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UNIVALENT POLYNOMIALS

AND KOEBE’S ONE-QUARTER THEOREM

DMITRIY DMITRISHIN, KONSTANTIN DYAKONOV, AND ALEX STOKOLOS

Abstract. The famous Koebe 1

4
theorem deals with univalent (i.e., injective)

analytic functions f on the unit disk D. It states that if f is normalized so that
f(0) = 0 and f ′(0) = 1, then the image f(D) contains the disk of radius 1

4
about

the origin, the value 1

4
being best possible. Now suppose f is only allowed to range

over the univalent polynomials of some fixed degree. What is the optimal radius
in the Koebe-type theorem that arises? And for which polynomials is it attained?
A plausible conjecture is stated, and the case of small degrees is settled.

1. Introduction

Suppose you can solve a certain problem that involves general analytic functions,
perhaps lying in some (fairly large) class. Then you restrict your attention to the
set of polynomials of a fixed degree that are in the same class. Can you also solve
the restricted (polynomial) version of the problem that arises? Well, not necessarily.
While many a problem is sure to simplify or trivialize completely, there are others
that become dramatically harder. In what follows, we deal with a situation of the
latter kind.

Our starting point is the classical Koebe one-quarter theorem, a cornerstone of
geometric function theory. Recall, first of all, that an analytic function on a domain
Ω ⊂ C is said to be univalent if it is one-to-one, i.e., takes distinct values at distinct
points of Ω. Now let S denote the set of univalent functions f on the disk D := {z ∈
C : |z| < 1} that have a Taylor series expansion of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

(so that f(0) = 0 and f ′(0) = 1). The one-quarter theorem – which was actually
conjectured by Koebe in 1907 and proved somewhat later by Bieberbach – reads as
follows.

Theorem 1.1 (Koebe’s 1

4
theorem). For every f ∈ S, the range f(D) contains the

disk {w : |w| < 1

4
}.
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See, e.g., [7, Chapter 2] or [12, Chapter 14] for a proof. Furthermore, since the
so-called Koebe function

(1.2) K(z) :=
z

(1− z)2
= z + 2z2 + 3z3 + . . . , z ∈ D,

belongs to S and maps D onto the slit plane C \ (−∞,−1

4
], we see that the radius

1

4
in Koebe’s theorem is optimal; indeed, no larger number would do.
Motivated by this result, we introduce the following notation. Given a set X ⊂ S,

we write ρ(X) for the supremum of those r > 0 for which the common range⋂
f∈X f(D) contains the disk {w : |w| < r}. The number ρ(X) will be referred to as

the Koebe radius for X . Clearly, we always have ρ(X) ≥ 1

4
.

An important subclass of S, to be denoted by SR, is the set of univalent functions
f of the form (1.1) whose coefficients an are all real. Because the Koebe function K
is in SR, we see that

ρ(SR) = ρ(S) =
1

4
.

We further remark that the critical value 1

4
coincides with

(1.3) |K(−1)| = min{|K(ζ)| : ζ ∈ T},
where T := ∂D is the unit circle, and moreover, −1 is the only minimum modulus
point for K on T.

Among the many results that highlight the extremal role of the Koebe function K
in S and/or SR, the most famous is undoubtedly the (former) Bieberbach conjecture,
now de Branges’ theorem, which establishes sharp bounds for the coefficients an in
(1.1). Namely, it states that every f ∈ S (and hence every f ∈ SR) satisfies |an| ≤ n
for n = 2, 3, . . . , the inequalities being all strict unless f is the Koebe function K or
one of its rotations. (In the case of SR, the only nontrivial rotation to be considered
is z 7→ −K(−z).)

We mention in passing that the SR version of the Bieberbach conjecture was
relatively easy to settle; one of the proofs (as outlined in [7, p. 269]) makes use of
Suffridge’s work on univalent polynomials, a topic to be touched upon below. By
contrast, the full version of the conjecture had remained open for almost 70 years,
defying numerous attacks, until de Branges finally cracked it by using a highly
sophisticated array of techniques (see [3, 8]).

It is noteworthy that the two extremal problems – those underlying the Koebe 1

4

theorem and the Bieberbach conjecture – are tightly linked together. In fact, the
basic inequality |a2| ≤ 2, which was discovered by Bieberbach in 1916, both led him
to a proof of Theorem 1.1 and provided the basis for his coefficient conjecture.

Now, we are interested in polynomial versions of Theorem 1.1. The extremal
problem that arises, to be described in a moment, will be referred to as the polyno-
mial Koebe problem. Given a positive integer N , let UN (resp., UN,R) denote the set
of univalent polynomials p of the form

(1.4) p(z) = z +

N∑

n=2

anz
n
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with complex (resp., real) coefficients; here and below, univalence is only assumed
in D. Thus, UN ⊂ S and UN,R ⊂ SR. We then ask: What are the values of the Koebe
radii ρ(UN ) and ρ(UN,R)? Also, what are the extremal “Koebe-type” polynomials that
minimize the quantity

(1.5) dist (p(T), {0}) := min{|p(ζ)| : ζ ∈ T}

among all p in UN and/or UN,R?
Clearly, the optimal lower bound for (1.5), as p ranges over UN or UN,R, coincides

with the Koebe radius of the corresponding class. Once again, the case of real
coefficients seems to be more tractable, so we restrict most of our attention to UN,R.

Needless to say, the problem is trivial for N = 1. Indeed, the only element of U1

(as well as of U1,R) is the identity function z, whence

ρ (U1) = ρ (U1,R) = 1.

The case N = 2 is not much harder. This time, the univalent polynomials of the
form z+a2z

2 are precisely those with |a2| ≤ 1

2
; the extremal ones have |a2| = 1

2
, and

a simple calculation shows that

ρ (U2) = ρ (U2,R) =
1

2
.

Typically enough, passing to higher degrees makes life increasingly painful, and
the case of N = 3 already seems to deserve a serious analysis. To begin with, it
is far from trivial to determine the values of a2 and a3 for which the polynomial
z + a2z

2 + a3z
3 is univalent in D. This has been done, however, and we recall the

result (or rather its U3,R version) in Section 4 below. Then we proceed to solve our
polynomial Koebe problem for U3,R.

Meanwhile, we pause to speculate on the case of general N , trying to guess what
the extremal polynomials should be. One natural – and tantalizingly sexy – candi-
date that comes to mind is Suffridge’s remarkable family of univalent polynomials,
which we discuss in some detail (only to reject it shortly afterwards). The Suffridge
polynomials are known to approximate and mimic the Koebe function K in several
ways, so we find it quite surprising that this time they fall short of being extremal.
Then we come up with another – newborn – collection of polynomials which, we
strongly believe, is the right candidate for the job. Finally, the solution we give
for N = 3 serves to corroborate the conjecture, and also allows us to compare the
extremal properties of the two competing families of polynomials.

2. The Suffridge polynomials – a rejected candidate

In [13], Suffridge introduced an important family of polynomials, which turned
out to enjoy a number of elegant extremal properties. Namely, for N = 1, 2, . . . , he
defined

qN(z) :=
N∑

k=1

Ak,N z
k,
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where

(2.1) Ak,N :=
N − k + 1

N
· sin πk/(N + 1)

sin π/(N + 1)
,

and verified that each qN is univalent in D. Since A1,N = 1, we have qN ∈ UN,R for
every N . We further note thatAN,N = 1/N , which already reflects a certain extremal
property of qN . (Indeed, the highest coefficient aN of a univalent polynomial (1.4)
must satisfy |aN | ≤ 1/N . To see why, look at the constant term of the monic
polynomial (NaN )

−1p′(z) which has no zeros in D.) Moreover, Suffridge showed
that whenever p ∈ UN,R is a polynomial of the form (1.4) with |aN | = 1/N , the
remaining coefficients of p are also dominated by those of qN , so that

(2.2) |ak| ≤ Ak,N for k = 2, . . . , N.

When N ≤ 4, it is actually true that every polynomial (1.4) lying in UN,R obeys
Suffridge’s estimates (2.2) unrestrictedly, the assumption that |aN | = 1/N being no
longer needed. (In the nontrivial cases N = 3 and N = 4, this follows from results
of [1, 2, 10] and of [11], respectively.) It is also noteworthy that the polynomial

(2.3) q3(z) = z +
2
√
2

3
z2 +

1

3
z3

maximizes |a2| and |a3| among all p’s of the form p(z) = z + a2z + a3z
3 in U3, not

just in U3,R; see [1] or [2].
These extremal properties of the Suffridge polynomial qN seem to indicate that

its role in UN,R is similar to that of the Koebe function K in S or SR, the analogy
being especially clear-cut for small degrees. On the other hand, for every fixed k,
the coefficients Ak,N increase to k (i.e., to the kth coefficient of the Koebe function)
as N → ∞. Consequently, limN→∞ qN = K uniformly on compact subsets of D.

Now let us try and estimate the distance in (1.5) for p = qN . The Koebe-type
behavior of qN suggests, in conjunction with (1.3), that we begin by looking at
|qN (−1)|. In fact, Theorem 1.1 tells us that

(2.4)
1

4
≤ min{|qN(ζ)| : ζ ∈ T} ≤ |qN(−1)| ,

whereas a straightforward computation yields

qN (−1) = −N + 1

4N

[
cos

π

2(N + 1)

]−2

,

so that limN→∞ qN(−1) = −1

4
. We see that the upper bound in (2.4) tends to 1

4
as

N → ∞, meaning that the qN ’s are asymptotically sharp in the polynomial Koebe
problem. Are they also sharp for each individual N?

This last question was explicitly raised in [5], where polynomial analogues of
Theorem 1.1 were also touched upon, and this has largely spurred our interest in
the problem. While the above discussion seems to provide evidence in favor of
a “yes” answer, we now disprove the conjecture (at least in the UN,R setting) by
showing that the actual answer is a resounding “no,” already for N = 3. As a
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matter of fact, the Suffridge polynomial (2.3) fails to be extremal for the Koebe
problem in U3,R since it loses the game to

(2.5) p3(z) := z +
2√
5
z2 +

1

2

(
1− 1√

5

)
z3,

another remarkable polynomial from U3,R, which turns out to be unbeatable. Specif-
ically, the corresponding values of the distance in (1.5) happen to be

(2.6) min
ζ∈T

|p3(ζ)| = |p3(−1)| = 3−
√
5

2
= 0.3819 . . .

and

(2.7) min
ζ∈T

|q3(ζ)| =
∣∣∣∣∣q3

(
−2

√
2

3
± i

3

)∣∣∣∣∣ =
2

3
√
3
= 0.3849 . . . ,

so p3 does indeed slightly better.
The facts just mentioned (i.e., the univalence of p3, its extremality in the Koebe

problem for U3,R, and hence also its supremacy over q3) will be verified in Sections
4 and 5 below. The calculations leading to (2.6) and (2.7) will be provided there
as well. But first we have to place the polynomial p3 where it belongs. Namely,
it should be viewed as a member of a certain lordly family, {pN}, which we now
describe.

3. A new, more promising, family of polynomials

and the conjectured solution

Recall, to begin with, that the Chebyshev polynomials of the second kind, Un,
are defined for n = 0, 1, 2, . . . by the identity

Un(cos θ) =
sin(n+ 1)θ

sin θ
, θ ∈ (−π, π].

Thus,

U0(t) = 1, U1(t) = 2t, U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t,

and so forth. Next, for a positive integer N , we put

cN := cos
π

N + 2

and consider the numbers

(3.1) Bk,N :=
U ′
N−k+1(cN )

U ′
N (cN)

· Uk−1(cN)

with k = 1, . . . , N . Finally, we define

pN(z) =
N∑

k=1

Bk,N z
k (N = 1, 2, . . . ).



6 DMITRIY DMITRISHIN, KONSTANTIN DYAKONOV, AND ALEX STOKOLOS

It should be noted that B1,N = 1 for each N . Also, rewriting the expression (2.1)
for the Suffridge coefficients as

Ak,N :=
N − k + 1

N
· Uk−1(cN−1),

one might observe a certain – perhaps remote – kinship between the Ak,N and the
Bk,N , or equivalently, between the two families of polynomials. The new formulas
(3.1) look somewhat more bizarre, if not a bit scary, but there are reasons for them
being what they are.

In fact, the polynomials pN arose quite recently (see [6]) in connection with an-
other extremal problem, which is fairly close in spirit to the current one. The
problem was: Given N ∈ N, maximize the quantity

(3.2) µ(p) := min {Re p(ζ) : ζ ∈ T, Im p(ζ) = 0}
over all polynomials p of the form (1.4) with real coefficients (but without assuming
univalence). It was then shown in [6] that the unique maximizing polynomial is
precisely pN , so that the best upper bound for µ(p) is µ(pN), which in turn equals
−1/(4c2N).

The first two polynomials in the pN family are

p1(z) (= q1(z)) = z

and

p2(z) (= q2(z)) = z +
1

2
z2,

both being obviously univalent in D. The next one, p3, is our old friend (2.5) which
is again univalent in D, as we shall see in Section 4 below. Then comes

p4(z) = z +
7

6
z2 +

2

3
z3 +

1

6
z4,

a polynomial whose univalence has also been established; a nice proof can be found
in [4]. In fact, p4 is even known to be starlike (meaning that it maps D conformally
onto a starlike domain), since it meets the starlikeness criterion given in [9, pp. 515–
516]. We have been able to verify univalence for p5 and p6 as well, but the case
of bigger N ’s remains open. We do believe that pN is actually univalent in D, and
hence pN ∈ UN,R, for all N . Numerical simulations reinforce this belief substantially.

We further conjecture that the pN ’s are extremal in the polynomial Koebe prob-
lem, so that for every fixed N in N, pN minimizes the distance in (1.5) among all
p ∈ UN,R. The Koebe radius ρ(UN,R) must then agree with minζ∈T |pN(ζ)|, and it is
very likely that this last quantity always equals |pN(−1)|, which in turn simplifies
to 1/(4c2N). We go on to claim that the same result should hold in the case of com-
plex coefficients, so that UN has presumably the same Koebe radius and the same
extremal polynomials as UN,R. Thus, in particular, it is conjectured that

(3.3) ρ (UN ) = ρ (UN,R) =
1

4 cos2(π/(N + 2))
, N ∈ N.

There are several sources for our certainty, beyond a reasonable doubt, that the
conjectured solution is correct. These include the appearance of the pN polynomials
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in the cognate extremal problem involving (3.2), as mentioned above, plus the anal-
ysis of the case N = 3 (which is the bifurcation point between the pN ’s and qN ’s) to
be carried out below, plus the numerical experiments we performed when playing
around with polynomials of higher degrees.

4. Polynomials of degree 3: preliminaries

Which functions p of the form

(4.1) p(z) = z + a2z
2 + a3z

3

are univalent in D? The answer was first obtained in [10] and then rediscovered, via
different approaches, in [1] and [2]. To state it (which we only do for the case where
a2 and a3 are real), we begin by describing the boundary Γ of the univalence region
in the (a2, a3) plane.

The portion Γ+ of Γ that lies in the half-plane {a2 ≥ 0} can be written as
Γ+ = γ1 ∪ γ2 ∪ γ3, where

• γ1 is the segment of the line 2a2−3a3 = 1 with endpoints
(
0,−1

3

)
and

(
4

5
, 1
5

)
;

• γ2 is the (shorter) arc of the ellipse a
2
2+4(a3− 1

2
)2 = 1 with endpoints

(
4

5
, 1
5

)

and
(

2
√
2

3
, 1
3

)
;

• γ3 is the segment of the line a3 =
1

3
with endpoints

(
2
√
2

3
, 1
3

)
and

(
0, 1

3

)
.

(The two line segments and the arc are assumed to be closed.) We then define

Γ− :=
{
(a2, a3) ∈ R

2 : (−a2, a3) ∈ Γ+

}

and Γ := Γ+∪Γ−. Thus, Γ is a simple closed curve which is symmetric with respect
to the a3 axis. Finally, we write Ω for the bounded connected component of C \ Γ
and put V := Ω ∪ Γ.

The required result from (any of) [1, 2, 10] can now be stated as follows.

Lemma 4.1. For (a2, a3) ∈ R2, the polynomial (4.1) is univalent in D if and only
if (a2, a3) belongs to V .

Obviously enough, the univalence region V is also symmetric with respect to the
a3 axis (as is Γ). This is due to the fact that the polynomial (4.1) and its reflection

p∗(z) := −p(−z) = z − a2z
2 + a3z

3

are, or are not, univalent simultaneously.

The Suffridge polynomial (2.3) corresponds to the vertex
(

2
√
2

3
, 1
3

)
= γ2 ∩ γ3

which sticks out in both coordinate directions and has a special, remarkably extreme

position in V (along with the symmetric point
(
−2

√
2

3
, 1
3

)
that represents q∗3). Thus,

when faced with an extremal problem for U3,R, one is indeed tempted to contemplate
q3 and q∗3 as the most likely extremizers. In our case, however, the actual winners
turn out to be p3 (as defined by (2.5) above) and p∗3, a fact we shall soon verify. The
corresponding points in the coefficient plane are

(4.2)

(
± 2√

5
,
1

2

(
1− 1√

5

))
;
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both belong to Γ (in fact, the one with the + sign lies on the arc γ2), so univalence
is ensured by Lemma 4.1. The points (4.2) do not appear to enjoy a particularly
privileged position, though, so the extremal nature of p3 and p∗3 can scarcely be
viewed as predictable.

Another preliminary question we need to discuss is this: Given a polynomial (4.1)
with a2, a3 ∈ R, where does it attain its minimum modulus value on the unit circle
T?

We are only interested in the case a3 6= 0. For a point z = x + iy ∈ T, a
straightforward calculation yields

(4.3)
|p(z)|2 = (1 + a2z + a3z

2)(1 + a2z + a3z
2)

= 1 + a22 + a23 − 2a3 + 2a2(1 + a3)x+ 4a3x
2 =: Φ(x).

Originally, x := Re z runs through the interval [−1, 1], but we extend the quadratic
polynomial Φ(x) to all x ∈ R. Then

Φ′(x) = 2a2(1 + a3) + 8a3x,

and the only zero of this derivative is

(4.4) x0 = −a2(1 + a3)

4a3
.

The function Φ(x) therefore attains its minimum (if a3 > 0) or maximum (if a3 < 0)
at x0, its value at the critical point being

(4.5) Φ(x0) = (1− a3)
2

(
1− a22

4a3

)
,

as verified by direct computation. In particular, this last quantity will be nonnega-
tive whenever x0 happens to be in [−1, 1]; to see why, recall (4.3).

In terms of p, two types of behavior may occur. To distinguish between them, we
now introduce the appropriate terminology.

Definition 4.2. A polynomial p is said to be of type I if

(4.6) min{|p(z)| : z ∈ T} = min{|p(−1)|, |p(1)|}.
Otherwise we say that p is of type II.

It should be noted that, for a polynomial p with nonnegative coefficients, (4.6)
simplifies to

(4.7) min{|p(z)| : z ∈ T} = |p(−1)|.
Thus, polynomials of type I are essentially those that mimic the Koebe function K
by sharing its property (1.3).

The above discussion leads us to the following conclusion.

Lemma 4.3. Let p be a polynomial of the form (4.1) with real coefficients and with
a3 6= 0. In order that p be of type II, it is necessary and sufficient that a3 > 0 and
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−1 < x0 < 1, where x0 is defined by (4.4). In this case,

(4.8) min{|p(z)| : z ∈ T} = |p(x0 ± iy0)| = |1− a3|
(
1− a22

4a3

)1/2

,

where y0 :=
√

1− x20. Moreover, x0 ± iy0 are then the only points of T where the
minimum in question is attained.

This result allows us to compute the quantity (1.5) for p = p3 and p = q3, thus
verifying the announced formulas (2.6) and (2.7).

The polynomial p3 has a2 =
2√
5
and a3 =

1

2

(
1− 1√

5

)
, and plugging this into (4.4)

gives

x0 = −1

4
− 7

20

√
5 = −1.0326 . . . .

It now follows from Lemma 4.3 that p3 is of type I, and so

(4.9) min{|p3(z)| : z ∈ T} = |p3(−1)|.

The right-hand side of (4.9) reduces to (3−
√
5)/2, and we arrive at (2.6).

As to the Suffridge polynomial q3, this time we have

x0 = −2
√
2

3
(= −a2) = −0.9428 . . . ,

so Lemma 4.3 tells us that q3 is of type II. The corresponding y0 equals 1

3
(= a3),

and substituting the appropriate values into (4.8) yields (2.7).

5. Polynomials of degree 3: solution

For a polynomial p, we put

m(p) := min{|p(ζ)| : ζ ∈ T}.
To solve the Koebe problem for U3,R, we need to minimize the functional m(p) over
all p ∈ U3,R. This is done in Theorem 5.1 below, where the minimizing polynomials
are exhibited; as promised, these are shown to be p3 and p∗3.

A couple of conventions will be made. First, if X is a class of polynomials and
F ∈ X , we say that F is extremal for X to mean that

inf{m(p) : p ∈ X} = m(F ).

Secondly, every polynomial p in U3,R will be identified, via (4.1), with the corre-
sponding point (a2, a3) in the plane (or rather in the univalence region V coming
from Lemma 4.1); we shall occasionally write p = (a2, a3) to make this explicit.
Also, given a set M ⊂ V (⊂ R2), we may now use the notation p ∈ M without any
risk of confusion.

Theorem 5.1. The only extremal polynomials for the class U3,R are p3, as defined
by (2.5), and its reflection p∗3.
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As a consequence, we see that the Koebe radius for U3,R equals m(p3), which
agrees with

1

4 cos2 π
5

=
3−

√
5

2
,

the conjectured (and now established) value of ρ(U3,R) from (3.3). It only remains
to prove Theorem 5.1.

Proof. The extremal polynomials must live on the boundary, Γ, of the univalence
region V . By symmetry, it suffices to consider

Γ+ = {(a2, a3) ∈ Γ : a2 ≥ 0},
which in turn decomposes as γ1 ∪ γ2 ∪ γ3; see the preceding section for definitions.

We begin by looking at the values of m(p) when p ∈ γ1. It is easy to check that,
whenever p = (a2, a3) is a point of γ1 with a3 > 0, we have

a2(1 + a3)

4a3
≥ 1.

Equivalently, the number x0 given by (4.4) is in (−∞,−1] for any such point, and
we deduce from Lemma 4.3 that the polynomials belonging to γ1 are all of type I.
It is also clear that every polynomial p ∈ γ1 satisfies

(5.1) |p(−1)| = 1− a2 + a3 ≤ 1 + a2 + a3 = |p(1)|.
Furthermore, on γ1 we have a3 =

1

3
(2a2 − 1), whence

(5.2) 1− a2 + a3 =
1

3
(2− a2),

the permissible values of a2 being those in [0, 4
5
]. We now combine (4.6), (5.1), and

(5.2) to get

m(p) = |p(−1)| = 1

3
(2− a2)

for each polynomial p = (a2, a3) ∈ γ1. Consequently,

(5.3) inf{m(p) : p ∈ γ1} =
1

3

(
2− 4

5

)
=

2

5
= 0.4.

Next, we turn to the case where p = (a2, a3) ∈ γ2. We know that γ2 contains
polynomials of both types, and we write σI (resp., σII) for the set of all polynomials
of type I (resp., II) that are in γ2. In fact, σI and σII are disjoint subarcs of γ2 whose
common endpoint p̃ = (ã2, ã3) ∈ γ2 is determined by the relation

ã2 =
4ã3

1 + ã3
.

(Thus, plugging a2 = ã2 and a3 = ã3 into (4.4) yields x0 = −1. A bit of inspection
shows that γ2 contains exactly one point with this property. We note that the
number ã3 satisfies 1

5
< ã3 <

1

3
and coincides with the unique positive root of the

equation t3 + t2 + 3t− 1 = 0.) Precisely speaking, σI is the closed subarc of γ2 with
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endpoints
(
4

5
, 1
5

)
and (ã2, ã3), while σII = γ2 \ σI is the complementary (half-open)

subarc with endpoints (ã2, ã3) and
(

2
√
2

3
, 1
3

)
.

Rewriting the equation of the ellipse (of which γ2 forms part) as

(5.4) a22 = 4a3(1− a3),

we may parametrize γ2 in the form

γ2 =

{(
2
√
t(1− t), t

)
: t ∈

[
1

5
,
1

3

]}
,

where σI and σII correspond to the parameter ranges
[
1

5
, ã3
]
=: JI and

(
ã3,

1

3

]
=: JII.

Accordingly, the quantity m(p) with p ∈ γ2 admits a fairly simple expression in
terms of the a3 coordinate. Namely, for p = (a2, a3) ∈ σI, we combine (4.7) with
(5.4) to obtain

(5.5) m(p) = |p(−1)| = 1− a2 + a3 = 1− 2
√
a3(1− a3) + a3,

whereas for p = (a2, a3) ∈ σII we invoke (4.8) in conjunction with (5.4) to get

(5.6) m(p) = (1− a3)

(
1− a22

4a3

)1/2

=
√
a3(1− a3).

Differentiating, we find that the function

ϕ(t) := 1− 2
√
t(1 − t) + t, t ∈ JI,

has a minimum at

t∗ :=
1

2

(
1− 1√

5

)

(which is an interior point of JI) and

min {ϕ(t) : t ∈ JI} = ϕ(t∗) =
3−

√
5

2
.

Moreover, t∗ is the only point in JI where the minimum in question is attained. We
further observe that the function

ψ(t) :=
√
t(1− t), t ∈ JII,

is increasing on its domain JII(⊂ (0, 1
3
]); this is again verified by differentiation.

From (5.5) and (5.6) we know that m(p) equals ϕ(a3) when p ∈ σI, and ψ(a3)
when p ∈ σII. The critical value t∗ of the a3 variable corresponds to the point
(2/

√
5, t∗) ∈ σI, which represents the polynomial p3. Because m(p) is also continuous

at p̃ (as it is everywhere else), the above facts about the ϕ and ψ functions allow us
to conclude that

(5.7) inf {m(p) : p ∈ γ2} = m(p3) =
3−

√
5

2

and that p3 is the only extremal polynomial for γ2.
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It remains to consider the case where p = (a2, a3) ∈ γ3. Since 0 ≤ a2 ≤ 2
√
2

3
and

a3 =
1

3
, the formula (4.4) yields x0 = −a2, whence in particular

−1 < −2
√
2

3
≤ x0 ≤ 0.

It now follows from Lemma 4.3 that p is of type II, and moreover,

m(p) =
1

3

(
4− 3a22

)1/2
.

Clearly, this is minimized by assigning the largest admissible value, 2
√
2

3
, to the a2

variable. In other words, the only extremal polynomial for γ3 is q3 =
(

2
√
2

3
, 1
3

)
, and

so

(5.8) inf{m(p) : p ∈ γ3} = m(q3) =
2

3
√
3
.

Finally, a quick glance at (5.3), (5.7) and (5.8) reveals that the smallest of the
three infima is that over γ2. This implies the extremality (and uniqueness) of p3
among all polynomials p = (a2, a3) ∈ U3,R with a2 ≥ 0. By symmetry, a similar role
is played by p∗3 among the U3,R polynomials with a2 < 0. The proof is complete. �
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