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Abstract

Given a discrete-time linear switched system Σ(A) associated with a finite set

A of matrices, we consider the measures of its asymptotic behavior given by, on

the one hand, its deterministic joint spectral radius ρd(A) and, on the other hand,

its probabilistic joint spectral radii ρp(ν ,P,A) for Markov random switching signals

with transition matrix P and a corresponding invariant probability ν . Note that ρd(A)
is larger than or equal to ρp(ν ,P,A) for every pair (ν ,P). In this paper, we investigate

the cases of equality of ρd(A) with either a single ρp(ν ,P,A) or with the supremum

of ρp(ν ,P,A) over (ν ,P) and we aim at characterizing the sets A for which such

equalities may occur.
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1 Introduction

In this paper, we consider discrete-time switched linear systems of the form

Σ(A) : xk+1 = Aσ(k)xk, σ ∈S, k ∈ N, (1.1)
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where d and N are positive integers, xk ∈ R
d , S is the set of the set of all maps σ : N→

{1, . . . ,N}, and A= (A1, . . . ,AN) is an N-tuple of d ×d matrices with real coefficients.

Switched systems model the behavior of a continuous variable x whose dynamics

may change over time according to the value of a discrete variable σ . These models

are useful for several applications, ranging from air traffic control, electronic circuits,

and automotive engines to chemical processes and population models in biology. This

wide field of applications, together with the interesting mathematical questions arising

from their analysis, justify the extensive literature on switched systems, which have been

studied from the point of view of both deterministic and random switching [6, 7, 22, 23,

28, 29]. A commonly used point of view on the switching signal σ , which we adopt in

this paper, is to consider it as an uncertainty or perturbation acting on the system, the goal

being thus to provide properties of the system independent of a particular choice of σ .

We are interested in describing the asymptotic behavior of Σ(A). For a given σ ∈S,

the asymptotic behavior of the corresponding non-autonomous linear system is measured

by the quantity ρ(σ) defined by

ρ(σ) = limsup
n→∞

‖Aσ(n) · · ·Aσ(1)‖1/n. (1.2)

Indeed, ρ(σ) < 1 if and only if all trajectories of the non-autonomous system xk+1 =
Aσ(k)xk converge exponentially to the origin.

In order to capture the asymptotic behavior of Σ(A), we must formulate some condi-

tion which is independent of the choice of σ ∈ S. There exist two main approaches to

proceed. The first one is deterministic and consists in considering the joint spectral ra-

dius ρd(A) of A, defined as the supremum of ρ(σ) over all σ ∈S. Since its introduction

in [26] and after the seminal paper [13], it has been extensively studied in the computer

science and control theory communities (see, e.g., the monograph [19]).

The other approach to handle the asymptotic behavior of Σ(A) is probabilistic and

amounts to considering a probability measure µ on S and hence σ 7→ ρ(σ) as a random

variable. We may then consider as a probabilistic joint spectral radius the expected value

of ρ(σ) with respect to the probability law µ , which we denote by ρp(µ,A). There exists

a vast literature devoted to the properties of products of random matrices, and we refer

the reader to [1, 5, 8] for more details. A major result in this field has been obtained

in [16] and provides general conditions on µ under which ρ(σ) = ρp(µ,A) on a set of µ
probability 1.

The interest in considering ρd(A) and ρp(µ,A) comes from the stability analysis

of (1.1). Indeed, ρd(A) < 1 if and only if (1.1) is uniformly exponentially stable [19],

whereas, under the conditions of [16], ρp(µ,A) < 1 if and only if µ-almost every trajec-

tory of (1.1) converges exponentially to the origin.

In this paper, we aim at understanding the relations between the deterministic and

the probabilistic approaches. The deterministic measure of stability ρd(A) characterizes

the worst possible behavior over all σ ∈S, while the probabilistic counterpart ρp(µ,A)
provides the average behavior for σ ∈S corresponding to the probability measure µ . As

a consequence, the deterministic approach provides a more conservative estimate of the

asymptotic behavior of the system than the probabilistic one, in the sense that

ρp(µ,A)≤ ρd(A). (1.3)
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A natural question is then to understand under which conditions on A and µ the in-

equality in (1.3) is strict. Furthermore, for practical and modeling purposes, it is important

to understand whether, given a family of probability measures {µℓ}ℓ∈I, the strict inequal-

ity supℓ∈I ρp(µℓ,A) < ρd(A) holds true. Regarding the first question, it is known that

there always exists a measure µ such that equality holds in (1.3) (see, for instance, [24],

where such measures are referred to as maximizing measures). At such a level of gener-

ality, a handy characterization of maximizing measures cannot be expected. This is why

we restrict our attention to the family M of probability measures on S obtained from

discrete-time shift-invariant Markov chains and reformulate the previous two questions

as follows: under which conditions on A do we have

(Q1) equality between ρp(µ,A) and ρd(A) for a given µ ∈M?

(Q2) equality between supµ∈Mρp(µ,A) and ρd(A)?

Notice that the condition supµ∈Mρp(µ,A) < 1 is related to the almost sure stability

of the system uniformly with respect to the Markov process, a stability property first con-

sidered in [18] in the case of Markov chains with positive transition probabilities. Other

stability notions have also been considered for (1.1), such as periodic stability, meaning

stability for all periodic signals σ ∈S, or mean square stability. Several works explore

relations between these different notions, see, e.g., [6, 9, 12, 14, 15, 18]. In particular, [12]

establishes a probabilistic version of the finiteness conjecture, i.e., if (1.1) is periodically

stable, then ρp(µ,A)< 1 for every µ ∈M.

Another interesting fact is that the quantities ρd(A) and of ρp(µ,A) for µ ∈M could

be equivalently computed by replacing the norm ‖·‖ in (1.2) by the spectral radius. In

the deterministic case, this result is known as the Berger–Wang formula or also as the

Joint Spectral Radius Theorem [19], and it has been extended to the Markovian setting

in [10, 20].

In order to describe the main results of our paper, let us identify a measure µ ∈ M

with the pair (ν,P), where P is the transition matrix of the Markov chain corresponding

to µ and ν is its (invariant) initial probability. In particular, we write ρp(ν,P,A) for

ρp(µ,A). Our main result concerning (Q1) (see Theorem 3.1) establishes that a necessary

and sufficient condition for equality is that ρd(A) = ρ(Aik · · ·Ai1)
1/k for every (i1, . . . , ik)

that corresponds to a cycle in the directed weighted graph determined by P such that

νi1 > 0. The necessity follows from results provided in [24], whereas, for sufficiency, we

consider first the particular case where A is irreducible and P is strongly connected (see

Lemma 3.3). Irreducibility implies in particular the existence of a Barabanov norm for

A (see Definition 2.1), which is an important tool in our proof. We then generalize the

result to the case of reducible A (see Lemma 3.5) by a suitable block decomposition of the

matrices in A and the fact that ρp(ν,P,A) and ρd(A) can be read on the diagonal blocks

of the decomposed matrix (cf. [17, 19]). Finally, the general case for P can be obtained

by using a classical block decomposition of stochastic matrices.

The equivalence established in Theorem 3.1 can be further characterized in terms of

simultaneous similarity of the matrices ρd(A)−1Ai, i∈ {1, . . . ,N}, to orthogonal matrices,

under some additional assumptions on A and P (Proposition 3.9). The latter character-

ization is based on the description of matrix semigroups with constant spectral radius

from [25].

3



Our next main result, Theorem 3.13, concerns (Q2) and states that equality is equiv-

alent to the existence of a family of pairwise distinct indices i1, . . . , ik ∈ {1, . . . ,N} such

that ρd(A) = ρ(Ai1 · · ·Aik)
1/k. This corresponds to the case where the worst behavior of

the system is attained by a periodic σ with no repetition of indices on a period. This

property is reminiscent of the finiteness property, except for the fact that, in the finiteness

property, repetition of indices is allowed. We recall that the finiteness property is known

to hold only for a proper subclass of N-tuples A [3,4], contrarily to what had been earlier

conjectured [21]. By applying a standard lifting argument of Markov chains of higher or-

der to Markov chains of order one, we generalize the equivalence stated in Theorem 3.13

by providing the following characterization of the finiteness property: a N-tuple A satis-

fies the finiteness property if and only if there exist m ≥ 1 and a Markov chain of order

m whose corresponding probabilistic Lyapunov exponent is equal to ρd(A) (see Corol-

lary 4.4). This, in turns, is equivalent to say that the finiteness property holds if and only

if the set of maximizing measures contains the measure induced by some Markov chain

of arbitrary order.

Acknowledgements. The authors are indebted with D. Chafaï for helpful discussions.

They are also grateful to the anonymous reviewers of a preceding version of the manus-

cript for providing helpful comments and pointing out relevant literature.

2 Definitions, notations, and basic facts

Throughout the paper, d and N belong to N, which is used to denote the set of positive

integers. If a and b are positive integers, Ja,bK denotes the set of integers j such that

a ≤ j ≤ b. For x ∈ R, ⌈x⌉ denotes the smallest integer greater than or equal to x, and we

extend this notation componentwise to vectors and matrices. We use ‖·‖ to denote a norm

in R
d as well as the corresponding induced norm on the space Md(R) of d ×d matrices

with real coefficients. We only consider in this paper norms in Md(R) obtained as induced

norms from R
d . An N-tuple A = (A1, . . . ,AN) ∈Md(R)

N is said to be irreducible if the

only subspaces of Rd invariant under all the matrices A1, . . . ,AN are {0} and R
d .

2.1 Deterministic joint spectral radius

Let Σ(A) be the discrete-time switched system defined in (1.1). The deterministic joint

spectral radius ρd(A) of Σ(A), introduced in [26], is defined by

ρd(A) = limsup
n→∞

max
(i1,...,in)∈J1,NKn

‖Ain · · ·Ai1‖1/n. (2.1)

Since all norms in Md(R) induced by norms in R
d are submultiplicative and equivalent

to each other, it immediately follows that ρd(A) does not depend on a specific choice of

such a norm and that

ρd(A) = lim
n→∞

max
(i1,...,in)∈J1,NKn

‖Ain · · ·Ai1‖1/n = inf
n∈N

max
(i1,...,in)∈J1,NKn

‖Ain · · ·Ai1‖1/n.

Notice that, for every n ∈ N and (i1, . . . , in) ∈ J1,NKn, we have

ρ(Ain · · ·Ai1)
1/n ≤ ρd(A), (2.2)
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where we use the definition of ρd(A) and the fact that ρ(M) = ρ(Mk)1/k ≤ ‖Mk‖1/k for

every square matrix M and k ∈ N.

Definition 2.1 (Barabanov norm). Let A= (A1, . . . ,AN) be an N-tuple of d ×d matrices

with real coefficients. A norm ‖·‖B on R
d is said to be a Barabanov norm for A if the

following two conditions hold.

(a) For every i ∈ J1,NK, ‖Ai‖B ≤ ρd(A).

(b) For every x ∈ R
d and k ∈ N, there exists σ ∈ S such that ‖Aσ(k) · · ·Aσ(1)x‖B =

ρd(A)k‖x‖B.

The following basic result on Barabonov norms was proved in [2].

Proposition 2.2. Let A be an N-tuple of d × d matrices with real coefficients. If A is

irreducible, then it admits a Barabanov norm.

2.2 Probabilistic joint spectral radius

We now provide a probabilistic counterpart to ρd(A). For that purpose, we collect some

basic notions concerning transition matrices of Markov chains.

Definition 2.3. Let P = (pi j)1≤i, j≤N be an N ×N matrix with nonnegative coefficients.

(a) P is said to be stochastic if, for every i ∈ J1,NK, ∑N
j=1 pi j = 1.

(b) P is said to be strongly connected if it is not similar via a permutation to an upper

block triangular matrix.

(c) For k ∈ N and i1, . . . , ik ∈ J1,NK, we say that (i1, . . . , ik) is a P-word if pi1i2 pi2i3 · · ·
pik−1ik > 0. The integer k is called the length of the P-word (i1, . . . , ik). We say that

(i1, . . . , ik) is a P-cycle if pi1i2 pi2i3 · · · pik−1ik piki1 > 0. The index i1 is called the starting

index of the P-cycle (i1, . . . , ik).

(d) Let ν be a vector in R
N with nonnegative coefficients. We say that (i1, . . . , ik) is a

(ν,P)-word (respectively, (ν,P)-cycle) if it is a P-word (respectively, P-cycle) and νi1 >
0.

(e) If P is stochastic, a row vector ν = (ν1, . . . ,νN) ∈ R
N is said to be an invariant

probability for P if νi ≥ 0 for every i ∈ J1,NK, ∑N
i=1 νi = 1, and ν = νP.

Remark 2.4. In the context of discrete-time Markov chains in a finite state space with N

states, the transition matrix is the stochastic matrix P = (pi j)1≤i, j≤N where pi j represents

the probability to switch from the state i to the state j. Notice that P is strongly connected

if and only if its associated oriented graph GP is strongly connected. In the stochastic pro-

cesses literature, the strong connectedness of P is more often referred to as irreducibility.

We choose to stick with the former to avoid ambiguities with the homonymous notion for

N-tuples of matrices. Notice also that the notions of strong connectedness, P-cycles, and

P-words only depend on the adjacency matrix ⌈P⌉ of the graph GP, while (ν,P)-cycles

and (ν,P)-words depend on ⌈P⌉ and ⌈ν⌉.
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Remark 2.5. Recall that, by the Perron–Frobenius Theorem, a stochastic matrix P always

admits an invariant probability, which is unique and has positive entries if P is strongly

connected. In the latter case, the definitions of P-word and (ν,P)-word coincide, as well

as those of P-cycle and (ν,P)-cycle.

We have the following classical decomposition result for stochastic matrices [27,

§§1.2 and 4.2].

Proposition 2.6. Let P ∈MN(R) be a stochastic matrix. Then, up to a permutation in the

set of indices J1,NK, P is given by

P =




P1 0 · · · 0 0 0

0 P2 0 · · · 0 0
... 0

. . .
. . .

...
...

0
...

. . .
. . . 0 0

0 0 · · · 0 PR 0

∗ ∗ · · · ∗ ∗ Q




, (2.3)

where ρ(Q) < 1 and, for i ∈ J1,RK, Pi ∈Mni
(R) is a stochastic and strongly connected

matrix.

Moreover, for i∈ J1,RK, let ν [i] be the unique invariant probability for Pi and denote by

the same symbol its canonical extension as a vector in R
N according to the decomposition

(2.3). Then every invariant probability ν ∈ R
N can be uniquely decomposed as

ν =
R

∑
i=1

αiν
[i], (2.4)

where α1, . . . ,αR ∈ [0,1] and ∑R
i=1 αi = 1.

The next lemma, useful in the proof of some of our results, uses the previous de-

composition to obtain that any (ν,P)-cycle has all its indices corresponding to a same

diagonal block Pi in (2.3).

Lemma 2.7. Let P∈MN(R) be a stochastic matrix decomposed according to Proposition

2.6. For i ∈ J1,RK, let

Ii =

t
1+

i−1

∑
j=1

n j,
i

∑
j=1

n j

|
,

i.e., Ii is the set of indices corresponding to the diagonal block Pi in (2.3). Let ν be an

invariant probability for P. Then, for every (ν,P)-cycle (i1, . . . , in), there exists j ∈ J1,RK
such that i1, . . . , in are in I j.

Proof. Notice that, by (2.4), νi = 0 if i /∈ ⋃
j∈J1,RK I j. Hence, since νi1 > 0, there exists

j ∈ J1,RK such that i1 ∈ I j. Since pi1i2 > 0, it follows by the block decomposition (2.3)

that i2 ∈ I j. The conclusion follows by an immediate inductive argument.

We also introduce the following notation.

Definition 2.8. Let P be a stochastic matrix and A= (A1, . . . ,AN) be an N-tuple of d ×d

matrices with real coefficients.
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(a) For every P-word (i1, . . . , ik), we use A(i1, . . . , ik) to denote the matrix product Aik · · ·
Ai1 .

(b) For every s ∈ J1,NK, let C(P,s) be the matrix semigroup made of all matrix products

associated with P-cycles with starting index s, i.e.,

C(P,s) = {A(i1, . . . , ik) | (i1, . . . , ik) is a P-cycle and i1 = s}.

We also set

C(P) =
⋃

s∈J1,NK

C(P,s).

We finally provide the definition of the probabilistic counterpart of ρd(A) for Σ(A).
Let P = (pi j)1≤i, j≤N be a stochastic matrix, ν = (ν1, . . . ,νN) be an invariant probability

for P, and A= (A1, . . . ,AN) an N-tuple in Md(R). The probabilistic joint spectral radius

ρp(ν,P,A) is defined as

ρp(ν,P,A) = limsup
n→∞

E(ν,P)

[
‖Ain · · ·Ai1‖1/n

]
, (2.5)

where

E(ν,P)

[
‖Ain · · ·Ai1‖1/n

]
= ∑

(i1,...,in)∈J1,NKn

νi1 pi1i2 · · · pin−1in‖Ain · · ·Ai1‖1/n. (2.6)

As in the deterministic case, ρp(ν,P,A) does not depend on the specific choice of the

norm ‖·‖ and we have

ρp(ν,P,A) = lim
n→∞

E(ν,P)

[
‖Ain · · ·Ai1‖1/n

]
= inf

n∈N
E(ν,P)

[
‖Ain · · ·Ai1‖1/n

]
. (2.7)

Remark 2.9. The expectation in (2.5) is taken with respect to the random variable (i1, . . . ,
in) ∈ J1,NKn. The definition of probabilistic joint spectral radius provided here is a par-

ticular instance of a more general and comprehensive formulation based on symbolic

dynamics; see, for instance, [11, 12, 24]. Notice also that it follows from the definition of

(ν,P)-word that the summation in (2.6) can be restricted to (ν,P)-words of length n.

Remark 2.10. When dealing with probabilistic switching phenomena in discrete time,

several works, such as [1,8,11,16,17,24], deal with the probabilistic Lyapunov exponent

λp(ν,P,A) defined by

λp(ν,P,A) = limsup
n→∞

1

n
E(ν,P)[log‖Ain · · ·Ai1‖].

Our choice to use ρp(ν,P,A) instead is motivated by the fact that the main goal of our

paper is to compare the probabilistic behavior of (1.1) with the worst deterministic behav-

ior provided by the classical joint spectral radius ρd(A), whose definition in discrete-time

(2.1) does not involve taking the logarithm of the norm of the matrix product. Work-

ing with ρp(ν,P,A) also has the additional advantage of being able to handle the case

ρp(ν,P,A) = 0 without dealing with the singularity of the logarithm at 0.
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Clearly, by Jensen’s inequality, we have eλp(ν,P,A) ≤ ρp(ν,P,A), but this inequal-

ity may be strict in some cases. Indeed, for d = 1, N = 2, P = Id2, ν = (1
2
, 1

2
), and

A = (A1,A2) ∈ M1(R)
2 ≃ R

2, we easily compute that ρp(ν,P,A) = 1
2
(A1 + A2) and

eλp(ν,P,A) =
√

A1A2.

We do have equality between eλp(ν,P,A) and ρp(ν,P,A), however, under the assump-

tion that (ν,P) defines an ergodic Markov chain, i.e., ν = ν [i] for some i ∈ J1,RK in the

decompositions (2.3) and (2.4) in Proposition 2.6. Indeed, in this case, the main result

of [16] implies that

λp(ν,P,A) = lim
n→∞

1

n
log

∥∥Aσ(n) · · ·Aσ(1)

∥∥ for P(ν,P)-almost every σ ∈S,

where P(ν,P) denotes the probability measure on S associated canonically with the transi-

tion matrix P and the invariant probability ν . Using this fact, one deduces that eλp(ν,P,A) =
ρp(ν,P,A), and, in addition, we also have the equality

ρp(ν,P,A) = lim
n→∞

∥∥Aσ(n) · · ·Aσ(1)

∥∥1/n
for P(ν,P)-almost every σ ∈S. (2.8)

Notice that, in particular, (ν,P) is ergodic when P is strongly connected and ν is its

unique invariant measure.

Remark 2.11. The deterministic joint spectral radius ρd(A) provides the worst asymp-

totic behavior of Σ(A) with respect to σ ∈ S. By introducing the probability measure

P(ν,P) on S associated canonically with the transition matrix P and the invariant proba-

bility ν , the quantity ρp(ν,P,A) defined in (2.5) can be interpreted as an asymptotic be-

havior averaged by P(ν,P). When (ν,P) is ergodic, thanks to (2.8), we have the stronger

interpretation of ρp(ν,P,A) as the P(ν,P)-almost sure asymptotic behavior of Σ(A).

It is immediate to see that, for every (ν,P,A) as above, we have ρp(ν,P,A)≤ ρd(A),
and then

ρp(ν,P,A)≤ sup
ν ′

ρp(ν
′,P,A)≤ sup

(ν ′,P′)
ρp(ν

′,P′,A)≤ ρd(A), (2.9)

where the first supremum is taken over all invariant probabilities ν ′ for P and the sec-

ond one over the pairs (ν ′,P′) made of an N ×N stochastic matrix P′ and an invariant

probability ν ′ for P′. We find it useful to introduce the notation

ρp(P,A) = sup
ν ′

ρp(ν
′,P,A), ρp(A) = sup

(ν ′,P′)
ρp(ν

′,P′,A). (2.10)

Remark 2.12. It follows from (2.7) that (ν ′,P′) 7→ ρp(ν
′,P′,A) is upper semicontinuous.

Moreover, the set of pairs (ν ′,P′) consisting of an N ×N stochastic matrix P′ and an

invariant probability ν ′ for P′ is compact. As a consequence, the suprema in (2.10) can

be replaced by maxima.
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3 Equality between deterministic and probabilistic joint

spectral radii

3.1 Equality between ρd(A) and ρp(ν,P,A)

The goal of this section is to prove the following result characterizing equality between

ρd(A) and ρp(ν,P,A).

Theorem 3.1. Let P ∈MN(R) be a stochastic matrix, ν ∈ R
N be an invariant probabil-

ity measure for P, and A = (A1, . . . ,AN) ∈Md(R)
N. Then the following statements are

equivalent:

(a) ρd(A) = ρp(ν,P,A).

(b) ρ(Aik · · ·Ai1)
1/k = ρd(A) for every (ν,P)-cycle (i1, . . . , ik).

The fact that (a) implies (b) follows from the results in [24], as detailed in the follow-

ing lemma.

Lemma 3.2. Let P ∈ MN(R) be a stochastic matrix, ν ∈ R
N be an invariant proba-

bility measure for P, and A = (A1, . . . ,AN) ∈ Md(R)
N . If ρd(A) = ρp(ν,P,A), then

ρ(Aik · · ·Ai1)
1/k = ρd(A) for every (ν,P)-cycle (i1, . . . , ik).

Proof. If ρd(A) = 0, the result follows trivially from (2.2). We then assume ρd(A) > 0,

we decompose P and ν according to Proposition 2.6, and we use in the sequel the same

notations as in its statement. We also let I1, . . . ,IR be defined as in the statement of

Lemma 2.7. Thanks to (2.4), (2.5), and (2.6), we have

ρp(ν,P,A) =
R

∑
j=1

α jρp(ν
[ j],P,A). (3.1)

By (2.9), we have ρp(ν
[ j],P,A)≤ ρd(A) for every j ∈ J1,RK and, since α j ∈ [0,1] for ev-

ery j ∈ J1,RK and ∑R
j=1 α j = 1, we deduce from (3.1) and the equality ρd(A)= ρp(ν,P,A)

that ρp(ν
[ j],P,A) = ρd(A) for every j ∈ J1,RK such that α j > 0.

Let (i1, . . . , ik) be a (ν,P)-cycle and note that, by Lemma 2.7, there exists r ∈ J1,RK
such that i1, . . . , ik are in Ir, and thus, in particular, (i1, . . . , ik) is also a (ν [r],P)-cycle.

Moreover, such a r necessarily satisfies αr > 0. Consider the k-periodic switching signal

σ ∈S corresponding to (i1, . . . , ik), defined by σ( j+ℓk)= i j for all integers j ∈ J1,kK and

ℓ ≥ 0. Endow S with its usual product topology and denote by Pr the Borel probability

measure on S corresponding to the Markov chain defined by (ν [r],P). Note that, since

(i1, . . . , ik) is a (ν [r],P)-cycle, for every n ∈ N the set {σ̃ ∈S | σ̃(i) = σ(i) for every i ∈
J1,nK} has positive Pr measure, and thus σ is in the support of Pr. Moreover, using also

Remark 2.10, we have ρd(A) = ρp(ν
[r],P,A) = eλp(ν

[r],P,A), and then Pr is a maximizing

measure of A in the sense of [24], where the set of maximizing measures of A is defined

as the set of all Borel probability measures on S invariant under the usual time shift and

such that the corresponding probabilistic Lyapunov exponent coincides with logρd(A).
Hence σ belongs to the Mather set of A (see [24, Theorem 2.3], where the Mather set

9



of A is defined as the union of the supports of all maximizing measures of A), and thus,

by [24, Theorem 2.3(3)], we get

limsup
n→∞

ρd(A)−nρ(Aσ(n) · · ·Aσ(1)) = 1. (3.2)

Set M = ρd(A)−kAik · · ·Ai1 . By (2.2), we have that ρ(M)≤ 1. For every n ≥ 1, there exist

integers ℓ≥ 0 and j ∈ J0,k−1K such that n = j+ ℓk. Since σ is k-periodic, we have that

ρd(A)−nρ(Aσ(n) · · ·Aσ(1)) = ρd(A)− jρ(Ai j
· · ·Ai1Mℓ).

If ρ(M)< 1, then the right-hand side of the above inequality tends to 0 as ℓ→ ∞, contra-

dicting (3.2). Hence, we have necessarily ρ(M) = 1.

The proof that (b) implies (a) in Theorem 3.1 is decomposed in three steps. We first

establish the result under the extra assumptions that A is irreducible and P is strongly con-

nected (Lemma 3.3). We then obtain the conclusion under the sole additional assumption

that P is strongly connected (Lemma 3.5). Finally, we consider the general case in the

third step.

Lemma 3.3. Let P ∈Md(R) be a stochastic strongly connected matrix, A= (A1, . . . ,AN)
∈ Md(R)

N be irreducible, and ‖·‖B be a Barabanov norm for A. Then the following

statements are equivalent:

(a) ρd(A) = ρp(P,A).

(b) ρ(Aik · · ·Ai1)
1/k = ρd(A) for every P-cycle (i1, . . . , ik).

(c) ‖Aik · · ·Ai1‖
1/k

B = ρd(A) for every P-word (i1, . . . , ik).

Proof. The fact that (a) implies (b) is a particular case of Lemma 3.2. Moreover, it is

immediate that (c) implies (a) thanks to (2.5), (2.6), and Remark 2.9. We are then left to

prove that (b) implies (c).

Assume that (b) holds. Fix a P-word (i1, . . . , ik). Since P is strongly connected, there

exist r ∈ N and ik+1, . . . , ir ∈ J1,NK (obtained by connecting ik to i1) such that (i1, . . . , ir)
is a P-cycle. Then, by (b),

ρ(Air · · ·Ai1) = ρd(A)r.

Since the spectral radius is a lower bound for any induced norm of a matrix, we obtain

that

ρd(A)r ≤ ‖Air · · ·Ai1‖B ≤
∥∥Air · · ·Aik+1

∥∥
B
‖Aik · · ·Ai1‖B

.

Using the fact that ‖·‖B is a Barabanov norm, we also have that
∥∥Air · · ·Aik+1

∥∥
B
‖Aik · · ·Ai1‖B

≤ ρd(A)r−kρd(A)k = ρd(A)r.

By combining the previous inequalities, it follows that ‖Aik · · ·Ai1‖B = ρd(A)k.

Remark 3.4. The proof of Lemma 3.3 only uses that ‖·‖B is an extremal norm, i.e., it

satisfies (a) in Definition 2.1. The irreducibility assumption on A could then be replaced

by its nondefectiveness (we refer the reader to [19, Section 2.1.2] for details). However,

we prefer to state Lemma 3.3 in terms of irreducibility since this condition is easier to

handle: it can be checked more directly and, up to a linear change of coordinates, a

reducible A can be put into block-triangular form with irreducible diagonal blocks. This

block decomposition is a key argument in the proof of Lemma 3.5.
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We now consider the case where A is not necessarily irreducible. Here, a Barabanov

norm for A in general does not exist, and hence item (c) from Lemma 3.3 cannot be

expected.

Lemma 3.5. Let P ∈MN(R) be a stochastic strongly connected matrix and A= (A1, . . . ,
AN) ∈Md(R)

N. Then the following statements are equivalent:

(a) ρd(A) = ρp(P,A).

(b) ρ(Aik · · ·Ai1)
1/k = ρd(A) for every P-cycle (i1, . . . , ik).

Proof. Before giving the core of the argument, we start with a set of remarks. First, up to

a linear change of coordinates, A1, . . . ,AN can be presented in block-triangular form as

A j =




A
(1)
j ∗ ∗ · · · ∗
0 A

(2)
j ∗ · · · ∗

0 0 A
(3)
j · · · ∗

...
...

...
. . .

...

0 0 0 · · · A
(R)
j




, j ∈ J1,NK,

with A
(r) = (A

(r)
1 , . . . ,A

(r)
N ) irreducible for every r ∈ J1,RK. Remark that, on the one

hand, according to [19, Proposition 1.5], we have ρd(A) = maxr∈J1,RK ρd(A
(r)) and, on

the other hand, it follows from [17, Theorem 1.1] and the strong connectedness of P that

ρp(P,A) = maxr∈J1,RK ρp(P,A
(r)). Moreover, for every P-cycle (i1, . . . , ik), we have

ρd(A)≥ ρ(Aik · · ·Ai1)
1/k = max

r∈J1,RK
ρ
(

A
(r)
ik

· · ·A(r)
i1

)1/k

, (3.3)

where the inequality comes from (2.2) and the equality results from the simple fact that

the spectral radius of a block-triangular matrix is equal to the maximum of the spectral

radii over the diagonal blocks.

Since (a) implies (b) by Lemma 3.2, we are left to prove the converse implication.

Assume that (b) holds true. Then (a) holds trivially if ρd(A) = 0. Otherwise, we can

assume, with no loss of generality, that ρd(A) = 1 up to replacing A by ρd(A)−1
A.

By assumption and (3.3), for every P-cycle (i1, . . . , ik), there exists r ∈ J1,RK such that

ρ
(

A
(r)
ik

· · ·A(r)
i1

)
= 1.

We claim that r can be chosen independently of the P-cycle. We argue by contradic-

tion, i.e., we assume that, for every r ∈ J1,RK, there exists a P-cycle ir = (ir1, . . . , i
r
ℓr
) such

that ρ(A(r)(ir)) < 1. Let jr = ( jr
1, . . . , jr

kr
) be a P-word such that jr

1 = ir1 and p
jr
kr

ir+1
1

> 0

(with the convention that iR+1
1 = i11). Then, for every n ∈ N,

A( jR)A(iR)n · · ·A( j2)A(i2)nA( j1)A(i1)n ∈C(P).

For every n, we apply (b) to the above product, and we deduce from (3.3) that there exists

rn ∈ J1,RK such that

ρ
(

A(rn)( jR)A(rn)(iR)n · · ·A(rn)( j2)A(rn)(i2)nA(rn)( j1)A(rn)(i1)n
)

= ρ
(
A( jR)A(iR)n · · ·A( j2)A(i2)nA( j1)A(i1)n

)
= 1.
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Let (nq)q∈N be an increasing sequence such that there exists r ∈ J1,RK with rnq
= r for

every q ∈ N. Since A(r) is irreducible, there exists a Barabanov norm ‖·‖r for A(r). Then,

for every q ∈ N, we have

1 = ρ
(

A(r)( jR)A(r)(iR)nq · · ·A(r)( j2)A(r)(i2)nqA(r)( j1)A(r)(i1)nq

)

≤
∥∥∥A(r)( jR)A(r)(iR)nq · · ·A(r)( j2)A(r)(i2)nqA(r)( j1)A(r)(i1)nq

∥∥∥
r

≤
∥∥∥A(r)(ir)nq

∥∥∥
r
,

where the last inequality follows from the fact that ‖·‖r is a Barabanov norm. Since

ρ(A(r)(ir))< 1, we have that

∥∥∥A(r)(ir)nq

∥∥∥
r
−−−→
q→∞

0, hence the contradiction.

We thus have proved that there exists r ∈ J1,RK such that, for every P-cycle (i1, . . . , ik),

ρ
(

A
(r)
ik

· · ·A(r)
i1

)
= 1 = ρd(A).

On the other hand, by (2.2), we have ρ
(

A
(r)
ik

· · ·A(r)
i1

)
≤ ρd(A

(r)). Since ρd(A
(r))≤ ρd(A),

we deduce that

ρ
(

A
(r)
ik

· · ·A(r)
i1

)
= ρd(A

(r)) = ρd(A)

for every P-cycle (i1, . . . , ik). Then, using Lemma 3.3, we obtain that

ρp(P,A)≥ ρp(P,A
(r)) = ρd(A

(r)) = ρd(A),

and then (a) holds thanks to (2.9).

We can conclude now the proof of Theorem 3.1.

Proof of Theorem 3.1. Recall that, thanks to Lemma 3.2, we are only left to prove that

(b) implies (a). We first decompose P and ν according to Proposition 2.6 and use in the

sequel the same notations as in its statement. Thanks to (2.5) and (2.6), we have

ρp(ν,P,A) =
R

∑
j=1

α jρp(ν
[ j],P,A). (3.4)

For j ∈ J1,RK, let A[ j] be the ordered n j-tuple made of the matrices Aℓ such that ν
[ j]
ℓ > 0.

Notice that ρp(ν
[ j],Pj,A

[ j]) = ρp(ν
[ j],P,A) for every j ∈ J1,RK. Using (2.9) and the fact

that A[ j] is made of matrices from A, we obtain that, for every j ∈ J1,RK,

ρp(ν
[ j],Pj,A

[ j])≤ ρd(A
[ j])≤ ρd(A). (3.5)

Let Ii be defined for i ∈ J1,RK as in Lemma 2.7 and let j ∈ J1,RK be such that α j > 0.

Thanks to Lemma 2.7, there exists a (ν,P)-cycle (i1, . . . , ik) with i1, . . . , ik in I j. Then, by

(2.2), (3.5), and (b), we have

ρd(A
[ j])≤ ρd(A) = ρ(Aik · · ·Ai1)

1/k ≤ ρd(A
[ j]).

In particular, ρd(A) = ρd(A
[ j]) and ρ(Aik · · ·Ai1)

1/k = ρd(A
[ j]). Lemma 3.5 applied to

Pj and A
[ j] yields that ρp(ν

[ j],Pj,A
[ j]) = ρd(A

[ j]). Hence ρp(ν
[ j],Pj,A

[ j]) = ρd(A),
and, since this holds for every j ∈ J1,RK such that α j > 0, it follows from (3.4) that

ρp(ν,P,A) = ρd(A), as required.
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Remark 3.6. Theorem 3.1 and Lemmas 3.3 and 3.5 characterize equality between deter-

ministic and probabilistic joint spectral radii in terms of P-cycles and (ν,P)-cycles only,

and hence only on ⌈P⌉ and ⌈ν⌉ (see Remark 2.4). In other words, equality in Theo-

rem 3.1(a) depends only on the graph associated with the Markov chain and the possible

choices of initial states, but not on the precise values of the non-zero initial and transition

probabilities.

3.2 Geometric characterization of equality between ρd(A) and ρp(P,
A)

It is clear from Theorem 3.1 that equality between ρd(A) and ρp(P,A) is possible only for

restricted choices of A. The goal of this section is to provide a more precise description of

such choices of A using results from [25], where the authors classify matrix semigroups

of constant spectral radius. We start with the following proposition.

Proposition 3.7. Let P ∈ MN(R) be a stochastic strongly connected matrix and A =
(A1, . . . ,AN)∈Md(R)

N be such that ρd(A)= ρp(P,A). Assume that there exists s∈ J1,NK
such that C(P,s) is irreducible. Then there exists an invertible matrix G ∈ Md(R) such

that, for every P-cycle i starting at s, either A(i) is singular or ρd(A)−kGA(i)G−1 is

orthogonal, where k is the length of i.

Proof. We only have to provide an argument if there exists a P-cycle i∗ starting at s such

that A(i∗) is invertible. In that case, from (2.2), ρd(A)≥ ρ(A(i∗))1/k∗ > 0, where k∗ is the

length of i∗. From Lemma 3.5, the set

{ρd(A)−kA(i) | k ∈ N, i is a P-cycle starting at s of length k}

is a matrix semigroup with constant spectral radius. Since, moreover, this semigroup is

also irreducible, the conclusion follows from [25, Theorem 2].

Remark 3.8. As remarked in [25], the problem of classifying matrix semigroups with

constant spectral radius is highly nontrivial when the semigroup contains singular ma-

trices. By using additional results from [25], we may obtain, under the assumptions of

Proposition 3.7, properties on ρd(A)−kGA(i)G−1 that are weaker than orthogonality but

apply to all matrices A(i)∈C(P,s), and not only nonsingular ones. We refer the interested

reader to [25, Theorem 3 and Corollary 6].

A limitation of Proposition 3.7 lies in the fact that, in general, given a stochastic and

strongly connected matrix P, it is a nontrivial task to verify the existence of an index s

such that C(P,s) is irreducible, even if A is itself irreducible. However, this is true if one

assumes in addition that A contains only invertible matrices and that all diagonal elements

of P are positive, in which case we have the following proposition.

Proposition 3.9. Let P ∈Md(R) be a stochastic strongly connected matrix with positive

diagonal entries and A = (A1, . . . ,AN) ∈Md(R)
N be irreducible with A1, . . . ,AN invert-

ible. Then, for every s ∈ J1,NK, C(P,s) is irreducible. Moreover, ρd(A) = ρp(P,A) if

and only if there exists an invertible matrix G ∈ Md(R) such that, for every i ∈ J1,NK,

ρd(A)−1GAiG
−1 is orthogonal.
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Proof. Let s ∈ J1,NK and consider the group C̃(P,s) generated by C(P,s). We claim that

A1, . . . ,AN ∈ C̃(P,s). Indeed, since P is strongly connected, there exists a P-cycle i =
(i1, . . . , ik) starting at s such that {i1, . . . , ik}= J1,NK. Since pikik > 0, then A2

ik
Aik−1

· · ·Ai1 ∈
C(P,s) and

Aik =
(
A2

ik
Aik−1

· · ·Ai1

)
(Aik · · ·Ai1)

−1 ∈ C̃(P,s).

Similarly, since pik−1ik−1
> 0, then AikA

2
ik−1

Aik−2
· · ·Ai1 ∈C(P,s) and

Aik−1
= A−1

ik

(
AikA2

ik−1
Aik−2

· · ·Ai1

)(
AikAik−1

· · ·Ai1

)−1
Aik ∈ C̃(P,s).

An inductive reasoning based on the identity

Ai j
=

(
Aik · · ·Ai j+1

)−1
(

Aik · · ·Ai j+1
A2

i j
Ai j−1

· · ·Ai1

)
(Aik · · ·Ai1)

−1
(
Aik · · ·Ai j+1

)
(3.6)

yields that Ai j
∈ C̃(P,s) for j ∈ J1,kK, as required.

To prove that C(P,s) is irreducible for every s, assume by contradiction that there

exists s ∈ J1,NK such that C(P,s) is reducible. Then the group C̃(P,s) is also reducible,

however, since it contains A1, . . . ,AN , this contradicts the irreducibility of A.

Since A1, . . . ,AN are invertible matrices, ρd(A) is positive and, with no loss of gener-

ality, we can assume that ρd(A) = 1. If ρd(A) = ρp(P,A), then, applying Proposition 3.7

to C(P,1), there exists a basis in which every M ∈ C(P,1) is orthogonal. Hence, in this

same basis, C̃(P,1) is also made of orthogonal matrices, yielding the conclusion. On the

other hand, if there exists a basis in which A1, . . . ,AN are orthogonal, then ρ(A(i)) = 1 for

every P-word i, and the conclusion follows by Lemma 3.5.

Remark 3.10. Notice that, to obtain the second part of the conclusion of Proposition 3.9,

it is enough that there exists s ∈ J1,NK such that C(P,s) is irreducible and the generated

group C̃(P,s) contains all matrices A1, . . . ,AN . The assumption that P has positive diag-

onal entries is used to guarantee the latter, and therefore it can be replaced by any other

condition ensuring that A1, . . . ,AN belong to C̃(P,s) for some s ∈ J1,NK. For instance,

assume that p11 = 0 and p j j > 0 for j ∈ J2,NK. For every P-cycle (i1, . . . , ik) with i1 = 1

and i j 6= 1 for every j ∈ J2,kK, we can proceed as in the proof of the proposition to obtain

that Ai j
∈ C̃(P,1) for every j ∈ J2,kK and use the identity

Ai1 = (Aik · · ·Ai2)
−1(Aik · · ·Ai1)

to obtain that Ai1 ∈ C̃(P,1). Since P is strongly connected, every matrix Ai, i ∈ J1,NK,

belongs to such a P-cycle, hence the conclusion.

At the light of Remark 3.10, we may wonder whether the second part of the conclu-

sion of Proposition 3.9 can be obtained under even weaker assumptions on the matrix P,

allowing for instance the presence of more than one diagonal element equal to zero, but

requiring at least one non-zero element in the diagonal. The example given below shows

that this is not possible.

Example 3.11. Consider the case d = 2, N = 3,

A1 = Id, A2 =

(
0 1

−1 0

)
, A3 =

(
0 −1

2

1 0

)
, P =




1
2

1
2

0

0 0 1

1 0 0


.
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Note that, in this case,

A3A2 =

(
1
2

0

0 1

)
, A2A3 =

(
1 0

0 1
2

)
.

The matrix P is stochastic, strongly connected, and its unique invariant probability is

ν = (1
2
, 1

4
, 1

4
). Moreover, A = (A1,A2,A3) is irreducible and A1,A2,A3 are invertible.

Denoting by ‖·‖ the Euclidean norm in R
2, we have ‖A1‖ = ‖A2‖ = ‖A3‖ = 1, yielding

that ρd(A)≤ 1, and we easily check that ρd(A)= 1 by considering σ ∈S given by σ(i)=
1 for every i ∈ N. Moreover, for any (ν,P)-word (i1, . . . , ik), there exist an integer ℓ ≥ 0

and a,b ∈ {0,1} such that ‖Aik · · ·Ai1‖ = ‖Ab
2(A3A2)

ℓAa
3‖. Setting x =

(
1

0

)
in the case

a = 1 and x =

(
0

1

)
in the case a = 0, it is immediate to verify that ‖Ab

2(A3A2)
ℓAa

3x‖= 1,

yielding that ‖Aik · · ·Ai1‖ = 1 for every (ν,P)-word (i1, . . . , ik), and thus ρp(ν,P,A) =
ρp(P,A) = 1. However, A3 is not similar to an orthogonal matrix, and hence the second

conclusion of Proposition 3.9 does not hold. Notice moreover that, in this case, C(P,1) =
{(A3A2)

n | n ∈ N∪{0}}, C(P,2) = {(A3A2)
n | n ∈ N}, and C(P,3) = {(A2A3)

n | n ∈ N},

and thus C(P,s) is reducible for every s ∈ {1,2,3}.

Remark 3.12. We now provide a description of all cases where equality holds between

ρd(A) and ρp(ν,P,A) under the assumption that A is irreducible and made of two invert-

ible matrices.

(a) If P =

(
p 1− p

1−q q

)
for p,q ∈ [0,1) with p+q > 0, by Remark 3.10, equality oc-

curs if and only if there exists an invertible matrix G ∈Md(R) such that ρd(A)−1GA1G−1

and ρd(A)−1GA2G−1 are orthogonal.

(b) If P =

(
0 1

1 0

)
, equality occurs if and only if ρ(A1A2) = ρ(A2A1) = ρd(A)2.

(c) If P = Id2, equality occurs if and only if ρ(Ai) = ρd(A) whenever νi > 0, i ∈ {1,2}.

(d) If P=

(
1 0

1− p p

)
for some p ∈ [0,1), then equality is equivalent to ρ(A1) = ρd(A).

(e) If P=

(
p 1− p

0 1

)
for some p ∈ [0,1), then equality is equivalent to ρ(A2) = ρd(A).

3.3 Equality between ρd(A) and ρp(A)

Based on the results obtained previously, we can now address the issue of characterizing

the equality between ρd(A) and ρp(A). Recall that the latter is defined as the maximum

of ρp(ν,P,A) over all pairs (ν,P).

Theorem 3.13. Let A = (A1, . . . ,AN) ∈ Md(R)
N . Then the following statements are

equivalent:

(a) ρd(A) = ρp(A).
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(b) There exist i1, . . . , ik ∈ J1,NK pairwise distinct such that

ρd(A) = ρ(Aik · · ·Ai1)
1/k. (3.7)

Proof. We start by proving that (a) implies (b). Recall that, by Remark 2.12, there exist

a stochastic matrix P and an invariant probability ν for P such that ρp(ν,P,A) = ρp(A).
Using (a), we deduce that ρp(ν,P,A) = ρd(A). It is clear that there exists a (ν,P)-cycle

(i1, . . . , ik) such that i1, . . . , ik are pairwise distinct, and the conclusion follows from The-

orem 3.1.

To prove that (b) implies (a), let P = (pi j) be a stochastic matrix with pi j−1i j
= 1 for

j ∈ J2,kK and piki1 = 1. Set ν ∈R
N as the probability vector such that νi j

= 1
k

for j ∈ J1,kK.

Then ν is invariant under P and the set of (ν,P)-cycles is made of the shifts of (i1, . . . , ik)
and their powers. Moreover, for every such (ν,P)-cycle ( j1, . . . , js), we have

ρ(A js · · ·A j1)
1/s = ρ(Aik · · ·Ai1)

1/k = ρd(A).

Indeed, this follows from the fact that ρ(M1M2) = ρ(M2M1) for every M1,M2 ∈Md(R).
Then Theorem 3.1(b) holds, hence ρp(ν,P,A) = ρd(A), and the conclusion follows from

(2.9).

Remark 3.14. It follows from (2.9) that, if ρd(A) > 0, the ratio
ρp(A)
ρd(A) belongs to [0,1]

and Theorem 3.13 addresses the case where it is equal to 1. We provide next an example

where it is equal to 0, proving that it is not possible to find a uniform positive lower bound

for this ratio. Indeed, considering

A1 =




0 1 0

0 0 1

0 0 0


, A2 =




0 0 0

0 0 0

1 0 0


,

an immediate computation yields

A2
1A2 =




1 0 0

0 0 0

0 0 0


, A1A2A1 =




0 0 0

0 1 0

0 0 0


, A2A2

1 =




0 0 0

0 0 0

0 0 1


,

and A3
1 = A1A2

2 = A2A1A2 = A2
2A1 = A3

2 = 0. Let ‖·‖1 denote the matrix norm induced by

the ℓ1 norm in R
3. Define

E= {(2,1,1,2,1,1, . . .),(1,2,1,1,2,1, . . .),(1,1,2,1,1,2, . . .)}
and, for k ∈N, let Ek be the set made of the three words of length k obtained by taking the

first k entries of each element of E. By an easy computation, we get that, for every k ∈ N

and (i1, . . . , ik) ∈ J1,NKk,

‖Aik · · ·Ai1‖1 =

{
1, if (i1, . . . , ik) ∈ Ek,

0, otherwise.

We then obtain that ρd(A) = 1. On the other hand, for every stochastic matrix P ∈M2(R)
and every invariant probability vector ν for P, we have P(ν,P)(E) = 0. Hence

lim
n→∞

‖Ain · · ·Ai1‖
1/n

1 = 0 P(ν,P)-a.s.,

proving that ρp(ν,P,A) = 0. Then ρp(A) = 0.
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4 Markov chains of higher order

In this section, we extend the previous results to probability measures on S obtained

from discrete-time shift-invariant Markov chains of order m ≥ 1. Any such probability

measure µ can be described by a pair (ν,P) of tensors of orders m and m+1, respectively,

where the non-negative scalar Pi1...imim+1
represents the probability to switch from the state

im to the state im+1 when the previous m states of the chain are (i1, . . . , im), and νi1...im

represents the probability of the first m states being (i1, . . . , im). In particular, for every

(i1, . . . , im) ∈ J1,NKm, we have that

N

∑
im+1=1

Pi1...imim+1
= 1

and ν satisfies

∑
(i1,...,im)∈J1,NKm

νi1...im = 1.

We refer to such ν and P as a probability tensor of order m and a stochastic tensor of

order m+1, respectively. The shift-invariance property now reads

N

∑
i1=1

νi1...imPi1...im+1
= νi2...im+1

, for every (i2, . . . , im+1) ∈ J1,NKm,

and any probability tensor ν satisfying the above shift-invariant property is said to be in-

variant under P. The probabilistic joint spectral radius ρp(ν,P,A) associated with (ν,P)
is still defined by (2.5), where the expectation E(ν,P) corresponds to the probability mea-

sure on S defined above.

Markov chains of order m ≥ 1 can be canonically transformed into Markov chains of

order 1 by considering as state space the set J1,NKm and defining a pair (ν̂, P̂) from (ν,P)
by ν̂(i1,...,im) = νi1...im and

P̂(i1,...,im),( j1,..., jm) =

{
Pi1...im jm if (i2, . . . , im) = ( j1, . . . , jm−1),

0 otherwise,

for every (i1, . . . , im) and ( j1, . . . , jm) in J1,NKm. It is immediate from the definitions and

the shift-invariance property that

ρp(ν,P,A) = ρp(ν̂, P̂,Â),

where Â= (Âi1...im)(i1,...,im)∈J1,NKm and Âi1...im = Aim for every (i1, . . . , im) ∈ J1,NKm.

For every positive integer k, we say that (i1, . . . , ik) is a (ν,P)-cycle if

(
(i−m+2, . . . , i0, i1), . . . ,(ik−m+1, . . . , ik)

)

is a (ν̂, P̂)-cycle, where z 7→ iz is extended to Z by k-periodicity.

Applying Theorem 3.1 to (ν̂, P̂) and Â, we deduce at once the following.

Theorem 4.1. Let m be a positive integer, P be a stochastic tensor of order m+1, ν be an

invariant probability tensor for P, and A= (A1, . . . ,AN) ∈Md(R)
N . Then the following

statements are equivalent:
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(a) ρd(A) = ρp(ν,P,A).

(b) ρ(Aik · · ·Ai1)
1/k = ρd(A) for every (ν,P)-cycle (i1, . . . , ik).

Recall that (1.1) is said to be periodically stable if ρ(σ) < 1 for all periodic signals

σ ∈ S. It has been shown in [12] that this property implies ρp(ν,P,A) < 1 for every

strongly connected stochastic matrix P ∈MN(R), where ν ∈ R
N is the unique invariant

probability vector for P. A slightly improved version of this result can be obtained as a

consequence of Theorem 4.1 as stated in the following corollary.

Corollary 4.2. Assume that (1.1) is periodically stable. Then, for every m ∈ N, every

stochastic tensor P of order m+ 1, and every invariant probability tensor ν for P, we

have ρp(ν,P,A)< 1.

Proof. By the Joint Spectral Radius Theorem (see, e.g., [19, Theorem 2.3]), periodic sta-

bility implies that ρd(A)≤ 1. In the case ρd(A)< 1, the conclusion follows immediately.

Otherwise, when ρd(A) = 1, the periodic stability assumption implies that assertion (b)

from Theorem 4.1 does not hold, which proves that ρp(ν,P,A)< ρd(A) = 1, yielding the

conclusion.

Similarly as for Theorem 4.1, we deduce by applying Theorem 3.13 to (ν̂, P̂) and Â

the following.

Theorem 4.3. Let m be a positive integer and A = (A1, . . . ,AN) ∈ Md(R)
N . Then the

following statements are equivalent:

(a) ρd(A) = ρp(m,A), where ρp(m,A) is the supremum of ρp(ν,P,A) over all pairs

(ν,P) with P a stochastic tensor of order m+1 and ν an invariant probability tensor for

P.

(b) There exist i1, . . . , ik ∈ J1,NK such that

ρd(A) = ρ(Aik · · ·Ai1)
1/k

and (i j1, . . . , i j1+m−1) 6= (i j2, . . . , i j2+m−1) whenever j1, j2 ∈ J1,kK with j1 6= j2, where

z 7→ iz is extended to Z by k-periodicity.

As a consequence of Theorem 4.3, we have the following corollary. To state it, recall

that A is said to have the finiteness property if there exist i1, . . . , ik ∈ J1,NK such that

ρd(A) = ρ(Aik · · ·Ai1)
1/k.

Corollary 4.4. Let A = (A1, . . . ,AN). Then A has the finiteness property if and only if

there exists m ∈ N such that ρd(A) = ρp(m,A).

Proof. If there exists m such that ρd(A) = ρp(m,A), then the finiteness property of A

follows immediately from Theorem 4.3. Assume now that A has the finiteness property

and let i1, . . . , ik ∈ J1,NK be such that ρd(A) = ρ(Aik · · ·Ai1)
1/k. Extend z 7→ iz over Z by

k-periodicity and let k′ be the minimal period of z 7→ iz. Without loss of generality, we

can assume that k = k′. We claim that property (b) of Theorem 4.3 holds with m = k.

Indeed, let j1, j2 ∈ J1,kK be such that (i j1, . . . , i j1+k−1) = (i j2, . . . , i j2+k−1) and assume, to

obtain a contradiction, that j1 6= j2. Without loss of generality, j1 < j2. Set k′′ = j2 − j1
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and notice that 0 < k′′ < k and i j1+ℓ = i j1+k′′+ℓ for every ℓ ∈ J0,k− 1K. Since z 7→ iz is

k-periodic, the previous equality holds for every ℓ ∈ Z, proving that z 7→ iz is k′′-periodic,

contradicting the minimality of k as period of z 7→ iz. Hence property (a) of Theorem 4.3

holds, as required.

Remark 4.5. Given A = (A1, . . . ,AN), ℓ ∈ N, and a word w = (i1, . . . , iℓ) ∈ J1,NKℓ, set

A(w) = Aiℓ · · ·Ai1 and let |w|= ℓ be the length of w. Notice that, by proceeding similarly

to the second part of the proof of Theorem 3.13, we can construct, for every word w of

finite length, a Markov chain of order |w| with tensors νw, Pw such that ρ(A(w))1/|w| =
ρp(νw,Pw,A). We deduce that

ρd(A) = sup
w word of finite length

ρ(A(w))1/|w| ≤ sup
m∈N

ρp(m,A),

where the equality is a consequence of the Joint Spectral Radius Theorem (see, e.g., [19]).

Since, moreover, ρp(m,A)≤ ρd(A) for every m, it follows that ρd(A)= supm∈Nρp(m,A).
A further characterization of the equivalence in Corollary 4.4 can then be stated as

follows: an N-tuple of matrices A = (A1, . . . ,AN) satisfies the finiteness property if and

only if

sup
m,ν,P

ρp(ν,P,A)

is attained at some (m,ν,P), where the supremum is taken over all (m,ν,P) with m ∈ N,

P a stochastic tensor of order m+1, and ν an invariant probability tensor for P.
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