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Abstract

Let L0 be the algebra of equivalence classes of real valued random variables on a given probability
space, and (L0)n the n-ary Cartesian power of L0 for each integer n ≥ 2. We consider (L0)n as a free
module over L0 and study affine geometry in (L0)n. One of our main results states that: an injective
mapping T : (L0)n → (L0)n which is local and maps each L

0-line onto an L
0-line must be an L

0-
affine linear mapping. The other main result states that: a bijective mapping T : (L0)n → (L0)n

which is local and maps each L
0-line segment onto an L

0-line segment must be an L
0-affine linear

mapping. These results extend the fundamental theorem of affine geometry from R
n to (L0)n.
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1 Introduction

The fundamental theorem of affine geometry is a classical and useful result. It states that for an integer

n ≥ 2, if a bijective mapping F : Rn → R
n maps any line to a line, then it must be affine linear. A

short proof can be found in Remark 6 of Artstein-Avidan and Milman [1].

The fundamental theorem of affine geometry has been generalized and strengthened in numerous

ways. Please see Section 5 of Artstein-Avidan and Slomka [2] for an account of the various forms and

generalizations of the fundamental theorems of affine geometry for Rn, together with references and other

historical remarks, and see Kvirikashvili and Lashkhi [9] and the references therein for generalizations

of the fundamental theorems of affine geometry for free modules over some kinds of rings and other

more general underlying structures.

Let L0 be the algebra of equivalence classes of real valued random variables on a given probability

space, and for any positive integer n, (L0)n = {(ξ1, . . . , ξn) : ξi ∈ L0, i = 1, . . . , n}. Since L0 and

(L0)n (endowed with the usual topology of convergence in probability) usually fail to be local convex
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spaces, most of mathematicians are not interested in L0 and (L0)n for quite a long time. However,

motivated by financial applications and stochastic optimizations, the study of L0 and (L0)n became

active in the literature recently. For example, Kardaras [7] studied the uniform integrability and the

local convexity in L0; Žitković[11], Kardaras and Žitković[8] considered the forward convex convergence

in L0’s nonnegative orthant L0
+; Drapeau, et. al [5] established the Brouwer fixed point theorem in

(L0)n; Wu [10] established the Farkas’ lemma and Minkowski-Weyl type results in (L0)n and Cheridito,

et. al [3] generalized some classical results from linear algebra, real analysis and convex analysis to

(L0)n.

In this paper, for each n ≥ 2, we consider (L0)n as a free L0-module of rank n and study affine

geometry in (L0)n. We extend the fundamental theorem of affine geometry from R
n to (L0)n. One of

our main results states that: an injective mapping T : (L0)n → (L0)n which is local and maps each

L0-line onto an L0-line must be an L0-affine linear mapping. The other main result states that: a

bijective mapping T : (L0)n → (L0)n which is local and maps each L0-line segment onto an L0-line

segment must be an L0-affine linear mapping. Besides, we also give an example to show that a bijective

mapping T : (L0)n → (L0)n which maps L0-lines onto L0-lines is not necessarily L0-affine linear.

2 Basic notations and definitions

Throughout this paper, (Ω,F , P ) will denote a given probability space. Let L0 be the set of all equiva-

lence classes of real valued random variables on (Ω,F , P ). Under the usual addition and multiplication

operations, L0 is an algebra. For each A ∈ F , the equivalence class of A refers to Ã = {B ∈ F :

P (A△B) = 0}, ĨA denotes the equivalence class of the characteristic function IA, and IÃ also stands

for ĨA. Given ξ ∈ L0, let ξ0(·) be an arbitrarily chosen representative of ξ. We write [ξ 6= 0] for the

equivalence class of the measurable set {ω ∈ Ω : ξ0(ω) 6= 0}. The statement “ξ 6= 0 on Ω” means that

ξ0(ω) 6= 0, P -a.s., in other words, ξ is an invertible element of the algebra L0. Some other notation like

[ξ = 0] or statement like “ξ > 0 on Ω” and so on are understood in a similar way.

In this paper, an L0-module refers to a left module over the algebra L0, and θ always denotes its

null element.

Given any positive integer n, denote (L0)n = {(ξ1, . . . , ξn) : ξi ∈ L0, i = 1, . . . , n}, then (L0)n is a

free L0-module of rank n generated by ei, i = 1, . . . , n, where ei is the i-th unit vector in R
n ⊂ (L0)n.

Given x = (ξ1, . . . , ξn), y = (η1, . . . , ηn) ∈ (L0)n, the L0-inner product of x and y is defined to be

〈x, y〉 = ∑n
i=1 ξiηi, and the L0-normed of x is given by |x| =

√

〈x, x〉. We can see that |x| = 0 iff x = θ

and |ξx| = |ξ||x| for every x ∈ (L0)n and ξ ∈ L0.

Given x ∈ (L0)n, if |x| 6= 0 on Ω, then x is said to have full support. Obviously, each ei has full

support. If x ∈ (L0)n has full support, then for any ξ ∈ L0, using the equality |ξx| = |ξ||x|, we see

2



that ξx = θ iff ξ = 0; as a result, if ξ and η are elements of L0 such that ξx = ηx, then ξ = η. On

the contrary, if x ∈ (L0)n does not have full support, then A = [|x| = 0] has positive probability and

IAx = θ, immediately x = IAcx, where Ac = [|x| 6= 0] so that IAc = 1 − IA, and it is probably that

IAc 6= 1.

A group of elements x1, . . . , xk in (L0)n are said to be L0-independent, if for ξ1, . . . , ξk ∈ L0, the

equality ξ1x1 + · · · + ξkxk = θ implies that ξ1 = · · · = ξk = 0. Since I[|x1|=0]x1 + · · · + I[|xk|=0]xk =

θ+ · · ·+ θ = θ, we see that all elements xi’s have full support whenever x1, . . . , xk are L0-independent.

Clearly, e1, . . . , en are L0-independent.

Fix an integer n ≥ 2. For any nonzero vector x ∈ R
n, we can find a vector y ∈ R

n linearly

independent of x, while for a nonzero element x ∈ (L0)n, we may not find an element y ∈ (L0)n such

that y and x are L0-independent, in fact, according to the aforementioned fact, for a nonzero x which

does not have full support, there does not exist y which is L0-independent of x at all! When x ∈ (L0)n

has full support, the existence of y ∈ (L0)n which is L0-independent of x is also not obvious. These

observations force us to use the base {e1, . . . , en} in the proof of our main result Theorem 1.

Definition 1. Let E1 and E2 be two L0-modules and T : E1 → E2 a mapping.

(1). T is said to be L0-linear, if T (x+y) = T (x)+T (y), ∀x, y ∈ E1, and T (ξx) = ξT (x), ∀x ∈ E1, ξ ∈ L0;

(2). T is said to be L0-affine linear, if T (λx + (1 − λ)y) = λT (x) + (1 − λ)T (y), ∀x, y ∈ E1, λ ∈ L0,

equivalently, T (·)− T (θ) is L0-linear;

(3). T is said to be local (or have the local property) if ĨAT (ĨAx) = ĨAT (x), ∀x ∈ E1, A ∈ F ;

(4). T is said to be stable if for any x, y ∈ E1 and A ∈ F , T (ĨAx+ ĨAcy) = ĨAT (x) + ĨAcT (y).

Proposition 1. Let E1 and E2 be two L0-modules and T : E1 → E2 a mapping. Then the following

statements are true:

(1). If T is L0-affine linear, then T must have the local property.

(2). T has the local property if and only if T is stable.

(3). If T has the local property and T (θ) = θ, then T (ĨAx) = ĨAT (x) for any x ∈ E1 and A ∈ F .

(4). If T is bijective and has the local property, then T−1 also has local property.

Proof. (1). Define the L0-linear mapping S : E1 → E2 by S(x) = T (x)−T (θ), ∀x ∈ E1. For any x ∈ E

and A ∈ F , ĨAT (ĨAx) = ĨA[S(ĨAx) + T (θ)] = ĨA[ĨAS(x) + T (θ)] = ĨA[S(x) + T (θ)] = ĨAT (x), namely,

T has the local property.
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(2). If T has the local property, then for any x, y ∈ E1 and A ∈ F

T (ĨAx+ ĨAcy) = ĨAT (ĨAx+ ĨAcy) + ĨAcT (ĨAx+ ĨAcy)

= ĨAT (ĨA(ĨAx+ ĨAcy)) + ĨAcT (ĨAc(ĨAx+ ĨAcy))

= ĨAT (ĨAx) + ĨAcT (ĨAcy)

= ĨAT (x) + ĨAcT (y).

Thus, T is stable.

Conversely, if T is stable, then for any x ∈ E1 and A ∈ F , T (ĨAx) = T (ĨAx + ĨAcθ) = ĨAT (x) +

ĨAcT (θ), immediately we obtain ĨAT (ĨAx) = ĨAT (x), which means that T has the local property.

(3). From (2), T (ĨAx) = T (ĨAx+ ĨAcθ) = ĨAT (x) + ĨAcT (θ) = ĨAT (x).

(4). Fix A ∈ F and y ∈ E2. Using (2), T [ĨAT
−1(y)] = ĨAT [T

−1(y)]+ ĨAcT (θ) = ĨAy+ ĨAcT (θ), and

T [ĨAT
−1(ĨAy)] = ĨAT [T

−1(ĨAy)] + ĨAcT (θ) = ĨAy+ ĨAcT (θ). Then the assumption that T is injective

yields that ĨAT
−1(y) = ĨAT

−1(ĨAy), exactly meaning T−1 also has the local property.

3 Main results

For any two distinct points x, y in (L0)n, denote l(x, y) = {λx + (1 − λ)y : λ ∈ L0}, called the L0-line

determined by x and y. In R
n, any two distinct points in a given straight line determine the same

straight line, while in (L0)n, if u, v are two distinct points in the L0-line l(x, y), the L0-line l(u, v) may

be not the same as l(x, y). For instance, let x ∈ (L0)n be a nonzero element, then for any A ∈ F , ĨAx lies

in the L0-line l(θ, x) = {λx : λ ∈ L0}, if ĨAx is nonzero, then the L0-line l(θ, ĨAx) = {ĨAλx : λ ∈ L0}
is probably not the same as l(θ, x). Thus we should be careful when we handle problems involving

L0-lines.

It is easy to verify that any injective L0-affine linear mapping T : (L0)n → (L0)n maps each L0-line

onto an L0-line. Theorem 1 below states that the converse is also true.

Theorem 1. Fix an integer n ≥ 2. Let T : (L0)n → (L0)n be an injective mapping which is local and

maps each L0-line onto an L0-line, that is to say, for any two distinct points x, y ∈ (L0)n, the image

of the L0-line l(x, y) under the mapping T is l(u, v), where u = T (x), v = T (y), then T must be an

L0-affine linear mapping.

Proof. Define S : (L0)n → (L0)n by S(x) = T (x)− T (θ), ∀x ∈ (L0)n. Note that S(θ) = θ and S is also

injective. With the assumptions on T , it is easy to check that S is local and maps each L0-line onto an

L0-line. It remains to show that S is L0-linear. The proof is composed of 5 steps as below. We point

out in advance that (2) and (3) of Proposition 1 are used frequently.
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Step 1. For any L0-independent x, y ∈ (L0)n, we have S(x) and S(y) are L0-independent, and

S(x+ y) = S(x) + S(y).

For any z ∈ (L0)n which has full support, let A = [|S(z)| = 0], then by (3) of Proposition 1,

S(IAz) = IAS(z) = θ. Since S is injective, we obtain that IAz = θ. Thus IA = 0, implying S(z) has

full support.

Suppose ξ, η ∈ L0 satisfy the equality ξS(x) + ηS(y) = θ. Since S is injective and maps the L0-line

l(θ, x) onto the L0-line l(θ, S(x)), there exists α ∈ L0 such that ξS(x) = S(αx). Similarly, there exists

β ∈ L0 such that −ηS(y) = S(βy). By the injectivity of S we get αx = βy, then α = β = 0 follows

from the assumption that x, y are L0-independent. As a result, ξS(x) = −ηS(y) = θ, then using the

fact that both S(x) and S(y) have full support, we conclude that ξ = η = 0, which means that S(x)

and S(y) are L0-independent.

We then show: there exist a, b ∈ L0 such that S(x + y) = aS(x) + bS(y). In fact, since x + y lies

in the L0-line l(2x, 2y) and S maps L0-lines to L0-lines, thus there exists µ ∈ L0 such that S(x+ y) =

µS(2x) + (1− µ)S(2y). Since 2x lies in the L0-line l(θ, x) and 2y lines in the L0-line l(θ, y), there exist

α1, β1 ∈ L0 such that S(2x) = α1S(x), S(2y) = β1S(y), then a = µα1, b = (1−µ)β1 satisfy the equality

S(x+ y) = aS(x) + bS(y).

It remains to show a = 1 and b = 1. Let A = [a−1 6= 0], if by contrary that a 6= 1, then A has positive

probability and IA 6= 0. According to the notation, there exists c1 ∈ L0 such that IA[1+ c1(a− 1)] = 0.

Since the L0-line l(x, x + y) = {x + cy : c ∈ L0} is mapped by S onto the L0-line l(S(x), S(x + y)),

there exists c0 ∈ L0 such that S(x+ c0y) = (1− c1)S(x) + c1S(x+ y) = [1 + c1(a− 1)]S(x) + c1bS(y).

Using Proposition 1 we obtain S(IA(x+c0y)) = IAS(x+c0y) = IAc1bS(y). Note that there exists some

ξ ∈ L0 such that ĨAc1bS(y) = S(ξy), then by the injectivity of S, we get IA(x+c0y) = ξy, contradicting

to the assumption that x, y are L0-independent. Therefore, a = 1. Similarly, b = 1.

Step 2. For any L0-independent x, y ∈ (L0)n, we have S(ξx+ ηy) = S(ξx) + S(ηy), ∀ξ, η ∈ L0.

First suppose ξ, η are characteristic functions, that is ξ = ĨA, η = ĨB, for some A,B ∈ F . Since

ĨAx+ĨBy = ĨA∩B(x+y)+ĨA\Bx+ĨB\Ay, by the local property, we have S(ĨAx+ĨBy) = ĨA∩BS(x+y)+

ĨA\BS(x)+ĨB\AS(y) = ĨA∩B[S(x)+S(y)]+ĨA\BS(x)+ĨB\AS(y) = ĨAS(x)+ĨBS(y) = S(ĨAx)+S(ĨBy).

Generally, for any ξ, η ∈ L0, let A = [ξ 6= 0], B = [η 6= 0], and take x1 = ξx+ IAcx, y1 = ηy + IBcy,

then ξx = IAx1, ηy = IBy1, and x1, y1 are L0-independent. In fact, if α, β ∈ L0 satisfy the equality

αx1+βy1 = θ, then since x, y are L0-independent, we must have α(ξ+IAc) = 0 and β(η+IBc) = 0, due

to the fact ξ+ IAc 6= 0 on Ω and η+ IBc 6= 0 on Ω, we thus obtain α = β = 0. Now we have shown that

x1, y1 are L0-independent, then S(ξx+ ηy) = S(IAx1 + IBy1) = S(ĨAx1) + S(ĨBy1) = S(ξx) + S(ηy).

Step 3. For each i ∈ {1, 2 . . . , n} and any ξ, η ∈ L0, we have S(ξei + ηei) = S(ξei) + S(ηei).

By symmetry, it suffices to prove the case when i = 1.
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Since e1 − e2 and e2 is obvious L0-independent, we get from Step 2 that S(e1) = S(e1 − e2 + e2) =

S(e1 − e2) + S(e2) = S(e1) + S(−e2) + S(e2), therefore S(e2) + S(−e2) = θ.

Now fix ξ, η ∈ L0, let A = [ξ + η 6= 0]. Then x1 = ξe1 + IAce1 + e2 and y1 = ηe1 − e2 are

L0-independent. Indeed, if α, β ∈ L0 satisfy αx1 + βy1 = (αξ + αIAc + βη)e1 + (α − β)e2 = θ, then

αξ +αIAc + βη = 0 and α− β = 0, equivalently, α = β and α(ξ + η + IAc) = 0, thus α = β = 0 follows

from the fact that ξ+η+IAc 6= 0 on Ω. From Step 2, noting that e1 and IAce1+e2 are L
0-independent,

we get S(x1) = S(ξe1) + S(IAce1 + e2) = S(ξe1) + S(IAce1) + S(e2) and S(y1) = S(ηe1) + S(−e2).

On the other hand, due to the fact that x1 and y1 are L0-independent, it follows from Step 2 that

S(ξx+ IAcx+ ηx) = S(x1 + y1) = S(x1) + S(y1). Therefore, using the known fact S(e2) + S(−e2) = θ

we get S(ξe1 + IAce1 + ηe1) = S(ξe1) + S(IAce1) + S(ηe1). Using the local property, IAcS(ξe1 +

IAce1 + ηe1) = S[IAc(ξe1 + IAce1 + ηe1)] = S(IAce1), hence S(ξe1 + ηe1) = S[IA(ξe1 + IAce1 + ηe1] =

IAS(ξe1 + IAce1 + ηe1) = S(ξe1 + IAce1 + ηe1)− IAcS(ξe1 + IAce1 + ηe1) = S(ξe1) + S(ηe1).

Step 4. For any ξ1, ξ2, . . . , ξn ∈ L0, we have S(ξ1e1 + · · ·+ ξnen) = S(ξ1e1) + · · ·+ S(ξnen).

Indeed, let y1 = ξ2e2 + · · · + ξnen and set A = [|y1| 6= 0], further take y = IAy1 + IAce2, then

e1, y are L0-independent, and y1 = IAy, thus according to Step 2, S(ξ1e1 + · · · + ξnen) = S(ξ1e1 +

y1) = S(ξ1e1 + IAy) = S(ξ1e1) + S(IAy) = S(ξ1e1) + S(ξ2e2 + · · · + ξnen). By induction, we obtain

S(ξ1e1 + · · ·+ ξnen) = S(ξ1e1) + · · ·+ S(ξnen).

Step 5. For each i ∈ {1, 2 . . . , n} and any ξ ∈ L0, we have S(ξei) = ξS(ei).

Fix an x ∈ (L0)n which has full support. Since ξx lies in the L0-line l(θ, x), there exists µ ∈ L0 such

that S(ξx) = µS(x). By Step 1, S(x) has full support, thus this µ is unique determined by ξ (and x).

Therefore, we can define a mapping fx : L0 → L0 by the relation S(ξx) = fx(ξ)S(x), ∀ξ ∈ L0.

Specially, for each i ∈ {1, 2 . . . , n}, we have a mapping fi : L
0 → L0 such that S(ξei) = fi(ξ)S(ei), ∀ξ ∈

L0.

We show that all mappings fi are indeed the same one.

In fact, by symmetry, it suffices to verify that f1 = f2. For each ξ ∈ L0, on one hand, since e1 + e2

has full support, we have S(ξ(e1 + e2)) = fe1+e2(ξ)S(e1 + e2) = fe1+e2(ξ)[S(e1) + S(e2)], where the

last equality follows from Step 1. On the other hand, from Step 2, S(ξ(e1 + e2)) = S(ξe1) + S(ξe2) =

f1(ξ)S(e1) + f2(ξ)S(e2). Thus we obtain fe1+e2(ξ)[S(e1) + S(e2)] = f1(ξ)S(e1) + f2(ξ)S(e2). Since we

have known from Step 1 that S(e1) and S(e2) are L0-independent, thus f1(ξ) = fe1+e2(ξ) = f2(ξ).

Please note that using a similar argument, for any η ∈ L0 such that η 6= 0 on Ω, we have fηe1(ξ) =

f2(ξ) = f1(ξ), ∀ξ ∈ L0.

We proceed to show that f1(ξ) = ξ, ∀ξ ∈ L0.

First, it is obvious that f1(0) = 0 and f1(1) = 1. Then by the local property of S, for any ξ ∈ L0

and A ∈ F , S(ĨAξe1) = ĨAS(ξe1), we obtain that f1(ĨAξ) = ĨAf1(ξ), which means that f1 is local. By

Step (3), for any ξ, η ∈ L0, S(ξe1 + ηe1) = S(ξe1) + S(ηe1), implying that f1(ξ + η) = f1(ξ) + f1(η).

6



Finally, for any ξ, η ∈ L0, choose η1 ∈ L0 such that η1 6= 0 on Ω and η = IAη1, where A = [η 6= 0] (for

instance, we can take η1 = IAη + IAc), then on one hand S((ξη)e1) = f1(ξη)S(e1), on the other hand,

S((ξη)e1) = S(ξIAη1e1) = IAS(ξη1e1) = IAfη1e1(ξ)S(η1e1) = IAf1(ξ)f1(η1)S(e1) = f1(ξ)f1(η)S(e1).

Noting that S(e1) has full support, we thus obtain f1(ξη) = f1(ξ)f1(η).

To sum up, f1 satisfies all the conditions (1-4) in Lemma 1 below, thus f1(ξ) = ξ, ∀ξ ∈ L0.

Combining Step 4 and Step 5, we conclude that S is L0-linear, completing the proof.

Lemma 1. Let φ : L0 → L0 be a mapping such that:

(1). φ is local;

(2). φ(ξ + η) = φ(ξ) + φ(η), ∀ξ, η ∈ L0;

(3). φ(ξη) = φ(ξ)φ(η), ∀ξ, η ∈ L0;

(4). φ(1) = 1.

Then φ is the identity, namely, φ(ξ) = ξ, ∀ξ ∈ L0.

Proof. From (2), φ(0) + φ(1) = φ(1 + 0) = φ(1), thus φ(0) = 0, then φ(ξ − ξ) = φ(0) = φ(ξ) + φ(−ξ)

yields that φ(−ξ) = −φ(ξ) for every ξ ∈ L0. Since φ(1) = 1, it is easy to deduce: for any integer p,

φ(p) = p and further for any rational number r, φ(r) = r. Now assume q =
∑d

i=1 riĨAi
is a simple

function in L0 such that every ri is a rational number, then by the local property of φ, we obtain:

φ(q) =
∑d

i=1 ĨAi
φ(ri) =

∑d
i=1 ĨAi

ri = q.

Let ξ, η be two elements in L0 with ξ ≥ η, then from (3) we obtain φ(ξ − η) = φ(
√
ξ − η

√
ξ − η) =

φ(
√
ξ − η)φ(

√
ξ − η) ≥ 0. Since φ(ξ − η) = φ(ξ) + φ(−η) = φ(ξ) − φ(η), it follows that φ(ξ) ≥ φ(η),

that is to say, φ is monotonically increasing.

For any ξ ∈ L0, let q− =
∑d

i=1 riĨAi
and q+ =

∑k
j=1 tj ĨBj

be any two simple functions in L0 such

that every ri and tj are rational numbers and q− ≤ ξ ≤ q+, then using the monotonicity of φ, we have

q− = φ(q−) ≤ φ(ξ) ≤ φ(q+) = q+. Taking all such possible q− and q+, we thus obtain that φ(ξ) = ξ,

completing the proof.

Remark 1. The local property appears frequently in the study related to L0 and (L0)n, for example, it

appears in the intermediate value theorem of L0- valued functions (Theorem 1.6 of [6]) and the Brouwer

fixed point theorem in (L0)n (Theorem 2.3 in [5], where the local property appears in a slightly more

general form which is equivalent to be stable in Definition 1).

In the following, we give an example which shows that a bijective mapping T : (L0)n → (L0)n which

maps any L0-line onto an L0-line may not have the local property, thus according to Proposition 1, this

mapping T is not L0-affine linear.

Example 1. Let θ : (Ω,F , P ) → (Ω,F , P ) be an isomorphism, that is to say, θ is bijective and both θ

and θ−1 are measure-preserving. Then θ induces a bijection σ : L0 → L0 through ξ 7→ the equivalence
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class of ξ0(θ(·)), where ξ0 is a representative of ξ ∈ L0. Further, for each positive integer n, θ induces

a bijection T : (L0)n → (L0)n through (ξ1, . . . , ξn) 7→ (σ(ξ1), . . . , σ(ξn)). Then it is straightforward

to check that T maps each L0-line onto an L0-line. However, if θ is not the identity mapping, T is

probably not local.

As follows is a more concrete example.

Let Ω = [0, 1), F = B([0, 1)), namely the Borel σ-algebra of [0, 1), and P the Lebesgue measure.

Define θ : [0, 1) → [0, 1) by θ(ω) = ω + 1
2 for ω ∈ [0, 12 ), and θ(ω) = ω − 1

2 for ω ∈ [ 12 , 1). We show the

induced mapping T : (L0)n → (L0)n is not local. Let A = [0, 1
2 ), B = [ 12 , 1), then σ(ĨA) = ĨB, therefore

for each x ∈ (L0)n, we have T (ĨAx) = ĨBT (x), specially T (ĨAe1) = ĨBT (e1) = ĨBe1, it follows that

ĨAT (ĨAe1) = θ 6= ĨAe1 = ĨAT (e1). Thus T is not local.

Remark 2. Since L0 is a commutative algebra and L0 6= {0}, it follows from Thereom 2.6 in [4] that

L0 is an IB-ring (see [9] for the meaning of this notation), then applying Theorem 1 in [9] to (L0)n

gives: for n ≥ 2, if T : (L0)n → (L0)n with T (θ) = θ is a collineation preserving parallelism, that is

to say, T is a bijection such that the images of collinear points under T are themselves collinear and

T preserves parallelism(see [9] for this notion), then there exists an isomorphism σ : L0 → L0 such

that T is a σ-semilinear isomorphism, namely T (x + y) = T (x) + T (y), ∀x, y ∈ (L0)n and T (ξx) =

σ(ξ)T (x), ∀x ∈ (L0)n, ξ ∈ L0. Since bijection and preserving parallelism are not premise conditions in

our Theorem 1 and our theorem 1 require the local property instead, one can see that our Theorem 1 is

not a special case of Theorem 1 in [9]. We also would like to point out that although T in Example 1 is

not an L0-linear mapping, it is indeed a σ-semilinear isomorphism.

For any two distinct x, y ∈ (L0)n, denote [x, y] = {µx + (1 − µ)y : µ ∈ L0, 0 ≤ µ ≤ 1}, called the

L0-line segment between x and y. In the end of this paper, we discuss self-mappings on (L0)n which

map L0-line segments to L0-line segments.

Proposition 2. Suppose that T : (L0)n → (L0)n is a bijection which is local and maps each L0-line

segment onto an L0-line segment, that is to say, for any two distinct x, y ∈ (L0)n, the image of the

L0-line segment [x, y] is the L0-line segment [Tx, T y], then T maps each L0-line onto an L0-line.

Proof. Without loss of generality, we can assume T (θ) = θ, otherwise we make a translation. Let x, y

be any two elements in (L0)n such that y 6= θ. Since T is a bijection, we can see that T−1 also maps

each L0-line segment onto an L0-line segment, and T−1 is local by Proposition 1, thus we only need to

show that each point z in the L0-line l(x, x + y) = {x + λy : λ ∈ L0} will be mapped into the L0-line

l(T (x), T (x+ y)) = {λT (x) + (1 − λ)T (x+ y) : λ ∈ L0}.
We first show that: for each k ∈ Z = {0,±1,±2, . . .}, z = x+ ky will be mapped into l(T (x), T (x+

y)).
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First assume that y has full support. (1) The cases k = 0 and k = 1 are obvious. (2) Fix a

k ∈ {2, 3, 4, . . .}. Since x+ y = (1− 1
k
)x+ 1

k
(x+ ky) ∈ [x, x+ ky] and T maps an L0-line segment onto

an L0-line segment, there exists µ ∈ L0 with 0 ≤ µ ≤ 1 such that T (x+ y) = (1−µ)T (x)+µT (x+ ky).

Let A = [µ = 0], then IAµ = 0. By the local property and Proposition 1, T (IA(x+ y)) = IAT (x+ y) =

IA[(1− µ)T (x) + µT (x+ ky)] = IAT (x) = T (IAx). Since T is a bijection, we obtain IA(x+ y) = IAx.

Then the assumption y has full support implies IA = 0, equivalently, µ > 0 on Ω. As a result,

T (x + ky) = 1
µ
T (x + y) + (1 − 1

µ
)T (x) ∈ l(T (x), T (x + y)). (3) Fix a k ∈ {−1,−2,−3, . . . , }. Since

x = 1
1−k

(x + ky) + (1 − 1
1−k

)(x + y) ∈ [x + ky, x + y], there exists µ ∈ L0 with 0 ≤ µ ≤ 1 such

that T (x) = µT (x + ky) + (1 − µ)T (x + y), by a similar argument we deduce that µ > 0 on Ω, then

T (x+ ky) = 1
µ
T (x) + (1− 1

µ
)T (x+ y) ∈ l(T (x), T (x+ y)).

Now for a general nonzero y. Take y1 = IAy + IAce1, where A = [|y| 6= 0], we see that y1 has

full support and y = IAy1. Fix any k ∈ Z, we have proved that there exists µ ∈ L0 such that

T (x+ky1) = µT (x)+(1−µ)T (x+y1). Using Proposition 1, T (x+ky) = T [IA(x+ky)]+T [IAc(x+ky)] =

T [IA(x+ky1)]+T (IAcx) = IA[µT (x)+(1−µ)T (x+y1)]+IAcT (x) = (IAµ+IAc)T (x)+IA(1−µ)T (x+y),

implying that T (x+ ky) ∈ l(T (x), T (x+ y)).

We then show that: for each λ ∈ L0, z = x+ λy will be mapped into l(T (x), T (x+ y)).

For k = 1, 2, . . . , let Ak = [k−1 ≤ |λ| < k], then x+λIAk
y = (12− λ

2kIAk
)(x−ky)+(12+

λ
2k IAk

)(x+ky)

belongs to [x − ky, x + ky], consequently, T (x + λIAk
y) ∈ [T (x − ky), T (x + ky)] ⊂ l(T (x), T (x + y)),

where the last inclusion follows from Claim 1 that both the two endpoints of the L0-line segment

belong to the L0-line. By the notation, for each positive integer k, there exists µk ∈ L0 such that

T (x + λIAk
y) = µkT (x) + (1 − µk)T (x + y). By the local property of T , we have IAk

T (x + λy) =

IAk
T (x+λIAk

y) = IAk
[µkT (x)+ (1−µk)T (x+ y)] for each k. Let µ =

∑∞
k=1 IAk

µk, then T (x+λy) =
∑∞

k=1 IAk
T (x+ λy) =

∑∞
k=1 IAk

[µkT (x) + (1− µk)T (x+ y)] = µT (x) + (1− µ)T (x+ y), which means

that T (x+ λy) ∈ l(Tx, T (x+ y)).

Remark 3. In the proof of Proposition 2, the local property plays an important role, we wonder whether

the assumption that T has the local property can be removed or not? That is, if T : (L0)n → (L0)n is

a bijection and maps each L0-line segment onto an L0-line segment, then can we deduce that T maps

each L0-line onto an L0-line?

Combining Theorem 1 and Proposition 2, we immediately obtain:

Theorem 2. Fix an integer n ≥ 2. If T : (L0)n → (L0)n is a bijection which is local and maps each

L0-line segment onto an L0-line segment, then T must be an L0-affine linear mapping.

Theorem 2 will be used in our forthcoming study to give representations of fully order preserving

and fully order reversing operators acting on the set of L0-lower semi-continuous L0-convex functions
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on (L0)n, and on general complete random normed modules.
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[11] G.Žitković, Convex compactness and its applications, Math. Financ. Econ. 3(1) (2010) 1-12.

10


	1 Introduction
	2 Basic notations and definitions
	3 Main results

