ∈ Sβ such that |β|p > 1 and not corresponding to the
identical embedding. For any x with an eventually periodic (β,A)-representation

x =
∑+∞

i=1 aiβ
−i we have |x|p ≤

max{|a|p: a∈A}
|β|p−1

=: C(β,A, p) by summing the geometric

series. Since Q(β) is dense in Kβ , for any c > 0, one can find y ∈ Q(β) such that
|y|p > C(β,A, p), and |y| < c. Thus y cannot have an eventually periodic (β,A)-
representation.

For the other direction, let β have only one place such that |β|p > 1. Then following
the proof of Theorem 2.1, each x ∈ Q(β) ∩B1(0) is contained in

Dm = B1(0)×
∏

p|∞
|β|p=1

Bm(0), m = ε+max{|x|p : |β|p = 1, p | ∞},

i.e. x =
∑+∞

i=1 aiβ
−i. �
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Proof of Theorem 2.5. The implication 1) =⇒ 2) is trivial.
2) =⇒ 3) : For a fixed representation x =

∑+∞
i=−k aiβ

−i define the integral and the
fractional part as

inp(x) =

0∑

i=−k

aiβ
−i and frp(x) =

+∞∑

i=1

aiβ
−i

respectively. For any z ∈ Z[β] and any p ∈ Sβ we then have an estimation for an
eventually periodic representation of z

|z − inp(z)|p = |frp(z)|p ≤ C(β,A, p).

Since inp(z) ∈ XA(β), we obtained that XA(β) is relatively dense in Z[β] which is
relatively dense in Kβ by Lemma 3.1. The statement then follows.

3) =⇒ 4) : Fix z ∈ B1(0) ⊂ Kβ . From the relative density of XA(β) we have
that there are xn ∈ XA(β) such that |βnz − xn|β < rC holds for all n ∈ N. Then
|z − β−nxn|β < |β|−n

β rC → 0. For each n ∈ N, we obtained (β,A)-representations of

yn := β−nxn as yn =
∑+∞

i=−L(n) bi(n)β
−i with only finitely many nonzero digits bi(n).

Moreover, z = inp(yn) + frp(yn) + ε(n) with |z|β, | frp(yn)|β, |ε(n)|β being bounded
by a constant independent of n. Thus | inp(yn)|β is also bounded and can take only
finitely many values because of the uniform discretness of XA(β). Consequently,
we can write yn =

∑+∞
i=−L bi(n)β

−i with L being independent of chosen z ∈ B1(0).

Clearly, the sequence (β−L−1yn)n∈N ⊂ K(β,A) converges to β−L−1z which belongs to
K(β,A), because K(β,A) is compact. To conclude, β−L−1B1(0) is contained in Kβ .

4) =⇒ 1) : Let z ∈ Q(β). Then for some L ∈ N we have that β−Lz ∈ K(β,A),
i.e. β−Lz =

∑+∞
i=1 aiβ

−i. Define zi := βzi−1 − ai with z0 = β−Lz (cf. (1)). We have
that zn ∈ K(β,A) for all n ∈ N, hence (|zn|p)n∈N is bounded for each p ∈ Sβ. For the
p /∈ Sβ, the sequence (|zn|p)n∈N is bounded because |β|p ≤ 1, and from the (strong)
triangle inequality. Moreover, for almost every p we have that |zn|p = 1 for each n ∈ N.
We conclude that (zn)n∈N takes finitely many values. The possibility of choosing an
eventually periodic representation then follows from Thurston’s construction (1). �

4. Comments

Let us conclude the paper with some comments and open questions.

(1) Motivated by language theorerical problems, J. Š́ıma and P. Savický studied
in [19] the so called quasi-periodic β-expansions. In a yet unpublished subse-
quent work they showed that the Salem root of x4 − x3 − x2 − x + 1 allows
eventually periodic (β,A)-representations with the alphabet {−2,−1, 0, 1, 2}.

(2) The alphabet arising from the proof of Theorem 2.1 is “unnecessarily” large.
Assume that β is a complex Pisot number, i.e. Kβ = C. The authors of [4]
showed in the proof of their Theorem 4.4 that 0 ∈ int(K(β,A)) for A =
{−M, . . . ,M} with 2M + 1 > ββ + |β + β|. How tight is this bound?
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(3) Is there a version of Theorem 2.5 for bases with a conjugate on the unit circle?
Obviously, the last equivalence needs to be omitted in this case, for the maps
x 7→ β−1(x+ a) are not contractions on Kβ anymore.

(4) Can eventually periodic representations be generated by some kind of “simple”
dynamic system? For example, similarly to the case of the greedy expansions
and shift-radix-systems acting on Zd, see [1].
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