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Abstract

We establish the convergence of an adaptive spline-based finite element method of a fourth order
elliptic problem with weakly-imposed Dirichlet boundary conditions using polynomial B-splines.

1 Introduction

Standard finite element methods (FEM) are based on triangular mesh partitions which have
proven to be very robust at discretizing domains with complex geometry and are well-suited
to problems requiringH1 conforming shape functions. Higher degrees of smoothness across
the element inferfaces is however much more involved. In recent years, with the emergence
of isogeometric analysis (IGA); see Hughes et al [18], much attention has been directed
at polynomial spline-based methods. Motivation began with the desire to integrate the
CAD and analysis stages of design. As an immediate bonus, ploynomial spline-based
meshes makes it easy to construct arbitrarily high orders of smoothness due to the mesh
recutangular structure. In addition, NURB curves are robust at capturing curved geome-
tries without the accumilation interpolation errors arising from standard trinagular-based
FEM meshes. However there is a drawback of using smooth spline-based bases for there
is difficulty in prescribing essential boundary conditions (BC). Unlike nodal-based finite
elements, smooth polynomial splines arrising from B-splines or NURBS are typically non-
interpolatory which makes prescriptions of Dirichlet boundary conditions challenging and
lead to highly oscillatory errors near the boundary [7]. In an earlier paper by Nitsche [?]
a weaker prescription of the boundary conditions is carried where BC are incorprated in
the variational form rather than imposing it directly onto the discrete space [29]. This
idea hass been recently applied to the bi-Laplace operator [13] using spline-based bases.
An initial a posteriori analysis with this framework has been carried in [19] where the
reliability and efficiency estimates are derived for the Poisson problem. However, the esti-
mates included weighted boundary terms with negative powers and relied on a saturation
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assumption. Recently, the idea has been employed in the treatment of a fourth-order el-
liptic problem appearing in geophysical flows [20],[3] with the added improvement that
terms with negative powers were shown to be irrelevant much like in the case of adaptive
discontinuous Galerkin methods (ADFEM)[9]. While the analyses of [21],[22] justifies the
use of the saturation assumption using a local lower bound in the Poisson problem, no such
estimate is yet available for its fourth-order counterpart. In this work we aim to remove the
saturation assumption as well as provide a convergence proof standard in residual-based
AFEM literature of [11]. Many of the ideas are borrowed from the treament of ADFEM
methods in [9] highlighting the similarity in nature of both mehods, theoreticaly as well as
numerically.

Let Ω be a bounded domain in R2 with polygonal boundary Γ. For a source function
f ∈ L2(Ω) we consider the following homogenous Dirichlet boundary-valued problem

Lu(x) := ∆2u(x) = f(x) in Ω (1)

u = ∂u/∂ν = 0 on Γ.

The adaptive procedure iterates over the following modules

SOLVE −→ ESTIMATE −→ MARK −→ REFINE (2)

The module SOLVE computes a hierarchical polynomial B-spline (HB) approximation U
of the solution u with respect to a hierarchical partition P of Ω. For the module ESTI-

MATE, we use a residual-based error estimator ηP derived from the a posteriori analysis
in Section 3. The module MARK follows the Dölfer marking criterion of [12]. Finally,
the module REFINE produces a new refined partition P∗ satisfying certain geometric
constraints to ensure sharp approximation.

1.1 Notation

We begin by laying out the notational conventions and function space definitions used in
this presentation. Let P be a partition of domain Ω consisting of square cells τ following
the structure described in []. Denote the collection of all interior edges of cells τ ∈ P by
EP and all those along the boundary Γ are to be collected in GP . We assume that cells τ
are open sets in Ω and that edges σ do not contain the vertices of its affiliating cell. Let
diam (ω) be the longest length within a Euclidian object ω and set hτ := diam (τ) and
hσ := diam (σ). Then let the mesh-size hP := maxτ∈P hτ . Define the boundary mesh-size
function hΓ ∈ L∞(Γ) by

hΓ(x) =
∑

σ∈GP

hσ1σ(x), (3)
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where the 1σ are the indicator functions on boundary edges. We define the support exten-
sion for a cell τ ∈ P by

ωτ = {τ ′ ∈ P : suppβ ∩ τ ′ 6= ∅ =⇒ suppβ ∩ τ 6= ∅}, (4)

indicating the collection of all supports for basis function β’s whose supports intersect τ .
Analogously, we denote the support extension for an edge σ ∈ EP ∪ GP by

ωσ = {τ ∈ P : suppβ ∩ τ 6= ∅ =⇒ suppβ ∩ τ 6= ∅, σ ⊂ ∂τ}. (5)

Let Hs(Ω), s > 0, be the fractional order Sobolev space equipped with the usual norm
‖ · ‖Hs(Ω); see references [1],[17]. Let Hs

0(Ω) be given as the closure of the test functions
C∞
c (Ω) in ‖ · ‖Hs(Ω). The semi-norm | · |Hs(Ω) defines a full norm on Hs

0(Ω) by virtue of

Poincaré’s inequality. Moreover, the semi-norm ‖∆ · ‖L2(Ω) defines a norm on H2
0 (Ω). Let

E(Ω) =
{

v ∈ H2
0 (Ω) : Lv ∈ L2(Ω)

}

. (6)

By H−2(Ω) = (H2(Ω))′ the dual of H2(Ω) with the induced norm

‖F‖H−2(Ω) = sup
v∈H2(Ω)

〈F, v〉

‖v‖H2(Ω)
. (7)

We will be making use of the following mesh-dependent (semi)norms on H2(Ω) which we
employ in Nitsche’s discretization:

‖v‖2s,P =
∑

σ∈GP

h−2s
σ ‖v‖2L2(σ), (8)

|||v|||2P = ‖∆v‖2L2(Ω) + γ1‖v‖
2
3/2,P + γ2

∥

∥

∂v
∂ν

∥

∥

2

1/2,P
, (9)

with γ1 and γ2 are suitably large positive stabilization parameters. Finally, we denote
a � b to indicate a ≤ Cb for a constant C > 0 assumed to be independent of any notable
parameters unless otherwise stated.

1.2 Problem setup

The natural weak formulation to the PDE (1) reads

Find u ∈ H2
0 (Ω) such that a(u, v) = ℓf (v) for all v ∈ H2

0 (Ω), (10)

where a : H2
0 (Ω) × H2

0 (Ω) → R is be the bilinear form a(u, v) = (∆u,∆v)L2(Ω) and

ℓf (v) = (f, v)L2(Ω). The energy norm ||| · ||| :=
√

a(·, ·) ≡ ‖∆ · ‖L2(Ω) is one for which
the form a is continuous and coercive on H2

0 (Ω), with unit proportionality constants, and
the existence of a unique solution is therefore ensured by Babuska-Lax-Milgram theorem.
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The variational formulation (10) is consistent with the PDE (1) under sufficient regularity
considerations; if u ∈ E(Ω) satisfies (10) then u satisfies (1) in the classical sense by virtue
of the Du Bois-Reymond lemma. The space of piecewise polynomials of degree r ≥ 2
defined on a partition P will be given by

Pr
P (Ω) =

∏

τ∈P

Pr(τ). (11)

Assuming we have at our disposal a polynomial B-spline space XP ⊂ Pr
P (Ω)∩H

2
0 (Ω) then

an immediate discrete problem reads

Find U ∈ XP such that a(U, V ) = ℓf (V ) for all V ∈ XP . (12)

The corresponding linear system is numerically stable and consistent with (10) in the sense
that a(u, V ) = ℓf (V ) for every V ∈ XP and therefore we are provided with Galerkin
orthogonality:

a(u− U, V ) = 0 ∀V ∈ XP . (13)

Moreover, the spline solution to (12) will serve as an optimal approximation to u in XP

with respect to ||| · |||:
|||u− U ||| ≤ inf

V ∈XP

|||u− V |||. (14)

The discretization given in (12) requires prescription of the essential boundary values into
the discrete spline space XP , and as mentioned earlier, this poses difficulty when consider-
ing non-homogenous boundary conditions due to the non-iterpolatory nature of high-order
smoothness B-splines. Therefore from now on we will depart from a boundary-value con-
forming discretization and assume that the spline space XP ⊂ Pr

P (Ω) ∩H
2(Ω) no longer

satisfies the boundary conditions and instead impose them weakly. In the previous work
[3] the following mesh-dependent bilinear form aP : XP × XP → R is used to formulate
Nitsche’s discretization:

Find U ∈ XP such that aP (U, V ) = ℓf (V ) for all V ∈ XP . (15)

where

aP (U, V ) = a(U, V )−

∫

Γ

(

∆U ∂V
∂ν +∆V ∂U

∂ν

)

+ γ1

∫

Γ
h−3
Γ UV

+

∫

Γ

(

∂∆U
∂ν V + ∂∆V

∂ν U
)

+ γ2

∫

Γ
h−1
Γ

∂U
∂ν

∂V
∂ν .

(16)

The discrete problem of (15) with bilinear form (16) is consistent with its continuous
counterpart (10) and quasi-optimal a priori error estimates have been realized; see [3].
Unfortuantely, much like the analysis carried in [19],[3], all a posteriori estimates relied on
the artificial so-called saturation assumption. Here we will consider a modified version of
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the bilinear form (16) which extends the domain of aP to all of H2(Ω). This will enable
us to remove the saturation assumption while carrying complete convergence analysis, and
in an upcoming publication, an optimality analysis. Moreover, for discrete arguments the
new bilinear form reduces back to (16) . This will however be at the expense of consistency
where we will no longer have access to (13). It will be shown that this obstacle is manage-
able and all desired conclusions will be met at the price of more delicate treatment.

Let ΠP : L2(Ω) → Pr−2
P (Ω) be the L2-orthogonal projection operator given by

∀v ∈ L2(Ω), ΠP v ∈ Pr−2
P (Ω) such that

∫

Ω
ΠP vq =

∫

Ω
vq ∀q ∈ Pr−2

P (Ω). (17)

Instead of (16) we consider the bilinear form aP : H2(Ω)×H2(Ω) → R

aP (u, v) = a(u, v) −

∫

Γ

(

ΠP (∆u)
∂v
∂ν +ΠP (∆v)

∂u
∂ν

)

+ γ1

∫

Γ
h−3
Γ uv

+

∫

Γ

(

∂ΠP (∆u)
∂ν v + ∂ΠP (∆v)

∂ν u
)

+ γ2

∫

Γ
h−1
Γ

∂u
∂ν

∂v
∂ν .

(18)

The problem we will consider will read as (15) but now with aP defined by (18). To simplify
notation we define

λP (u, v) :=

∫

Γ

(

∂ΠP (∆u)
∂ν v −ΠP (∆u)

∂v
∂ν

)

, λ∗P (u, v) :=

∫

Γ

(

u∂ΠP (∆v)
∂ν − ∂u

∂νΠP (∆v)
)

,

ΣP (u, v) := γ1

∫

Γ
h−3
Γ uv + γ2

∫

Γ
h−1
Γ

∂u
∂ν

∂v
∂ν . (19)

The solution u to (10) does not satisfy the modified problem (15). To quantify the incon-
sistency for u ∈ E(Ω), let EP (u) ∈ H−2(Ω) be given by

〈EP (u), v〉 =

∫

Γ

(

∂ΠP (∆u)
∂ν − ∂∆u

∂ν

)

v −

∫

Γ
(ΠP (∆u)−∆u) ∂v

∂ν , v ∈ H2(Ω). (20)

Lemma 1.1 (Inconsistency). If u ∈ E(Ω) is the solution to (10) then

aP (u, v) = ℓf (v) + 〈EP (u), v〉 ∀v ∈ H2(Ω). (21)

Proof. Integrate by parts to get

aP (u, v) − ℓf (v) =

∫

Ω
(Lu− f) v +

∫

Γ
∆u∂v

∂ν −

∫

Γ

∂∆u
∂ν v

+

∫

Γ

∂ΠP (∆v)
∂ν u−

∫

Γ
ΠP (∆v)

∂u
∂ν −

∫

Γ
ΠP (∆u)

∂v
∂ν +

∫

Γ

∂ΠP (∆u)
∂ν ,

(22)

and
∫

Ω
(Lu− f) v =

∫

Γ

∂ΠP (∆v)
∂ν u =

∫

Γ
ΠP (∆v)

∂u
∂ν = 0 ∀v ∈ H2

0 (Ω), (23)

since u satisies the boundary valued differential equation (1).
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Remark 1.2. It will be assumed from now on that the argument u ∈ E(Ω) in (21) will
aways be the continuous solution to (10) and therefore we will drop the (u) from EP (u).

Remark 1.3. Noting that H2
0 (Ω) is in the kernel of EP , we see from (21) that aP reduces to

a and the discrete formulation (15) is in fact consistent with (10) whenever test functions
v satisfy the boundary conditions.

Lemma 1.4. Let P be an admissible partition, let τ ∈ P and let σ ∈ GP with σ ⊂ ∂τ . The

projection operator ΠP satisfies the following stability estimates:

‖ΠP v‖L2(Ω) ≤ ‖v‖L2(Ω), (24)

and

‖ΠP v‖L2(σ) ≤ d3h
−1/2
σ ‖v‖L2(τ) and

∥

∥

∥

∂(ΠP v)
∂nσ

∥

∥

∥

L2(σ)
≤ d3h

−3/2
σ ‖v‖L2(τ), (25)

holding for every v ∈ L2(Ω).

Proof. The stability estimate (24) follows from orthogonality of the residual v − ΠP v to
ΠP v. To establish (25), we will only prove the second one, as the first estimate follows
similarly. Let v ∈ L2(τ). In view of Lemma 3.1 and stability (24)

∥

∥

∥

∂(ΠP v)
∂nσ

∥

∥

∥

2

L2(σ)
≤ d1h

−2
σ ‖ΠP v‖

2
L2(σ)

≤ d2d1h
−3
σ ‖ΠP v‖

2
L2(τ) ≤ d2d1h

−3
σ ‖v‖2L2(τ).

(26)

We will assess the inconsistency and show that the formulation (15) is in fact consistent
asymptotically. For this we will need some approximation tools.

Lemma 1.5. Let P be an admissible partition, let τ ∈ P and let σ ∈ GP with σ ⊂ ∂τ . For

a constant c1 > 0, depending only on cshape, if 0 ≤ t ≤ s ≤ r − 1 then

|v −ΠP (v)|Ht(τ) ≤ c1h
s−t
τ |v|Hs(τ), (27)

and

‖v −ΠP (v)‖L2(σ) ≤ c1h
s−1/2
σ |v|Hs(τ), (28)

holding for every v ∈ H2(Ω).

Proof. Let 1 ≤ t ≤ s ≤ r + 1 and let v ∈ H2(Ω). Let ρ ∈ Pr(τ).

|v −ΠP v|Ht(τ) ≤ |v − ρ|Ht(τ) + |ΠP (ρ− v)|Ht(τ)

≤ |v − ρ|Ht(τ) + d1h
−t
τ ‖ΠP (ρ− v)‖L2(τ)

(29)
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with the classical Bramble-Hilbert lemma we arrive at (27) with c1 = (1 + d1)cHB with
cHB > 0 is the proportionality constant of Bramble-Hilbert lemma. Now in view of (62)

‖v −ΠP v‖
2
L2(σ) ≤d0

(

h−1
σ ‖v −ΠP v‖

2
L2(τ) + hσ|v −Πv|2H1(τ)

)

d0c1

(

h−1
σ h2sτ |v|2Hs(τ) + hσh

2s−2
τ |v|2Hs(τ)

)

≤ d0c1h
2s−1
σ |v|2Hs(τ).

(30)

Lemma 1.6 (Asymptotic consistency). If u ∈ E(Ω) is the solution to (10) for which

∆u ∈ Hs(Ω), s > 0, then for v ∈ H2(Ω),

〈EP , v〉 ≤ c1h
s
P ‖∆u‖Hs(Ω)

(

‖v‖3/2,P +
∥

∥

∂v
∂ν

∥

∥

1/2,P

)

. (31)

Proof.

〈EP , v〉 =

∫

Γ

(

∂ΠP (∆u)
∂ν − ∂∆u

∂ν

)

v −

∫

Γ
(ΠP (∆u)−∆u) ∂v

∂ν

≤
∑

σ∈G

∥

∥

∥

∂
∂nσ

(ΠP (∆u)−∆u)
∥

∥

∥

L2(σ)
‖v‖L2(σ) +

∑

σ∈G

‖ΠP (∆u)−∆u‖L2(σ)

∥

∥

∥

∂v
∂nσ

∥

∥

∥

L2(σ)

(32)

In view of the projection error analysis of Lemma (1.5)

‖ΠP (∆u)−∆u‖L2(σ) ≤ c1h
s−1/2
σ ‖∆u‖Hs(Ω) (33)

and
∥

∥

∥

∂
∂nσ

(ΠP (∆u)−∆u)
∥

∥

∥

L2(σ)
≤ c1h

s−3/2
σ ‖∆u‖Hs(Ω) (34)

which leads us to the desired estimate.

1.3 The adaptive method

We now recall the modules SOLVE, ESTIMATE, MARK and REFINE. A thorough
discussion has already been carried in [] with some minor differences.

The module SOLVE

The discrete problem reads

U = SOLVE[P, f ] : Find U ∈ XP such that aP (U, V ) = ℓf (V ) for all V ∈ XP . (35)

The stability of the problem will be addressed in Lemma 2.2 where we show that the
bilinear form is coercive for large enough stabilization parameters γ1 and γ2. In view of
the inconsistency (21) we are left with partial Galerkin orthogonality:

aP (u− U, V ) = 0 ∀V ∈ XP ∩H2
0 (Ω). (36)
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The module ESTIMATE

For a continuous function v we define the jump operator across interface σ.

Jσ(v) = lim
t→0

[v(x+ tσ)− v(x− tx)], x ∈ σ. (37)

The adaptive refinement procedure of method (2) will aim to reduce the error estimations
instructed by the cell-wise error indicators: for τ ∈ P

η2P (V, τ) = h4τ‖f − LV ‖2L2(τ) +
∑

σ⊂∂τ

(

h3σ

∥

∥

∥
Jσ

(

∂∆V
∂nσ

)∥

∥

∥

2

L2(σ)
+ hσ‖Jσ(∆V ) ‖2L2(σ)

)

(38)

We can define the indicators on subsets of Ω via:

η2P (V, ω) =
∑

τ∈P :τ⊂ω

η2P (V, τ), ω ⊆ Ω (39)

To each cell τ in mesh P the error indicators (38) will assign error estimations:

{ητ : τ ∈ P} = ESTIMATE[U,P ] : ητ := ηP (U,U) (40)

We define data oscillation

osc2P (f, ω) =
∑

τ⊂ω

h4τ‖f −ΠPf‖
2
L2(τ). (41)

Remark 1.7. Estimator dominance over oscialltion

oscP (f,Ω) ≤ ηP (U,Ω) (42)

Estimator and oscillation monotonicity

oscP∗
(f,Ω) ≤ oscP (f,Ω), ηP∗

(U∗,Ω) ≤ ηP (U,Ω). (43)

The module MARK

We follow the Dorlfer marking strategy [12]: For 0 < θ ≤ 1,

Find minimal spline set M :
∑

τ∈M

η2P (U, τ) ≥ θ
∑

τ∈P

η2P (U, τ). (44)

To ensure minimal cardinality of M in the marking strategy one typically undergoes Quick-
Sort which has an average complexity of O(n log n) to produce the indexing set J .
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The module REFINE

Here we provide the important properties of REFINE which are needed in subsequent
analyses and refer the reader to [14],[] for a detailed description. Procedure REFINE will
ensure that for a constant cshape > 0, depending only on the polynomial degree of the spline
space, all considered partitions therefore will satisfy the shape-regularity constraints:

sup
P∈P

max
τ∈P

# {τ ∈ P : τ ∈ ωτ} ≤ cshape (finite-intersection property),

sup
P∈P

max
τ∈P

diam (ωτ )

hτ
≤ cshape (graded). (45)

For any two partitions P1, P2 ∈ P there exists a common admissible partition in P, called
the overlay and denoted by P1 ⊕ P2, such that

#(P1 ⊕ P2) ≤ #P1 +#P2 −#P0. (46)

Moreover, shown in [15], if the sequence {Pℓ}ℓ≥1 is obtained by repeating the step Pℓ+1 :=
REFINE [Pℓ,Mℓ] with Mℓ any subset of Pℓ, then for k ≥ 1 we have that

#Pk −#Pℓ ≤ Λ

k
∑

ℓ=1

#Mℓ. (47)

where Λ > 0 which will depend on the polynomial degree r.

2 A priori analysis for Nitsche’s formulation

In what follows we show the proposed discrete problem admits an a priori estimate. This
will be immediate from upon estabishing that mesh-dependent bilinear form is bounded
and coercive for sufficiently large stabilization parameters γ1 and γ2 with respect to mesh-
dependent norm (9).

Lemma 2.1 (Continuity of aP ). Let γ1, γ2 > 0 be given. We have

|aP (u, v)| ≤ Ccont|||u|||P |||v|||P u, v ∈ H2(Ω), (48)

with a constant Ccont > 0 independent of P .

Proof. We begin with the interior integrals;

aP (u, v) ≤ ‖∆u‖L2(Ω)‖∆v‖L2(Ω). (49)

As for the boundary terms,

λ∗P (u, v) ≤ ‖u‖L2(Γ)

∥

∥

∥

∂Π(∆v)
∂ν

∥

∥

∥

L2(Γ)
+
∥

∥

∂u
∂ν

∥

∥

L2(Γ)
‖Π(∆v)‖L2(Γ) (50)
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λ∗P (u, v) �
∥

∥

∥
h
−3/2
Γ u

∥

∥

∥

L2(Γ)
‖∆u‖L2(Ω) +

∥

∥

∥
h
−1/2
Γ

∂u
∂ν

∥

∥

∥

L2(Γ)
‖∆v‖L2(Ω)

�
(

‖u‖3/2,P +
∥

∥

∂u
∂ν

∥

∥

1/2,h

)

‖∆v‖L2(Ω)

(51)

Similarily,

λP (u, v) ≤ ‖∆u‖L2(Ω)

(

‖v‖3/2,P +
∥

∥

∂v
∂ν

∥

∥

1/2,P

)

. (52)

The stabilization terms are similarly controlled

ΣP (u, v) ≤ γ1 ‖u‖3/2,P ‖v‖3/2,P + γ2
∥

∥

∂u
∂ν

∥

∥

1/2,P

∥

∥

∂v
∂ν

∥

∥

1/2,P
(53)

Lemma 2.2 (Coercivity of aP ). For suitably large stabilization parameters γ1 and γ2, there
exists a constant Ccoer > 0 such that

Ccoer|||v|||
2
P ≤ aP (v, v) ∀v ∈ H2(Ω). (54)

Proof. For δ1, δ2 > 0 we use Young’s inequality to write

λP (v, v) + λ∗P (v, v) ≥ −
1

δ1
‖v‖2L2(Γ) − δ1

∥

∥

∥

∂ΠP (∆v)
∂ν

∥

∥

∥

2

L2(Γ)
−

1

δ2

∥

∥

∂v
∂ν

∥

∥

2

L2(Γ)
− δ2 ‖ΠP (∆v)‖

2
L2(Γ) .

(55)

Together with the interior terms we have

aP (v, v) ≥ ‖∆v‖2L2(Ω) − δ1

∥

∥

∥

∂ΠP (∆v)
∂ν

∥

∥

∥

2

L2(Γ)
− δ2 ‖ΠP (∆v)‖

2
L2(Γ)

+

(

1−
1

γ1
−

1

δ1γ1

)

γ1 ‖ψ‖
2
3/2,P +

(

1−
1

δ2γ2

)

γ2
∥

∥

∂v
∂ν

∥

∥

2

1/2,P

(56)

With inverse estimates (25)

aP (v, v) ≥

(

1− δ1C max
σ∈GP

h−3/2
σ − δ2C max

σ∈GP

h−1/2
σ

)

‖∆v‖2L2(Ω)

+

(

1−
1

γ1
−

1

δ1γ1

)

γ1 ‖v‖
2
3/2,P +

(

1−
1

δ2γ2

)

γ2
∥

∥

∂v
∂ν

∥

∥

2

1/2,P
,

(57)

For sufficiently small δ1 and δ2, pick γ1 and γ2 sufficiently large to yield the desired result.

Continuity and coercivity of the bilinear form ensures a unique solution U to the discrete
problem (35) which admits the following a priori estimate.
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Lemma 2.3 (A priori error estimate for Nitsche’s forumation). Let u ∈ H2
0 (Ω) be a solution

to (10) with ∆u ∈ Hs(Ω) with s > 3
2 . For stabilization paremeters γ1, γ2 > 0 satisfying the

hypothesis of Lemma 2.2,

|||u− U |||P ≤

(

1 +
Ccont

Ccoer

)

inf
V ∈XP

|||u− V |||P +
1

Ccoer
‖EP ‖H−2(Ω). (58)

Proof. From
|||u− U |||P ≤ |||u− V |||P + |||V − U |||P (59)

we will estimate |||V − U |||P . Let W = V − U ,

Ccoer|||V − U |||2P ≤ aP (V − u,W ) + aP (u− U,W )

≤ Ccont|||u− V |||P |||W |||P + |〈EP ,W 〉|

≤ Ccont|||u− V |||P |||W |||P + ‖EP ‖H−2(Ω)|||W |||P

(60)

which makes
|||u− U |||P ≤

(

1 + Ccont

Ccoer

)

|||u− V |||P + 1
Ccoer

‖EP ‖H−2(Ω) (61)

The quantity ‖EP ‖H−2(Ω) is finite by Lemma 1.6.

3 A posteriori estimates

In this section we will derive the a posteriori error estimates for (35) which will yield
convergence of spline solutions generated by the iterative procedure (2) to the the weak
solution u of (10). Contrary to [], estimating the residual RP = f − LU is not possible
due to the inconsisency. The estimate (31) assumes ∆u ∈ Hs(Ω) for s > 3

2 which is
too high. A more delicate treatement is needed in which aP (e, e) will be approximated
directly. We will need some approximation tools and estimates, discussed in greater detail
in [] with reference to [28],[27],[6], for spline spaces XP ⊂ H2

0 (Ω). We will use the same
quasi-interpolation projections onto XP ∩H2

0 (Ω).

3.1 Approximation in XP

Recall the general trace theorem [1],[17] for cells τ ∈ P and edges σ ∈ GP with σ ⊂ ∂τ .
For a constant d0 > 0

‖v‖2L2(σ) ≤ d0

(

h−1
σ ‖v‖2L2(τ) + hσ‖∇v‖

2
L2(τ)

)

∀v ∈ H1(Ω). (62)

Lemma 3.1 (Auxiliary discrete estimate). Let τ ∈ P . Then for d1 > 0, depending only

on polynomial degree r, for 0 ≤ s ≤ t ≤ r + 1 we have

|V |Ht(τ) ≤ d1h
s−t
τ |V |Hs(τ) ∀V ∈ Pr(τ), (63)
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and if σ ⊂ ∂τ , for a constant d2 > 0 we have

‖V ‖L2(σ) ≤ d2h
−1/2
σ ‖V ‖L2(τ) ∀V ∈ Pr(τ), (64)

where d2 := d0 max{1, d1}.

Remark 3.2. The constants d1, d0, d2 all depend on the polynomial degree and the reference
cell or edge; τ̂ = [0, 1]2 or σ̂ = [0, 1]. From now, for a simpler presentation of the analysis,
we combined all these constants, and their powers into a unifying constant c∗

We recall from []:.

Lemma 3.3 (Quasi-interpolantion). Let P be an admissible partition of Ω. There exists

a quasi-interpolantion operator I0P : L2(Ω) → XP ∩H2
0 (Ω) such that for every τ ∈ P ,

‖I0P v‖L2(τ) � cshape‖v‖L2(ωτ ) ∀v ∈ L2(ωτ ), (65)

|v − I0P v|L2(τ) � cshapeh
2
τ |v|H2(ωτ )

∀v ∈ H2
0 (ωτ ), (66)

and for k = 0, 1

∀σ ∈ EP , |v − I0P v|Hk(σ) ≤ h3/2−k
σ |v|H2(ωσ)

∀v ∈ H2
0 (ωσ). (67)

Let X0
P = XP ∩H2

0 (Ω). We characterize an orthogonal complement X⊥
P to X0

P using a
projection operator π0P : XP → X0

P defined by the linear problem

πPV ∈ X
0
P : aP (W0, V − π0PV ) = 0 ∀W0 ∈ X

0
P . (68)

By setting π⊥P V = V −π0PV for any V ∈ XP , we obtain a decompose for every finite-element
spline

V = π0PV + π⊥P V =: V 0 + V ⊥ ∈ X
0
P ⊕ X

⊥
P ≡ XP (69)

with
aP (V

0,W⊥) = 0 (70)

for every pair V and W . We have the following result:

Lemma 3.4. Semi-norm ‖ · ‖3/2,P +
∥

∥

∂ ·
∂ν

∥

∥

1/2,P
defines a norm on X⊥

P . In particular, for

a constant C⊥ > 0

|||V ⊥|||P ≤ C⊥

(

‖V ⊥‖3/2,P +

∥

∥

∥

∥

∂V ⊥

∂ν

∥

∥

∥

∥

1/2,P

)

∀V ⊥ ∈ X
⊥
P . (71)

Proof. Let DΓ = Int

(

Ω ∩
⋃

σ∈GP
ωσ

)

. If ‖V ⊥‖3/2,P +‖∂V ⊥

∂ν ‖1/2,P = 0 then V ⊥ = ∂V ⊥

∂ν ≡ 0

on DΓ due to the finite-dimensionality of polynomial space X⊥
P . Necessarily we have V ⊥ ≡ 0

everywhere; otherwise V ⊥ ∈ X0
P . A more detailed treatment has already been carried in

[3].
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Lemma 3.5. Let U = U0 + U⊥ be the spline solution to (35)

aP (U
0, V 0) = ℓf (V

0) ∀V 0 ∈ X
0
P . (72)

Proof. We have by symmetry and (70)

aP (U, V ) = aP (U
0, V 0) + aP (U

⊥, V ⊥) = ℓf (V
0) + ℓf (V

⊥) ∀V ∈ XP .

since V ∈ XP is arbitrary we arrive at (72).

We prove that the proposed error estimator is reliable. The idea is to express aP (e, e)
as a sum of two terms, the first quantifies the interior and edge jump residual terms,
essentially capturing the spacial locations where the solution exhibits loss in regualrity,
and the second term arrising from the formulation’s inconsistency.

Lemma 3.6 (Estimator reliability). Let P be a partition of Ω satisfying Conditions (45).
The module ESTIMATE produces a posteriori error estimate ηP for the discrete error

such that for a constants Crel,1, Crel,2 > 0,

aP (u− U, u− U) ≤ Crel,1η
2
P (U,Ω) + Crel,2

(

γ1‖U‖23/2,P + γ2
∥

∥

∂U
∂ν

∥

∥

2

1/2,P

)

, (73)

with constants depending only on cshape.

Proof. Let e = u− U and let v = u− U0 and we may write e = v − U⊥. Since I0P v ∈ X0
P ,

Partial Galerkin orthogonality (36) implies aP (e, I
0
P v) = 0 and we have

aP (e, e) = aP (e, v − I0P v)− aP (e, U
⊥). (74)

The treatment of the term aP (e, v − I0P v) is similar that in [] except that now we have to
control the additional boundary integrals.

|aP (e, v − I0P v)| ≤
∑

τ∈P

‖f − LU‖L2(τ)‖v − I0P v‖L2(τ) +
∑

σ∈EP

∥

∥

∥
Jσ

(

∂∆U
∂nσ

)∥

∥

∥

L2(σ)

∥

∥(v − I0P v)
∥

∥

L2(σ)

+
∑

σ∈EP

‖Jσ(∆U) ‖L2(σ)

∥

∥

∥

∂
∂nσ

(v − I0P v)
∥

∥

∥

L2(σ)
+

∣

∣

∣

∣

∫

Γ

∂U
∂ν Π[∆(v − I0P v)]

∣

∣

∣

∣

,

+

∣

∣

∣

∣

∫

Γ
U

∂Π[∆(v−I0
P
v)]

∂ν

∣

∣

∣

∣

.

(75)

For the boundary intergrals,
∣

∣

∣

∣

∫

Γ

∂U
∂ν Π[∆(v − I0P v)]

∣

∣

∣

∣

≤
∑

σ∈GP

∥

∥

∥

∂U
∂nσ

∥

∥

∥

L2(σ)
‖Π[∆(v − I0P v)]‖L2(σ),

≤ d2
∑

σ∈GP

∥

∥

∥

∂U
∂nσ

∥

∥

∥

σ
h−1/2
σ ‖∆(v − I0P v)‖L2(τ(σ)),

≤ c1d2

(

∑

σGP

h−1
σ

∥

∥

∥

∂U
∂nσ

∥

∥

∥

2

σ

)1/2(
∑

σ∈GP

‖v‖2H2(ωτ )

)1/2

,

(76)
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where τ(σ) is the boundary adjacent cell with edge σ. Similarly,
∣

∣

∣

∣

∫

Γ
U

∂Π[∆(v−I0
P
v)]

∂ν

∣

∣

∣

∣

≤
∑

σ∈GP

‖U‖L2(σ)

∥

∥

∥

∂
∂nσ

Π[∆(v − I0P v)]
∥

∥

∥

L2(σ)
,

≤ d1d2
∑

σ∈GP

‖U‖L2(σ)h
−3/2
σ ‖∆(v − I0P v)‖L2(τ(σ)),

≤ c1d1d2

(

∑

σ∈GP

h−3
σ ‖U‖2L2(σ)

)1/2(
∑

σ∈GP

‖v‖2H2(τ(σ))

)1/2

.

(77)

If C1 = c1d2 max{d1, 1},

c1d2

{

d1‖U‖3/2,P +
∥

∥

∂U
∂ν

∥

∥

1/2,P

}

≤ C1|U
⊥|P

We define the interior residual terms Rτ = (f −LU)|τ for every cell τ ∈ P and edge jump

terms Jσ.1 = Jσ

(

∂∆U
∂nσ

)

and Jσ,2 = Jσ(∆U) across each interior edge σ. We arrive at

|aP (e, v − I0P v)| ≤ c1







(

∑

τ∈P

h4τ‖Rτ‖
2
L2(τ)

)1/2

+

(

∑

σ∈EP

h3σ ‖Jσ,1‖
2
L2(σ)

)1/2

+

(

∑

σ∈EP

hσ‖Jσ,2‖
2
L2(σ)

)1/2






‖v‖H2(Ω) + C1|U
⊥|P‖v‖H2(Ω)

(78)

Let

ηP (Ω) =

(

∑

τ∈P

h4τ‖Rτ‖
2
L2(τ)

)1/2

+

(

∑

σ∈EP

h3σ ‖Jσ,1‖
2
L2(σ)

)1/2

+

(

∑

σ∈EP

hσ‖Jσ,2‖
2
L2(σ)

)1/2

.

(79)
To control the inconsistency term aP (e, U

⊥), we employ Young’s inequality and the norm
equivalence from Lemma 3.4

aP (e, U
⊥) ≤ Ccont|||e|||P |||U

⊥|||P ≤
Ccont

C
1/2
coer

aP (e, e)
1/2|||U⊥|||P ,

≤
aP (e, e)

4
+
C2
cont

Ccoer
|||U⊥|||2P ≤

aP (e, e)

4
+
C2
cont

Ccoer
C2
⊥|U

⊥|
2

P .

(80)

Let C2 =
C2

cont

Ccoer
C2
⊥. Since v = e+ U⊥

‖v‖2H2(Ω) ≤ C−1
coeraP (e+ U⊥, e+ U⊥),

= C−1
coer

(

aP (e, e) + 2aP (e, U
⊥) + aP (U

⊥, U⊥)
)

,

≤ C−1
coer

(

2aP (e, e) + (1 + 2C2) |U
⊥|

2

P

)

.

(81)
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Let C2
3 = C−1

coer max{2, (1+2C2)}. Summing up, applying Young’s inequality with δ = 1/2,

3

4
aP (e, e) ≤ c1

(

ηP (Ω) + C1|U
⊥|P

)

‖v‖H2(Ω) + C2|U
⊥|

2

P ,

≤ c1C3

(

ηP (Ω) + C1|U
⊥|P

)(

aP (e, e) + |U⊥|
2

P

)1/2
+ C2|U

⊥|
2

P ,

≤ C3

(

ηP (Ω) +C1|U
⊥|P

)2
+

1

4

(

aP (e, e) + |U⊥|
2

P

)

+ C2|U
⊥|

2

P ,

(82)

which makes for constants Crel,1 > 0 and Crel,2 > 0 depending on C1, C2 and C3,

1

2
aP (e, e) ≤

Crel,1

2
ηP (Ω) +

Crel,2

2
|U⊥|

2

P . (83)

The following lemma shows that the proposed estimator from Lemma 3.6 is efficient
in the sense that ηP is a sharp approximation to the error |||u − U |||P up to how well the
partition resolves the source function f .

Lemma 3.7 (Estimator Efficiency). Let P be a partition of Ω satisfying conditions (45).
The module ESTIMATE produces a posteriori error estimate of the discrete solution error

such that

Ceff η
2
P (U,Ω) ≤ |||u− U |||2P + osc2P (Ω). (84)

with constant Ceff depending only on cshape.

In the following Lemma we show a local version of Lemma 3.6. While the result is not
needed for convergence, it is required for quasi-optimality.

Lemma 3.8 (Estimator discrete reliability). Let P be a partition of Ω satisfying conditions

(45) and let P∗ = REFINE [P,R] for some refined set R ⊆ P . If U and U∗ are the

respective solutions to (12) on P and P∗, then for a constants CdRel,1, CdRel,2 > 0, depending
only on cshape,

|||U0
∗ − U |||2P ≤ CdRel,1η

2
P (U,ωRP→P∗

) +CdRel,2

(

γ1‖U‖23/2,R + γ2
∥

∥

∂U
∂ν

∥

∥

2

1/2,R

)

, (85)

where ωRP→P∗
is understood as the union of support extensions of refined cells from P to

obtain P∗.

Proof. In view of (72) and the nesting of spline spaces, aP (U
0
∗ , V

0) = ℓf (V
0) holds if

V 0 ∈ X0
P from which we obtain aP (U

0
∗ −U, V 0) = 0 for every V 0 ∈ X0

P . Let E
0
∗ = U0

∗ −U0

and let E∗ = U0
∗ −U ≡ E0

∗ −U⊥. Then for any V0 ∈ X0
P we write an analogous expression

to (74)
aP (E∗, E∗) = aP (E∗, E

0
∗ − U⊥) = aP (E∗, E

0
∗ − V 0)− aP (E∗, U

⊥) (86)
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which we proceed to control in terms of the estimator. For the first term, we form dis-
connected subdomains Ωi ⊆ Ω, i ∈ J , each formed from the interior of connected union
of cell support extensions. Set Ω∗ = ∪τ∈RP→P∗

ωτ . Then to each subdomain Ωi we form
a partition Pi = {τ ∈ P : τ ⊂ Ωi}, interior edges Ei = {σ ∈ EP : σ ⊂ ∂τ, τ ∈ Pi} and
boundary edges Gi = {σ ∈ GP : σ ⊂ ∂τ, τ ∈ Pi}, and a corresponding finite-element space
Xi. Let Ii : L2(Ωi) → Xi satisfy the local estimates (66) and (67) Let V 0 ∈ X0

P be an
approximation of E0

∗ be given by

V 0 = E0
∗1Ω\Ω∗

+
∑

i∈J

(I0i E
0
∗) · 1Ωi

. (87)

Then E0
∗ − V 0 ≡ 0 on Ω\Ω∗. To localize the error on ωRP→P∗

we use intergration by parts
to express

aP (E∗, E
0
∗ − V 0) =

∑

i∈J

[

∑

τ∈Pi

〈

Rτ , E
0
∗ − I0PE

0
∗

〉

τ
+
∑

σ∈Ei

{〈

Jσ,1, E
0
∗ − I0PE

0
∗

〉

σ
+
〈

Jσ,2, E
0
∗ − I0PE

0
∗

〉

σ

}

+
∑

σ∈Gi

(
∫

σ
U ∂

∂nσ

[

ΠP∆(E0
∗ − I0PE

0
∗)
]

−

∫

σ

∂U
∂nσ

ΠP∆(E0
∗ − I0PE

0
∗)

)]

,

(88)

∑

τ∈Pi

〈

Rτ , E
0
∗ − I0PE

0
∗

〉

τ
+
∑

σ∈Ei

{〈

Jσ,1, E
0
∗ − I0PE

0
∗

〉

σ
+
〈

Jσ,2, E
0
∗ − I0PE

0
∗

〉

σ

}

≤ c1

(

∑

τ∈Pi

η2P (U, τ)

)1/2(
∑

τ∈Pi

‖E0
∗‖

2
H2(ωτ )

)1/2

≤ c1cshapeηP (U,Ωi)‖E
0
∗‖H2(Ωi)

(89)

The boundary intergal terms will be control by the inconsistnt part of the spline solution

∑

σ∈Gi

(
∫

σ
U ∂

∂nσ

[

ΠP∆(E0
∗ − I0PE

0
∗)
]

−

∫

σ

∂U
∂nσ

ΠP∆(E0
∗ − I0PE

0
∗)

)

≤ |U⊥|Pi
‖E0

∗‖H2(Ωi)

(90)

Together we arrive at an estimate for the first term in (3.8)

aP (E∗, E
0
∗ − V 0) ≤ c1cshape

(

ηP (U,Ω∗) + C1|U
⊥|P

)

‖E0
∗‖H2(Ω∗) (91)

To control the inconsistent term from (3.8), we follow the same reasoning made in (80)
from Lemma 3.6 to get

aP (E∗, U
⊥) ≤

aP (E∗, E∗)

2
+
C2

2
|U⊥|

2

P , (92)
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where C2 retains the same meaning as before. Noting that E0
∗ = E∗ + U⊥, ‖E0

∗‖H2(Ω∗) ≤

‖E∗‖H2(Ω∗) + ‖U⊥‖H2(Ω∗) Invoking norm equivalence (71) Summing up we arrive

aP (E∗, E∗) ≤ CdRel,1η
2
P (U,Ω∗) +CdRel,2|U

⊥|
2

P (93)

The presence of negative powers in |U⊥|P on the right-hand side in (73) and (85) may
appear to pose a problem with decreasing mesh-size along the boundary. With the following
realization from [3] we have shown that contributions from domain boundary integrals are
dominated by the those coming from the mesh interior.

Lemma 3.9. For sufficiently large stabilization terms γ1 and γ2,

(γ1 − CR)‖U‖23/2,P + (γ2 − CR)
∥

∥

∂U
∂ν

∥

∥

2

1/2,P
≤ C−1

coerη
2
P (U,Ω) (94)

with CR �
cshape
Ccoer

.

Remark 3.10. From now on we let

γ := min{γ1 − CR, γ2 − CR} (95)

Corollary 3.11. Under the assumptions of lemma 3.6 and lemma 3.8, if γ > 0 then

aP (u− U, u− U) ≤ CRelη
2
P (U,Ω), (96)

and

|||U0
∗ − U |||2P∗

≤ CdRelη
2
P (U,ωRP→P∗

) + γ−1C−1
coerη

2
P (U,Ω). (97)

4 Convergence

In section we show that the derived computable estimator (39) when used to direct refine-
ment will result in decreased error. This will hinge on the estimator Lipschitz property of
Lemma 4.1. To show that procedure (2) exhibits convergence we must be able to relate the
errors of consecutive discrete solutions. In the conforming discrete method (12) the sym-
metry of the bilinear form, consistency of the formulation and finite-element spline space
nesting will readily provide that via Galerkin Pythagoras. This is not the case in Nitsche’s
formulation (15) since our formulation is no longer consistent with (10). We recall some of
the results needed for convergence.

Lemma 4.1 (Estimator Lipschitz property). Let P be a partition of Ω satisfying conditions

(45). There exists a constant Clip > 0, depending only cshape, such that for any cell τ ∈ P
we have

|ηP (V, τ) − ηP (W, τ)| ≤ Clip|V −W |H2(ωτ )
, (98)

holding for every pair of finite-element splines V and W in XP .
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Lemma 4.2 (Estimator error reduction). Let P be a partition of Ω satisfying conditions

(45), let M ⊆ P and let P∗ = REFINE [P,M ]. There exists constants λ ∈ (0, 1) and

Cest > 0, depending only on cshape, such that for any δ > 0 it holds that for any pair of

finite-element splines V ∈ XP and V∗ ∈ XP∗
we have

η2P∗
(V∗,Ω) ≤ (1 + δ)

{

η2P (V,Ω)−
1
2η

2
P (V,M )

}

+ cshape(1 +
1
δ )|||V − V∗|||

2
P∗
. (99)

In what follows we establish estimates that allows us to compare two spline solutions
on different admissible meshes. This replaces the unavailable Galerkin Pythagorus which
the confomrning formulation enjoyed.

Lemma 4.3 (Mesh perturbation). Let P and P∗ be successive partitions satisfying con-

ditions (45) which are obtained by REFINE. Then for a constant Ccomp > 0, depending
only on cshape, we have for any δ > 0

aP∗
(v, v) ≤ (1 + 4δCcoer)aP (v, v) +

Ccomp

δ

(

γ1‖v‖
2
3/2,P + γ2

∥

∥

∂v
∂ν

∥

∥

2

1/2,P

)

, (100)

holding for every function v ∈ H2(Ω).

Proof. Given any v ∈ H2(Ω) we write

aP∗
(v, v) =aP (v, v) + 2

(
∫

Γ
ΠP (∆v)

∂v
∂ν −

∫

Γ

∂ΠP (∆v)
∂ν v

)

− γ1

(

‖v‖2P,3/2 − ‖v‖2P∗,3/2

)

− 2

(
∫

Γ
ΠP∗

(∆v)∂v∂ν −

∫

Γ

∂ΠP∗
(∆v)

∂ν v

)

− γ2

(

∥

∥

∂v
∂ν

∥

∥

2

P,1/2
−
∥

∥

∂v
∂ν

∥

∥

2

P∗,1/2

)

.

(101)

Look at the boundary integral terms depending on P . Let σ ∈ GP an edge to some cell
τ ∈ P ,

∫

σ
ΠP (∆v)

∂v

∂nσ
≤ ‖ΠP (∆v)‖σ

∥

∥

∥

∂v
∂nσ

∥

∥

∥

σ
≤ d2c1h

−1/2
σ ‖∆v‖τ

∥

∥

∥

∂v
∂nσ

∥

∥

∥

σ
. (102)

Summing (102) over all σ ∈ GP and an application of Schwarz’s inequality on the summa-
tion would give

∣

∣

∣

∣

∫

Γ
ΠP (∆v)

∂v
∂ν

∣

∣

∣

∣

�

(

∑

σ∈GP

h−1
σ

∥

∥

∥

∂v
∂nσ

∥

∥

∥

2

σ

)1/2(
∑

τ∈P :∂τ∩Γ6=∅

‖∆v‖2τ

)1/2

≤
∥

∥

∂v
∂ν

∥

∥

P,1/2
‖∆v‖L2(Ω).

(103)

Similarly, using the inverse-estimate ‖∂ΠP (∆v)
∂nσ

‖σ ≤ d1h
−1
σ ‖ΠP (∆v)‖σ , we obtain

∣

∣

∣

∣

∫

Γ

∂ΠP (∆v)
∂ν v

∣

∣

∣

∣

≤ d2d1c1‖v‖P,3/2‖∆v‖L2(Ω). (104)
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We carry the same reasoning for the remaining boundary integral. Employing Young’s
inequality with δ > 0 we arrive at

aP∗
(v, v) � aP (v, v) + 4δ‖∆v‖2L2(Ω) +

(

1
δ + γ1

)

‖v‖2P,3/2 +
(

1
δ + γ1

)

‖v‖2P∗,3/2

+
(

1
δ + γ2

)
∥

∥

∂v
∂ν

∥

∥

2

P,1/2
+
(

1
δ + γ2

)
∥

∥

∂v
∂ν

∥

∥

2

P∗,1/2
.

(105)

With the fact that hσ ≤ cshapehσ∗
, with σ ∈ GP and σ∗ ∈ GP∗

, we infer that ‖v‖3/2,P∗
≤

c−1
shape‖v‖P,3/2 and ‖∂v

∂ν ‖1/2,P∗
≤ c−1

shape‖
∂v
∂ν ‖1/2,P .

(

1
δ + γ1

)

(

‖v‖2P∗,3/2
+ ‖v‖2P∗,3/2

)

≤
Ccompγ1

δ
‖v‖2P,3/2, (106)

where Ccomp > 0 is an appropriate proportionality parameter that depends on cshape. A
similar argument holds for terms including boundary norms of ∂v

∂ν .

Lemma 4.4 (Comparison of solutions). Let P and P∗ be successive admissible partitions

obtained by REFINE and let U ∈ XP and U∗ ∈ XP∗
be the finite-element spline solutions

to (15). Then we have for any ε > 0

aP∗
(eP∗

, eP∗
) ≤(1 + ε)aP (eP , eP )−

Ccoer

2
|||U∗ − U |||2P∗

+
CComp

εγ
η2P (107)

Proof. We follow the following abbreviation. Let e = u − U , let e∗ = u − U∗, let E
0
∗ =

U0
∗ − U0, and let E⊥

∗ = U⊥
∗ − U⊥. Partial Galerkin implies

aP∗
(e∗, e∗) = aP∗

(e∗, e∗ + E0
∗) = aP∗

(e∗ + E0
∗ , e∗ +E0

∗)− aP∗
(E0

∗ , e∗ + E0
∗) (108)

and Partial Galerkin and symmetry again we have

aP∗
(e∗, e∗) = aP∗

(e∗ + E0
∗ , e∗ + E0

∗)− aP∗
(E0

∗ , E
0
∗) (109)

Rewriting U∗ − E0
∗ = U −E⊥

∗ we can express e∗ +E0
∗ = e− E⊥

∗ and therefore

aP∗
(e∗ + E0

∗ , e∗ + E0
∗) = aP∗

(e, e) − 2aP∗
(e,E∗⊥) + aP∗

(E⊥
∗ , E

⊥
∗ ) (110)

We then have

aP∗
(e∗, e∗) = aP∗

(e, e) − 2aP∗
(e,E∗⊥) + aP∗

(E⊥
∗ , E

⊥
∗ )− aP∗

(E0
∗ , E

0
∗ ) (111)

Employ Young’s inequality

aP∗
(e, e) − 2aP∗

(e,E⊥
∗ ) ≤ (1 + δ)aP∗

(e, e) +
C2
cont

δCcoer
|||E⊥

∗ |||
2
P∗

(112)
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Writing E0
∗ = E∗−E

⊥
∗ and with |||E∗|||

2
P∗

≤ 2|||E0
∗ |||

2
P∗

+2|||E∗|||
2
P∗

makes |||E0
∗ |||

2
P∗

≥ 1
2 |||E∗|||

2
P∗

−

|||E⊥
∗ |||

2
P∗

and

aP∗
(E⊥

∗ , E
⊥
∗ )− aP∗

(E∗
0 , E

0
∗) ≤ Ccont|||E

⊥
∗ |||

2
P∗

− Ccoer|||E
0
∗ |||

2
P∗

≤ −
Ccoer

2
|||E∗|||

2
P∗

+ C4|||E
⊥
∗ |||

2
P∗

(113)

where C4 = Ccoer + Ccont We therefor have, with C5 = max{C4,
C2

cont

Ccoer
}

aP∗
(e∗, e∗) ≤ (1 + δ)aP∗

(e, e) −
Ccoer

2
|||E∗|||

2
P∗

+ C5

(

1 +
1

δ

)

|||E⊥
∗ |||

2
P∗

(114)

Using the fact that edge sizes between two consequetive refinement steps are comparable
and (71)

|||E⊥
∗ |||

2
P∗

� |U⊥
∗ |

2

P∗
+ |U⊥|

2

P �
C−1
coer

γ

(

η2P∗
(Ω) + η2P (Ω)

)

In view of Lemma 4.3, for the same δ > 0 above, and Lemma (94)

aP∗
(e, e) ≤(1 + 4δCcoer)aP (e, e) +

CcompC
−1
coer

δγ
η2P (Ω). (115)

Summing up

aP∗
(e∗, e∗) ≤ (1 + Cδ)aP (e, e) −

Ccoer

2
|||E∗|||

2
P∗

+
CComp

δγ

(

η2P∗
(Ω) + η2P (Ω)

)

, (116)

where C and CComp depend on Ccoer and Ccont.

Theorem 4.5 (Convergence of Nitsche’s AFEM). Given f ∈ L2(Ω) and Dolfer parameter

θ ∈ (0, 1], there exists γC(θ) > 0, a contractive factor α ∈ (0, 1) and a constant Cest > 0,
such that for all γ ≥ γC the adaptive procedure AFEM [P, f, θ] with produce two successive

solutions U ∈ XP and U∗ ∈ XP∗
to problem (15) for which

aP∗
+ Cestη

2
P∗

≤ α
(

aP + Cestη
2
P

)

. (117)

Proof. Adopt the following abbreviations:

aP = aP (u− U, u− U), E∗ = |||U − U∗|||P∗
, (118)

ηP = ηP (U,P ), ηP (M ) = ηP (U,M ). (119)

Let C−1
est = cshape(1 +

1
δ )

2
Ccoer

. In view of Lemma 4.4,

aP∗
+ Cestη

2
P∗

≤ (1 + ε)aP − Ccoer

2 E2
∗ +

Ccomp

εγ η2P + Cestη
2
P∗
. (120)
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By invoking Lemma 4.2 on Cestη
2
P∗

aP∗
+ Cestη

2
P∗

≤ (1 + ε)aP +
Ccomp

εγ η2P − Ccoer

2 E2
∗

+ Cest

[

(1 + δ)
{

η2P − 1
2η

2
P (M )

}

+ cshape(1 +
1
δ )E

2
∗

]

,
(121)

eliminates E∗ from the previous expression. From Dorler −η2P (M) ≤ θ2η2P and in view of
Corollary 3.11,

Cest(1 + δ)
{

η2P − 1
2η

2
P (M )

}

≤ Cest(1 + δ)η2P − Cest(1 + δ)θ
2

2 η
2
P

≤ Cest(1 + δ)η2P − Cest(1 + δ)θ
2

2

(

1
2η

2
P + 1

2CRel
aP

)

.
(122)

Expression (120) now reads

aP∗
+Cestη

2
P∗

≤
(

1 + ε− Cest(1 + δ) θ2

4CRel

)

aP +
(

Ccomp

εγ + Cest(1 + δ)
(

1− θ2

4

))

η2P . (123)

Noting that Cest(1 + δ) = δ Ccoer

2cshape
we arrive at

aP∗
+ Cestη

2
P∗

≤
(

1 + ε− δθ2Ccoer

8cshapeCRel

)

aP + Cest

(

Ccomp

εγCest
+ (1 + δ)

(

1− θ2

4

))

η2P . (124)

It what remains we verify the existence of ε > 0, δ > 0 and γC(θ) > 0 such that for all

γ > γC the factors 1+ ε− δθ2Ccoer

8cshapeCRel
and

Ccomp

εγCest
+(1+ δ)

(

1− θ2

4

)

are positive and less that

1. Let Λ1 =
Ccoer

8cshapeCRel
and Λ2 =

2Ccompcshape
Ccoer

. Then the corresponding conditions will read

0 < 1 + ε− δθ2Λ1 < 1 and 0 < (1 + 1
δ )

Λ2

εγ + (1 + δ)
(

1− θ2

4

)

< 1. (125)

For any δ > 0 let ε = δθ2

2 Λ1 so that the first condition in (125) holds and let δ = θ2

2−θ2

so that (1 + δ)
(

1− θ2

4

)

= 1 − θ2

2 then pick γ sufficiently large so that (1 + 1
δ )

Λ2

εγ < θ2

2 to

obtain the second relation in (125). We note that the γC(θ) :=
2(1+ 1

δ
Λ2)

θ2ε
.

Remark 4.6. We may define contractive factor α(δ) := max
{

1
2 , (1 +

1
δ )

Λ2

εγ + 1− θ2

2

}

with

the specified δ above. In combination with the γ > γC(θ) we also have (1+ 1
δ )

Λ2

εγ +1− θ2

2 <

1− cθ2 for some c.

5 Quasi-optimlaity of AFEM

The total-error norm is given by

ρP (v, V, g) =
(

|||v − V |||2P + osc2P (g)
)1/2

. (126)
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The AFEM approximation class defined by the total-error norm is then given by

A
s =

{

v ∈ H2
0 (Ω) : sup

N>0
N sEP (v) <∞

}

, (127)

where
EP (v) = inf

V ∈XP

ρP (v, V,Lv), v ∈ H2(Ω). (128)

Analogously, we define the approximation class in which approximation comes from bound-
ary conforming spline spaces by

A
s
0 =

{

v ∈ H2
0 (Ω) : sup

N>0
N sE0

P (v) <∞

}

(129)

where

E0
P (v) = inf

V0∈X0
P

(

‖v − V0‖
2
H2(Ω) + osc2P (Lv)

)1/2
, v ∈ H2

0 (Ω) (130)

Lemma 5.1 (Equivalence of classes). As = As
0

Proof. Let u ∈ As, for s > 0, let N > #P0, let P∗ ∈ PN and let V∗ ∈ X∗ be such that

ρP∗
(u, V∗, f) = inf

P∈PN

EP (u) (131)

Using the triangle inquality |||u − V 0
∗ |||P∗

≤ |||u − V∗|||P∗
+ |||V∗ − V 0

∗ |||P∗
with the fact that

|V∗|P∗
= |u− V∗|P∗

we have in view of norm equivalence (71)

|||V∗ − V 0
∗ |||P∗

≤ C⊥|V∗|P∗
� |||u− V∗|||P∗

, (132)

from which we obtain

|||u− V 0
∗ |||

2
P∗

+ osc2P∗
(f) � |||u− V∗|||

2
P∗

+ osc2P∗
(f). (133)

Upon taking infimum we arrive at

|||u− V 0
∗ |||

2
P∗

+ osc2P∗
(f) � E2

P (u, f) � N−2s. (134)

Lemma 5.2 (Quasi-optimality of total error). Let u be the solution of (10) and for all

P ∈ P let U ∈ XP be the discrete solution to (35). Then, for a constant CQOTE > 0 and

γQ > 0 we have for all γ ≥ γQ

ρ2P (u,U, f) ≤ CQOTE inf
V ∈XP

ρ2P (u, V, f). (135)
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Proof. In view of Coercivity (54), partial Galerkin orthogonality (36) and Continuity (48)

Ccoer|||e|||
2
P ≤ aP (e, u − U) = aP (e, u− U0)− aP (e, U

⊥)

= aP (e, u − V0) + aP (e, U
⊥) = aP (e, u− V ) + aP (e, V

⊥) + aP (e, U
⊥)

≤ Ccont|||e|||P
(

|||u− V |||P + |||V ⊥|||P + |||U⊥|||P
)

(136)

Norm equivalence (3.4) |||V ⊥|||P ≤ C⊥|u− V ⊥|P ≤ |||u− V |||P . Nonconforming control (94)
and Global Lower Bound (84) makes |||U⊥|||P � γ−1/2ηP ≤ γ−1/2CeffρP (u,U, f). From

Ccoer|||e|||P � Ccont

(

|||u− V |||P + γ−1/2CeffρP (u,U, f)
)

(137)

we get

|||e|||2P �
C2
cont

C2
coer

(

|||u− V |||2P + γ−1C2
effρ

2
P (u,U, f)

)

(138)

Add osc2P (f) to the preceding expression to get

(

1−
C2
contC

2
eff

C2
coer

γ−1

)

ρ2P (u,U, f) �
C2
contC

2
eff

C2
coer

ρ2P (u, V, f). (139)

Let γQ :=
C2

contC
2
eff

C2
coer

.

Let

θ∗(γ) :=

(

Ceff − 2CdRelγ
−1

2(1 + CdRel)

)1/2

and γ∗(θ) := max

(

2CdRel

Ceff
, γQ, γC(θ)

)

. (140)

Then θ∗ > 0 and since Ceff < CdRel, θ∗ < 1.

Lemma 5.3 (Optimal marking). Let U = SOLVE [P, f ], let P∗ be any refinement of P
and let U∗ = SOLVE [P∗, f ]. If for some positive µ < 1

|||u− U0
∗ |||

2
P∗

+ osc2∗(f, P∗) ≤ µ
(

|||u− U |||2 + osc2P (f, P )
)

, (141)

and RP→P∗
denotes collection of all elements in P requiring refinement to obtain P∗ from

P , then for θ ∈ (0, θ∗(γ)) we have

ηP (U,ωRP→P∗
) ≥ θηP (U,Ω) (142)

Proof. Let θ < θ∗, the parameter θ∗ to be specified later, such that the linear contraction
of the total error holds for

µ(θ, γ) :=
1

2

(

1−
2CdRelγ

−1

Ceff

)(

1−
θ2

θ2∗

)

<
1

2
, (γ ≥ γ∗). (143)
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The efficiency estimate (84) together with the assumption (141)

(1− 2µ)Ceffη
2
P (U,P ) ≤ (1− µ)ρ2P (u,U, f)

= ρ2P (u,U, f)− ρ2∗(u∗, U
0
∗ , f)

= |||u− U |||2P − 2|||u− U0
∗ |||

2
P∗

+ osc2P (f,Ω)− 2osc2P∗
(f,Ω)

(144)

Triangle inequality and Discrete Reliability (85)

|||u− U |||2P − 2|||u− U0
∗ |||

2
P∗

≤ 2|||U0
∗ − U |||2P

≤ 2CdRel

(

η2P (U,ωRP→P∗
) + γ−1η2P (U,Ω)

) (145)

Estimator Dominance over oscillation

osc2P (f,Ω)− 2osc2P∗
(f,Ω) ≤ 2osc2P (f, ωRP→P∗

) ≤ 2η2P (U,ωRP→P∗
) (146)

From

(1− 2µ)Ceffη
2
P (U,P ) ≤ 2(1 +CdRel)η

2
P (U,ωRP→P∗

) + 2CdRelγ
−1η2P (U,Ω) (147)

re-write into

(

(1− 2µ)Ceff + 2CdRelγ
−1
)

η2P (U,P ) ≤ 2(1 + CdRel)η
2
P (U,ωRP→P∗

). (148)

For reader clarity we show that

(1− 2µ)Ceff − 2CdRelγ
−1

2(1 + CdRel)
= θ2.

Express

(1− 2µ)Ceff − 2CdRelγ
−1 = θ22(1 + CdRel) =

θ2(Ceff − 2CdRelγ
−1)

θ2∗
,

which is same as

−2µ =
θ2

θ2∗

(

1−
2CdRelγ

−1

Ceff

)

+
2CdRelγ

−1

Ceff
− 1 =

(

1−
2CdRelγ

−1

Ceff

)(

θ2

θ2∗
− 1

)

.

Lemma 5.4 (Cardinality of Marked Cells). Let {(Pℓ,Xℓ, Uℓ)}ℓ≥0 be sequence generated by

AFEM (P0, f ; ε, θ) for admissible P0 and the pair u ∈ As for some s > 0 then

#Mℓ �

(

1−
θ2

θ2∗

)− 1
2s

|u|
− 1

s

As
ρℓ(u,Uℓ, f)

− 1
s (149)
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Proof. Let (u, f) ∈ As and set ε2 = µC−1
QOTEρ

2
ℓ (u,Uℓ, f). In view of Lemma 5.1, u ∈ A0

s

and there exists an admissible partition Pε and V 0
ε ∈ X0

ε with ρ2ε(u, V
0
ε , f) ≤ ε2 and

#Pε � |u|
1/s
As ε−1/s. Let P∗ be the overlay of meshes Pℓ and Pε. From (72)

aP∗
(U0

∗ ,W
0) = ℓf (W

0) ∀W 0 ∈ X
0
∗, (150)

we invoke Lemma 5.2 on U0
∗ and use the fact P∗ ≥ Pε makes X∗ ⊇ Xε and obtain

ρ2∗(u,U
0
∗ , f) ≤ CQOTEρ

2
ε(u, V

0
ε , f) ≤ ε2 = µρ2ℓ(u,Uℓ, f) (151)

We may now invoke Lemma 5.3 and RPℓ→P∗
satisfies Dorfler property Minimal cardinality

of marked cells
#Mℓ ≤ #RPℓ→P∗

≤ #P∗ −#Pℓ (152)

In view of mesh overlay property #P∗ ≤ Pε + #Pℓ − #P0 in (46) and definition of ε we
arrive at

#Mℓ ≤ #Pε −#P0 � µ−1/2s|u|
1/s
As ρℓ(u,Uℓ, f)

−1/s (153)

Theorem 5.5 (Quasi-optimality). Let γ∗ and θ∗ be as above. If γ > γ∗ and θ ∈ (0, θ∗(γ)),
u ∈ As and P0 is admissible, then the call AFEM [P0, f, ε, θ] generates a sequence {(Pℓ,Xℓ, Uℓ)}ℓ≥0

of strictly admissible partitions Pℓ, conforming finite-element spline spaces Xℓ and discrete

solutions Uℓ satisfying

ρℓ(u,Uℓ, f) � Φ(s, θ)|(u, f)|
As
(#P −#P0)

−s (154)

with Φ(s, θ) = (1− θ2/θ2∗)
− 1

2

Proof. The proof is similar to that of the confomring forumlation []. For completeness
we outline the analysis. Let θ < θ∗ be given and assume that u ∈ As(ρ). We will show
that the adaptive procedure AFEM will produce a sequence {(Pℓ,Xℓ, Uℓ)}ℓ≥0 such that
ρℓ � (#Pℓ −#P0)

−s. In view of Convergence Theorem 4.5, we have for a factor Cest > 0
and a contractive factor α ∈ (0, 1), Efficiency Estimate (84) and Estimator Dominance (42)

ℓ−1
∑

j=0

ρ
− 1

s

j ≤
ℓ−1
∑

j=0

α
ℓ−j
s

(

1 + Cest

Ceff

)
1
2s (

e2ℓ + Cestosc
2
ℓ

)− 1
2s . (155)

Cardinality of Marked Cells (149) and (47) yields

#Pℓ −#P0 � |u|
−1/s
As

(

1 +
Cest

Ceff

)1/2s α1/s

1− α1/s

(

1−
θ2

θ2∗

)−1/2s

ρℓ(u,Uℓ, f)
− 1

s (156)

From Remark 4.6
α1/s

1− α1/s
≤ (157)
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