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A NONSTANDARD TAKE ON CENTRAL SETS

ISAAC GOLDBRING

Abstract. We present the basic theory of central subsets of semigroups from
the nonstandard perspective. A key feature of this perspective is the replace-
ment of the algebra of ultrafilters with the algebra of elements of iterated hy-
perextensions, a technique first employed by Mauro Di Nasso.
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1. Introduction

One of the main themes of the subject known as Ramsey theory on the natural
numbers is the study of partition regular families of subsets of N, where F ⊆
P(N) is partition regular if: whenever A ∈ F and A =

⊔n
i=1 Ai is a partition of

A into finitely many pieces, then there is i ∈ {1, . . . , n} such that Ai ∈ F.1 If, in
the preceding definition, we only look at finite partitions of N itself, then we say
that the family is merely weakly partition regular.

Although there are many important partition regular families, two such families
will play an important role in this paper:

Definition 1.0.1.

(1) A ⊆ N is called piecewise syndetic if there is a finite G ⊆ N such that
A+G contains arbitrarily long intervals.

(2) A ⊆ N is an FS-set if there is an infinite set X such that FS(X) ⊆ A, where
FS(X) := {

∑
x∈F x : F ⊆ X is nonempty and finite}.

The fact that the family of piecewise syndetic subsets of N is partition regular
is known as Brown’s lemma, although its proof is quite straightforward (and
especially elegant from the nonstandard perspective [4, Corollary 11.19]). On
the other hand, the partition regularity of the family of FS-sets is a deeper result
known as Hindman’s theorem (although technially the original version of Hind-
man’s theorem only established weak partition regularity) and is a cornerstone
result in the area.

It is only natural to seek a partition regular family of subsets of N contained in
the intersection of the aforementioned two families. We should note that the
intersection of the aforementioned two families is not itself partition regular:

Example 1.0.2. Let A be a piecewise syndetic set that is not an FS-set (e.g. the set
of odd numbers) and let B be an FS-set that is not piecewise syndetic (e.g. FS(X)
for X ⊆ N sufficiently sparse). It remains to note that A ∪ B is both piecewise
syndetic and an FS-set.

1Sometimes this is phrased in terms of colorings: if a member of F is colored with finitely
many colors, then there is a monochromatic subset belonging to F. For this to really be an
equivalence, F needs to be closed under supersets, which it often is.
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This note is about the class of central subsets of N, which is indeed a partition
regular family of subsets of N and each central subset of N is both piecewise
syndetic and an FS-set. As we will point out later, central sets contain a lot
more structure than merely being both piecewise syndetic and an FS-set.

The key to defining central sets is to give ultrafilter characterizations of piece-
wise syndetic sets and FS-sets: A ⊆ N is piecewise syndetic (resp. an FS-set) if
and only if it belongs to a minimal (resp. idempotent) ultrafilter; these terms
will be defined shortly. The family of central sets can thus be defined to be
those sets that belong to an ultrafilter that is both minimal and idempotent.
The partition regularity of the family of central sets is now immediate from this
characterization.

The account given above is actually revisionist history. Indeed, in [5], Fursten-
berg introduced the family of central subsets of N in connection with his work
in dynamical systems. His definition is, at first glance, completely different
from the one given above and will be discussed in the last section of this note.
Furstenberg showed that this class is weakly partition regular2 and that every
central set contains arbitrarily long arithmetic progressions.3 He then proved a
theorem that shows that central sets contain a lot of extra structure (which im-
plies, in particular, that they are FS-sets); this theorem is now a special case of a
much more general theorem called the Central Sets Theorem, which will be dis-
cussed in Section 5. It was only later on that Bergelson and Hindman realized
that the conclusion of the Central Sets Theorem should also hold for members
of minimal idempotent ultrafilters.

At the meeting “Combinatorics meets ergodic theory” at BIRS in 2015, Randall
McCutcheon asked me if there is a nonstandard perspective on the theory of
central sets. It is the purpose of this note to give such a perspective. Given the
fact that every ultrafilter can be represented as a “hyper-principal” ultrafilter
with a nonstandard generator, the existence of such a perspective should not
be so surprising. Moreover, using the replacement of “algebra in the space of
ultrafilters on N” with “algebra in the space of iterated nonstandard extensions
of N” à la Mauro Di Nasso [3], many of the arguments given in [7] laying the
foundation for the basic theory of central sets become much shorter and more
natural in the nonstandard context.

2He also mentions, without proof, that any finite coloring of a central set contains a
monochromatic central subset. At the time he was unaware of the fact that central sets were
closed under supersets, a fact first pointed out by Hindman using the ultrafilter characterization.

3He mentions, without proof, that central sets can be shown to piecewise syndetic, which, by
van der Waerden’s theorem, would also yield that central sets contain arbitrarily long arithmetic
progressions.
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We now provide an outline of the contents of this article. In Section 2, we gather
the necessary preliminaries from nonstandard analysis, focusing mainly on the
nonstandard perspective on ultrafilters and the use of iterated hyperextensions.
We also give the nonstandard proof of Hindman’s theorem as it is an easier ver-
sion of many arguments that appear later in this note. In Section 3, we give
the nonstandard account of minimal ideals and use this to prove some of the
basic facts about central sets. In Section 4, we give the combinatorial (that is,
ultrafilter-free) description of central sets. One of the ingredients of this de-
scription, namely the notion of a collectionwise piecewise syndetic family of sub-
sets of N, becomes especially transparent from the nonstandard perspective. In
Section 5, we state and prove the aforementioned Central Sets Theorem and in-
dicate some of its consequences. In the final section, we present Furstenberg’s
original dynamical definition of central sets and establish the equivalence with
the ultrafilter formulation.

We reiterate that most, if not all, of the arguments contained in this note are
the nonstandard versions of the arguments appearing in the fantastic book [7],
which contains a lot more information about central sets than we present here.
We do believe, however, that the nonstandard versions of the arguments are aes-
thetically cleaner and computationally more natural. Two other references that
proved useful during the writing of this note are Hindman’s suvey on central
sets [6] and Bergelson’s survey on ultrafilters in combinatorial number theory
[1].

We end this introduction with some conventions maintained throughout this
note.

• (S, ·) denotes an arbitrary semigroup.
• We set N := {1, 2, 3, . . .} to be the set of natural numbers which, in this

context, is assumed not to contain 0.
• For a set X, we let P(X) denote the power set of X and Pf(X) denote the

set of finite subsets of X.
• When we write A =

⊔n
i=1 Ai, this indicates that the set A has been parti-

tioned into the disjoint subsets A1, . . . , An.
• For m ∈ N, we let N[m] denote the m-element subsets of N, which we

often identify with increasing sequences t(1) < t(2) < · · · < t(m).

2. Preliminaries

For the sake of brevity, we assume that the reader is familiar with the basics
of nonstandard analysis. A recent monograph [4], written with applications
to Ramsey theory and combinatorial number theory in mind, also contains a
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complete introduction to the subject. We only mention here some crucial facts
needed for the remainder of this article.

As usual, we assume that our nonstandard extension is as saturated as neces-
sary to make the arguments below valid.

2.1. Nonstandard generators of ultrafilters and iterated hyperextensions. We
let βS denote the Stone-Čech compactification of the discrete space S. It can be
identified with the space of ultrafilters on S, where a basis of clopen sets for the
topology is given by Ā := {U ∈ βS : A ∈ U} for A ⊆ S. We view S as a subset
of βS by identifying s ∈ S with the principal ultrafilter Us generated by s.

The semigroup operation on S extends to a semigroup operation on βS deter-
mined by declaring, for U,V ∈ βS and A ⊆ S, that

A ∈ U · V ⇔ {s ∈ S : s−1A ∈ V} ∈ U.

Here, s−1A := {t ∈ S : st ∈ A}. Although the extended semigroup operation
on βS need not be continuous, we do have that the maps

U 7→ Us · U,U 7→ U · V : βS → βS

are continuous for each s ∈ S and V ∈ βS.

Given α ∈ S∗ (the nonstandard extension of S), set Uα := {A ⊆ S : α ∈ A∗}. It
is easy to see that Uα is an ultrafilter on S and that this notation agrees with the
notation above when α is a standard element of S. Conversely, given U ∈ βS,
there is (assuming sufficient saturation) some α ∈

⋂

A∈U A
∗; for such an α, we

have U = Uα.

We let π : S∗ → βS be the canonical surjection given by π(α) := Uα. While we
just obsered that π is surjective, it is not (in general) injective, that is, there may
be many nonprincipal generators for a given ultrafilter. We define an equiva-
lence relation ∼ on S∗ by setting α ∼ β if Uα = Uβ; in other words, α ∼ β if and
only if: for every A ⊆ U, we have α ∈ A∗ ⇔ β ∈ A∗. It follows that π descends
to a bijection π̄ : S∗/∼ → βS.

The u-topology on S∗ has as a basis of clopen sets the sets A∗ for A ⊆ S. Note
that the u-topology on S∗ is compact but not Hausdorff and, in fact, the map π̄
witnesses thatβS is homeomorphic to the Hausdorff separation of S∗. Although
S∗ carries other natural topologies, in this note, all references to topological no-
tions in S∗ will be with respect to the u-topology.

Clearly the nonstandard extension of the semigroup operation on S is a semi-
group operation on S∗. The naïve expectation would be that π is a semigroup
homomorphism, that is, Uα·β = Uα · Uβ. This is unfortunately not the case (see
[4, Example 3.8] for concrete counter-examples). However, there is still a viable
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formula along these lines whose validity allows the nonstandard method to be
applicable to the algebra of ultrafilters.

Fix α, β ∈ S∗ and A ⊆ S. We set

A · U−1
β := {s ∈ S : s−1A ∈ Uβ} = {s ∈ S : s · β ∈ A∗}.

By the definition of the semigroup operation on βS, we have that

A ∈ Uα · Uβ ⇔ A · U−1
β ∈ Uα ⇔ α ∈ (A · U−1

β )∗.

Working naïvely (and motivated by some kind of transfer principle), the latter
equivalent should in turn be equivalent to α · β∗ ∈ A∗∗. Of course, for this to
make any sense, one needs to give meaning to the objects β∗ and A∗∗.

One can indeed give concrete meaning to objects like β∗ and A∗∗. This idea was
first pursued by Mauro Di Nasso in [3], where he used this technique to give
an ultrafilter generaliztion of Rado’s classical theorem on parition regularity of
linear equations. One works in a framework for nonstandard analysis where
one can iterate the ∗ operation, whence β∗ above is an element of S∗∗ and A∗∗

is a subset of S∗∗. There is an obvious transfer principle between one level of
the tower of iterated nonstandard extensions and the next level. For complete
details, see [3] or [4], the latter of which contains many applications of this tech-
nique to Ramsey theory. Admittedly this approach takes some getting used to
(e.g. unlike the usual convention that s∗ = s for s ∈ S, we now have that α∗ 6= α
for α ∈ S∗\S); however, once one is familiarized with this framework4, it proves
to be extremely convenient.

We set up some notation concerning iterated nonstandard extensions: for k ∈ N,
we let S(k)∗ denote the kth iterate of the *-map applied to S and we let S(∞)∗ :=
⋃

n∈ω S(n)∗. (Here, S(0)∗ := S.) Many of the ideas from earlier in this section
can be adapted to this extended framework. For example, given α ∈ S(∗)k, we
set Uα := {A ⊆ S : α ∈ A(k)∗}, which is again an ultrafilter on S, and for
α, β ∈ S(∞)∗, we write α ∼ β if and only if Uα = Uβ.

Returning to the earlier context: for α, β ∈ S∗ and A ⊆ S, we now have

A ∈ Uα · Uβ ⇔ α · β∗ ∈ A∗∗ ⇔ A ∈ Uα·β∗.

In other words, Uα · Uβ = Uα·β∗.

2.2. Idempotent elements and FP-sets. Equipped with the framework of it-
erated nonstandard extensions, we can now give an extremely clean proof of
Hindman’s theorem. We first need the following fundamental fact about βS,
which follows from a straightforward application of a classical theorem of Ellis
(see [7, Thm 2.5]):

4This should hopefully be the case by the time you have finished reading this note.
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Fact 2.2.1. For every nonempty compact subsemigroup M of βS, there is U ∈ M such
that U · U = U.

An ultrafilter as in the statement of the previous fact is called idempotent. Clearly
a nonstandard generator of an idempotent ultrafilter is an idempotent element
of S∗ in the sense of the following

Definition 2.2.2. α ∈ S∗ is idempotent5 if α · α∗ ∼ α.

The nonstandard version of a subsemigroup of βS is the following:

Definition 2.2.3. T ⊆ S∗ is a u-subsemigroup if, for every α, β ∈ T , there is
γ ∈ T such that γ ∼ α · β∗.

The following is clear:

Lemma 2.2.4. T ⊆ S∗ is a u-subsemigroup if and only if π(T) is a subsemigroup of
βS.

Corollary 2.2.5. Every nonempty closed u-subsemigroup of S∗ contains an idempotent
element.

We next aim to prove Hindman’s theorem for an abitrary semigroup. We should
first define the arbitrary semigroup analog of an FS-set:

Definition 2.2.6. For a sequence 〈sn〉
∞

n=1 from S, we set

FP(〈sn〉
∞

n=1) :=

{
k∏

i=1

sji : j1 < j2 < · · · < jk, k > 0

}

.

(One defines the notion FP(〈sn〉mn=1) in an analogous fashion.) We say that A ⊆ S
is an FP-set if there is a sequence 〈sn〉

∞

n=1 from S such that FP(〈sn〉∞n=1) ⊆ A.

We now wish to show that if α is idempotent and α ∈ A∗, then A is an FP-set.
The following definitions will become useful:

Definition 2.2.7. For A ⊆ S and α ∈ S∗, we set

• Aα := {s ∈ S : s · α ∈ A∗} and
• αA := A ∩Aα.

The following lemma is immediate from the definitions:

5In other works, such elements are called u-idempotent. We prefer the current terminology
even though it is potentially confusing as S∗ is itself a semigroup and thus there is already the
usual algebraic notion of idempotent elements of S∗. To avoid confusion, we will never speak
of algebraic idempotent elements of S∗. Note that, by transfer, if S∗ has an algebraic idempotent
element, then so does S.
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Lemma 2.2.8. α ∈ S∗ is idempotent if and only if: for every A ⊆ S, if α ∈ A∗, then
α ∈ αA

∗. In this case, if s ∈ Aα (resp. s ∈ αA), then sα ∈ A∗
α (resp. sα ∈ αA

∗).

We can now prove:

Proposition 2.2.9. Suppose that α ∈ S∗ is idempotent and α ∈ A∗. Then A is an
FP-set.

Proof. We recursively construct a sequence 〈xn〉
∞

n=1 such that, for all m ∈ N, we
have FP(〈xn〉mn=1) ⊆ αA. Since α ∈ αA

∗, there is x1 ∈ αA. Suppose now that
〈xn〉

m
n=1 has been defined with FP(〈xn〉mn=1) ⊆ αA. By the previous lemma, we

have FP(〈xn〉mn=1) · α ⊆ αA
∗. By transfer, there is xm+1 ∈ αA with FP(〈xn〉mn=1) ·

xm+1 ⊆ αA, whence xm+1 is as desired. �

Note that, if α /∈ S (e.g. when S has no idempotent elements), then we can
assume that the sequence above is injective. In particular, when S = N, we can
take the sequence above to be increasing.

Corollary 2.2.10 (Hindman’s theorem). Suppose that N =
⊔n

i=1 Ai. Then some Ai

is an FP-set.

Proof. Fix an idempotent α ∈ S∗ and take Ai with α ∈ A∗
i . �

There is a converse to Proposition 2.2.9. For a nonstandard proof, see, for exam-
ple, [4, Lemma 9.5].

Proposition 2.2.11. Suppose that A is an FP-set. Then there is an idempotentα ∈ A∗.

Corollary 2.2.12 (Strong Hindman’s Theorem). The notion of being an FP-set is
partition regular: if A is an FP-set and A =

⊔n
i=1 Ai, then some Ai is an FP-set.

2.3. Three notions of largeness. The following notions of largeness will appear
throughout this note:

Definition 2.3.1. Suppose that A ⊆ S. We say that:

(1) A is thick if, for every finite F ⊆ S, there is t ∈ S such that Ft ⊆ A.
(2) A is syndetic if there is a finite G ⊆ S such that S = G−1A.
(3) A is piecewise syndetic if there is a finiteG ⊆ S such that, for every finite

L ⊆ S, there is a ∈ S with La ⊆ G−1A.

In the above definitions, G−1A := {s ∈ S : gs ∈ A for some g ∈ G}.

Here are the nonstandard equivalents:

Lemma 2.3.2. Suppose that A ⊆ S.
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(1) A is thick if and only if there is α ∈ S∗ such that Sα ⊆ A∗.
(2) A is syndetic if and only if S∗ ⊆ S−1A∗ if and only if there is a finite G ⊆ S

such that S∗ ⊆ G−1A∗.
(3) A is piecewise syndetic if and only if there is α ∈ S∗ and finite G ⊆ S such that

Sα ⊆ G−1A∗.

3. Minimal elements and central sets

3.1. Facts about minimal ideals. Recall that a subset I of βS is a left (resp.
right) ideal if for all U ∈ βS and V ∈ I, we have U · V ∈ I (resp. V · U ∈ I).
I is an ideal if it is both a left and right ideal. A left (resp. right) ideal I is
minimal if there is no left (resp. right) ideal properly contained in I.

We will need the following facts about minimal ideals in βS. None of these facts
are especially difficult and can be found in [7].

Facts 3.1.1.

(1) Every left ideal in βS contains a minimal left ideal.
(2) Minimal left ideals are closed.
(3) βS has a smallest ideal K(βS), that is, K(βS) is contained in all ideals of βS.
(4) K(βS) is the union of the minimal left ideals of βS and is also the union of the

minimal right ideals of βS.

We now study the corresponding nonstandard perspective:

Definition 3.1.2. α ∈ S(∞)∗ is minimal if Uα ∈ K(βS).

The following is obvious from the fact that K(βS) is an ideal:

Lemma 3.1.3. Suppose that α ∈ S∗ is minimal and β, γ ∈ S∗ are arbitrary. Then the
following are minimal: βα∗, αγ∗, βα∗γ∗∗.

Definition 3.1.4. J ⊆ S∗ is a left u-ideal if, for every α ∈ S∗ and β ∈ J, there is
γ ∈ J such that α · β∗ ∼ γ.

Call J ⊆ S∗ full if it is closed under ∼. Recall that π : S∗ → βS is the canonical
projection map π(α) = Uα The following is obvious:

Lemma 3.1.5. J ⊆ S∗ is a left u-ideal if and only if π(J) is a left ideal of βS. In
particular, if I is a left ideal of βS, then π−1(I) is a full left u-ideal of S∗.

Corollary 3.1.6. If J ⊆ S∗ is a left u-ideal, then J contains a minimal element of S∗.

The following is also obvious:

Fact 3.1.7. If I ⊆ βS is a minimal left ideal, then I = βS · U for every U ∈ I.
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The previous fact says that every minimal left ideal of βS is principal and every
element of the ideal is a generator. We need the nonstandard equivalent. For
α ∈ S∗, set

L(S∗ · α∗) := {β ∈ S∗ : β ∼ γ · α∗ for some γ ∈ S∗}.

Lemma 3.1.8. L(S∗ ·α∗) = π−1(βS·Uα). Consequently,L(S∗ ·α∗) is a full leftu-ideal.

Definition 3.1.9. We say that J ⊆ S∗ is a minimal left u-ideal if and only if π(J)
is a minimal left ideal of βS.

Lemma 3.1.10. If J ⊆ S∗ is a minimal left u-ideal, then J ⊆ L(S∗ ·α∗) for every α ∈ J.

Proof. The condition “J ⊆ L(S∗ · α∗) for every α ∈ J” is equivalent to the condi-
tion “π(J) = βS · Uα for every α ∈ J.” �

Finally, we record the following consequence of the fact that every nonempty
minimal left ideal of βS is in particular a compact subsemigroup of βS:

Lemma 3.1.11. Every nonempty minimal left u-ideal contains an idempotent element.

The analogous definitions and results for right u-ideals should be apparent to
the reader.

Given all of the above preparation, we can now give the following useful char-
acterization of minimal elements of S∗:

Theorem 3.1.12. Given α ∈ S∗, the following are equivalent:

(1) α is minimal.
(2) For all A ∈ Uα, Aα is syndetic.
(3) For all β ∈ S∗, there is γ ∈ S∗ such that α ∼ γβ∗α∗∗.

Proof. (1) implies (2): Suppose that α is minimal and let L be a minimal left u-
ideal containing α. Fix β ∈ L. Then L ⊆ L(S∗ · β∗) whence there is γ ∈ S∗ such
that α ∼ γ · β∗. Thus, if A ∈ Uα, then α ∈ A∗ whence γ · β∗ ∈ A∗∗, and so, by
transfer, there is t ∈ S such that t · β ∈ A∗. Since β ∈ L is arbitrary, it follows
that L ⊆ S−1A∗. Thus, for any δ ∈ S∗, we have that δα∗ ∈ t−1A∗∗ for some t ∈ S,
whence tδ ∈ A∗

α. It follows that S∗ ⊆ S−1A∗
α, so Aα is syndetic.

(2) implies (3): Fix β ∈ S∗ and A ∈ Uα. (2) implies that there is t ∈ S such that
tβ ∈ A∗

α, that is, α∗ ∈ (tβ)−1A∗∗. By saturation, there is γ ∈ S∗ such that, for
all A ∈ Uα, α∗∗ ∈ (γβ∗)−1A∗∗∗, that is, γβ∗α∗∗ ∈ A∗∗∗, whence Uα ⊆ Uγβ∗α∗∗ and
hence Uα = Uγβ∗α∗∗, as desired.

(3) implies (1): Fix minimal β ∈ S∗ and take γ ∈ S∗ such that α ∼ γβ∗α∗∗. Since
the latter element is minimal, so is α. �
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Remarks 3.1.13.

(1) The proof of (1) implies (2) in the standard context uses the compactness
of minimal left ideals. The nonstandard approach seems to avoid this.

(2) Item (2) above is similar to the property of idempotent ultrafilters in that
sets in the ultrafilter have large ultrafilter shits, where large in the former
means in the ultrafilter and in the latter means syndetic.

3.2. Piecewise syndetic sets and central sets. The following result provides the
crucial link between piecewise syndetic sets and minimal elements:

Theorem 3.2.1. Suppose that A ⊆ S. Then A is piecewise syndetic if and only if there
is a minimal α ∈ A∗.

Proof. First suppose that A is piecewise syndetic. Take finite G ⊆ S and α ∈ A∗

such that S · α ⊆ G−1A∗. By transfer, S∗ · α∗ ⊆ G−1A∗∗. Take minimal β ∈ S∗

such that β ∈ L(S∗ ·α∗), so β ∈ G−1A∗. Take t ∈ G such that tβ ∈ A∗; it remains
to notice that tβ is minimal.

Now suppose that α ∈ S∗ is minimal and α ∈ A∗. By the previous theorem,
Aα is syndetic, so there is finite G ⊆ S such that S = G−1Aα. It follows that
Sα ⊆ G−1A∗, whence A is piecewise syndetic. �

Corollary 3.2.2. α ∈ S∗ is in the closure of the minimal elements if and only if every
A ∈ Uα is piecewise syndetic.

We now come to the central definition of this note:

Definition 3.2.3.

(1) α ∈ S∗ is a minimal idempotent if it is both minimal and idempotent.
(2) A ⊆ S is central if there is a minimal idempotent α ∈ A∗.

The following is immediate from the definition:

Proposition 3.2.4. The notion of being central is partition regular.

By our earlier discussions, every central set is both piecewise syndetic and an
FP-set. By partition regularity of being central, the example from the introduc-
tion is a piecewise syndetic FP-set that is not central.

Although piecewise syndetic sets need not be central, we now show that every
piecewise syndetic set has a shift that is central:

Theorem 3.2.5. For A ⊆ S, the following are equivalent:

(1) A is piecewise syndetic.
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(2) {x ∈ S : x−1A is central} is syndetic.
(3) {x ∈ S : x−1A is central} is nonempty.

Proof. (1) implies (2): Let B := {x ∈ S : x−1A is central}. Fix δ ∈ S∗. We need
to find t ∈ S such that tδ ∈ B∗. Take minimal α ∈ A∗. Let L be a minimal left
u-ideal with α ∈ L. Let β ∈ L be idempotent. Since Aβ ⊆ B, it suffices to find
t ∈ S such that tδ ∈ A∗

β. Since L ⊆ L(S∗ ·β∗), there is γ ∈ S∗ such that α ∼ γ ·β∗,
whence

α · β∗ ∼ γ · β∗ · β∗∗ ∼ γ · β∗ ∼ α.

It follows that α ·β∗ ∈ A∗∗, whence there is s ∈ S such that β ∈ s−1A∗. Since β is
minimal, by Theorem 3.1.12, we have that (s−1A)β is syndetic, whence there is
u ∈ S such that uδ ∈ (s−1A)∗β, that is β∗ ∈ (uδ)−1s−1A∗∗ = (suδ)−1A∗∗, whence
suδ ∈ A∗

β. Thus, setting t := su, we have tδ ∈ A∗
β, as desired.

(2) implies (3) is trivial.

(3) implies (1): Take x ∈ S such that x−1A is central and let α ∈ x−1A∗ be a
minimal idempotent. Then xα ∈ A∗ is minimal, so A is piecewise syndetic. �

We finish this subsection by showing that thick sets are central. First:

Theorem 3.2.6. A ⊆ S is thick if and only if there is a left u-ideal L ⊆ A∗.

Proof. First suppose that A is thick, so Sα ⊆ A∗ for some α ∈ S∗. It follows that
S∗α∗ ⊆ A∗∗, whence L(S∗α∗) is a left u-ideal contained in A∗.

Conversely, suppose that L ⊆ A∗ is a left u-ideal. Fix α ∈ L. Then Sα ⊆ L ⊆ A∗,
as desired. �

Since every left u-ideal contains a minimal left u-ideal, we have:

Corollary 3.2.7. Thick sets are central.

3.3. Addition and multiplication. In this subsection, we work with the semi-
groups (N,+) and (N, ·). We then use the adjectives “additive” and “multiplica-
tive” to make it clear which semigroup we are speaking about.

We consider the following two sets (using the same notation as found in [7]):

Definition 3.3.1.

(1) Γ is the closure of the set of additively idempotent elements of N∗.
(2) M is the closure of the set of additively minimal idempotent elements of

N∗.
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Thus, α ∈ Γ (resp. α ∈ M) if and only if, whenever α ∈ A∗, then A is an FS-set
(resp. A is an additively central set).

We use the notation A/n := {m ∈ N : mn ∈ A}.

Proposition 3.3.2. Γ and M are multiplicative left u-ideals of N∗.

Proof. Take α ∈ N∗, β ∈ Γ , and suppose that α · β∗ ∈ A∗∗; we need to show that
A is an FS-set. Take n ∈ N such that n ·β ∈ A∗, so β ∈ A∗/n. It follows that A/n
is an FS-set, whence so is A. Indeed, take an additively idempotent γ ∈ A/n;
it suffices to see that nγ is also additively idempotent, which follows from the
calculation

nγ+ (nγ)∗ = nγ+ nγ∗ = n(γ+ γ∗) ∼ nγ.

If β ∈ M, then A/n in the above paragraph is additively central, whence γ can
be chosen to be a minimal idempotent element. It just remains to observe that
nγ is also minimal, whence A is additively central. �

Corollary 3.3.3. For any partition N :=
⊔n

i=1 Ci, there is some i such that Ci is both
additively and multiplicatively central.

Proof. Let L ⊆ M be a multiplicatively minimal left u-ideal. Take α ∈ L. Then
α is a multiplicatively minimal idempotent. Take i such that α ∈ C∗

i . Then
Ci is multiplicatively central. Since α ∈ M, we have that Ci is also additively
central. �

Here is a nice combinatorial application of the preceding ideas. (Something
more general appears in [4, Chapter 10]):

Theorem 3.3.4 (Bergelson [1]). The equation x + y = w · z is injectively partition
regular: for any partition N :=

⊔n
i=1 Ci, there is i and distinct a, b, c, d ∈ Ci such that

a+ b = c · d. Moreover, a, b, c, d can be chosen arbitrarily large.

Proof. Chooseα as in the previous corollary, so a multiplicatively minimal idem-
potent contained in M. Take i such that α ∈ C∗

i . This i will be as desired. For
notational convenience, set C := Ci. Since α · α∗ ∈ C∗∗, there are arbitrarily
large d ∈ C such that d · α ∈ C∗. Since α ∈ C∗ ∩ C∗/d, we have that C ∩ C/d is
additively central. Take additively minimal idempotent β ∈ C∗∩C∗/d. We then
have that β+β∗ ∈ C∗∗∩C∗∗/d. There are then arbitrarily large b ′ ∈ C∩C/d such
that b ′ + β ∈ C∗ ∩ C∗/d. Set b := b ′d, noting that b ∈ C and b 6= d. Now note
that dβ ∈ C∗∩(dC∗−b), so there are arbitrarily large a ∈ C such that a+b ∈ dC
(so we can assume that a 6= b, d). Take c ∈ C such that a+ b = cd. Choosing a
arbitrarily large forces c arbitrarily large and distinct from a, b, d. �
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Multiplicatively central sets need not be FS-sets (see [7, Thm 16.29]) but we do
have the next best thing, a result due to Bergelson and Hindman (see [2, Thm
3.5]):

Theorem 3.3.5. Every multiplicatively piecewise syndetic set is an FS<ω-set.

Here, A ⊆ N is an FS<ω-set if there are arbitrarily large finite sets X such that
FS(X) ⊆ A. First:

Lemma 3.3.6. Let F := {α ∈ S∗ : every A ∈ Uα is an FS<ω -set}. Then F is a
nonempty closed multiplicative u-ideal of S∗.

Proof. F is clearly closed and is nonempty as it contains all additive idempotents.
Suppose that α ∈ F and β ∈ S∗.

First suppose that α ·β∗ ∈ A∗∗ and fix k ∈ N. Since α ∈ A∗
β, we see that Aβ is an

FS<ω-set, say FS({x1, . . . , xk}) ⊆ Aβ. This is a finitary statement, whence there is
y ∈ N such that FS({x1, . . . , xk}) · y ⊆ A, that is, FS({x1y, . . . , xky}) ⊆ A.

Now suppose that β · α∗ ∈ A∗∗. Then there is n ∈ N such that nα ∈ A∗, so A/n
is FS<ω, whence so is A. �

Proof of Theorem 3.3.5. Suppose that A ⊆ N is multiplicatively piecewise syn-
detic. Let α ∈ A∗ be a multiplicatively minimal idempotent element. By the
previous lemma, α ∈ F, whence A is FS<ω. �

4. Combinatorial descriptions of central sets

In this section, we give a description of central sets that is purely combinatorial.
We split this task up into two parts.

4.1. Part 1: FP-trees. In this section (and this section only), we follow usual set-
theoretic convention and view n ∈ N as the ordinal n = {0, 1, . . . , n− 1}.

Definition 4.1.1. If X is a set, a tree in X is a set T ⊆ X<ω closed under initial
segments.

Suppose that T is a tree in X.

(1) For f ∈ T with dom(f) = n and x ∈ X, we set f⌢x := f ∪ {(n, x)}.
(2) For f ∈ T , we set Bf := {x ∈ X : f⌢x ∈ T }.
(3) We say that T is pruned if Bf 6= ∅ for all f ∈ T .

Definition 4.1.2. Suppose that S is a semigroup and T is a tree in S.

(1) For f ∈ T , we set Pf := FP(〈f(t)〉t∈dom(f)).
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(2) For f, g ∈ T with f ( g, we set

Pg−f := FP(〈g(t)〉t∈dom(g),t≥dom(f)).

(3) We say that T is an FP-tree if, for each f ∈ T , we have

Bf :=
⋃

f(g

Pg−f.

Note that the inclusion (⊆) in the previous display always holds.

Suppose that A ⊆ S is such that there is a pruned FP-tree in A. Then A is an
FP-set. Indeed, if σ ∈ Aω is an infinite branch in T (meaning that σ|n ∈ T for all
n ∈ ω), then FP(〈σ(n)〉∞n=1) ⊆ B∅ ⊆ A. Surprisingly, the converse holds:

Theorem 4.1.3. A ⊆ S is an FP-set if and only if there is a pruned FP-tree in A. In
fact, if α ∈ A∗ is idempotent, then there is an FP-tree T in A such that α ∈ B∗

f for all
f ∈ T .

Proof. Suppose that α ∈ A∗ is idempotent. We construct T level by level by
recursion so that Pf ⊆ αA for all f ∈ T . Clearly T0 := {∅}. We set T1 := αA. Now
suppose that f ∈ Tn. We then set Bf := {x ∈ αA : Pf ·x ⊆ αA}, noting that α ∈ B∗

f

(since Pf ⊆ αA). It will be useful to observe that the construction ensures that,
for f, g ∈ T with f ⊆ g, we have Bg ⊆ Bf.

We now verify that T is an FP-tree. Suppose that f ( g and x ∈ Pg−f. Write
x = g(t1) · · ·g(tn) with t1 ≥ dom(f). Let h be the restriction of g with domain
tn. If n = 1, then x = g(t1) ∈ Bh ⊆ Bf, as desired. Otherwise, set w :=

g(t1) · · ·g(tn−1) ∈ Ph. We need to show that x = wg(tn) ∈ Bf. Since g(tn) ∈ Bh,
we have that x ∈ αA by definition of Bh. To see that Pf · x ⊆ αA, note that
Pfw ⊆ Ph, so Pf · x ⊆ Ph · g(tn) ⊆ αA, again by the definition of Bh. �

The desired combinatorial characterization of central sets arises from strength-
ening the notion of FP-tree.

Definition 4.1.4 (Temporary). We call A ⊆ P(S) robust if there is minimal α ∈
⋂

A∈A A∗. We call an FP-tree T robust if {Bf : f ∈ T } is robust.

Corollary 4.1.5. If A is central, then there is a robust FP-tree in A.

We aim to show that the converse holds. First:

Definition 4.1.6. Suppose that C := (Ci)i∈I is a family of subsets of A with the
finite intersection property. We say that C is good if: for every i ∈ I and every
x ∈ Ci, there is j ∈ I such that x · Cj ⊆ Ci.

Lemma 4.1.7. Suppose that C is a good family of subsets of S. Then
⋂

i∈I C
∗
i is a

nonempty closed u-subsemigroup of S∗.
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Proof. Set M :=
⋂

i∈I C
∗
i . M is clearly closed and is nonempty by the finite in-

tersection property. To see that M is a u-subsemigroup, suppose α, β ∈ M. It
suffices to show that α · β∗ ∈ C∗∗

i for all i ∈ I (for then any γ ∼ α · β∗ belongs to
M). Fix x ∈ Ci and take j such that x · Cj ⊆ Ci. We then have that xβ ∈ C∗

i . It
follows that Ci ⊆ (Ci)β, so α ∈ (Ci)

∗
β, that is, αβ∗ ∈ C∗∗

i , as desired. �

Corollary 4.1.8. Suppose that there is a robust good family of subsets of A. Then A is
central.

Proof. Let (Ci)i∈I be a robust good family of subsetsof A. Then there is a min-
imal left u-ideal L such that L ∩

⋂

i∈I C
∗
i 6= ∅. Since L ∩

⋂

i∈I C
∗
i is a closed u-

subsemigroup of S∗, it contains an idempotent element α; since α ∈ A∗, we see
that A is central. �

To bridge the gap between FP-trees and good families, we make a new defini-
tion:

Definition 4.1.9. Suppose that T is a tree in S. We say that T is a ∗-tree if: for
every f ∈ T and every x ∈ Bf, we have x · Bf⌢x ⊆ Bf.

In other words, T is a ∗-tree if: for all f ∈ T and x, y ∈ S, if f⌢x⌢y ∈ T , then
f⌢xy ∈ T . The following lemma is routine and does not need any nonstandard
methods. See [7, Lemma 14.23.1 and Theorem 14.25] for proofs.

Lemma 4.1.10.

(1) Every FP-tree is a ∗-tree.
(2) Suppose that T is a ∗-tree and CF :=

⋂

f∈F Bf. Then (CF) is a good family. If T
is robust, then the family is robust.

We can now summarize:

Theorem 4.1.11. For A ⊆ S, the following are equivalent:

(1) A is central.
(2) There is a robust FP-tree in A.
(3) There is a robust ∗-tree in A.
(4) There is a robust good family of subsets of A.

4.2. Part 2: Collectionwise piecewise syndetic families. The issue with the
previous theorem is that it is only provides a quasi-combinatorial characteriza-
tion of central set as it uses the notion of robustness, which is defined in terms
of ultrafilters. The goal of this subsection is to give a combinatorial character-
ization of robustness. The basic idea is that since piecewise syndeticity is the
same as containing a minimal element, robustness will be equivalent to some
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form of uniform piecewise syndeticity. Here is the standard definition that will
turn out to be equivalent to robustness:

Definition 4.2.1. We say that A ⊆ P(S) is collectionwise piecewise syndetic
(cwpws) if there are functions G : Pf(A) → Pf(S) and x : Pf(A) × Pf(S) → S
such that, for all F ∈ Pf(S) and all F,H ∈ Pf(A) with F ⊆ H, we have

F · x(H, F) ⊆ G(F)−1(
⋂

F).

Before giving some nonstandard reformulations of cwpws, we remind the reader
that, given a set X, a hyperfinite approximation of X is a hyperfinite set H such that
X ⊆ H ⊆ X∗. Given enough saturation, every set has a hyperfinite approxima-
tion.

Theorem 4.2.2. For a semigroup S and A ⊆ P(S), the following are equivalent:

(1) A is cwpws.
(2) For any hyperfinite approximation H of S, there is α ∈ S∗ such that, for any

finite subset F of A, we have H · α ⊆ S−1(
⋂

F)∗.
(3) For any hyperfinite approximation H of S, there is α ∈ S∗ and G as above such

that, for any finite subset F of A, we have H · α ⊆ G(F)−1(
⋂

F)∗.
(4) There is a hyperfinite approximation H of S, α ∈ S∗, and G as above such that,

for any finite subset F of A, we have H · α ⊆ G(F)−1(
⋂

F)∗.
(5) There is α ∈ S∗ and G as above such that, for any finite subset F of A, we have

S · α ⊆ G(F)−1(
⋂

F)∗.

Proof. (1) implies (2): Let G and x witness that A is cwpws. Let H be any hy-
perfinite approximation of S and let H be any hyperfinite approximation of A.
Then by transfer, for any finite F contained in A, we have

H · x(H, H) ⊆ G(F)−1(
⋂

F)∗ ⊆ S−1(
⋂

F)∗.

(2) implies (3) follows immediately from saturation.

(3) implies (4) and (4) implies (5) are trivial.

(5) implies (1): Given finite F contained in S and finite H contained in A, there
are only finite many F contained in H, so apply transfer to the statement “there
is x ∈ S∗ such that, for all F contained in H, F ·x ⊆ G(F)−1(

⋂

F)∗” to get x(H, F).
�

Although the following corollary can be deduced with some effort from the
standard definition, it is an immediate consequence of the previous theorem.

Corollary 4.2.3. A ⊆ P(S) is cwpws if and only if the closure of A under finite inter-
sections is cwpws.
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Remark 4.2.4. Consider the case of (N,+). A ⊆ N is piecewise syndetic if and
only if there is a hyperfinite interval I such that A∗ ∩ I has only finite gaps.
Suppose, for simplicity, that A ⊆ P(N) is closed under finite intersections. The
above theorem shows that A is collectionwise piecewise syndetic if and only if
there is a hyperfinite interval I such that A∗∩I has only finite gaps for every A ∈
A. The cleanliness of the previous statement is why we find the nonstandard
description of the notion of cwpws family so natural.

Here is the main result of this subsection, which completes the combinatorial
description of central sets:

Theorem 4.2.5. For A ⊆ P(S), we have that A is cwpws iff A is robust

Proof. First suppose that A is cwpws and take α and G as in condition (5) of
Theorem 4.2.2. By transfer, we have S∗ · α∗ ⊆ G(F)−1(

⋂

F)∗∗. Let γ ∈ L(S∗ · α∗)

be minimal. For any F, let t(F) ∈ G(F) be such that γ ∈ t(F)−1(
⋂

F)∗. and
set E(F) := {t(H) : F ⊆ H}. Note that, in particular, for any A ∈ A, that
E({A}) ⊆ Aγ. The family of E(F)’s has the finite intersection property, whence
there is β ∈

⋂

F E(F)
∗. Then, for A ∈ A, we have β ∈ A∗

γ, that is, β · γ∗ ∈ A∗∗, so
A ∈ Uβ·γ∗ . It remains to note that β · γ∗ is minimal.

Conversely, suppose that α ∈ S∗ is minimal such that A ⊆ Uα. We claim that α
witnesses the truth of (5) in Theorem 4.2.2. Fix F and, for notational simplicity,
set A :=

⋂

F. Since α is minimal, Aα is syndetic, whence there is finite G(F) ⊆ S
such that S∗ ⊆ G(F)−1A∗

α. It follows that S∗α∗ ⊆ G(F)−1A∗∗, whence, by transfer,
Sα ⊆ G(F)−1A∗. �

5. The Central sets theorem

In this section, we state and prove the Central Sets Theorem, which is arguably
the most important result about central sets in applications.

5.1. The Central Sets Theorem: statement and consquences. We first set up
some important notation and definitions.

Definition 5.1.1. Given m ∈ N, a ∈ Sm+1, f ∈ SN, and t ∈ N[m], we set

x(m,a, t, f) := a(1)f(t1)a(2)f(t2) · · ·a(m)f(tm)a(m+ 1).

Definition 5.1.2. A ⊆ S is a C-set if there are:

(1) m : Pf(S
N) → N

(2) a ∈
∏

F∈Pf(SN)
Sm(F)+1

(3) t ∈
∏

F∈Pf(SN)
N[m(F)]
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satisfying:

(a) F ( G implies t(F)(m(F)) < t(G)(1), and
(b) for all G1 ( · · · ( Gn and gi ∈ Gi, we have

n∏

i=1

x(m(Gi), a(Gi), t(Gi), gi) ∈ A.

Our goal is to prove:

Theorem 5.1.3 (Central Sets Theorem). Every central set is a C-set.

Remark 5.1.4. The converse to the Central Sets Theorem is false; see [7, Thm
14.18] for a concrete counterexample.

We will prove the Central Sets theorem in the next section. The version of the
theorem presented here is the strongest known version of the theorem, which
has undergone several improvements since its original version, due to Fursten-
berg:

Theorem 5.1.5 (Furstenberg’s Central Sets Theorem). Suppose that A ⊆ N is cen-
tral and 〈y1

n〉
∞

n=1, . . . , 〈y
k
n〉

∞

n=1 are sequences in Z. Then there is a sequence 〈an〉
∞

n=1

from N and an increasing sequence 〈Hn〉
∞

n=1 from Pf(N) (meaning that maxHn <
minHn+1) such that, for all i = 1, . . . , k, we have

FS

(〈

an +
∑

t∈Hn

yi
t

〉

∞

n=1

)

⊆ A.

For a discussion of how to derive Furstenberg’s Central Set Theorem from The-
orem 5.1.3, see [6].

Furstenberg used the Central Sets Theorem to establish that any (kernel) par-
tition regular system of equations over Q must have a solution in any central
set. A later application of the Central Sets Theorem showed that a system of
equations over Q is image partition regular if and only if the column space of
the matrix for the equation meets every central set.

The combinatorial applications of the Central Sets Theorem are quite numerous
and we suggest that the reader consult [6] and [7] for more information. Since
these applications involve straightforward (but nontrivial) standard reasoning
using the Central Sets Theorem, we shall say no more about them here.

5.2. The proof of the Central Set Theorem. To prove the Central Sets Theorem,
we need an auxiliary notion:
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Definition 5.2.1. A ⊆ S is a J-set if: for every F ∈ Pf(S
N), there is m ∈ N,

a ∈ Sm+1, and t ∈ N[m] such that x(m,a, t, f) ∈ A for all f ∈ F.

We note an easy observation about J-sets:

Lemma 5.2.2. Suppose that A ⊆ S is a J-set, F ∈ Pf(S
N), and k ∈ N. Then there are

m,a, t with t(1) > k such that x(m,a, t, f) ∈ A for all f ∈ F.

Proof. Apply the definition of J-set toG := {gf : f ∈ F}with gf(n) := f(k+n). �

There is an obvious nonstandard formulation of being a J-set, but we have not
found it too useful thus far:

Lemma 5.2.3. A ⊆ S is a J-set if and only if there is M ∈ N∗, a ∈ (S∗)M+1, and
t ∈ (N∗)[M] such that, for all f ∈ SN, we have

x(M,a, t, f) ∈ A∗.

Definition 5.2.4. We call α ∈ S∗ a J-element (resp. C-element) if every A ∈ Uα

is a J-set (resp. C-set).

One proves the Central Set Theorems in two steps:

Step 1: Show that every minimal element is a J-element.

Step 2: Show that every idempotent J-element is a C-element.

Remarks 5.2.5.

(1) It follows from Step 1 that that every piecewise syndetic set is a J-set.
(2) The converse of the statement in Step 2 is also true, but since its proof is

much more involved, we will not prove it here. Note that this converse
implies that the collection of C-sets is also partition regular.

We start with Step 1. There is a direct proof of Step 1 that uses more facts about
minimal ideals than we would like to present here (see [8, Thm 2.11]). We prefer
the following strategy towards establishing Step 1:

Step 1a: Show that there is a J-element.

Step 1b: Show that the set of J-elements is a (nonempty by Step 1a) u-ideal of S∗.

To prove Step 1a, we first prove:

Theorem 5.2.6. The family of J-sets is partition regular.

The proof of Theorem 5.2.6 that we present here is completely standard but we
choose to give it as: (a) it is very clever; and (b) the other proofs in the literature
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that we have seen have chosen to focus more on the details then the basic ideas.
The proof uses the Hales-Jewett theorem, which we now describe.

Suppose that A is a finite nonempty set (our alphabet). A word on A is simply
an element of An for some n ∈ N; we refer to n as the length of the word. A
variable word on A is a word on the alphabet A ∪ {⋆}, where ⋆ is a new element
not belonging to A, such that ⋆ actually occurs in w. Given a variable word
w(⋆) and a ∈ A, we set w(a) to be the word on A obtained by replacing each
occurrence of ⋆ by a. Finally, given a variable word w(⋆), the set {w(a) : a ∈ A}

is referred to as a combinatorial line.

Fact 5.2.7 (Hales-Jewett Theorem). For every k, c ∈ N, there is N = N(k, c) ∈ N
such that, for every set A of size k and every coloring of words on A of length N using
c colors, there is a length N variable word w(⋆) on A such that the combinatorial line
{w(a) : a ∈ A} is monochromatic.

Remark 5.2.8. The previous theorem is actually known as the finitary Hales-
Jewett Theorem, which can be derived, using a familiar compactness argument,
from the infinitary Hales-Jewett Theorem. For a nonstandard proof of the latter
fact, using many of the ideas present in this note, see [4, Chapter 8, Section 2].
We should also mention that it is quite easy to derive the infinitary Hales-Jewett
Theorem from the Central Sets Theorem. For this reason, the direct approach
to proving Step 1 is preferable in that it avoids any circular reasoning.

Proof of Theorem 5.2.6. Suppose that A,B ⊆ S are such that A ∪ B is a J-set but
A is not a J-set. We show that B is a J-set. Fix F ∈ Pf(S

N). We find m,a ∈ Sm+1,
and t ∈ N[m] such that x(m,a, t, f) ∈ B for all f ∈ F.

Let G ∈ Pf(S
N) witness that A is not a J-set. Set H := F ∪ G and write H :=

{h1, . . . , hk}. Let N := N(k, 2) be as in the Hales-Jewett theorem. Below we will
define, for w ∈ {1, . . . , k}N, elements gw ∈ SN. Since A ∪ B is a J-set, there are
p, b ∈ Sp+1, and s ∈ N[p] such that x(p, b, s, gw) ∈ A ∪ B for all w ∈ {1, . . . , k}N.

Define a coloring on elements of {1, . . . , k}N by setting c(w) red if x(p, b, s, gw) ∈
A and c(w) blue otherwise. By the choice of N, there is a variable word w(⋆)

on {1, . . . , k} of length N such that the combinatorial line {w(i) : i = 1, . . . , k} is
monochromatic.

Claim: There are m,a ∈ Sm+1, and t ∈ N[m] such that, for each i = 1, . . . , k, we
have

x(m,a, t, hi) = x(p, b, s, gw(i)).

Taking the claim for granted, we see that the monochromatic combinatorial line
cannot have color red, else we contradict the choice of G. It follows that the
monochromatic combinatorial line has color blue, which implies, in particular,
that x(m,a, t, f) ∈ B for all f ∈ F, as desired.
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It remains to describe the elements gw and verify the claim for these elements.
Fix arbitrary d ∈ S arbitrarily. (We will soon see that d is merely a “space-filler”.)
For w = (w1, . . . , wN) ∈ {1, . . . , k}N, we set

gw(l) :=

N∏

i=1

d · hwi
(Nl+ i).

To verify the claim, let v1 < · · · < vr enumerate (in order) the appearances of ⋆
in w(⋆). For ∗ = 1, . . . , k, we have p ·rmany appearances of h⋆ in x(p, b, s, gw(⋆)),
with inputs

Ns1 + v1 < · · · < Ns1 + vr < · · · < Nsp + v1 < · · · < Nsp + vr.

(There may be other, incidental, appearances of a given element of H, but we
want something uniform in ⋆.) We set m := p ·r and let the above sequence be t.
The “padding” in the aforementioned product is then our desired a. Note that
d is used in case of consecutive appearances of ⋆. We leave it to the reader to
write down precise formulae if they desire; otherwise, they can consult [8, Thm
2.5]. �

Corollary 5.2.9. There is a J-element in S∗. In fact,A is a J-set if and only ifA∗ contains
a J-element.

Proof. Let J := {A ⊆ S : Ac is not a J-set}. By the partition regularity of the
collection of J-sets, we see that J has the finite intersection property, whence
there is α ∈

⋂

A∈JA
∗. It follows that α is a J-element. The moreover follows

from the fact that every element of J meets every J-set. �

We now deal with Step 1b:

Proposition 5.2.10. The set of J-elements is a u-ideal of S∗.

Proof. Consider α, β ∈ S∗ with α a J-element.

αβ∗ is a J-element: Suppose that αβ∗ ∈ A∗∗. Then α ∈ A∗
β, so Aβ is a J-set.

Fix F ⊆ Pf(S
N) and take m,a, t such that x(m,a, t, f) ∈ Aβ for all f ∈ F, that is,

x(m,a, t, f)β ∈ A∗ for all f ∈ F, whence there is s ∈ S such that x(m,a, t, f)s ∈ A
for all f ∈ F. Takinga ′ ∈ Sm+1 to agree with a except that a ′(m+1) := a(m+1)·s,
we see that x(m,a ′, t, f) ∈ A for all f ∈ F.

βα∗ is a J-element: This is much easier. Suppose βα∗ ∈ A∗∗. Then β ∈ A∗
α, so,

by transfer, there is s ∈ Aα, that is, s−1A is a J-set. It follows easily that A is also
a J-set. �

This completes the proof of Step 1. We now move on to Step 2.
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Theorem 5.2.11. Suppose that α ∈ S∗ is an idempotent J-element. Then α is a C-
element.

Proof. Suppose α ∈ A∗; we need to show that A is a C-set, which we accomplish
by constructing, by recursion on the size of F, functions m(F), a(F), and t(F)
satisfying:

(i) for all ∅ 6= G ( F, we have t(G)(m(G)) < t(F)(1); and
(ii) for all G1 ( · · · ( Gn = F and gi ∈ Gi, we have

n∏

i=1

x(m(Gi), α(Gi), t(Gi), gi) ∈ αA.

For F = {f}, we simply take m(F), a(F), and t(F) witnessing that αA is a J-set for
F, which follows from the fact that α ∈ αA

∗ and that α is a J-element.

Now suppose that m(G), a(G), and t(G) have been defined for all proper sub-
sets of F satisfying (i) and (ii). Let k = max∅6=G(F t(G)(m(G)) and let

M :=

{
n∏

i=1

x(m(Gi), a(Gi), t(Gi), gi) : ∅ 6= G1 ( · · · ( Gn ( F, gi ∈ Gi

}

.

Since M is a finite subset of αA, we have that M · α ⊆ αA
∗. Setting B := {x ∈

αA : M · x ⊆ αA}, we have that α ∈ B∗, whence B is a J-set. We then let m(F),
a(F), and t(F) > k be as in the definition of J-set for B corresponding to F. It is
clear that items (i) and (ii) of the recursion are still satisfied. �

This completes the proof of the Central Sets Theorem.

6. The Dynamic Definition

In this section, we give the dynamic definition of central set and prove the equiv-
alence with the earlier version.

6.1. Dynamic preliminaries. We start with some definitions.

Definition 6.1.1. A dynamical system is a pair (X, 〈Ts〉s∈S) such that:

(1) X is a compact space;
(2) S is a semigroup;
(3) for s ∈ S, Ts : X → X is continuous;
(4) for s, t ∈ T , we have Tst = Ts ◦ Tt.

Given a dynamical system as above, s ∈ S, and x ∈ X, we sometimes write s · x
instead of Ts(x). We also let T : S → XX denote the function T(s)(x) := Ts(x).
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Remark 6.1.2. Note that the natural left action of S on βS yields a dynamical
system in the above sense. In this way, closed subsystems of βS correspond to
left ideals. In topological dynamics, studying minimal closed subsystems is nat-
ural as they correspond to the irreducible objects. Minimal closed subsystems
of βS thus correspond to minimal left ideals. It might have seemed strange at
first to be so concerned with minimal left ideals, but we see now that they are a
very natural object of study from the dynamic point of view.

The following lemma is standard and easy:

Lemma 6.1.3. Suppose that Q is a semigroup with subsemigroup S. Let X := 2Q

(with the product topology). For s ∈ S, set Ts(f)(x) := f(xs). Then (X, 〈Ts〉s∈S) is a
dynamical system.

Until further notice, fix a dynamical system (X, 〈Ts〉s∈S). Given x ∈ X and a
subset U of X, we consider the return set

R(T, x, U) := R(x,U) := {s ∈ S : Ts(x) ∈ U}.

A focal point of topological dynamics is the study of various properties of return
sets. Here is a very natural definition along these lines:

Definition 6.1.4. We say that x ∈ X is uniformly recurrent if, for every neigh-
borhood U of x, we have that R(x,U) is syndetic.

The previous nomenclature is easiest to digest when considering dynamical sys-
tems over (N,+), which is tantamount to studying the iterates of a single con-
tinuous transformation T . In this case, x ∈ X is uniformly recurrent if, for any
neighborhood U of x, there is m ∈ N such that, for any y in the orbit of x, we
have that y returns to U within m iterates of T .

The study of uniformly recurrent points is also intimately tied up with minimal
dynamical systems referred to above. Indeed, one can show that every point in
a minimal dynamical system is uniformly recurrent and, conversely, the orbit
closure of a uniformly recurrent point is a minimal system. (See [5, Theorems
1.15 and 1.17].)

Here is the other preliminary definition we need:

Definition 6.1.5. We say that x, y ∈ X are proximal if there is a net (si)i∈I such
that limi∈I Tsi(x) = limi∈I Tsi(y).

We now come to the dynamic definition of central set, which we temporarily
give a different name until we show that it coincides with our earlier notion of
central set.
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Definition 6.1.6. If S is a semigroup, then A ⊆ S is dynamically central if there
is a dynamical system (X, 〈Ts〉s∈S) and points x, y ∈ X such that:

(1) x and y are proximal;
(2) y is uniformly recurrent;
(3) A = R(x,U).

6.2. The equivalence between central sets and dynamically central sets. We
now proceed to show that the notions “central” and “dynamically central” coin-
cide. As before, we fix a dynamical system (X, 〈Ts〉s∈S). Recall that every element
x ∈ X∗ has a unique standard part, denoted st(x) ∈ X, with the property that
x ≈ st(x) (meaning: whenever U is a neighborhood of st(x), then x ∈ U∗). By
iterated applications of transfer, this fact remains true for every x ∈ X(∞)∗. This
allows us to define a function T̃ : S∗ → XX by setting

T̃(α)(x) := T̃α(x) := st(α · x) = st(Tα(x)).

Note that T̃ extends T .

Lemma 6.2.1. For α, β ∈ S(∞)∗, we have α ∼ β implies T̃α = T̃β.

Proof. For ease of notation, suppose α, β ∈ S∗. If z = st(α · x) and U is a neigh-
borhood of z, setting A := {s ∈ S : s · x ∈ U}, we have α ∈ A∗, whence β ∈ A∗,
that is β · x ∈ U∗. Since U was an arbitrary neighborhood of z, we see that
z = st(β · x). �

As with the map π, T̃ need not be a semigroup homomorphism. However:

Proposition 6.2.2. For any α, β ∈ S∗, we have T̃α·β∗ = T̃α ◦ T̃β.

Proof. Fix x ∈ X. Since (αβ∗) · x = α · (β∗ · x), we need to show

st(α · (β∗ · x)) = st(α · (st(β · x))).

Set y := st(β · x) and z := st(α · y). We need to show that z = st(α · (β∗ · x)).
Fix a neighborhood U of z; we must show that α · (β∗ · x) ∈ U∗∗. Since each Ts
is continuous, the statement “for all s ∈ S and all open sets V , if s · y ∈ V , then
s · (β · x) ∈ V∗” is a true statement. By transfer, we have that “for all γ ∈ S∗ and
all internally open sets V , if γ · y ∈ V , then γ · (β∗ · x) ∈ V∗” is also true. We
finish by setting γ = α and V = U∗. �

We next give the nonstandard reformulation of proximality:

Lemma 6.2.3. x, y ∈ X are proximal if and only if there is α ∈ S∗ such that T̃α(x) =
T̃α(y).
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Proof. First suppose that x and y are proximal, say limi∈I Tsi(x) = lim Tsi(y). Fix
i ∈ I∗ with i > I. Then Tsi(x) = Tsi(y).

Conversely, suppose that T̃α(x) = T̃α(y) and let z be the common standard part.
For each neighborhood U of T̃α(x), we have, by transfer, some sU ∈ S such that
sU · x, sU · y ∈ U. It follows that limU sU · x = limU sU · y = z. �

For x, y ∈ X, let I(x, y) := {α ∈ S∗ : T̃α(x) = T̃α(y)}. Thus, x and y are proximal
if and only if I(x, y) 6= ∅.

Lemma 6.2.4. I(x, y) is a left u-ideal of S∗.

Proof. Suppose that β ∈ I(x, y) and α ∈ S∗. Then

T̃α·β∗(x) = T̃α(T̃β(x)) = T̃α(T̃β(y)) = T̃α·β∗(y).

Thus, if γ ∼ α · β∗, we have T̃γ(x) = T̃γ(y), whence γ ∈ I(x, y). �

In the following proof, we will need one more fact about K(βS), namely, for
every minimal left ideal L of βS and every U ∈ L, there is an idempotent V ∈ L
such that U · V = U. (See [7, Thm 1.61].)

Theorem 6.2.5. Suppose that y ∈ X and L is a minimal left u-ideal of S∗. Then the
following are equivalent:

(1) y is uniformly recurrent.
(2) There is α ∈ L such that T̃α(y) = y.
(3) There is idempotent α ∈ L such that T̃α(y) = y.
(4) There is idempotent α ∈ L and x ∈ X such that T̃α(x) = y.

Proof. (1) implies (2): Fix β ∈ L. Let U be an internally open neighborhood of
y contained in the monad of y, that is, every element of U is infinitely close to
y. Since y is uniformly recurrent, by transfer, R(y,U) := {γ ∈ S∗ : γ · y ∈ U} is
internally syndetic, that is, S∗∗ ⊆ (S∗)−1R(y,U)∗. Thus, there is γ ∈ S∗ such that
γ ·β∗ ∈ R(y,U)∗. Let α ∈ L be such that α ∼ γ ·β∗, so α ∈ R(y,U). We then have
that α · y ∈ U, whence T̃α(y) = y.

(2) implies (3): Take β ∈ L such that Tβ(y) = y. Take idempotent α ∈ L such
that α · β∗ ∼ β. (See the discussion before the statement of the theorem.) We
then have

T̃α(y) = T̃α(T̃β(y)) = T̃α·β∗(y) = T̃β(y) = y.

(3) implies (4) is trivial.

(4) implies (1): Suppose that T̃α(x) = y. Note then that

T̃α(y) = T̃α(T̃α(x)) = T̃α·α∗(x) = T̃α(x) = y.
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Fix a neighborhood U of y and take a neighborhood V of y so that V ⊆ U. Set
A := R(y, V). Since α ∈ A∗, we have that Aα is syndetic, whence it suffices to
show that Aα ⊆ R(y,U). But if s ∈ Aα, then sα ∈ A∗, so (sα) · y ∈ V∗, so

Ts(y) = Ts(T̃α(y) = T̃sα(y) ∈ V ⊆ U,

as desired. �

Corollary 6.2.6. For x, y ∈ X, the following are equivalent:

(1) x and y are proximal and y is uniformly recurrent.
(2) There is a minimal idempotent α such that T̃α(x) = y.

Proof. (1) implies (2): Let L be a minimal left u-ideal contained in I(x, y). By
above, there is idempotent α ∈ L such that T̃α(y) = y, so T̃α(x) = T̃α(y) = y.

(2) implies (1): Obvious from above. �

We are now ready to prove the main result of this section:

Theorem 6.2.7. A ⊆ S is central if and only if it is dynamically central.

Proof. First suppose that A is central. Let Q := S ∪ {e} where e is a new element
that acts as a two-sided identity for Q. Let X = 2Q and (Ts)s∈S be as in Lemma
6.1.3. We show that A is a dynamically central subset of S as witnessed by this
dynamical system. Let x ∈ Q be the characteristic function of A. Let α ∈ S∗ be
a minimal idempotent such that α ∈ A∗. Set y := T̃α(x). Then we know that x
and y are proximal and y is uniformly recurrent. Set U := {z ∈ X : z(e) = y(e)},
a neighborhood of y in X. It suffices to show that A = R(x,U). First note that
y = st(α · x) implies that there is s ∈ A such that s · x ∈ U, whence it follows
that y(e) = (s · x)(e) = x(es) = x(s) = 1. It follows that, for s ∈ S, we have
s ∈ A ⇔ x(s) = 1 ⇔ Ts(x)(e) = 1 ⇔ Ts(x) ∈ U, as desired.

Now suppose that A is dynamically central, so there are x, y ∈ X that are prox-
imal, y is uniformly recurrent, and there is a neighborhood U of y such that
A = R(x,U). Take a minimal idempotent α such that T̃α(x) = y. Since α · x ≈ y,
we have that α · x ∈ U∗, and hence α ∈ A∗. It follows that A is central. �

Example 6.2.8 (Exercise 19.3.2 in [7]). Suppose that A,B ⊆ ω. By considering
the dynamical system 2ω as above, we see that:

(1) A is uniformly recurrent if, for every k ∈ N, the set

{n ∈ N : A+ [n, n+ k) = n+ (A ∩ [0, k))}

is syndetic.
(2) A and B are proximal if there are arbitrarily long intervals I such that

A ∩ I = B ∩ I.
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(3) A is central if it is proximal to a uniformly recurrent set containing 0.

Of course, we are applying the adjectives to a set when it applies to its charac-
teristic function. It is worth noting the nonstandard translation of the above:

(1) A is uniformly recurrent if and only if: for every infinite I, there is x ∈ I
such that (x+ N) ∩A∗ = A.

(2) A and B are proximal if and only if there is an infinite interval I such that
A∗ ∩ I = B∗ ∩ I.
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