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PARAPRODUCT IN BESOV–MORREY SPACES

YOSHIHIRO SAWANO

Abstract. Recently it turned out that the paraproduct plays the key role in some highly
singular partial differential equations. In this note the counterparts for Besov–Morrey spaces
are obtained. This note is organized in a self-contained manner. Besov–Morrey spaces,

paraproduct

1. Introduction

In this note we investigate the boundedness property of the pointwise multiplier of the
functions in Hölder–Zygmund spaces and Besov–Morrey spaces including the commutators.
Starting from the seminal papers [2, 3, 4], we investigate these operators from the viewpoint of
harmonic analysis.

To describe our first result, we recall some notation. First, we use the following convention
on balls in Rn here and below: We denote by B(x, r) the ball centered at x of radius r. Namely,
we write

B(x, r) ≡ {y ∈ Rn : |x− y| < r}

when x ∈ Rn and r > 0. Given a ball B, we denote by c(B) its center and by r(B) its radius.
We write B(r) instead of B(o, r), where o ≡ (0, 0, . . . , 0). Keeping this definition of balls in
mind, we define Morrey spaces. Let 1 ≤ q ≤ p <∞. Define the Morrey norm ‖ · ‖Mp

q
by

‖f‖Mp
q
≡ sup

x∈Rn,r>0
|B(x, r)|

1
p
− 1

q ‖f‖Lq(B(x,r))

for a measurable function f . The Morrey space Mp
q(R

n) is the set of all the measurable
functions f for which ‖f‖Mp

q
is finite. We move on to the definition of Besov–Morrey spaces.

Choose ψ ∈ C∞
c (Rn) so that

(1.1) χB( 6
5
) ≤ ψ ≤ χB( 3

2
).

We write

ϕ0(ξ) = ψ(ξ), ϕj(ξ) = ψ(2−jξ)− ψ(2−j+1ξ), ψj(ξ) = ψ(2−jξ)

for j ∈ N and ξ ∈ Rn.

For f ∈ L1(Rn), define the Fourier transform and the inverse Fourier transform by:

Ff(ξ) ≡ (2π)−
n
2

ˆ

Rn

f(x)e−ix·ξdx, F−1f(x) ≡ (2π)−
n
2

ˆ

Rn

f(ξ)eix·ξdξ.

Here and below we write θ(D)f ≡ F−1[θ ·Ff ] for θ ∈ S(Rn) and f ∈ S ′(Rn). It is known that
θ(D)f ∈ S ′(Rn) ∩ L1

loc(R
n) and it satisfies

θ(D)f(x) = (2π)−
n
2 〈f,F−1θ(x− ·)〉

1

http://arxiv.org/abs/1812.08379v1


2 YOSHIHIRO SAWANO

for all x ∈ Rn. We define

‖f‖N s
pqr

≡





∞
∑

j=0

(2js‖ϕj(D)f‖Mp
q
)r





1
r

for f ∈ S ′(Rn).

Let 1 ≤ q ≤ p < ∞, 1 ≤ r ≤ ∞ and s ∈ R. The space N s
pqr(R

n), which we call the Besov–

Morrey space, is the set of all f ∈ S ′(Rn) for which the norm ‖f‖N s
pqr

is finite. The parameter
s describes the differential property in terms of Morrey spaces as is indicated by the relations
N s+ε

pqr (Rn) ⊂ N s
pqr(R

n) and ∂j : N s+1
pqr (Rn) ⊂ N s

pqr(R
n) for all ε > 0 and j = 1, 2, . . . , n. It is

also clear from the triangle inequality in Mp
q(R

n) that N 0
pq1(R

n) ⊂ Mp
q(R

n). The main results
in this note are the following:

Theorem 1.1. Let 1 ≤ q1 ≤ p1 < ∞, 1 ≤ q2 ≤ p2 < ∞, 1 ≤ q ≤ p < ∞, 1 ≤ r ≤ ∞, and

s > 0. Assume that
1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
.

Then for f ∈ N s
p1q1r

(Rn) and g ∈ N s
p2q2r

(Rn) the product f · g ∈ N s
pqr(R

n) makes sense and

satisfies

‖f · g‖N s
pqr

≤ C‖f‖N s
p1q1r

‖g‖N s
p2q2r

.

Theorem 1.1 is an extension of the inequality

‖f · g‖Mp
q
≤ C‖f‖Mp1

q1
‖g‖Mp2

q2

for f ∈ Mp1
q1
(Rn) and g ∈ Mp2

q2
(Rn). The proof of Theorem 1.1 hinges on the paraproduct

introduced by Bony [1]. Let f, g ∈ S ′(Rn). The (right) paraproduct f � g is defined to be

f � g =

∞
∑

j=2

ψj−2(D)f · ϕj(D)g,

while the (left) paraproduct f � g is defined to be

f � g =

∞
∑

j=2

ϕj(D)f · ψj−2(D)g.

Furthermore, the resonant operator f ⊙ g is defined by

f ⊙ g =

∞
∑

j=0

ϕj(D)f · ϕj(D)g +

∞
∑

j=1

ϕj−1(D)f · ϕj(D)g +

∞
∑

j=1

ϕj(D)f · ϕj−1(D)g.

We need some assumptions on f and g to justify these definitions. These three linear operators
are key linear operators used in the proof of Theorem 1.1.

Another aim of this paper is to extend the results used in [2, 4], which also use these operators,
to the Morrey setting:

Theorem 1.2. Assume that the parameters α, β, s satisfy

0 < α ≤ 1, s+ β < 0 < s+ α+ β.

Then for f ∈ Lipα(R
n), g ∈ Cβ(Rn) and h ∈ N s

pqr(R
n)

‖(f � g)⊙ h− f(g ⊙ h)‖N s+α+β
pqr

≤ C‖f‖Lipα‖g‖Cβ‖h‖N s
pqr
.
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This result is a counterpart to [2, Lemma 2.4].

Here we briefly recall how Besov–Morrey spaces emerged. See [12, 19] for an exhaustive
account. The first paper dates back to 1984. In [9] Netrusov considered Besov–Morrey spaces.
Later on Kozono and Yamazaki investigated Besov–Morrey spaces and applied them to the
Navier–Stokes equations [6]. Mazzucato expanded this application more in [8]. Decompositions
of Besov–Morrey spaces can be found in [7, 14, 16]. After that Yang and Yuan defined Besov-
type spaces and Triebel–Lizorkin-type spaces in [17, 18]. A close relation between these spaces
is pointed out in [15]. Recently more and more is investigated. For example, Haroske and
Skrzypczak investigated embedding relation of Besov–Morrrey spaces [5]. One of the important
consequence of definining the Besov–Morrey spaces is that we have the embedding

N s
pq∞(Rn) →֒ Cs−n

p (Rn)

for s > n
p
. See [13].

We organize this paper as follows: Section 2 is devoted to collecting some preliminary facts.
In Section 3 we prove Theorem 1.1 and in Section 4 we prove Theorem 1.2.

2. Preliminaries

2.1. Schwartz distributions and the Fourier transform. Let us recall the notation of
multi-indexes to define the Schwartz space S(Rn). By “a multi-index”, we mean an element
in N0

n ≡ {0, 1, 2, . . .}n. In this paper a tacit understanding is that all functions assume their
value in C. For a multi-index α = (α1, α2, . . . , αn) ∈ N0

n x = (x1, x2, . . . , xn) ∈ Rn, we define
xα ≡ x1

α1x2
α2 · · ·xnαn . For a multi-index β = (β1, β2, . . . , βn) ∈ N0

n and f ∈ C∞(Rn), we
set

∂βf ≡

(

∂

∂x1

)β1
(

∂

∂x2

)β2

. . .

(

∂

∂xn

)βn

f.

Definition 2.1 (Schwartz function space S(Rn)). For multi-indexes α, β ∈ N0
n and a function

ϕ, write ϕ(α,β)(x) ≡ xα∂βϕ(x), x ∈ Rn temporarily. The Schwartz function space S(Rn) is
the set of all the functions satisfying

S(Rn) ≡
⋂

α,β∈N0
n

{

ϕ ∈ C∞(Rn) : ϕ(α,β) ∈ L∞(Rn)
}

.

The elements in S(Rn) are called the test functions.

Denote by S ′(Rn) the set of all continuous linear mappings from S(Rn) to C. Denote by
〈f, ϕ〉 the value of f evaluated at ϕ; 〈f, ϕ〉 ≡ f(ϕ).

Note that S(Rn) is embedded into L1(Rn) and that F mapsto S(Rn) isomorphically to
itself. Thus by duality F mapsto S ′(Rn) isomorphically to itself.

A function h ∈ C∞(Rn) is said to have at most polynomial growth at infinity, if for all
α ∈ N0

n, there exist Cα > 0 and Nα > 0 such that:

(2.1) |∂αh(x)| ≤ Cα〈x〉
Nα , x ∈ Rn.

Here we are interested in the inclusion:

(2.2) supp(F [f · g]) ⊂ supp(Ff) + supp(Fg)

for f, g ∈ S ′(Rn) having at most polynomial growth at infinity. Usually we assume that Ff is
compactly supported.

Let Ω be a bounded set in Rn. Denote by S ′
Ω(R

n) the set of all distributions whose Fourier

transform is contained in the closure Ω. Define SΩ(R
n) ≡ S ′

Ω(R
n) ∩ S(Rn).
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Lemma 2.2.

(1) For all F ∈ C∞
c (Rn), G ∈ S(Rn),

(2.3) supp(F ∗G) ⊂ supp(F ) + supp(G).

(2) Let K be a compact set. Then for all f ∈ SK(Rn), g ∈ S(Rn), (2.2) holds.

Proof.

(1) The proof of (2.3) is standard: Simply write out the convolution f ∗ g in full in terms
of the integral to have

{x ∈ Rn : F ∗G(x) 6= 0} ⊂ {x ∈ Rn : F (x) 6= 0}+ {x ∈ Rn : G(x) 6= 0}

⊂ supp(F ) + supp(G).

Since supp(F ) is compact and supp(G) is closed, supp(F ) + supp(G) is a closed set.
Thus, taking the closure of the above inclusion, we conclude that (2.3) holds.

(2) Inclusion (2.2) is a consequence of F [f · g] = (2π)−
n
2 Ff ∗Fg and the fact that F maps

S(Rn) isomorphically.

�

Define the convolution f ∗ g by f ∗ g(x) ≡

ˆ

Rn

f(x− y)g(y)dy as long as the integral makes

sense.

A band-limited distribution is a distribution whose Fourier transform is compactly supported.

Lemma 2.3. For all band-limited distributions f ∈ S ′(Rn) and all functions g ∈ S(Rn), (2.2)
holds.

Proof. Let τ ∈ C∞
c (Rn) be such that supp(τ) ∩ (supp(Ff) + supp(Fg)) = ∅. We need to show

that

〈F [f · g], τ〉 = 0.

By the definition of the Fourier transform this amounts to showing:

〈f · g,Fτ〉 = 0.

Since g ∈ S(Rn), we have

〈f · g,Fτ〉 = 〈f, g · Fτ〉

from the definition of the pointwise multiplication f ·g ∈ S ′(Rn) for f ∈ S ′(Rn) and g ∈ S(Rn).
We note that

F−1[g · Fτ ] = (2π)−
n
2 F−1g ∗ τ.

Thus, by the definition of the Fourier transform F acting on S ′(Rn)

〈f · g,Fτ〉 = (2π)−
n
2 〈Ff,F−1g ∗ τ〉.

From the definition of the Fourier transform x ∈ supp(Fg) if and only if −x ∈ supp(F−1g).
Since supp(τ) ∩ (supp(Ff) + supp(Fg)) = ∅, we have

supp(τ ∗ F−1g) ∩ supp(f) ⊂ (supp(τ) + supp(F−1g)) ∩ supp(f) = ∅.

thanks to Lemma 2.2. Thus, 〈f · g,Fτ〉 = 0 and (2.2) holds. �

Corollary 2.4. For all band-limited f, g ∈ S(Rn), (2.2) holds.
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Proof. Let τ ∈ C∞
c (Rn) be such that supp(τ) ∩ (supp(Ff) + supp(Fg)) = ∅. We need to show

that 〈f · g,Fτ〉 = 0. Let Φ ∈ S(Rn) be such that Φ(0) = 1 and that supp(FΦ) ⊂ B(1). Then

〈f · g,Fτ〉 = lim
ε↓0

〈f · g,Φ(ε·)2Fτ〉,

since

lim
ε↓0

Φ(ε·)2Fτ = τ

in S(Rn). If ε > 0 is chosen so that supp(τ) ∩ (supp(Ff) + supp(Fg) + B(2ε)) = ∅, then we
have

〈Φ(ε·)f · Φ(ε·)g,Fτ〉 = 0

thanks to Lemma 2.3, since Φ(ε·)f and Φ(ε·)g are both band-limited due to Lemma 2.2. Thus,
〈f · g,Fτ〉 = 0. �

2.2. Lipschitz spaces and Hölder–Zygmund spaces. Let 0 < α ≤ 1. We let Lipα(Rn)
be the set of all bounded continuous functions f : Rn → C for which the quantity ‖f‖Lipα ≡
‖f‖L∞ + sup

x,y∈Rn

|x− y|−α|f(x)− f(y)| is finite. Let ψ satisfy (1.1). We write

ϕ0(ξ) = ψ(ξ), ϕj(ξ) = ψ(2−jξ)− ψ(2−j+1ξ), ψj(ξ) = ψ(2−jξ)

for j ∈ N and ξ ∈ Rn as before. Then the (Besov)–Hölder–Zygmund space Cβ(Rn) with β ∈ R.
is defined to be the set of all f ∈ S ′(Rn) for which

‖f‖Cβ = sup
j∈N0

2jβ‖ϕj(D)f‖L∞

is finite. Noteworthy is the fact that Lipα(Rn) and Cα(Rn) are isomorphic for all 0 < α < 1
but that Lip1(Rn) is a proper subset of C1(Rn).

Usually we replace (1.1) by χB(1) ≤ ψ ≤ χB(2). However, if we pose a stronger condition
(1.1) on ψ, we can quantify what we are doing. The following is an example of such an attempt.

Example 2.5. Let j, k, l ∈ N satisfy l ≥ 2.

(1) We note that ϕk · ψl−2 6= 0 only if l ≥ k. In this case, we have

supp(F [ϕk(D)ψl−2(D)f · ϕl(D)g]) ⊂ B

(

3

2
· 2k
)

+B

(

3

2
· 2l
)

\B

(

3

5
· 2l
)

.

(2) Assume l ≥ k + 2. Then since

1

8
<

3

5
−

3

8
<

3

2
+

3

8
< 2,

supp(F [ϕk(D)ψl−2(D)f · ϕl(D)g]) ⊂ B (2l+1) \B

(

1

8
· 2l
)

.

Consequently,

ϕj(D)[ϕk(D)ψl−2(D)f · ϕl(D)g] 6= 0

only if l − 3 ≤ j + 1 ≤ l + 1 or l − 3 ≤ j − 1 ≤ l + 1, or equivalently l − 4 ≤ j ≤ l + 2.
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2.3. Some estimates in Besov–Morrey spaces. For the paraproducts, we use the following
observation:

Lemma 2.6. Let 1 ≤ q ≤ p < ∞, 1 ≤ r ≤ ∞ and s ∈ R. Suppose that we are given a

collection {fj}∞j=1 ⊂ Mp
q(R

n) satisfying f0 ∈ S ′
B(8)(R

n), fj ∈ S ′
B(2j+3)\B(2j−1)(R

n), j ∈ N and





∞
∑

j=0

(2js‖fj‖Mp
q
)r





1
r

<∞.

Then

f =
∞
∑

j=0

fj ∈ N s
pqr(R

n)

with

‖f‖N s
pqr

≤ C





∞
∑

j=0

(2js‖fj‖Mp
q
)r





1
r

.

Let j ∈ Z and τ ∈ S(Rn). Then define τj ≡ τ(2−j ·).

Proof. Let ψ, ϕj ∈ C∞
c (Rn) be as before for each j ∈ N0. ξ ∈ Rn. Then

ϕk(D)f =

k+4
∑

j=max(0,k−4)

ϕk(D)fj (k ∈ N).

Thus,

‖ϕk(D)f‖Mp
q
≤ C

k+4
∑

j=max(0,k−4)

‖fj‖Mp
q

(k ∈ N).

As a consequence

‖f‖N s
pqr

=

(

∞
∑

k=0

(2ks‖ϕk(D)f‖Mp
q
)r

)
1
r

≤ C





∞
∑

k=4



2ks
k+4
∑

j=max(0,k−4)

‖fj‖Mp
q





r



1
r

≤ C

8
∑

j=0

‖fj‖Mp
q
+ C

(

∞
∑

k=4

(

2ks
4
∑

l=−4

‖fk+l‖Mp
q

)r)
1
r

≤ C

4
∑

j=0

‖fj‖Mp
q
+ C

4
∑

l=−4

(

∞
∑

k=4

(

2ks‖fk+l‖Mp
q

)r

)
1
r

≤ C





∞
∑

j=0

(2js‖fj‖Mp
q
)r





1
r

,

as required. �
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3. Paraproduct

3.1. Paraproduct. For the paraproducts, we use the following observation:

Lemma 3.1. Let 1 ≤ q1 ≤ p1 < ∞, 1 ≤ r1 ≤ ∞, 1 ≤ q2 ≤ p2 < ∞, 1 ≤ r2 ≤ ∞,

1 ≤ q ≤ p <∞, 1 ≤ r ≤ ∞, and s0, s1, s ∈ R. Assume that

1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
,

1

r
=

1

r1
+

1

r2
, s = s1 + s2.

Suppose that we are given collections {fj}∞j=1, {gj}
∞
j=1 ⊂ Mp

q(R
n) satisfying fj ∈ S ′

B(2j−1)(R
n),

gj ∈ S ′
B(2j+2)\B(2j)(R

n), j ∈ N and





∞
∑

j=1

(2js1‖fj‖Mp1
q1
)r1





1
r1

,





∞
∑

j=1

(2js2‖gj‖Mp2
q2
)r2





1
r2

<∞.

Then we have
∞
∑

j=1

fj · gj ∈ N s
pqr(R

n)

and satisfies

∥

∥

∥

∥

∥

∥

∞
∑

j=1

fj · gj

∥

∥

∥

∥

∥

∥

N s
pqr

≤ C





∞
∑

j=1

(2js1‖fj‖Mp1
q1
)r1





1
r1





∞
∑

j=1

(2js2‖gj‖Mp2
q2
)r2





1
r2

.

Proof. Thanks to Corollary 2.4 we have supp(fj · gj) ⊂ B(2j+3) \B(2j−1) for all j ∈ N. Thus
by the equivalent expression (see Lemma 2.6) and the Hölder inequality, we have

∥

∥

∥

∥

∥

∥

∞
∑

j=1

fj · gj

∥

∥

∥

∥

∥

∥

N s
pqr

≤ C





∞
∑

j=1

(2js‖fj · gj‖Mp
q
)r





1
r

≤ C





∞
∑

j=1

(2j(s1+s2)‖fj‖Mp1
q1
‖gj‖Mp2

q2
)r





1
r

≤ C





∞
∑

j=1

(2js1‖fj‖Mp1
q1
)r1





1
r1





∞
∑

j=1

(2js2‖fj‖Mp2
q2
)r2





1
r2

.

�

3.2. Resonant part. To handle the resonant part, we use the following lemma. When we
prove this type of estimates, we can use the atomic decomposition taking advanatage of the
assumption s > 0 and p, q, r ≥ 1. Here we estimate the distributions directly. This corresponds
to [2, Lemma A3].

Lemma 3.2. Let 1 ≤ q ≤ p <∞, 1 ≤ r ≤ ∞ and s > 0. Suppose that we are given a collection

{fj}∞j=0 ⊂ Mp
q(R

n) satisfying fj ∈ S ′
B(2j+2)(R

n), j ∈ N0 and





∞
∑

j=0

(2js‖fj‖Mp
q
)r





1
r

<∞.
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Then
∞
∑

j=0

fj ∈ N s
pqr(R

n).

Proof. Let ψ, ϕj ∈ C∞
c (Rn) be as before for each j ∈ N0. We have

2ks
∞
∑

j=0

|ϕk(D)fj | ≤
∞
∑

j=max(0,k−3)

2(k−j)s|ϕk(D)[2jsfj]|.

As a consequence, by the translation invariance of Mp
q(R

n) and the equality ‖F−1ϕk‖L1 =

‖F−1ϕ1‖L1 for all k ∈ N
∥

∥

∥

∥

∥

∥

2ks
∞
∑

j=0

|ϕk(D)fj |

∥

∥

∥

∥

∥

∥

Mp
q

≤ C

∞
∑

j=max(0,k−3)

2(k−j)s(2js‖ϕk(D)fj‖Mp
q
)

≤ C

∞
∑

j=max(0,k−3)

2(k−j)s(2js‖fj‖Mp
q
).

Since s > 0, by the Hölder inequality
∥

∥

∥

∥

∥

∥

2ks
∞
∑

j=0

|ϕk(D)fj |

∥

∥

∥

∥

∥

∥

Mp
q

≤ C

∞
∑

j=max(0,k−3)

2
1
2
(k−j)s2

1
2
(k−j)s(2js‖fj‖Mp

q
)

≤ C





∞
∑

j=max(0,k−3)

2
1
2
(k−j)sr′





1

r′




∞
∑

j=max(0,k−3)

(2
1
2
(k−j)s(2js‖fj‖Mp

q
))r





1
r

≤ C





∞
∑

j=max(0,k−3)

(2
1
2
(k−j)s(2js‖fj‖Mp

q
))r





1
r

.

Thus, if we take the ℓr-norm, then we obtain

∥

∥

∥

∥

∥

∥

∞
∑

j=0

fj

∥

∥

∥

∥

∥

∥

N s
pqr

≤ C





∞
∑

j=0

(2js‖fj‖Mp
q
)r





1
r

.

�

Corollary 3.3. Let 1 ≤ q1 ≤ p1 < ∞, 1 ≤ r1 ≤ ∞, 1 ≤ q2 ≤ p2 < ∞, 1 ≤ r2 ≤ ∞,

1 ≤ q ≤ p <∞, 1 ≤ r ≤ ∞, and s0, s1, s ∈ R. Assume that

1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
,

1

r
=

1

r1
+

1

r2
, s = s1 + s2 > 0.

Suppose that we are given collections {fj}∞j=0, {gj}
∞
j=0 ⊂ Mp

q(R
n) satisfying fj, gj ∈ S ′

B(2j+1)(R
n),

j ∈ N0 and




∞
∑

j=0

(2js1‖fj‖Mp1
q1
)r1





1
r1

,





∞
∑

j=0

(2js2‖gj‖Mp2
q2
)r2





1
r2

<∞
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Then
∞
∑

j=0

fj · gj ∈ N s
pqr(R

n).

and
∥

∥

∥

∥

∥

∥

∞
∑

j=0

fj · gj

∥

∥

∥

∥

∥

∥

N s
pqr

≤ C





∞
∑

j=0

(2js1‖fj‖Mp1
q1
)r1





1
r1





∞
∑

j=0

(2js2‖gj‖Mp2
q2
)r2





1
r2

.

Proof. In fact, by Corollary 2.4, we see that fj · gj ∈ S ′
B(2j+2)(R

n). Thus, invoking Lemma 3.2

and using the Hölder inequality twice, we have
∥

∥

∥

∥

∥

∥

∞
∑

j=0

fj · gj

∥

∥

∥

∥

∥

∥

N s
pqr

≤ C





∞
∑

j=0

(2js‖fj · gj‖Mp
q
)r





1
r

≤ C





∞
∑

j=0

(2js1‖fj‖Mp1
q1
)r1





1
r1





∞
∑

j=0

(2js2‖gj‖Mp2
q2
)r2





1
r2

.

�

3.3. Conclusion of the proof of Theorem 1.1. We prove Theorem 1.1 as follows: If we use
Lemma 3.1, then we have

‖f � g‖N s
pqr

=

∥

∥

∥

∥

∥

∥

∞
∑

j=2

ψj−2(D)f · ϕj(D)g

∥

∥

∥

∥

∥

∥

N s
pqr

≤ C sup
j∈N0

‖ψj(D)f‖Mp1
q1





∞
∑

j=2

(2js‖gj‖Mp2
q2
)r





1
r

.

Since ψj(D)f = (2π)−
n
2 F−1ψj ∗ f and F−1ψj = 2jnF−1ψ(2j ·), we have

‖ψj(D)f‖Mp1
q1

= (2π)−
n
2 ‖F−1ψj ∗ f‖Mp1

q1

≤ (2π)−
n
2 ‖F−1ψj‖L1‖f‖Mp1

q1

= (2π)−
n
2 ‖F−1ψ‖L1‖f‖Mp1

q1
.

Thus,

‖f � g‖N s
pqr

≤ C‖f‖Mp1
q1





∞
∑

j=2

(2js‖gj‖Mp2
q2
)r





1
r

.

Recall that s > 0. Since Mp1
q1
(Rn) ⊃ N s

p1q1r
(Rn), we have

‖f � g‖N s
pqr

≤ C‖f‖N s
p1q1r

‖g‖N s
p2q2r

.

Likewise

‖f � g‖N s
pqr

≤ C‖f‖N s
p1q1r

‖g‖N s
p2q2r

.

Meanwhile, we have

‖f ⊙ g‖N s
pqr

≤ ‖f ⊙ g‖N 2s
pqr

≤ C‖f‖N s
p1q12r

‖g‖N s
p2q22r

≤ C‖f‖N s
p1q1r

‖g‖N s
p2q2r

by Corollary 3.3.
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Putting together these observations, we obtain the desired result.

4. Commutator estimate

We recall the following lemma obtained in [2, Lemma 2.2]:

Lemma 4.1. Let 0 < α ≤ 1, j ∈ N0, and let F ∈ Lipα(Rn), G ∈ L∞(Rn). Then

‖ϕj(D)[F ·G]− Fϕj(D)G‖L∞ ≤ C2−jα‖F‖Lipα‖G‖L∞.

This is a slight extension of [2, Lemma 2.2] to the case where α = 1. Here for the sake of
convenience for readers, we recall the whole proof.

Proof. Since ϕj(D)H(x) = (2π)−
n
2 F−1ϕj ∗H(x) for all H ∈ S ′(Rn) which grows polynomially

at infinity,

ϕj(D)[F ·G](x)− F (x)ϕj(D)G(x)

= (2π)−
n
2

ˆ

Rn

2jnF−1ϕ(2j(x − y))(F (y)− F (x))G(y) dy.

As a result, letting

C = (2π)−
n
2

ˆ

Rn

|z|α|F−1ϕ(z)| dz,

we have

‖ϕj(D)[F ·G]− Fϕj(D)G‖L∞ ≤ C2−jα‖F‖Lipα‖G‖L∞,

as required. �

Lemma 4.2. Let 0 < α ≤ 1, j ∈ N0, and let F ∈ Lipα(Rn), G ∈ L∞(Rn). Then we have

‖ϕj(D)[F � G]− Fϕj(D)G‖L∞ ≤ C2−jα‖F‖Lipα‖G‖L∞ .

This is also a slight extension of [2, Lemma 2.3] to the case where α = 1. Here for the sake
of convenience for the readers we supply the proof.

Proof. We assume j ≫ 1; otherwise we can mimic the argument below and we can readily
incorporate the case where j is not so large. We decompose

ϕj(D)[F � G]− Fϕj(D)G

=

j+3
∑

k=j−3

(ϕj(D)[F � ϕk(D)G]− Fϕj(D)ϕk(D)G)

=

j+3
∑

k=j−3

(ϕj(D)[F · ϕk(D)G]− Fϕj(D)ϕk(D)G − ϕj(D)[F � ϕk(D)G]) .

Let k be fixed. We use Lemma 4.1 to have

‖ϕj(D)[F · ϕk(D)G] − Fϕj(D)ϕk(D)G‖L∞ ≤ C2−jα‖F‖Lipα‖G‖L∞.

Meanwhile, using

ϕj(D)[F � ϕk(D)G] =

j+5
∑

l=j−5

ϕj(D)[ϕl(D)F � ϕk(D)G]
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for k ∈ [j − 3, j + 3], we have

‖ϕj(D)[F � ϕk(D)G]‖L∞ ≤

j+5
∑

l=j−5

‖ϕj(D)[ϕl(D)F � ϕk(D)G]‖L∞

≤ C

j+5
∑

l=j−5

‖ϕl(D)F � ϕk(D)G‖L∞

≤ C sup
l,l′∈N0

‖ϕl(D)F · ϕl′(D)G‖L∞

≤ C2−jα‖F‖Lipα‖G‖L∞ .

�

We prove Theorem 1.2 to conclude this note.

Proof. We decompose

(f � g)⊙ h− f(g ⊙ h) =
∞
∑

j=0

[ϕj(D)[f � g]− f · ϕj(D)g]ϕj(D)h

+

∞
∑

j=1

(ϕj−1(D)[f � g]− fϕj−1(D)g)ϕj(D)h

+

∞
∑

j=1

[ϕj(D)[f � g]− f · ϕj(D)g]ϕj−1(D)h.

We handle the first term; other two terms are dealt with similarly. We decompose

∞
∑

j=0

[ϕj(D)[f � g]− f · ϕj(D)g]ϕj(D)h

=

∞
∑

j=0

[ϕj(D)[ψj+4(D)f � g]− ψj+4(D)f · ϕj(D)g]ϕj(D)h

+

∞
∑

j=0

∞
∑

k=j+5

ϕj(D)[ϕk(D)f � g] · ϕj(D)h

−
∞
∑

j=0

∞
∑

k=j+5

ϕk(D)f · ϕj(D)g · ϕj(D)h.

Since

‖∂m[ϕj(D)[ψj+4(D)f � g]− ψj+4(D)f · ϕj(D)g]‖L∞ = O(2−j(α+β−|m|))

for all m = (m1,m2, . . . ,mn) ∈ N0
n, we have

∥

∥

∥

∥

∥

∥

∞
∑

j=0

[ϕj(D)[ψj+4(D)f � g]− ψj+4(D)f · ϕj(D)g]ϕj(D)h

∥

∥

∥

∥

∥

∥

N s+α+β
pqr

≤ C‖f‖Lipα‖g‖Cβ‖h‖N s
pqr
.
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Using Example 2.5, we estimate the second term:
∞
∑

j=0

∞
∑

k=j+5

ϕj(D)[ϕk(D)f � g] · ϕj(D)h

=
∞
∑

j=0

∞
∑

k=j+5

ϕj(D)[ϕk(D)ψk−2(D)f · ϕk(D)g] · ϕj(D)h

+

∞
∑

j=0

∞
∑

k=j+5

ϕj(D)[ϕk(D)ψk−1(D)f · ϕk+1(D)g] · ϕj(D)h.

Next, we note that

‖ϕk(D)f · ϕj(D)g · ϕj(D)h‖Mp
q

≤ C2−kα−j(s+β)‖f‖Lipα‖g‖Cβ‖2jsϕj(D)h‖Mp
q
.

Adding this estimate over j, k, we have










∞
∑

k=5






2k(s+α+β)

∥

∥

∥

∥

∥

∥

k−5
∑

j=0

ϕk(D)f · ϕj(D)g · ϕj(D)h

∥

∥

∥

∥

∥

∥

Mp
q







r









1
r

≤ C







∞
∑

k=5





k−5
∑

j=0

2(k−j)(s+β)‖f‖Lipα‖g‖Cβ‖2jsϕj(D)h‖Mp
q





r





1
r

= C







∞
∑

k=5

k−5
∑

j=0

(

2
1
2
(k−j)(s+β)‖f‖Lipα‖g‖Cβ‖2jsϕj(D)h‖Mp

q

)r







1
r

= C







∞
∑

j=0

(

‖f‖Lipα‖g‖Cβ‖2jsϕj(D)h‖Mp
q

)r







1
r

= C‖f‖Lipα‖g‖Cβ‖h‖N s
pqr
.

�
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