
SIMULTANEOUS BOUNDARY HITTING
BY COUPLED REFLECTED BROWNIAN MOTIONS

KRZYSZTOF BURDZY

Abstract. (i) Uncountably many synchronized reflected Brownian motions can hit
the boundary of a C2 domain at the same time. (ii) Measures associated to local
times of two synchronized reflected Brownian motions are mutually singular until the
time when the normal vectors at the reflection locations become identical. (iii) Mirror
coupled reflected Brownian motions can simultaneously hit opposite sides of a wedge
at different distances from the origin.

1. Introduction

We will prove three theorems on simultaneous hitting of the boundary by coupled
Brownian motions.

The first theorem is essentially known, at least in a weaker form; see [11, 16]. Consider
a bounded C2 domain D ⊂ Rd, d ≥ 2, and a stochastic flow of reflected Brownian
motions starting from all points in D, driven by the same Brownian motion. Then,
a.s., there is a time t > 0 such that all processes that started from points in an open
non-empty subset of D are on the boundary. Our contribution is a new proof based on
Brownian cone points.

The second theorem shows that the measures associated with local times of two
reflected Brownian motions driven by the same Brownian motion are mutually singular
before the time when the normal vectors at the reflection locations are identical.

The third and final theorem is our main result. It is concerned with “mirror” cou-
plings, defined in Section 3. These couplings were used many times to prove theorems
in potential theory, see [1, 2, 3, 4, 6, 9]. The main arguments in all of these articles
were based on the analysis of the motion of the “mirror,” i.e., the line of symmetry for
two coupled reflected Brownian motions. Mirror motion analysis is simple and intuitive
as long as a certain simple construction (see Section 3.2) of the mirror coupling can
be applied. We will prove that, unfortunately, the simple construction is limited in its
scope because two mirror coupled reflected Brownian motions can hit the sides of a
wedge at the same time.

2. Synchronous couplings

Let D ⊂ Rd be a bounded connected open set with C2-smooth boundary, for some
d ≥ 2. Let n(x) denote the unit inward normal vector at x ∈ ∂D. Let B be standard
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2 KRZYSZTOF BURDZY

d-dimensional Brownian motion, x ∈ D, and consider the following Skorokhod equation,

Xx
t = x+Bt +

∫ t

0

n(Xx
s )dLxs , for t ≥ 0.(2.1)

Here Lx is the local time of Xx on ∂D. In other words, Lx is a non-decreasing contin-
uous process which does not increase when Xx is in D, i.e.,

∫∞
0

1D(Xx
t )dLxt = 0, a.s.

Equation (2.1) has a unique pathwise solution (Xx, Lx) such that Xx
t ∈ D for all t ≥ 0,

simultaneously for all x ∈ D (see [14]). For every x, the reflected Brownian motion Xx

is a strong Markov process. We will call the family {Xx}x∈D a “synchronous coupling.”
The construction of reflected paths in [14] is deterministic and dependence on initial
conditions is continuous so the function (x, t) → Xx

t is jointly continuous, a.s. Note
that for any x, y ∈ D and any interval (s, t) such that Xx

u ∈ D and Xy
u ∈ D for all

u ∈ (s, t), we have Xx
u −Xy

u = Xx
s −Xy

s for all u ∈ (s, t).
Let B(x, r) denote the open ball with center x and radius r.

Theorem 2.1. For every y ∈ D,

P(∃t, r > 0 ∀x ∈ B(y, r) : Xx
t ∈ ∂D) = 1.

Proof. For α ∈ (0, π), let

C(α) =

{
(x1, . . . , xd) ∈ Rd : x1 > (cotα)

√
x2

2 + · · ·+ x2
d

}
.(2.2)

We will say that t > 0 is an α-cone point for Brownian motion B if for all s ∈ [0, t),

we have Bs ∈ Bt + C(α). It follows from the results in [8] that if cosα < 1/
√
d then

cone points exist, a.s. Fix some α ∈ (arccos(1/
√
d), π/2). Standard arguments based

on Brownian scaling and the 0-1 law show that with probability 1, for every s > 0 there
exists an α-cone point t ∈ (0, s). Let v = (1, 0, . . . , 0). By scaling, for every p1 < 1
there exists c1 > 0 such that for every r1 > 0, with probability greater than p1, there
exists an α-cone point t such that (Bt − B0) · v ≤ −r1 and |Bs − Bu| ≤ c1r1 for all
s, u ∈ [0, t]. Fix an arbitrary p1 < 1 and the corresponding c1 > 0. We will assume
without loss of generality that c1 > 2.

Since D is a bounded domain with a C2 boundary, there exists a point w ∈ ∂D such
that n(w) = v. It is easy to see that we can find r1 > 0 so small that the following
conditions are satisfied.

(i) n(x) · v ≥ 1/2 for all x ∈ ∂D ∩B(w, 4c1r1).
(ii) |(x− w) · v| ≤ r1/8 for all x ∈ ∂D ∩B(w, 4c1r1).
(iii) If x, z ∈ Rd, |x− z| ≤ 8c1r1, x ∈ ∂D∩B(w, 4c1r1) and x− z ∈ C(α) then z /∈ D.
(iv) If (z − w) · v ≤ −r1/2 and |z − w| ≤ 2c1r1 then z /∈ D.

Conditions (i)-(iv) are not logically independent but it is convenient to list them
separately for reference.

Fix any y ∈ D. The process Xy is neighborhood recurrent so the stopping time
T1 := inf{t ≥ 0 : Xy

t ∈ ∂D ∩B(w, r1/8)} is finite, a.s. Since (x, t)→ Xx
t is continuous,

there exists r > 0 such that

P(∀x ∈ B(y, r) : Xx
T1
∈ D ∩B(w, r1/4)) > p1.(2.3)
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Let

A1 = {∀x ∈ B(y, r) : Xx
T1
∈ D ∩B(w, r1/4)},

A2 = {there exists an α-cone point T2 for the process {B(T1 + t), t ≥ 0}
(that is, for all s ∈ [T1, T2) we have Bs ∈ BT2 + C(α))

such that (BT2 −BT1) · v ≤ −r1 and |Bs −Bu| ≤ c1r1 for all s, u ∈ [T1, T2]}.

By the definition of c1, the strong Markov property applied at T1 and (2.3), P(A1∩A2) ≥
p2

1. Since p1 can be any number in (0, 1), it will suffice to show that if A1∩A2 occurred
then Xx

T2
∈ ∂D for all x ∈ B(y, r). Fix any ω ∈ A1 ∩ A2 and any x ∈ B(y, r).

First, we will show that Xx
t ∈ ∂D for some t ∈ [T1, T2]. Suppose otherwise. Then∫ T2

T1
n(Xx

s )dLxs = 0 and, therefore,

Xx
T2
− w = Xx

T2
−Xx

T1
+Xx

T1
− w = BT2 −BT1 +Xx

T1
− w.(2.4)

By the definitions of A1 and A2, and the assumption that c1 > 2,

|Xx
T2
− w| ≤ |BT2 −BT1|+ |Xx

T1
− w| ≤ c1r1 + r1/4 ≤ (5/4)c1r1.(2.5)

We use (2.4) and the definitions of A1 and A2 to see that

(Xx
T2
− w) · v = (BT2 −BT1) · v + (Xx

T1
− w) · v ≤ −r1 + |Xx

T1
− w|(2.6)

≤ −r1 + r1/4 < −r1/2.

Condition (iv) applied to z = Xx
T2

and (2.5)-(2.6) imply that Xx
T2
/∈ D, a contradiction.

Hence, Xx
t ∈ ∂D for some t ∈ [T1, T2].

Next we will argue that |Xx
u − w| ≤ 4c1r1 for u ∈ [T1, T2]. Suppose otherwise and

let T3 = inf{t ≥ T1 : |Xx
t − w| ≥ 4c1r1} ≤ T2. If Xx

u /∈ ∂D for u ∈ [T1, T3] then
|Xx

T3
− w| ≤ (5/4)c1r1 because the argument proving (2.5) remains valid if we replace

T2 with T3. This contradicts the definition of T3 so T4 := sup{t ≤ T3 : Xx
t ∈ ∂D} must

exist and satisfy T4 ≤ T3 ≤ T2. By the definitions of T3, A1 and A2,∫ T4

T1

dLxs ≥
∣∣∣∣∫ T4

T1

n(Xx
s )dLxs

∣∣∣∣ =

∣∣∣∣∫ T3

T1

n(Xx
s )dLxs

∣∣∣∣ =
∣∣Xx

T3
−Xx

T1
−BT3 +BT1

∣∣
≥
∣∣Xx

T3
− w

∣∣− ∣∣w −Xx
T1

∣∣− |BT3 −BT1 | ≥ 4c1r1 − r1/4− c1r1 ≥ (5/2)c1r1.

This and condition (i) imply that(∫ T4

T1

n(Xx
s )dLxs

)
· v ≥ 1

2

∫ T4

T1

dLxs ≥ (5/4)c1r1.

We use this bound, definitions of A1 and A2 and assumption that c1 > 2 to see that∣∣(Xx
T4
− w) · v

∣∣ =

∣∣∣∣(BT4 −BT1) · v +

(∫ T4

T1

n(Xx
s )dLxs

)
· v + (Xx

T1
− w) · v

∣∣∣∣
≥
∣∣∣∣(∫ T4

T1

n(Xx
s )dLxs

)
· v
∣∣∣∣− |(BT4 −BT1) · v| −

∣∣(Xx
T1
− w) · v

∣∣
≥ (5/4)c1r1 − c1r1 − r1/4 ≥ r1/4.
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It follows from the definitions of T3 and T4 and condition (ii) that this is a contradiction.
We conclude that |Xx

u − w| ≤ 4c1r1 for u ∈ [T1, T2] and, therefore, |Xx
u −Xx

s | ≤ 8c1r1

for s, u ∈ [T1, T2].
If Xx

T2
∈ ∂D then we are done. Suppose that Xx

T2
/∈ ∂D. Recall that we have shown

that Xx
t ∈ ∂D for some t ∈ [T1, T2]. Let T5 = sup{t < T2 : Xx

t ∈ ∂D}. We have proved
that |Xx

u − w| ≤ 4c1r1 for u ∈ [T1, T2] so Xx
T5
∈ ∂D ∩B(w, 4c1r1). The definition of an

α-cone point implies that BT5 −BT2 ∈ C(α). Since
∫ T2
T5

n(Xx
s )dLxs = 0, we obtain

Xx
T5
−Xx

T2
= BT5 −BT2 −

∫ T2

T5

n(Xx
s )dLxs ∈ C(α).

This, condition (iii) applied with x = Xx
T5

and z = Xx
T2

, and the facts that Xx
T5
∈

∂D ∩ B(w, 4c1r1) and |Xx
u − Xx

s | ≤ 8c1r1 for s, u ∈ [T1, T2], imply that Xx
T2

/∈ D, a
contradiction. We conclude that Xx

T2
∈ ∂D. �

Recall that D is a d-dimensional C2 domain, for some d ≥ 2. We define a measure
µxL on [0,∞) by µxL([s, t]) = Lxt − Lxs for t ≥ s ≥ 0 and x ∈ D.

Theorem 2.2. Consider any x, y ∈ D, x 6= y, and let

T = inf{t ≥ 0 : Xx
t ∈ ∂D,X

y
t ∈ ∂D,n(Xx

t ) = n(Xy
t )}.

Then, with probability 1, the measures µxL and µyL are mutually singular on [0, T ].

Proof. Step 1. Let Cv(α) be a cone with vertex 0, with the same angle as that of
C(α) defined in (2.2), and such that its axis contains v, a non-zero vector in Rd. Let
∠(v,w) denote the angle between vectors v and w. For non-zero vectors v and w,
let Λ(α,v,w) denote the set of times t3 ≥ 0 such that for some t4 < t3 we have
Bs ∈ Bt3 + (Cv(α) ∩ Cw(α)) for all s ∈ [t4, t3).

Suppose that for some t1, Xx
t1
∈ ∂D and Xy

t1 ∈ ∂D. We will show that t1 ∈
Λ(α,n(Xx

t1
),n(Xy

t1)) for every α > π/2. Let v = n(Xx
t1

). Elementary geometry shows

that for every α > π/2 there exist ε1, δ > 0 such that if z ∈ D, |z − Xx
t1
| ≤ ε1 and

w ∈ Cv(δ) then z + w ∈ Xx
t1

+ Cv(α). Fix some α > π/2 and corresponding ε1 and δ.
Find ε2 ∈ (0, ε1) so small that n(z) ∈ Cv(δ) for all z ∈ ∂D such that |z − Xx

t1
| ≤ ε2.

Let t2 < t1 be such that |Xx
s −Xx

t1
| ≤ ε2 for all s ∈ [t2, t1]. Then

zs :=

∫ t1

s

n(Xx
u)dLxu ∈ Cv(δ),

for all s ∈ [t2, t1). This implies that Xx
s + zs ∈ Xx

t1
+ Cv(α), and, therefore,

Bs −Bt1 = Xx
s −Xx

t1
+

∫ t1

s

n(Xx
u)dLxu = Xx

s + zs −Xx
t1
∈ Cv(α).

Hence, Bs ∈ Bt1 + Cv(α) for all s ∈ [t2, t1). The same argument applies to Xy
t1 , so we

conclude that for every α > π/2, one can find t2 < t1 such that Bs ∈ Bt1 + Cn(Xx
t1

)(α)

and Bs ∈ Bt1 + Cn(Xy
t1

)(α) for all s ∈ [t2, t1). It follows that t1 ∈ Λ(α,n(Xx
t1

),n(Xy
t1)).

Next, we will estimate the Hausdorff dimension of all times t1 with this property.
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Step 2. The formula for the Hausdorff dimension of “cone points” for planar Brownian
motion, derived in [12], is based on the tail properties of the distribution of the exit
time from the cone (see especially Corollary 5 of [12]).

In the following, a “cone” is understood in the generalized sense, that is, any set
F ⊂ Rd will be called a cone if az ∈ F assuming that z ∈ F and a > 0. The
rate of decay of the tail of the exit distribution is determined by the first Dirichlet
(spherical) Laplacian eigenvalue for the intersection of the cone with the unit sphere
(see, for example, Section 1 of [5]). Hence, the Hausdorff dimension of Λ(α,v,w) is
determined by the first Dirichlet (spherical) Laplacian eigenvalue for the intersection
of the cone Cv(α) ∩ Cw(α) with the unit sphere. By an argument similar to the proof
of Theorem 1.2 of [5], when α ↓ π/2, the eigenvalues corresponding to Cv(α) ∩ Cw(α)
converge to Cv(π/2) ∩ Cw(π/2). The asymptotic rate of decay for the tail of the exit
time from Cv(π/2) ∩ Cw(π/2) is the same as for the two-dimensional cone with angle
π − ∠(v,w). Hence, as α ↓ π/2, the Hausdorff dimensions of sets Λ(α,v,w) converge
to 1− π/(2(π − ∠(v,w))), by arguments similar to those given in [12].

For any unit vectors v and w, let α > π/2 be such that the Hausdorff dimension of
Λ(α,v,w) is less than 1−π/(2(π−∠(v,w)/2)). Let α′ = (α+π/2)/2, and let U(v,w)
be the interior of the set of unit vectors v′ and w′ such that Cv′(α

′) ∩ Cw′(α
′) ⊂

Cv(α) ∩ Cw(α). Note that U(v,w) is open and non-empty.
The set of pairs of unit vectors (v,w) such that ∠(v,w) ≥ 1/k is compact so it

is covered by a finite family of sets U(v,w). It follows that there exists β(k) > π/2
such that the Hausdorff dimension of Λ∗k :=

⋃
∠(v,w)≥1/k Λ(β(k),v,w) is less than 1 −

π/(2(π − 1/(2k))).

Step 3. We have ∠(n(Xx
t ),n(Xy

t )) > 0 for all t < T so, by Step 1,

{t ≥ 0 : Xx
t ∈ ∂D,X

y
t ∈ ∂D} ⊂

⋃
k≥1

Λ∗k.

It will suffice to show that, for any fixed k ≥ 1, neither µxL nor µyL charges Λ∗k. Clearly,
it is enough to supply a proof for µxL only.

It has been shown in the proof of [7, Thm. 3.2] that for every γ < 1/2, the sample
path of reflected Brownian motion in a smooth domain is γ-Hölder, a.s. The same
applies to Brownian motion paths so formula (2.1) implies that every component of the

vector process t →
∫ t

0
n(Xx

s )dLxs is γ-Hölder, a.s. This in turn implies that t → Lxt is
γ-Hölder, a.s.

Step 2 shows that the Hausdorff dimension of Λ∗k, which we will call ρk, is strictly
less than 1/2. Consider γ ∈ (ρk, 1/2), integer m > 0 and a trajectory of {Lxt , t ∈ [0,m]}
such that for some c < ∞, |Lxs − Lxt | ≤ c|t − s|γ for all s, t ∈ [0,m]. It follows from
the definition of Hausdorff dimension that for every ε > 0 there exists a sequence of
intervals [sj, tj], j ≥ 1, such that Λ∗k∩ [0,m] ⊂

⋃
j≥1[sj, tj] and

∑
j≥1 |tj−sj|γ < ε. This

implies that

µxL(Λ∗k ∩ [0,m]) ≤ µxL

(⋃
j≥1

[sj, tj]

)
≤
∑
j≥1

µxL([sj, tj]) =
∑
j≥1

Lxtj − L
x
sj
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≤
∑
j≥1

c|tj − sj|γ ≤ cε.

Since ε > 0 is arbitrarily small, µxL(Λ∗k ∩ [0,m]) = 0. Taking the sum over m ≥ 1, we
obtain µxL(Λ∗k) = 0. �

Remark 2.3. Recall notation from Theorem 2.2. If D is a polygonal planar domain
and Xx

T and Xy
T belong to the interior of the same edge of ∂D then for some random

time S > T , µxL([T, S]) > 0 and measures µxL and µyL restricted to [T, S] are identical.

3. Mirror couplings

We will present three different constructions of “mirror couplings” of Brownian mo-
tions and reflected Brownian motions in planar domains, starting with couplings in the
whole plane and then moving to domains of greater complexity. These constructions
were originally developed in [10] and later applied in [4] and other articles. Our review
is similar to that in [6].

3.1. Mirror couplings in the plane. Suppose that x, y ∈ R2 are symmetric with
respect to a line M and x 6= y. Let X be a Brownian motion starting from x, let
TXM = inf{t ≥ 0 : X ∈ M}, and let Yt be the mirror image of Xt with respect to M
for t ≤ TXM . We let Yt = Xt for t > TXM . By the strong Markov property applied at
TXM , the process Y is a Brownian motion starting from y. The pair (X, Y ) is a “mirror
coupling” of Brownian motions in the plane.

3.2. Mirror couplings in half-planes. Informally speaking, a mirror coupling in a
half-plane is the unique coupling of reflected Brownian motions in the half-plane that
behaves exactly as the mirror coupling in the whole plane when both processes are
away from the boundary. Suppose that D∗ is a half-plane, x, y ∈ D∗, and let M be the
line of symmetry for x and y. The case when M is parallel to ∂D∗ is essentially a one-
dimensional problem, so we focus on the case when M intersects ∂D∗. By performing
rotation and translation, if necessary, we may suppose that D∗ is the upper half-plane
and M passes through the origin. We will write x = (rx, θx) and y = (ry, θy) in polar
coordinates. The points x and y are at the same distance from the origin so rx = ry.
Suppose without loss of generality that θx < θy. We first generate a 2-dimensional
Bessel process Rt starting from rx. Then we generate two coupled one-dimensional

processes on the “half-circle” as follows. Let Θ̃x
t be a 1-dimensional Brownian motion

starting from θx. Let Θ̃y
t = −Θ̃x

t + θx + θy. Let Θx
t be reflected Brownian motion on

[0, π], constructed from Θ̃x
t by the means of the Skorokhod equation. Thus Θx

t solves

the stochastic differential equation dΘx
t = dΘ̃x

t + dLt, where Lt is a continuous process
that changes only when Θx

t is equal to 0 or π and Θx
t is always in the interval [0, π].

The process Θx
t is constructed in such a way that the difference Θx

t − Θ̃x
t is constant

on every interval of time on which Θx
t does not hit 0 or π. The analogous reflected

process obtained from Θ̃y
t will be denoted Θ̂y

t . Let τΘ be the smallest t with Θx
t = Θ̂y

t .

Then we let Θy
t = Θ̂y

t for t ≤ τΘ and Θy
t = Θx

t for t > τΘ. We define a “clock” by

σ(t) =
∫ t

0
R−2
s ds. Then Xt = (Rt,Θ

x
σ(t)) and Yt = (Rt,Θ

y
σ(t)) are reflected Brownian



BROWNIAN COUPLINGS 7

motions in D∗ with normal reflection—one can prove this using the same ideas as in
the discussion of the skew-product decomposition for 2-dimensional Brownian motion
presented in [13]. Moreover, X and Y behave like free Brownian motions coupled by
the mirror coupling as long as they are both strictly inside D∗. The processes will stay
together after the first time they meet. We call (X, Y ) a “mirror coupling” of reflected
Brownian motions in half-plane.

The two processes X and Y in the upper half-plane remain at the same distance from
the origin. Suppose now that D∗ is an arbitrary half-plane, and x and y belong to D∗.
Let M be the line of symmetry for x and y. Then an analogous construction yields a
pair of reflected Brownian motions starting from x and y such that the distance from
Xt to M ∩∂D∗ is always the same as for Yt. Let Mt be the line of symmetry for Xt and
Yt. Note that Mt may move, but only in a continuous way, while the point Mt ∩ ∂D∗
will never move. We will call Mt the mirror and the point H := Mt∩∂D∗ will be called
the hinge. The absolute value of the angle between the mirror and the normal vector
to ∂D∗ at H can only decrease.

3.3. Mirror couplings in polygons. We will present an inductive construction of a
mirror coupling (X, Y ) of reflected Brownian motions in a planar convex polygonal do-
main D based on the constructions presented in Sections 3.1 and 3.2. We will construct
a coupling only on a (random) time interval [0, S∞] such that Xt /∈ ∂D or Yt /∈ ∂D for
every t ∈ [0, S∞).

Assume that x, y ∈ D, x 6= y, and let {(X1
t , Y

1
t ), t ≥ 0} be the mirror coupling of

Brownian motions in the whole plane, starting from (X1
0 , Y

1
0 ) = (x, y). Let S0 = 0 and

S1 = inf{t ≥ 0 : X1
t ∈ ∂D or Y 1

t ∈ ∂D}.
If X1

S1
∈ ∂D and Y 1

S1
∈ ∂D then we let S∞ = S1 and we end the induction.

Suppose that either X1
S1

/∈ ∂D or Y 1
S1

/∈ ∂D. In the first case let I1 be the edge of
∂D to which Y 1

S1
belongs and let K1 be the line containing I1. In the second case let I1

be the edge of ∂D to which X1
S1

belongs and let K1 be the line containing I1.

Suppose that {(Xk
t , Y

k
t ), t ≥ Sk−1}, Sk, Ik and Kk have been defined and either

Xk
Sk

/∈ ∂D or Y k
Sk

/∈ ∂D, for some k ≥ 1. Let {(Xk+1
t , Y k+1

t ), t ≥ Sk} be the mirror

coupling of Brownian motions starting from (Xk+1
Sk

, Y k+1
Sk

) = (Xk
Sk
, Y k

Sk
), constructed as

in Section 3.2, in the half-plane containing D, with boundary Kk. Let Sk+1 = inf{t ≥
Sk : Xk+1

t ∈ ∂D or Y k+1
t ∈ ∂D}.

If Xk+1
Sk+1
∈ ∂D and Y k+1

Sk+1
∈ ∂D then we let S∞ = Sk+1 and we end the induction.

Suppose that either Xk+1
Sk+1

/∈ ∂D or Y k+1
Sk+1

/∈ ∂D. In the first case let Ik+1 be the

edge of ∂D to which Y k+1
Sk+1

belongs and let Kk+1 be the line containing Ik+1. In the

second case let Ik+1 be the edge of ∂D to which Xk+1
Sk+1

belongs and let Kk+1 be the line
containing Ik+1.

If there is no k such that S∞ = Sk then we let S∞ = limk→∞ Sk.
We define (Xt, Yt) for t ∈ [0, S∞) by (Xt, Yt) = (Xk

t , Y
k
t ) for t ∈ [Sk−1, Sk) and k such

that Sk−1 < S∞. If S∞ < ∞ then we extend the definition of (Xt, Yt) to t = S∞ by
continuity.
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The construction of the mirror coupling can be easily continued beyond S∞ under
some circumstances. For example, if XS∞ = YS∞ then X and Y can be continued
beyond S∞ as a single reflected Brownian motion in D.

Let Mt denote the mirror, i.e., the line of symmetry for Xt and Yt. Since the process
which hits Ik does not “feel” the shape of ∂D except for the direction of Ik, it follows
that the two processes remain at the same distance from the hinge Ht := Mt ∩Kk on
the interval [Sk, Sk+1]. The mirror Mt can move but the hinge Ht remains constant on
the interval [Sk, Sk+1]. Typically, the hinge Ht jumps at times Sk. The hinge Ht may
lie outside D at some times.

3.4. Can mirror coupled reflected Brownian motions hit the boundary si-
multaneously? The first rigorous construction of a mirror coupling in a domain with
piecewise C2-boundary was given in [2]. The construction given in [2] is rather technical
so we find it of interest to determine whether the construction given in Section 3.3 can
define a mirror coupling for all t ≥ 0 in every convex polygonal domain. The positive
answer would allow one to analyze the motion of the mirror using the elementary and
intuitive methods outlined in Section 3.2. Our main result, given below, says that this
is not possible.

Remark 3.1. Before we state our main result, we will list three possible situations
when Xt ∈ ∂D and Yt ∈ ∂D. It is easy to see that each one of these can occur with
positive probability (for an appropriate domain and initial conditions). At the same
time they do not pose any technical difficulties with the construction of the mirror
coupling. Hence these three situations are not interesting.

(i) It may happen that Xt = Yt ∈ ∂D for some t. In this case, one can continue the
mirror coupling as a single reflected Brownian motion in D representing both X and
Y , after time t.

(ii) It may happen that X and Y hit the same edge I at the same time t, at different
points. In this case the mirror is orthogonal to I at time t. One can easily continue the
mirror coupling after time t, on some random time interval, until one of the processes
hits a different edge of ∂D.

(iii) If the mirror passes through the intersection point of lines containing two edges
I and J then it may happen that X hits I and Y hits J at the same time t. One can
easily continue the mirror coupling after time t, on some random time interval, until
one of the processes hits a different edge of ∂D.

We will use complex and vector notation interchangeably.

Theorem 3.2. Consider a wedge D = {reiθ ∈ C : r > 0, 0 < θ < α} with angle
α ∈ (0, π/2). We will denote the edges of D by EX = (0,∞) and EY = {reiα : r > 0}.
There exist x, y ∈ D such that if {(Xt, Yt), t ∈ [0, S∞)} is the mirror coupling of reflected
Brownian motions in D constructed as in Section 3.3 and (X0, Y0) = (x, y) then

P (S∞ <∞, XS∞ ∈ EX , YS∞ ∈ EY , |XS∞| 6= |YS∞|) > 0.(3.1)

Remark 3.3. (i) Recall that if S∞ < 0 then XS∞ is defined as limt↑S∞ Xt. A similar
remark applies to YS∞ .
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Figure 1. The first step of the proof is devoted to studying the effect
of increasing β on the position of A and the logarithmic transformation
of the blue wedge.

(ii) It is easy to see that if the event in (3.1) holds then none of the situations listed
in Remark 3.1 (i)-(iii) could have occurred at time S∞.

Proof of Theorem 3.2. Step 1. This step is devoted to a purely geometric lemma. We
will investigate the effect of a change of one parameter in a geometric model on another
parameter in the same model.

Recall that ∠ denotes an angle; we will adopt the convention that all angles are in
[0, π]. For any points F and G in the plane, let |FG| denote the distance between them.
We will identify points in the plane with complex numbers and points on the real axis
with real numbers. Hence, if F is a point in the positive part of the real axis then
F = |F | = |0F |. Let U := {x+ iy ∈ C : 0 ≤ y ≤ π}.

Suppose that H > 0, β > α and M = {H + reiβ : r ∈ R}. Define H ′ by {H ′} =
M ∩ EY . Let S be the symmetry with respect to M , and define A and A′ by {A} =
EX ∩ S(EY ) and {A′} = {S(A)} = EY ∩ S(EX). See Fig. 1.

We will consider α and H to be constants and we will treat β as a variable. Note
that H ′, A and A′ are uniquely determined given H,α and β.

Elementary geometry shows that ∠(0AH ′) = π+α− 2β and ∠(0A′H) = 2β−α. By
the law of sines,

H

sin∠(0A′H)
=

|HA′|
sin∠(H0A′)

,

H

sin(2β − α)
=
|HA′|
sinα

,

|HA| = |HA′| = H sinα

sin(2β − α)
,

A = |H|+ |HA| = H(1 + sinα csc(2β − α)).(3.2)
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Let W be the closed wedge with vertex A, such that its sides contain H and H ′, and
A′ lies in its interior. Note that π/4 + α/2 < π/2. For z ∈ W and β ∈ (α, π/4 + α/2)
let

f(β, z) = (log(z − A) + i(α− 2β))
π

π + α− 2β
(3.3)

=

(
log

(
z −H

(
1 +

sinα

sin(2β − α)

))
+ i(α− 2β)

)
π

π + α− 2β
.

The function f(β, z) takes values in U and, informally speaking, sends (β,A) to −∞.
Consider r ∈ (H,A). We use (3.2) to see that

f(β, r) = (log(r − A) + i(α− 2β))
π

π + α− 2β

= (log(−r + A) + i(π + α− 2β))
π

π + α− 2β

=

(
log

(
−r +H

(
1 +

sinα

sin(2β − α)

)))
π

π + α− 2β
+ iπ.

We use (3.2) once again to get,

∂

∂β
f(β, r) = − 2πH sin(α) cot(2β − α) csc(2β − α)

(π + α− 2β)(H(1 + sin(α) csc(2β − α))− r)

+
2π

(π + α− 2β)2
log(H(1 + sin(α) csc(2β − α))− r)

= − 2πH sin(α) cot(2β − α) csc(2β − α)

(π + α− 2β)(A− r)
+

2π

(π + α− 2β)2
log(A− r).(3.4)

Recall that α ∈ (0, π/2) and fix β∗1 and β∗2 such that α < β∗1 < β∗2 < π/2 and 2β∗2 −α <
π/2. If β ∈ [β∗1 , β

∗
2 ] then sin(α) cot(2β − α) csc(2β − α) > 0. Hence we can find

c∗1 = c∗1(α,H, β∗1 , β
∗
2) > 0 such that if β ∈ [β∗1 , β

∗
2 ] then

∂

∂β
f(β, r) < −c∗1(A− r)−1.(3.5)

Next we calculate the normal derivative of f with respect to the second variable. If
we write z = reiθ then∣∣∣∣ ∂∂θf(β, reiθ)

∣∣∣
θ=0

∣∣∣∣ =
π

π + α− 2β
(A− r)−1.(3.6)

We will derive an analogous estimate for a mapping corresponding to the other side
of the wedge D. Let γ = ∠(0H ′H) and note that γ = β − α. We will now consider α
and H ′ to be constants and we will treat γ as a variable. Note that H,A and A′ are
uniquely determined given H ′, α and γ.

We have ∠(0AH ′) = π − α− 2γ. By the law of sines,

|H ′|
sin∠(0AH ′)

=
|H ′A|

sin∠(H ′0A)
,

|H ′|
sin(π − α− 2γ)

=
|H ′A|
sinα

,
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|H ′A′| = |H ′A| = |H ′| sinα
sin(2γ + α)

,

|A′| = |H ′| − |H ′A′| = |H ′|(1− sinα csc(2γ + α)).(3.7)

Let W ′ be the closed wedge with vertex A′, such that its sides contain H and H ′,
and A lies in its interior. Let (v)− denote the complex conjugate of v ∈ C. For z ∈ W ′

and γ ∈ (0, π/4− α/2) let

g(γ, z) =

(
(log(z − A′)− iα)

π

π − α− 2γ

)−
(3.8)

=

(
(log(z −H ′(1− sinα csc(2γ + α)))− iα)

π

π − α− 2γ

)−
.

The function g(γ, z) takes values in U and, informally speaking, sends (γ,A′) to −∞.
Consider z = reiα with r ∈ (|A′|, |H ′|). Using (3.7), we obtain

g(γ, z) =

(
(log(reiα − A′)− iα)

π

π − α− 2γ

)−
=

(
log(r − |A′|) π

π − α− 2γ

)−
= log(r − |A′|) π

π − α− 2γ

= log(r − |H ′|(1− sinα csc(2γ + α)))
π

π − α− 2γ
,

so, using (3.7) once again,

∂

∂γ
g(γ, z) = − 2π|H ′| sin(α) cot(α + 2γ) csc(α + 2γ)

(π − α− 2γ)(r − |H ′|(1− sin(α) csc(α + 2γ)))

+
2π log(r − |H ′|(1− sin(α) csc(α + 2γ)))

(π − α− 2γ)2

= −2π|H ′| sin(α) cot(α + 2γ) csc(α + 2γ)

(π − α− 2γ)(r − |A′|)
+

2π log(r − |A′|)
(π − α− 2γ)2

.

Recall that α ∈ (0, π/2) and let γ∗1 = β∗1 − α and γ∗2 = β∗2 − α. Then

0 < γ∗1 < γ∗2 < π/2− α, 2γ∗2 + α < π/2.(3.9)

If γ ∈ [γ∗1 , γ
∗
2 ] then sin(α) cot(2γ + α) csc(2γ + α) > 0. Hence we can find c∗2 =

c∗2(α,H ′, γ∗1 , γ
∗
2) > 0 such that if γ ∈ [γ∗1 , γ

∗
2 ] then

∂

∂γ
g(γ, r) < −c∗2(r − |A′|)−1.(3.10)

We will now calculate the normal derivative of g with respect to the second variable.
Write z = reiθ. Then∣∣∣∣ ∂∂θg(γ, reiθ)

∣∣∣
θ=α

∣∣∣∣ =
π

π − α− 2γ
(r − |A′|)−1.(3.11)
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Figure 2. The proof shows that it is possible for X and Y to visit the
boundary simultaneously at a time t such that Xt = AX,t, Yt = AY,t and
|Xt| 6= |Yt|.

Recall that γ = β − α and note that for fixed α, β and H, we have for z ∈ W ′,

g(γ, z) = f(β, S(z)).(3.12)

Step 2. Recall that Mt denotes the line of symmetry for Xt and Yt, reflected Brownian
motions in D. Assume that M0 = {K + reiβ0 : r ∈ R} for some K ∈ EX and
α < β0 < π/4 + α/2.

Let ĒX (ĒY ) be the straight line containing EX (EY ). Let HX,t = Mt ∩ ĒX and
HY,t = Mt ∩ ĒY . Let St be the symmetry with respect to Mt. In particular, we
have St(Xt) = Yt for all t. Let AX,t and AY,t be defined by {AX,t} = ĒX ∩ St(ĒY )
and {AY,t} = {St(AX,t)} = ĒY ∩ St(ĒX). Our assumptions on M0 and β0 imply that
0 < HX,0 < AX,0 and 0 < |AY,0| < |HY,0|. See Fig. 2.

Let βt be defined by Mt = {HX,t + reiβt : r ∈ R} and

T ′ = inf {t ≥ 0 : Xt = Yt or 0 ∈Mt or βt /∈ (α, π/4 + α/2)} ,(3.13)

T ′′ = inf {t ≥ 0 : Xt ∈ ∂D and Yt ∈ ∂D} ,(3.14)

T = T ′ ∧ T ′′.(3.15)

The following definitions apply to t ∈ [0, T ).
Let WX,t be the closed wedge with vertex AX,t, such that its sides contain HX,t and

HY,t, and AY,t lies in its interior. For t ∈ [0, T ) and z ∈ WX,t let

F(t, z) = (log(z − AX,t) + i(α− 2βt))
π

π + α− 2βt
.

Let γt = βt − α. Let WY,t be the closed wedge with vertex AY,t, such that its sides
contain HY,t and HX,t, and AX,t lies in its interior. Recall that (v)− denotes the complex
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Figure 3. If X is active at time t then AX,t will move to AX,t+δ in the
direction of Xt.

conjugate of v ∈ C. For t ∈ [0, T ) and z ∈ WY,t let

G(t, z) =

(
(log(z − AY,t)− iα)

π

π − α− 2γt

)−
.

It follows from (3.3), (3.8) and (3.12) that

F(t, z) = f(βt, z), for t ∈ [0, T ), z ∈ WX,t,

G(t, z) = g(γt, z), for t ∈ [0, T ), z ∈ WY,t,

G(t, z) = F(t, S(z)), for z ∈ WY,t,

G(t, Yt) = F(t, S(Yt)) = F(t,Xt), for t ∈ [0, T ).

The function F(t, z) takes values in U and sends (t, AX,t) to −∞. The function G(t, z)
also takes values in U and sends (t, AY,t) to −∞.

If Xt ∈ EX for some t then we will call both X and EX active at time t (and similarly
for Y and EY ). Suppose that Xt is active at time t. Then, over a short time interval
[t, t+δ], the mirror Mt will move from the position Mt to Mt+δ, the angle βt will increase
to βt+δ, the wedge WX,t will be transformed into the wedge WX,t+δ, and the angle of
WX,t will change from π + α − 2βt to π + α − 2βt+δ. As a result, AX,t will move to
AX,t+δ in the direction of Xt (see Fig. 3). Analogous remarks apply to the situation
when Y is active at time t (see Fig. 4). For a point z between 0 and AX,t+δ, its image
under F will change from F(t, z) to F(t+ δ, z).

Let

Z∗t = G(t, Yt) = F(t,Xt), t ∈ [0, T ),

ρ̃(t) =

∫ t

0

∣∣∣∣( d

dz
F(s, z)

∣∣∣
z=Xs

)∣∣∣∣2 ds, t ∈ [0, T ),
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Figure 4. If Y is active at time t then AY,t will move to AY,t+δ in the
direction of Yt.

s∗ = lim
t↑T

ρ̃(t),(3.16)

ρ(t) = inf{s ≥ 0 : ρ̃(s) ≥ t},
Zs = Z∗(ρ(s)), s ∈ [0, s∗).

The process {Zt, t ∈ [0, s∗)} is reflected Brownian motion in U with (random) oblique
reflection, by an argument very similar to the proof of [15, Thm. 2.3]. We will not
reproduce that proof here but we will point similarities. In [15, Thm. 2.3], a reflected
Brownian motion is transformed by a continuous mapping depending on space and time.
In that paper, there is a non-decreasing process, the norm of the original reflected
Brownian motion, that is constant on time intervals whose union has full Lebesgue
measure. On each of these intervals, the mapping does not depend on time and is
analytic in the space variable. In our case, the local times Lxt and Lyt are constant on
time intervals whose union has full Lebesgue measure. On each of these intervals, the
mapping F(t, z) does not depend on time and is analytic in the space variable.

The obliquely reflected Brownian motion Zt in U has the following representation.
For some two-dimensional Brownian motion B′ and z0 = F(0, X0) ∈ U ,

Zt = z0 +B′t +

∫ t

0

v(s, Zs)dL
Z
s , for t ∈ [0, s∗).(3.17)

Here LZ is the local time of Z on ∂U . In other words, LZ is a non-decreasing continuous
process which does not increase when Z is in the interior U◦ of U , i.e.,

∫ s∗
0

1U◦(Zt)dL
Z
t =

0, a.s. The vector of oblique reflection v is normalized in (3.17) so that the absolute
value of its normal component is equal to 1. The vector v is random, i.e., v(s, · )
depends on {Zt, 0 ≤ t ≤ s}. We will write v = (v1, v2) = v1 + iv2, for v1, v2 ∈ R. Hence,
|v2| = 1. More precisely, v2(z) = 1 if z ∈ R and v2(z) = −1 if Im (z) = π.

We will now determine the first component v1 of the vector of oblique reflection v. It
follows from the construction of the mirror coupling in a half-plane outlined in Section



BROWNIAN COUPLINGS 15

3.2 that at the time when Xt is active,

∆βt =
∆Lxt

|Xt −HX,t|
,(3.18)

and, therefore,

v1(ρ(t), Zρ(t))

|v2(ρ(t), Zρ(t))|
=

1

|Xt −HX,t|
·

∂
∂β
f(β, r)

∣∣∣
r=|Xt|,β=βt∣∣∣∣ ∂∂θf(β, reiθ)
∣∣∣
θ=0,r=|Xt|,β=βt

∣∣∣∣ .(3.19)

Fix some β∗1 and β∗2 such that α < β∗1 < β0 < β∗2 < π/2 and 2β∗2 − α < π/2. Let
T1 = T ∧ inf{t ≥ 0 : βt /∈ [β∗1 , β

∗
2 ]}. We combine (3.5), (3.6) and (3.19) to derive the

following estimate for times t ∈ [0, T1) such that Xt is active,

v1(ρ(t), Zρ(t))

|v2(ρ(t), Zρ(t))|
≤ − c∗1
|Xt −HX,t|

· π + α− 2β∗2
π

=: − ĉ1

|Xt −HX,t|
.(3.20)

Note that ĉ1 > 0.
Let γ∗1 = β∗1 − α and γ∗2 = β∗2 − α. Since γt = βt − α, we have γ∗1 < γ0 < γ∗2 . Note

that T1 = T ∧ inf{t ≥ 0 : γt /∈ [γ∗1 , γ
∗
2 ]}. The conditions imposed on β∗1 and β∗2 imply

that 0 < γ∗1 < γ0 < γ∗2 < π/2−α and 2γ∗2 +α < π/2. Hence, the assumptions (3.9) are
satisfied. It follows that we can use (3.10) and (3.11) to derive the following estimate,
analogous to (3.20), for times t ∈ [0, T1) such that Yt is active,

v1(ρ(t), Zρ(t))

|v2(ρ(t), Zρ(t))|
≤ − c∗2
|Yt −HY,t|

· π − α− 2γ∗2
π

=: − ĉ2

|Yt −HY,t|
,(3.21)

where ĉ2 > 0.
Let

r1 =
1

4
(|AX,0 − AY,0| ∧ |AX,0 −HX,0| ∧ |AY,0 −HY,0|).

It follows from the construction of the mirror coupling given in Sections 3.2-3.3 that
on the interval [0, T1], the distance |0HX,t| is non-decreasing, the distance |0HY,t| is
non-increasing, and the functions βt and γt are non-decreasing. This implies that there

exist β̂2 ∈ (β0, β
∗
2) and γ̂2 ∈ (γ0, γ

∗
2) so small that if

T2 = T ∧ inf{t ≥ 0 : βt /∈ [β0, β̂2]} ∧ inf{t ≥ 0 : γt /∈ [γ0, γ̂2]}(3.22)

then for t ∈ [0, T2],

|HX,t −HX,0| ≤ r1, |HY,t −HY,0| ≤ r1,(3.23)

|AX,t − AX,0| ≤ r1, |AY,t − AY,0| ≤ r1.(3.24)

We will now argue that

{T = T ′′ = T2} ⊂ {s∗ =∞}.(3.25)

It follows from (3.4), (3.6) and (3.19) that the vector of oblique reflection v(ρ̃(t), Z∗t )
is locally bounded on the upper boundary of U for t < T2 ≤ T . The analogous remark
applies to the lower boundary of U .
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Suppose that s∗ < ∞ and T = T ′′ = T2. We will show that this leads to a contra-
diction. The limit lims↑s∗ Zs exists and is finite because s∗ is finite and Z is a reflected
Brownian motion with a locally bounded vector of oblique reflection, hence a continu-
ous process. This implies that either XT /∈ ∂D or YT /∈ ∂D, hence T 6= T ′′, according
to the definition (3.14) of T ′′. This is a contradiction so we conclude that (3.25) is true.

Let c1 = (ĉ1 ∧ ĉ2)/r1. It follows from (3.20), (3.21) and (3.23)-(3.24) that we have
the bound v1(ρ(t), Zρ(t)) ≤ −c1 if t ≤ T2 and either Xt ∈ B(AX,0, r1) ∩ ∂D or Yt ∈
B(AY,0, r1) ∩ ∂D.

It follows from (3.18), a formula analogous to (3.18) for γt (not stated explicitly),
and (3.23)-(3.24) that there exists c2 > 0 such that{

Lxt ≤ c2, L
y
t ≤ c2, sup

0≤s≤t
|AX,0 −Xs| ≤ r1, sup

0≤s≤t
|AY,0 − Ys| ≤ r1

}
(3.26)

⊂

{
βt ≤

β0 + β̂2

2
, γt ≤

γ0 + γ̂2

2

}
.

Let c3 > 0 be so small that if

DX = {w ∈ D : dist(w, ∂D) ≤ c3, |w − AX,0| ≤ r1},(3.27)

DY = {w ∈ D : dist(w, ∂D) ≤ c3, |w − AY,0| ≤ r1},(3.28)

T̂X = inf{t ≥ 0 : Xt /∈ DX}, T̂Y = inf{t ≥ 0 : Yt /∈ DY },(3.29)

F1 = {Lx(T̂X) ≤ c2 and Ly(T̂Y ) ≤ c2},(3.30)

then

P(F1 | x ∈ DX , y ∈ DY ) ≥ 3/4.(3.31)

Let c4 ∈ R be so small that

if t ∈ [0, T2] and w /∈ DX then ReF(t, w) > c4, and(3.32)

if t ∈ [0, T2] and w /∈ DY then ReG(t, w) > c4.(3.33)

Assume for a moment that s∗ defined in (3.16) is infinite, a.s. It is easy to see that
no matter what oblique vector of reflection is, the local time on the boundary increases
at a linear rate in the sense that for some c5 > 0, limt→∞ L

Z
t /t = c5, a.s. This easily

implies that there exists c6 < c4 such that if the vector of oblique reflection (v1, v2)
satisfies v1(t, z) ≤ −c1 for t ≥ 0 and z ∈ ∂U with Re z ≤ c4, and

F2 =

{
lim
t→∞

ReZt = −∞, sup
t≥0

ReZt < c4

}
(3.34)

then

P(F2 | ReZ0 ≤ c6) ≥ 3/4.

It follows that if

F3 =

{
sup

0≤t<ρ(T2)∧s∗
ReZt < c4

}
(3.35)
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then

P(F3 | ReZ0 ≤ c6) ≥ 3/4.(3.36)

Recall that (X0, Y0) = (x, y). We choose x, y ∈ D such that x ∈ DX , y ∈ DY and
ReF(0, x) = ReG(0, y) ≤ c6.

The event F1 ∩ F3 has probability greater than 1/2 because of (3.31) and (3.36).
Suppose that F1 ∩ F3 occurred.

Assume that ρ(T2) < s∗. We will show that this assumption leads to a contradiction.
Since F3 occurred and ρ(T2) < s∗,

sup
0≤t<ρ(T2)∧s∗

ReZt = sup
0≤t<ρ(T2)

ReZt < c4.(3.37)

This, (3.22), (3.29) and (3.32)-(3.33) imply that

T2 < T̂X ∧ T̂Y .(3.38)

This, the assumption that F1 occurred and (3.30) imply that Lx(T2) ≤ c2 and Ly(T2) ≤
c2. Since T2 < T̂X∧T̂Y holds, it follows from (3.27)-(3.28) that sup0≤s≤T2 |AX,0−Xs| ≤ r1

and sup0≤s≤T2 |AY,0 − Ys| ≤ r1 hold. This, coupled with the earlier observations, shows
that the event on the left hand side of (3.26) holds with t replaced with T2. Hence,
the event on the right hand side of (3.26) holds with t replaced with T2. But this
contradicts the definitions of T2 and s∗ and the assumption that ρ(T2) < s∗. The proof
that ρ(T2) ≥ s∗ is complete.

The fact that ρ(T2) ≥ s∗ and the definitions of s∗ and T2 given in (3.16) and (3.22)
imply that T = T2 and, therefore, ρ(T2) = s∗. This, in turn implies that (3.37) and

(3.38) remain valid. It is elementary to check that T̂X ∧ T̂Y < T ′. Hence, the fact that

T = T2 < T̂X ∧ T̂Y implies that T < T ′. Now it follows from (3.15) that T = T ′′.
According to (3.25), s∗ = ∞. This, the fact that ρ(T2) = s∗ and the definition (3.35)
of F3 imply that sup0≤t<∞ReZt < c4. Comparing (3.34) and (3.35), and recalling
the discussion preceding (3.34), we conclude that T < ∞, XT = AX,T ∈ EX and
YT = AY,T ∈ EY . We have |XT | 6= |YT | because T < T ′. The theorem holds with
S∞ = T . �
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motion. In Séminaire de Probabilités, XXIII, volume 1372 of Lecture Notes in Math., pages 234–
238. Springer, Berlin, 1989.

[12] Steven N. Evans. On the Hausdorff dimension of Brownian cone points. Math. Proc. Cambridge
Philos. Soc., 98(2):343–353, 1985.
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