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Effective cycles on some linear blowups of projective spaces

N. Pintye, A. Prendergast-Smith

Cones of curves and divisors have played a central role in birational geometry since the
groundbreaking work of Mori in the early 1980s. There are general results, such as the Cone
Theorem, describing the structure of these cones, as well as numerous explicit calculations in
cases of geometric interest.

More recently, there has been increased interest in cycles of intermediate dimensions.
Debarre–Ein–Lazarsfeld–Voisin [DELV] showed that in general, these cycles do not share
the good properties of divisors or curves: in particular, numerical positivity need not imply
geometric positivity for such cycles. Nevertheless, there has been significant progress in
extending the theoretical understanding of such cycles, due to Fulger–Lehmann [FL1, FL2],
Ottem [Ott] and others. By contrast, the number of examples in which cones of effective
cycles have been explicitly computed is relatively small. The most significant results to date
were found by Coskun–Lesieutre–Ottem [CLO], who computed cones of cycles on blowups of
projective spaces at sets of points.

In this paper, we compute cones of effective cycles on some varieties obtained by blowing
up general sets of lines in projective space. These cones are more complicated to compute
than those of point blowups in two ways: first, a hyperplane in projective space cannot contain
many general lines, and so inductive techniques tend to be less useful; second, the coefficients
of the intersection form on the blowup vary with dimension, making uniform statements more
difficult to find. In spite of these difficulties we are able to compute cones in some interesting
examples, which we now explain.

Blowing up a small number of lines in projective space gives a toric variety, so the cone of
effective cycles is generated by torus-invariant subvarieties, hence linear subspaces. Our main
results show that linear generation continues to hold when the number of lines is increased
beyond the toric range: for example, the blowup of P4 in more than 2 lines is no longer toric,
but we show in Theorem 3.2 that its cone of 2-cycles is still linearly generated when we blow
up in 3 or 4 lines. Similarly, in Theorem 4.1, we show that the cones of 2-cycles is linearly
generated when we blow up at most 5 lines in P5, but the cone of 3-cycles fails to be linearly
generated once we blow up 4 lines. Finally, in Section 5, we complement these theorems with
some results about linear generation of cones of curves and divisors.

Our results are summarised in the following tables. In each table, the entry in row k and
column r shows whether the cone of effective k-cycles on the blowup of projective space of
the relevant dimension in r general lines is linearly generated (or if the answer is not known).
Note that once linear generation fails for a blowup, it fails for all further blowups, so any
entry to the right of the symbol x in a given row is also not linearly generated.

The pattern we find agrees with Coskun–Lesieutre–Ottem’s results, namely that as we
blow up more, cones of lower-dimensional cycles remain linearly generated for longer than
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Dimension 4

k\r ≤ 2 3 4 5 6 7 8 9 10

1 X X X X X X ? ? x

2 X X X x

3 X X X x

5.1 5.1

3.2 3.2

5.3 5.3

Dimension 5

k\r ≤ 3 4 5 6

1 X X X x

2 X X X ?

3 X x

4 X x

5.2 5.2

4.1

1.4 4.2

1.4 5.4

cones of higher-dimensional cycles. It would be interesting to find uniform bounds ensuring
linear generation for blowups of projective space in general sets of linear subspaces of arbitrary
dimension.

Thanks to Izzet Coskun and Elisa Postinghel for helpful conversations.

1 Preliminaries

We work throughout over an algebraically closed field of characteristic zero.

1.1 Intersection theory

Our goal in this paper is to compute cones of cycles. The natural contexts for these cones are
the spaces of numerical classes of cycles, which we now introduce. In the examples we will
consider, these spaces are just Chow groups with real coefficients, but we use the language of
numerical classes for consistency with the general theory.

Let X be a smooth proper variety of dimension n. Let Zk(X) denote the group of algebraic
cycles of dimension k on X. We define the vector space of numerical classes of k-cycles to be

Nk(X) := (Zk(X)/ ≡)⊗R

where ≡ denotes numerical equivalence of cycles. For each k, this is a finite-dimensional
real vector space, and intersection gives a perfect pairing Nk(X) × Nn−k(X) → R. For
convenience, we often write Nk(X) instead of Nn−k(X). For a k-dimensional subvariety Z
in X, we write [Z] to denote its class in Nk(X). A fundamental feature of this product is
positivity of proper intersections: if X is a smooth proper variety of dimension n, and V and
W are subvarieties of dimension k and n − k, respectively, such that V ∩ W is a finite set,
then [V ] · [W ] ≥ 0.

A class α ∈ Nk(X) is effective if there are subvarieties Z1, . . . , Zm and non-negative real
numbers r1, . . . , rm such that α =

∑m
i=1

ri[Zi]. A class α ∈ Nk(X) is called nef if α · [Z] ≥ 0
for every k-dimensional subvariety Z in X or, equivalently, if α ·β ≥ 0 for every effective class
β ∈ Nk(X). We need some basic facts about the behaviour of nef cycles under morphisms:
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Proposition 1.1. Let f : Y → X be a morphism of smooth projective varieties.

(a) If α ∈ Nk(X) is nef, then f∗α ∈ Nk(Y ) is nef.

(b) If f is surjective and α ∈ Nk(X) is a cycle such that f∗α is nef, then α is nef.

Proof. (a): If β ∈ Nk(Y ) is effective, then f∗β is also effective by definition of pushforward. So
if α ∈ Nk(X) is nef, then using the projection formula for cycles, we get f∗α ·β = α · f∗β ≥ 0
for every effective cycle β in Nk(Y ).

(b): Let β ∈ Nk(X) be an effective class. Since f is surjective, by a standard hyperplane
section argument there exists an effective class β̃ ∈ Nk(Y ) such that f∗β̃ = β. By the
projection formula and nefness of f∗α, we have α · β = f∗α · β̃ ≥ 0, showing that α is nef as
required.

In general the intersection of nef cycles need not be nef [DELV, Corollary 2.2], but for
divisors this is true:

Lemma 1.2. Let X be a smooth projective variety. If D and E are nef divisor classes on X,
then DE is a nef class in N2(X).

Proof. We need to prove that for any effective class α ∈ N2(X), we have DE · α ≥ 0. Since
E is nef, we can find a sequence of ample divisor classes {Ei} converging to E in N1(X).
For each Ei, the intersection Eiα is effective, and so D · (Ei α) ≥ 0. Taking the limit, we get
DE · α = limiD · (Ei α) ≥ 0, as required.

Numerical classes on blowups

In the rest of the paper, we will write Xn
r,s to denote the blowup of Pn in a collection of r

general lines L1, . . . , Lr and s general points p1, . . . , ps. Our main examples have s = 0, and
we denote these simply by Xn

r .

The ring N∗(Xn
r,s) = CH(Xn

r,s) ⊗ R is generated by classes H, Ei for i = 1, . . . , r, and
ei for i = 1, . . . , s, which are respectively the pullback of the hyperplane class on Pn, the
exceptional divisors of the blowups of the Li and the exceptional divisors of the blowups of
the pi. We will use the following intersection numbers among these classes [EH, Corollary
9.12]:

Hn = 1, En
i = (−1)n(n− 1), eni = (−1)n−1

H ·En−1

i = (−1)n, Hj ·En−j
i = Hk · en−k

i = 0 for i ≥ 1, k ≥ 0.

We also need to know the numerical classes on Xn
r,s of the proper transforms of certain

subvarieties of Pn. The blowup formula [Fu, Theorem 6.7] allows us to calculate these as long
as we know the Segre classes of the blowup centre inside the subvariety: in particular, when
we blow up lines and points, these are easy to compute. In particular, we note the following:

Corollary 1.3. Let Xn
r,s be the blowup of Pn in r general lines and s general points. Let

• U be a linear space of codimension k intersecting Li transversely,
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• V be a linear space of codimension k containing Li, and let

• Q be a quadric of codimension k containing Li.

The numerical classes of the proper transforms of these spaces have the following coefficients:

Hk HEk−1

i Ek
i

[Ũ ] 1 (−1)k−1 0

[Ṽ ] 1 (−1)k−1k (−1)k

[Q̃] 2 (−1)k−1(k + 1) (−1)k

If Z is any subvariety of codimension k containing pi as a smooth point, then the coefficient
of eki in [Z̃] equals (−1)k.

1.2 Cones of cycles

For a smooth projective variety X, the pseudoeffective cone Effk(X) is the closed convex cone
in Nk(X) generated by numerical classes of k-dimensional subvarieties of X. The nef cone
Nefk(X) is the cone spanned by all nef classes in Nk(X): in other words, it is the dual cone
of Effk(X).

Now we specialise the discussion to our examples Xn
r,s. A subvariety of Xn

r,s is called linear
if it is one of the following:

(a) the proper transform on Xn
r,s of a linear subspace of Pn, or

(b) the pullback to Ei
∼= P1 ×Pn−2 of a linear subspace in one of the factors, or

(c) a linear subspace in ei ∼= Pn−1.

The linear cone Link(X
n
r,s) is the cone in Nk(X

n
r,s) generated by the finitely many classes

of k-dimensional linear subvarieties. We say that the pseudoeffective cone of k-cycles on
Eff(Xn

r,s) is linearly generated if it equals the linear cone Link(X
n
r,s). Note that any blowup

map Xn
r,s → Xn

r−a,s−b maps the effective cone onto the effective cone and the linear cone onto

the linear cone, so if Eff(Xn
r,s) is linearly generated, then so too is Eff(Xn

r−a,s−b).

1.3 Toric varieties

Cones of cycles on toric varieties are well-understood. For later use, let us record the facts
we need:

Proposition 1.4. Let X be a normal proper toric variety. Then, Effk(X) is generated by
the finitely many classes of k-dimensional torus-invariant subvarieties on X. Consequently,
if the variety Xn

r,s is toric, then Effk(X
n
r,s) is linearly generated for all k.

Proof. The first statement is well-known; a reference is [Li, Proposition 3.1].

For the second statement, note that the torus-invariant subvarieties of Pn are exactly the
coordinate subspaces, so if Xn

r,s is a toric blowup of Pn, any torus-invariant subvariety on
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Xn
r,s that comes from Pn is the proper transform of a coordinate subspace and hence is linear.

On the other hand, every exceptional divisor of X → Pn is of the form Ei
∼= P1 × Pn−2 or

ei ∼= Pn−1, so the torus-invariant subvarieties of the exceptional divisor are also linear.

1.4 Computations

In this paper, we will use computer algebra in several different contexts. In all cases, we use the
computer algebra system Macaulay2. In particular, for all computations of dual numerical
cones, we use the package Normaliz [Nor] for Macaulay2. Note that for compactness, we
always list the generators of all cones “up to permutation”: that is, a full list of generators is
obtained from our list by permuting indices in the appropriate way.

The full outputs of our computations are available in ancillary files provided with this
paper [M2]. The name of each file in the repository indicates the result in the paper in which
the output of the computation is used.

2 Codimension 2 linear spaces

In this section, we prove that codimension 2 linear spaces incident to lines give nef classes
in Xn

r for r ≤ n ≤ 5. The main idea of the proof is to verify by a dimension count that
we can find such a linear space properly intersecting any given subvariety of complementary
dimension. As mentioned in the introduction, proper intersections are non-negative, so this
is sufficient to prove our claim.

We begin with some preparatory results about intersections of Schubert cycles.

Lemma 2.1. Let l1, . . . , l4 be a set of 4 distinct lines in P3, and let Λ ⊂ G(1, 3) be the set
of lines touching all 4. Then, one of the following is true:

(a) the set Λ has dimension 2, in which case one of the following is true:

(i) all 4 lines are concurrent, or

(ii) all 4 lines are coplanar;

(b) the set Λ has dimension 1, in which case one of the following is true:

(i) the lines are all pairwise skew and lie on a smooth quadric surface Q ∈ P3, or

(ii) there are exactly 2 pairs of intersecting lines, say l1, l2 and l3, l4, and the intersec-
tion point of l1, l2 lies in the plane spanned by l3, l4, or

(iii) there are 3 concurrent lines, say l1, l2, l3, and the line l4 is skew to all others, or

(iv) there are 3 coplanar lines, say l1, l2, l3, and the line l4 is skew to all the others;

(c) the set Λ has dimension 0.

Proof. For each case listed in (a) and (b) above, the given dimension count is straightforward
to verify. It remains to check that in all other cases, the set Λ has dimension 0. In the case
that all lines are pairwise skew, this is well-known, so we must consider the cases in which
some of the lines intersect. There are two possibilities not covered by the list above:
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• two lines, say l1 and l2, intersect, and all other pairs are skew;

• there are exactly 2 pairs l1, l2 and l3, l4 of intersecting lines, and neither of the inter-
section points of the two pairs lies in the plane spanned by the other pair.

In the first case, any line intersecting all 4 lines must either lie in the plane spanned by l1
and l2, or pass through the intersection point of l1 and l2. In each case, however, there is a
unique such line which also intersects l3 and l4.

In the second case, no line contained in either of the planes spanned by two intersecting
lines can intersect the other two lines. So the only line intersecting all 4 lines is the line
joining the two intersection points of the pairs l1, l2 and l3, l4.

Lemma 2.2. Let l1, . . . , ln be a set of n general lines in Pn for n = 4 or 5. Let Λ ⊂ G(n−2, n)
be the subset of the Grassmannian parametrising codimension-2 linear spaces touching all the
lines. Then

(a) Λ is irreducible;

(b) The intersection of all the linear spaces parametrised by points of Λ is empty.

The restriction on n can be removed at the cost of a more complicated proof, but the
statement above is sufficient for our applications in later sections. The word “general” in the
statement of the lemma means that the proof works for a Zariski open subset of points in the
space of sets of n lines; however, the proof does not produce such an open subset explicitly.

Proof. (a): Let U ⊂ G(1, n)n be the open subset parametrising sets of n distinct lines. Let
I ⊂ U × G(n − 2, n) be the incidence correspondence consisting of pairs ((L1, . . . , Ln), L)
where L is a codimension 2 linear space intersecting all of the Li. Let f : I → U be the
projection. We want to prove that a general fibre of f is irreducible.

Shrinking U if necessary, we can assume that f is flat; then by [EGA, Theorem 12.2.1
(x)], the locus of integral fibres of f is open. One checks (for example using Macaulay2) that
for a particular point u ∈ U , the fibre f−1(u) is smooth and connected, hence integral, and
so the general fibre of f is integral and, in particular, irreducible.

(b): Suppose there is a point p ∈ Pn such that every linear space parametrised by Λ
passes through p. Let Σp ⊂ G(n − 2, n) be the Schubert cycle parametrising linear spaces
passing through p. In particular, we should have Λ ⊂ Σp. Let us show that this containment
is impossible.

First, note that Λ has codimension n in G(n− 2, n), while for any p, the Schubert variety
Σp has codimension 2. Considering the Plücker embedding of the Grassmannian G(n− 2, n)
in projective space, we can view Λ as G(n− 2, n)∩H1 ∩ · · · ∩Hn for certain hyperplanes Hi.
Therefore, if Λ ⊂ Σp, we must have Λ ⊂ Σp ∩H1 ∩ · · · ∩Hn−2.

If the intersection Σp ∩H1 ∩ · · · ∩Hn−2 is of the maximal codimension n, then Λ must be
an irreducible component of Σp∩H1∩· · ·∩Hn−2. However, the degree of Σp∩H1∩· · ·∩Hn−2

is the same as the degree of Σp, and Schubert calculus shows that this is strictly less than the
degree of Λ, a contradiction.
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In general, suppose that Σp ∩H1 ∩ · · · ∩Hn−2 is not of the maximal codimension n. We
claim that we can move the hyperplanes Hi to new hyperplanes H ′

i such that both of the
following hold:

• Σp ∩H ′
1 ∩ · · · ∩H ′

n−2 is of codimension n;

• H ′
1 ∩ · · · ∩H ′

n−2 = H1 ∩ · · · · · ·Hn−2.

(Note that the new hyperplanes H ′
i in general no longer correspond to Schubert varieties in

the Grassmannian G(n− 2, n), but that does not affect our proof.) Given the claim, we can
then write Λ as G(n−2, n)∩H ′

1∩ · · ·∩H ′
n−2, and the argument from the previous paragraph

applies again to complete the proof.

It remains to prove the claim. Write Z = H1 ∩ · · · ∩ Hn−2. For i < n − 2, assume we
have chosen hyperplanes H ′

1, . . . ,H
′
i such that each of them contains Z, and Σp ∩H ′

1 · · · ∩H ′
i

has codimension i + 2. Since i + 2 < n, we see that Σp ∩H ′
1 · · · ∩H ′

i is not contained in Λ,
and since Λ = G(n − 2, n) ∩ Z, this proves it is not contained in Z either. So we can find
another hyperplane H ′

i+1
which contains Z but does not contain Σp ∩H ′

1 · · · ∩H ′
i. Hence, the

intersection Σp ∩H ′
1 · · · ∩H ′

i ∩H ′
i+1

has codimension i + 3. Continuing in this way, we end
up with hyperplanes H ′

1, . . . ,H
′
n−2 satisfying the two conditions above, as required.

Now we can prove our first main result about nefness of codimension 2 linear spaces in P4.
The idea is to project away from a point and use the information from the previous lemmas
about configurations of 4 lines in P3.

Theorem 2.3. Let r ≤ 4. Let L4
r be the proper transform on X4

r of a codimension 2 linear
space in P4 that intersects all the blown-up lines properly. Then, L4

r is nef.

Proof. We first observe that if L4
r is nef on X4

r , then Ln
r−1 is nef on X4

r−1. To see this, note
that the pullback of the class [L4

r−1] equals [L
4
r ] + [F ], where F is a fibre of the blowup. If L4

r

is nef, then any irreducible surface that has negative intersection with the pullback of L4
r−1

must have negative intersection with F and so must be contained in Er, since F is a nef
divisor in Er. But surfaces contained in Er are contracted by the blowup map, so they have
zero intersection with the pullback of [L4

r−1] by the projection formula. So the pullback of
[L4

r−1] is nef, and therefore L4
r−1 is nef by Proposition 1.1. So it suffices to prove that L4

4 is
nef.

The restricition of L4
4 to any of the divisors Ei is an effective curve class, hence nef, so

if S is an irreducible surface contained inside one of the divisors Ei, then L4
4 · S̃ ≥ 0. We

can therefore restrict our attention to irreducible surfaces S̃ that are proper transforms of
surfaces S in P4. For such a surface, the intersection S̃ ∩ Ei is 1-dimensional, hence a union
of curves. We can write it in the form S̃ ∩ Ei = C1 ∪ · · · ∪ Ck ∪ Γ1 ∪ · · · ∪ Γj, where the Ci

are curves contained in fibres of the blowdown map X4
4 → P4, and the Γj intersect each fibre

of π in finitely many points. By Lemma 2.2, we can choose a plane L4
4 that is disjoint from

any given finite set of fibres of π, and for such a plane, we get L4
4 ∩ S̃ ∩Ei = L4

4 ∩ (∪j
k=1

Γj), a

finite set of points. Therefore, if S̃ is a surface intersecting every plane L4
4 non-properly, we

see that S ∩ L has dimension at least 1 for every plane L ⊂ P4 intersecting all 4 lines.

So suppose that S ⊂ P4 is an irreducible surface such that dim(S ∩L) ≥ 1 for every plane
L ⊂ P4 intersecting all 4 lines. We form the following incidence correspondence:
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I = {(L, p) | L ∈ Λ, p ∈ S ∩ L} S

Λ

π1

π2

Here Λ ⊂ G(2, 4) is the subset of the Grassmannian parametrising planes intersecting all
4 lines. By Lemma 2.2, Λ is irreducible of dimension 2. Hence, by our assumption on the
dimension of the fibres of π2, we see that I has dimension at least 3.

Every fibre π−1
1

(p) is a subset of Λ, which is irreducible of dimension 2, so any fibre of
dimension 2 must equal Λ. But if a fibre π−1

1
(p) equals Λ, then all the planes parametrised

by Λ pass through the point p, contradicting Lemma 2.2 (b). Hence, no fibre π−1
1

(p) has
dimension 2.

Therefore, every fibre of π1 has dimension 1, and so π1 is surjective. That is, for every
point p ∈ S, there are infinitely many planes L passing through p and intersecting all 4 lines.
We will show that this is impossible.

By Lemma 6.1, we may assume that S is not contained in any of the linear spaces
Span(Li, Lj). By this assumption, if p ∈ S is a general point, then when we project away from
p, the images of our lines L1, . . . , L4 give 4 skew lines l1, . . . , l4 in P3. Under this projection,
planes L ⊂ P4 passing through p and intersecting all the lines Li correspond to lines l ⊂ P3

intersecting all the lines li. So if there are infinitely many planes L passing through p and
intersecting all 4 lines, then there must be infinitely many lines in P3 intersecting the 4 skew
lines l1, . . . , l4.

For 4 skew lines l1, . . . , l4 in P3, there are at most 2 lines intersecting them all unless
the 4 lines all lie on a quadric Q ⊂ P3. So we must have that p is contained in the vertex
of a quadric cone Q′ ⊂ P4, which also contains the lines L1, . . . , L4. Let us examine the
possibilities for the rank of Q′:

• rank 1: in this case, all the lines Li would be contained in a hyperplane, contradicting
generality;

• rank 2: in this case, all the lines would be contained in a union of 2 hyperplanes whose
intersection contains p. Each of the 2 hyperplanes would be spanned by 2 of the lines
Li, contradicting the assumption that p is not contained in the span of any 2 of the Li;

• rank 3: in this case the vertex of Q′ is a line L, and projecting from L, maps Q′ to a
smooth conic Q′′ ⊂ P2. On the other hand, any line in Q′ which is disjoint from L would
map to a line in P2 contained in Q′′, which is impossible. So all lines in Q′, in particular
all the Li, must intersect a fixed line L. Again by generality this is impossible.

We conclude that any such quadric Q′ must have rank 4, hence its vertex has dimension 0.

The linear system V of quadrics containing the Li has dimension 2. In order to complete
the proof, we now analyse 2 possible cases.

If the general member of V is smooth, then the subset of singular quadrics has dimension
at most 1. We just proved that, except for the 3 quadrics of rank 2 which are unions of
hyperplanes Span(Li, Lj), the vertex of any such quadric has dimension 0. So we get a 1-
dimensional set of vertices of quadrics outside the subsets Span(Li, Lj). This 1-dimensional
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set cannot contain any surface S, so there cannot exist a surface S outside the subspaces
Span(Li, Lj) such that through each point of S there pass infinitely many planes touching all
the lines Li.

If the general member of V is singular, then Bertini’s theorem still guarantees that the
set of singularities of a general member of V is contained in the base locus Bs(V ). Other
than the 3 rank-2 quadrics from the last paragraph, the set of members of V whose singular
set is not contained in Bs(V ) is at most 1-dimensional, so the set of singular points of such
quadrics again gives a 1-dimensional set. On the other hand, Bs(V ) is also 1-dimensional, as
one sees, for example, by intersecting the 3 rank-2 quadrics, so we get a 1-dimensional set of
vertices altogether. Again, this set cannot contain a surface S.

Next we prove the corresponding result for codimension 2 linear spaces in P5. The idea
of the proof in this case is to project away from a line, rather than a point, and then argue
as before.

Theorem 2.4. Let r ≤ 5. Let L5
r be the proper transform on X5

r of a codimension 2 linear
space in P5 that intersects all the blown-up lines properly. Then, L5

r is nef.

Proof. As in the previous theorem, it suffices to prove the result when r = 5. We suppose
for contradiction that there is an irreducible surface S ⊂ P5 such that dim(S ∩ L) ≥ 1 for
every codimension 2 linear space L that intersects all 5 lines. Again, we form the incidence
correspondence

I = {(L, p) | L ∈ Λ, p ∈ S ∩ L} S

Λ

π1

π2

where now Λ ⊂ G(3, 5) is the subset of the Grassmannian parametrising linear spaces inter-
secting all 5 lines. Arguing exactly as before, we see that all fibres of π1 must have dimension
2. We will show that the locus of points p ∈ P5 through which we have a 2-dimensional family
of linear spaces from Λ does not contain any irreducible surfaces except for those contained
in subspaces Span(Li, LJ ). As the proper transform of such a subspace is a toric variety, its
cone of surfaces is linearly generated, and so L5

5 has a non-negative intersection product with
the class of any such surface.

So assume p ∈ P5 is a point such that the set Λp of linear spaces in Λ that pass through
p is 2-dimensional. By Proposition 1.4, we can assume the surface S above does not lie in
one of the linear spaces Span(Li, Lj), so it is enough to consider points p not in any of these
linear spaces.

Fix one of the lines, say L1. First, we claim that for any point q ∈ L1, the subset Λpq ⊂ Λp

consisting of linear spaces through both p and q has dimension 1. If this were not the case,
there would be a point q ∈ L1 such that the family of linear spaces through p and q has
dimension 2. Projecting away from the line joining p and q, the lines L2, L3, L4, L5 would
then map to lines l2, l3, l4, l5 in P3 with a 2-dimensional family of lines intersecting all 4. This
can only happen in the following cases: first, two of the lines coincide; second, all four lines
pass through a common point p ∈ P3; third, all four lines lie in a common plane P ⊂ P3.
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The first case only occurs if the centre of projection pq is contained in Span(Li, Lj) for some
i 6= j, but since q is a point in L1, this means that L1 intersects Span(Li, Lj), contradicting
generality of the lines. The second case occurs only if there is a 2-dimensional linear space in
P5 (namely, the cone over the point p) intersecting all 5 lines Li, and again, this contradicts
generality. The third cases only occurs if there is a hyperplane in P5 (namely, the cone over
P ) containing all 5 lines Li, and again, this contradicts generality.

So we see that for any q ∈ L1, the set of linear spaces through p and q and intersecting
the lines L2, L3, L4, L5 has dimension 1. We may assume that the line pq is not contained in
any of the linear subspaces Span(Li, Lj), so projecting away from the line pq. we obtain a set
of 4 distinct lines in P3 such that the family of lines in P3 touching all 4 has dimension 1.
According to Lemma 2.1, either two of the lines intersect or else they are pairwise skew and
lie on a smooth quadric in P3.

Let us first deal with the case when two of the lines intersect. We will think of projection
away from the line pq as projection away from p first, followed by projection away from the
image of q in P4. As explained above, we can assume that p does not lie in any of the linear
spaces Span(Li, Lj), so first projecting away from p gives 5 skew lines l1, . . . , l5 in P4. We next
project away from a point q̃ on l1. If l1 is contained in any of the hyperplanes Span(li, lj),
then in P5, we would have three lines L1, Li, Lj contained in a hyperplane, contradicting
generality. So l1 meets each of the hyperplanes Span(li, lj) in a single point. Choosing q̃ to
be different from all of these points, the projection away from q then gives us 4 pairwise skew
lines in P3.

So we may suppose that the 4 lines are pairwise skew and lie on a smooth quadric surface
in P3. By taking the cone over this quadric, we get a quadric in P5 of corank 2 that contains
L2, L3, L4, L5 and whose vertex is a line intersecting L1 and passing through p. Moreover, for
each q ∈ L1, we get such a quadric, so there is a 1-dimensional family of lines through p that
are vertices of quadrics of this type. We will prove that the set of such points p either has
dimension at most 1 or is a plane in P5.

By Lemma 2.5, the family of quadrics in P5 of corank 2 that contain the lines L2, . . . , L5

and whose vertex intersects L1 is of dimension 2. Call this 2-dimensional family F and
consider the following incidence correspondence:

J = {(Q, p) | Q ∈ F and p lies on the vertex line of Q} P5

F

π1

π2

All fibres of π2 are lines, so every irreducible component of J has dimension 3. We may
assume that J is irreducible: if not, we apply the same argument to each component of J in
turn. We distinguish 2 possible cases. If π1 is generically finite, then the points p ∈ P5 which
lie on a 1-dimensional family of vertex lines of members of F are contained in a proper closed
subset Z of π1(J). The preimage π−1

1
(Z) is a proper closed subset of J , hence has dimension

at most 2, and the fibres of π1 over points of Z are 1-dimensional by hypothesis. Hence, Z
has dimension at most 1. If π1 is not generically finite, then π1(J) is irreducible of dimension
at most 2. For each point p ∈ π(J), there is a 1-dimensional family of vertex lines touching
L1 and passing through p. Such a family sweeps out a plane Π inside P5, and so π1(J) is a
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plane.

Lemma 2.5. For any k ∈ {0, . . . , n− 1} and any N , the set Λ(k,N, n) of quadrics in Pn of
corank k and containing N general lines has the expected codimension

e(k,N, n) := max

{
3N +

(
k + 1

2

)
,

(
n+ 2

2

)}
.

Moreover, for k ≥ 1, the set Λv(k,N, n) of those quadrics in Λ(k,N, n) whose vertex intersects
another general line has the expected codimension

ǫ(k,N, n) := max

{
e(k,N) + n− k − 1,

(
n+ 2

2

)}
.

In particular, with n = 5, N = 4 and k = 2, we see that the locus Λv(2, 4, 5) of quadrics
in P5 of corank 2 containing 4 general lines and with vertex intersecting another general line
has dimension

(
5 + 2

2

)
− 1− ǫ(2, 4, 5) = 20− 3 · 4−

(
3

2

)
− 3 = 2

as claimed in the proof of Theorem 2.4.

Proof. For 1 ≤ i ≤ N , let Λ(Li) denote the set of quadrics in Pn that contain the i-th line
Li, and let λ(Li) denote the intersection of Λ(Li) with the set Rk of quadrics of corank k.
Then λ(Li) has codimension 3 in Rk. To see this, one can for example fix the vertex l and
project away πl : P

n
99K Pn−k: quadrics with vertex l and containing Li then correspond to

smooth quadrics in Pn−k containing πl(Li). If Li is disjoint from l, this clearly gives a set
of codimension 3. Varying l among all linear spaces disjoint from Li, we then get a subset
of codimension 3 in Rk. If Li intersects l, then πl(Li) is a point, so we get one condition on
the smooth quadrics; however, for n ≥ 4, the condition for l to intersect a fixed line imposes
n− 2 ≥ 2 conditions, and so we get codimension at least 3 in this case too.

For any k, the group PGL(n + 1) acts transitively on Rk and maps λ(Li) to λ(L′
i) for

some other line L′
i in P5. For each i, we can apply Kleiman’s transversality theorem [Kl]

to each component of λ(Li) to find a Zariski-open subset of PGL(n + 1) that moves the
component into proper position relative to

⋂
1≤j<i λ(Lj). Intersecting these open subsets, we

get a nonempty subset of elements moving every component of λ(Li) into proper position
relative to

⋂
1≤j<i λ(Lj), and therefore the intersection λ(L′

i) ∩
⋂

j<i λ(L
′
j) has the expected

codimension
(
k+1

2

)
+3i. Putting i = n, we get the claimed codimension e(k,N, n) of Λ(k,N, n).

To prove the claimed codimension ǫ(k,N, n) of Λv(k,N, n), for a line L we write λv(L)
to denote the set of quadrics in Rk whose vertex intersects L. Then λv(L) has codimension
n−k−1 in Rk, as one sees again by projection away from the vertex. Then the same argument
as in the previous paragraph applies again to show that the codimension of Λv(k,N, n) in
Λ(k,N, n) is n− k − 1.
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3 2-cycles on X
4
r for r ≤ 4

In the next two sections, we will prove our main results about linear generation of cones of
cycles. We begin with the case of lines in P4. In this case, N2(X

4
r ) = N2(X4

r ) has a basis
consisting of the classes

H2, Fi := HEi, Gi := −E2
i (i = 1, . . . r)

where we have chosen signs so that effective classes in the exceptional divisors have positive
coefficients with respect to the basis.

The intersections among these classes are given by the following matrix:

H2 Fi Gi

H2 1 0 0

Fj 0 0 −δij
Gj 0 −δij 3δij

Using Corollary 1.3, we can write down all the classes of linear subvarieties in X4
4 . The linear

cone Lin2(X
4
4 ) is then generated by the following list of classes, in which (as explained in

Section 1.4) we list generators up to permutations of indices:

H2 F1 F2 F3 F4 G1 G2 G3 G4

0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
1 −1 −1 −1 −1 0 0 0 0
1 −2 −1 −1 0 −1 0 0 0

Before stating our main result on linear generation, we record one fact that will save work
when verifying that certain classes are nef.

Lemma 3.1. Let α ∈ Nk(Xn
r ) be a nef class. Let β be any class of the form β = α+

∑
i[Zi],

where {Zi} are subvarieties of Xn
r contained in exceptional divisors. If β is contained in

Lin∗k(X
n
r ), then β is also nef.

Proof. We must show that for every irreducible subvariety S of dimension k in Xn
r , we have

β · [S] ≥ 0.

If S ⊂ Ej for some j, then since Ej is toric, we have [S] ∈ Link(Ej) ⊂ Link(X
n
r ), and

hence by hypothesis, β · [S] ≥ 0.

If S is not contained in any exceptional divisor Ej , then it intersects each Ej either
in the empty set or a in set of dimension k − 1. If S ∩ Ej is non-empty and Zi ⊂ Ej is
one of the subvarieties appearing in β, then we can compute [S] · [Zi] as ([S ∩ Ej ] · [Zi])Ej

,
where the subscript indicates that the intersection is considered in the ambient space Ej .
Since Ej

∼= P1 × Pn−2, the intersection of any two effective cycles is again effective, so
[S] · [Zi] = ([S ∩Ej ] · [Zi])Ej

≥ 0. Since α is nef, we conclude that β · [S] ≥ 0, as required.
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Theorem 3.2. The effective cone of 2-cycles Eff2(X
4
r ) is linearly generated if and only if

r ≤ 4.

Proof. As explained in Section 1.2, to prove linear generation it is enough to consider the
case r = 4. Our strategy is to use the list of linear classes above to compute generators for
the dual of the linear cone Lin2(X

4
4 )

∗ and verify that the generators are indeed nef classes.
The generators of Lin2(X

4
4 )

∗ are as follows:

H2 F1 F2 F3 F4 G1 G2 G3 G4

α 1 0 0 0 0 0 0 0 0

β 1 −1 0 0 0 0 0 0 0

γ 1 −1 −1 0 0 0 0 0 0

δ 1 −1 −1 −1 0 0 0 0 0

ε 1 −1 −1 −1 −1 0 0 0 0

π 1 −2 0 0 0 −1 0 0 0

λ 3 −2 −2 −2 −1 −1 −1 −1 0

µ 4 −3 −3 −2 −2 −1 −1 −1 −1

ν 4 −3 −3 −3 −2 −1 −1 −1 −1

ξ 4 −3 −3 −3 −3 −1 −1 −1 −1

The class ε is represented by the proper transform of a 2-dimensional linear subspace in P4

intersecting all 4 lines, hence it is nef by Theorem 2.3. Lemma 3.1 then implies that the
classes α to δ are also nef.

The class π is pulled back from a class π′ on the toric variety X4
1 . It is straightforward to

check that π′ is in the cone Lin∗2(X
4
1 ), so is nef by Proposition 1.4, and therefore by Proposition

1.1, the class π is nef too.

It remains to deal with the classes λ to ξ. Again, by Lemma 3.1, it is enough to show
that λ and ξ are nef.

To show that λ and ξ are nef classes, we will decompose them into effective classes and
analyse the summands geometrically. In each table below, the rows sum up to the class in
the top-left corner. The symbol πij denotes the class of the proper transform of a plane
containing Li and intersecting Lj, while γk denotes the class of the proper transform of a
plane containing Li.

λ H2 F1 F2 F3 F4 G1 G2 G3 G4

π14 1 −2 0 0 −1 −1 0 0 0

γ2 1 0 −2 0 0 0 −1 0 0

γ3 1 0 0 −2 0 0 0 −1 0

ξ H2 F1 F2 F3 F4 G1 G2 G3 G4

π12 1 −2 −1 0 0 −1 0 0 0

π21 1 −1 −2 0 0 0 −1 0 0

π34 1 0 0 −2 −1 0 0 −1 0

π43 1 0 0 −1 −2 0 0 0 −1

13



We have already noted that the classes γ2 and γ3 are nef. The classes πij are not nef, but
we will show that any surface intersecting a class πij from the above tables negatively must
nevertheless have non-negative intersection with λ and ξ.

For convenience, let us consider π12; other cases are identical. Let H = Span(L1, L2), and
let H̃ be the proper transform of H on X4

4 . By generality, the lines L3 and L4 each intersect

H in a point, and so H̃ ∼= X3
2,2. Now, π12 is a divisor inside H̃, and by Lemma 6.1, it is nef.

Therefore if Z ⊂ X4
4 is an irreducible surface that is not contained in H̃, we have Z · π12 > 0.

On the other hand, if Z is contained in H̃, then we know that Z is linear by Lemma 6.1. Since
λ and ξ are both in the dual of the linear cone Lin2(X

4
4 ), they must both have non-negative

intersection with Z.

Finally, to prove that linear generation does not hold for r ≥ 5, it is enough to consider the
case r = 5. Choose any linear subspace spanned by two of the lines, say H = Span(L1, L2).
The other 3 lines intersect H in 3 points p3, p4, p5. Counting dimensions, there is a quadric
surface Q inside H containing the lines L1 and L2 and the points p3, p4, p5. Blowing up,
Corollary 1.3 tells us that the class of the proper transform of Q on X4

5 is

[Q̃] = 2H2 − 3F1 − 3F2 − F3 − F4 − F5 −G1 −G2

and it is straightforward to check that this is not in the linear cone Lin2(X
4
5 ).

4 2-cycles on X
5
r for r ≤ 5

The space N2(X5
r ) has a basis consisting of the classes

H2, Fi := HEi (i = 1, . . . , r), Gi := −E2
i (i = 1, . . . r)

and the space N2(X
5
r ) has a basis consisting of the classes

H3, fi := −HE2
i (i = 1, . . . , r), gi := E3

i (i = 1, . . . r)

where, again, signs are chosen so that effective cycles in exceptional divisors have positive
coefficients in the basis.

The intersections among these are as follows:

H2 Fi Gi

H3 1 0 0

fj 0 0 −δij
gj 0 −δij 4δij

The linear cone Lin2(X
5
5 ) is then generated by the following classes:

H3 f1 f2 f3 f4 f5 g1 g2 g3 g4 g5
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 −1 −1 −1 −1 0 0 0 0 0 0
1 −2 −1 −1 0 0 −1 0 0 0 0
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We can now prove our second main result.

Theorem 4.1. The cone of effective 2-cycles Eff2(X
5
r ) is linearly generated for r ≤ 5.

Proof. As before, we compute the classes generating Lin2(X
5
5 )

∗. To avoid an extremely long
list, let us say that a subset {v1, . . . , vn} of the full set of generators of Lin2(X

5
5 )

∗ is maximally
incident if every generator can be written in the form v = vi +

∑
j ajFj +

∑
k bk(Fk +Gk) for

some positive integers aj and bk. Using Lemma 3.1, it is sufficient to show that all generators
in a maximally incident set are nef. A maximally incident set of generators for Lin2(X

5
5 )

∗ is
as follows:

H2 F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

α 1 −2 0 0 0 0 −1 0 0 0 0

β 1 −1 −1 −1 −1 −1 0 0 0 0 0

γ 2 −2 −2 −1 −1 −1 −1 −1 0 0 0

δ 3 −3 −3 −3 −2 −2 −1 −1 −1 0 0

ε 4 −4 −4 −4 −4 −4 −1 −1 −1 −1 −1

Let us prove that each of these classes is nef:

• α: this class is pulled back from a class α̃ on the toric variety X5
1 . Since the effective

cones of toric varieties are linearly generated, α̃ is nef, hence so too is α.

• β: this is the class of a codimension-2 linear space touching all 5 lines. We proved that
this class is nef in Theorem 2.4.

• γ: let H denote the proper transform of a 4-dimensional linear space containing L1 and
L2. We can write the class γ as q + F1 + F2, where q is the pushforward of a class
in H ∼= X4

2,3. By Lemma 3.1 any subvariety intersecting γ negatively must intersect q
negatively, but by Lemma 6.3 we can see that q is nef in H, so any such subvariety must
be contained in H. However, again by Lemma 6.3 the cone of 2-cycles on H is linearly
generated, so γ has positive degree on any subvariety contained in H.

• δ: we can prove this is nef by considering the following decomposition into classes of
lower degrees.

δ H2 F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

λ 1 −2 0 0 −1 −1 −1 0 0 0 0

q 2 −1 −3 −3 −1 −1 0 −1 −1 0 0

Let H23 denote a 4-dimensional linear subspace containing the lines L2 and L3. Then, q
is the class of the proper transform a quadric threefold in H23 containing L2 and L3 and
the 3 points of intersection of the other lines with H23. As for our proof above for γ, the
proper transform of H23 is the fourfold X4

2,3, and the class of a quadric containing all
3 points and 2 lines is nef on this space. So any surface class intersecting q negatively
must be contained in X4

2,3 and hence must be linearly generated.
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We must now show the same for λ. This class is represented by a codimension-2 linear
space containing the line L1 and intersecting the lines L4 and L5. Let H14 denote a
4-dimensional linear space containing the lines L1 and L4: then, λ is represented by any
hyperplane inside H14 that contains L1 and the point p5 of intersection of L5 with H14.
Now let S be a irreducible surface in X5

5 . If S is contained in some linear space H14,
then again by Lemma 6.3, S is linearly generated. If not, then for each choice of H14, we
have that the intersection S ∩H14 is a curve C. If S · λ < 0, then C must be contained
in the base locus of the family of hyperplanes containing L1 and p5, which is exactly
the plane P spanned by L1 and p5. As we vary the hyperplane H14, the corresponding
curves C will sweep out the whole surface S, and therefore S is contained in the union
of all the planes P , which is exactly the span of L1 and L5. Again, this shows that S is
linearly generated.

• ε: this class can be written as D2, where D = 2H −
∑

5

i=1
Ei is the class of the proper

transform of a quadric containing all the lines. Since the intersection of nef divisors is
nef by Lemma 1.2, it is enough to prove that D is nef. By semicontinuity, it is enough
to show that D is nef for a specific set of 5 disjoint lines. Note that it is clear that D
restricts to an ample divisor on each exceptional divisor Ei, so it is enough to check
that it has non-negative degree on proper transforms of curves in P5.

Choosing 5 general lines L1, . . . , L5 in P5 and using Macaulay2 to calculate the base
locus Bs(L) of the linear system L of quadrics containing all 5, we find that Bs(L) is
exactly the union of the Li. So for any curve C on X5

5 that comes from P5, there is a
representative of D meeting the curve properly, and therefore D · C is non-negative as
required.

3-cycles on X
5
r

As a complement to the previous result, we next show that for 3-cycles on blowups of P5,
linear generation fails as soon as we blow up 4 lines. This is in keeping with the results
of [CLO] which show that as we blow up more, linear generation fails sooner for cones of
higher-dimensional cycles.

For this result, recall that the Segre cubic 3-fold is a copy of P1 ×P2 embedded in P5 by
sections of O(1, 1).

Proposition 4.2. The cone of effective 3-cycles Eff3(X
5
r ) is not linearly generated for r ≥ 4.

Proof. It suffices to prove the claim for r = 4. For 4 general lines Li in P5 there is a Segre
cubic S containing the lines as rulings P1 × {point}. The normal bundle of Li in S is easily
shown to be O ⊕O. Fulton’s blowup formula [Fu, Theorem 6.7] then shows that the proper
transform of S on X5

4 has class

[S̃] = 3H2 −

4∑

i=1

(4Fi +Gi).

It is straightforward to check that [S̃] is not in the linear cone Lin3(X
5
4 ).
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5 Curves and divisors on X
n
r

In this section, we round out the picture for cycles on the varieties Xn
r by considering linear

generation of cones of curves and divisors. We write l to denote the pullback of the class
of a line in Pn and li for the class of a line in an exceptional divisor which is contracted by
blowing down.

Proposition 5.1. For r ≤ 7 lines in P4, the cone of curves Eff1(X
4
r ) is linearly generated.

For r ≥ 10 lines in P4, this cone is not linearly generated.

Proof. For any 3 lines in P4, there is a line intersecting all 3. Therefore, the linear cone
Lin1(X

4
r ) is generated by classes li for i = 1, . . . , r and classes l − li − lj − lk for distinct

1 ≤ i, j, k ≤ r. The dual cone Lin1(X
4
r )

∗ is spanned by H, classes H −Ei for i = 1, . . . , r and
the class 3H − E1 − · · · − Er.

We claim that the last class is nef for any r ≤ 7. It suffices to prove this for r = 7.
By semicontinuity, it suffices to prove this for any chosen set of 7 disjoint lines in P4. A
computation in Macaulay2 shows that, for a set of 7 randomly chosen lines, the base locus of
3H −

∑
7

i=1
Ei has no component that is a proper transform of a curve in P4. On the other

hand, the cones of curves of exceptional divisors are linearly generated, and so 3H −
∑

7

i=1
Ei

has non-negative degree on any curve contained in an exceptional divisor. So this class is nef.

In the other direction, using the intersection numbers in Section 1.1 we compute that the
top self-intersection number of the divisor 3H −

∑r
i=1

Ei on X4
r is 81 − 9r. For any r ≥ 10,

this is negative, so the class is not nef, and therefore Lin1(X
4
r ) does not equal Eff1(X

5
r ).

For 8 lines in P4, the base locus of the corresponding class 3H−
∑

8

i=1
Ei has a component

that comes from a curve C of degree 19 in P4. Computation shows that C intersects each of
the blown-up lines transversely in 6 points; if C were irreducible, we would be able to conclude
that 3H −

∑
8

i=1
Ei is nef and hence that the cone of curves is again linearly generated in

this case. Unfortunately, it seems to be out of reach of computation to decide whether C is
irreducible.

Proposition 5.2. The cone of curves Eff1(X
5
r ) is linearly generated if and only if r ≤ 5.

Proof. In this case, the linear cone Lin1(X
5
r ) is generated by the li together with classes

l − li − lj . The dual cone Lin1(X
5
r )

∗ is then spanned by H, classes H − Ei and the class
2H − E1 − · · · − Er.

In the proof of Theorem 4.1, we showed that 2H −E1 − · · · −E5 is a nef divisor class on
X5

5 , and therefore 2H − E1 − · · · − Er is nef on X5
r for any r ≤ 5.

In the other direction, the top self-intersection number of the divisor 2H −
∑r

i=1
Ei on

X5
r is 32 − 6r. For any r ≥ 6, this is negative, so 2H −

∑r
i=1

Ei is not nef. Hence, Lin1(X
5
r )

does not equal Eff1(X
5
r ).

Proposition 5.3. The cone of divisors Eff
1
(X4

r ) is linearly generated if and only if r ≤ 4.

Proof. It suffices to prove the linear generation claim for r = 4. The linear cone Lin1(X4
4 ) is

spanned by classes Ei and H − Ei − Ej, so as in Proposition 5.2, the dual cone Lin1(X4
4 )

∗
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is spanned by curve classes l, l − li and 2l −
∑

4

i=1
li. Curves in the classes l and l − li

evidently sweep out dense open subsets of P4, and consequently, they are nef. For the last
class, we argue as follows. For any point p ∈ P4, Schubert calculus shows that there is a plane
Π touching our 4 blown-up lines Li and passing through p. There is a conic in Π passing
through the points Li ∩ Π and p. The proper transform of this conic on X4

4 then has class
2l −

∑
4

i=1
li. Since these conics sweep out a dense open subset of X4

4 , the class is nef as
required.

Now we will prove that the cone is not linearly generated for r = 5; again this implies
the claim for r ≥ 5. In this case, the dual of the cone of linear divisors has an extremal
ray spanned by the effective class γ = 2l −

∑
5

i=1
li. We claim that γ is not nef. To see

this, it suffices to find a big divisor D on X4
5 with D · γ = 0; applying Kodaira’s lemma, we

can write D ≡ A + E with A ample and E effective, so we must have E · γ < 0. Choose
D = −K = 5H − 2

∑
5

i=1
Ei. This class has top self-intersection D4 > 0 as one checks

again using the intersection numbers in Section 1.1; therefore it is enough to show that D is
nef. The divisor D is represented by the union of the proper transforms of the linear spaces
Span(Li, Li+1) (where subscripts should be read modulo 5), and so it is enough to check that
the restriction to each of these proper transforms is nef. Note, however, that each proper
transform is isomorphic to X3

2,3 and the restriction of D to X3
2,3 again decomposes into a

union of proper transforms of linear spaces, which are now of the form X2
1,1 or X2

0,3. Both of
these surfaces are toric, so it is straightforward to check that the restriction of D to either
surface is nef. Hence D is nef as required.

Proposition 5.4. The cone of divisors Eff
1
(X5

r ) is linearly generated if and only if r ≤ 3.

Proof. For r ≤ 3, the variety Eff
1
(X5

r ) is toric, so the claim follows from Proposition 1.4.

For the converse, as above, it suffices to prove the claim when r = 4. The divisor class
3H − 2E1 − 2E2 − 2E3 −E4 is not in the linear cone. This class is represented by the proper
transform of a cubic 4-fold double along L1, L2, L3 and containing L4. A straightforward
dimension count shows that such 4-folds exist for any 4-tuple of lines in P5, and therefore

Eff
1
(X5

r ) is not linearly generated.

6 Appendix: 2-cycles on X
3
2,2 and X

4
3,2

In this section, we prove linear generation for the cones of effective 2-cycles on the spaces X3
2,2

and X4
3,2. These linear generation results were used in the proofs of Theorems 3.2 and 4.1.

Lemma 6.1. The cone of effective 2-cycles Eff2(X
3
2,2) is linearly generated.

Proof. Writing down all linear classes on X3
2,2 and computing the dual, we find that that
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Lin2(X
3
2,2)

∗ is spanned by the classes

H2 HE1 HE2 −E2
3 −E2

4

α 1 0 0 0 0

β 1 −1 0 0 0

γ 1 −1 −1 0 0

δ 1 0 0 −1 0

ε 2 −1 0 −1 −1

κ 2 −1 −1 −1 −1

In each case, irreducible curves representing the class cover a dense open set in X3
2,2. For

example, the class κ is represented by proper transforms of conics touching L1 and L2 and
passing through p3 and p4. Choosing a general point p ∈ P3, there is a plane Π containing p,
p3 and p4; this plane intersects L1 and L2 in points q1 and q2, and there is a irreducible conic
in Π through the 5 points q1, q2, p3, p4 and p.

Lemma 6.2. The cone of effective 2-cycles Eff(X3
3,1) is linearly generated.

Proof. The dual Lin2(X
3
3,1)

∗ of the linear cone of 2-cycles is spanned by the classes

H2 HE1 −E2
2 −E2

3 −E2
4

α 1 0 0 0 0

β 1 −1 0 0 0

γ 1 0 −1 0 0

δ 2 −1 −1 −1 0

ε 3 −2 −1 −1 −1

Curves representing the first three classes evidently cover X, hence are nef. For the class δ,
picking any point p on L1, the plane spanned by p2, p3 and p is covered by irreducible conics
with class δ; varying p along L1 these conics cover X, and so ε is nef. Finally, we can write ε
as δ + (H2 −HE1 + E2

4); since δ is nef, any divisor which is negative on ε must be negative
on H2−HE1+E2

4 , which is the class of a line passing through p4 and intersecting L1. If π is
the plane spanned by p4 and L1, these lines sweep out π, and therefore H2 −HE1 +E2

4 and
hence ε can be negative only on the proper transform of π. Note however that π is a linear
class, and ε is in the dual of the linear cone, so ε is in fact nef.

Lemma 6.3. The cone of effective 2-cycles Eff(X4
2,3) is linearly generated.

Proof. The strategy of proof is very similar to previous cases. The dual Lin2(X
4
2,3)

∗ of the
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linear cone of 2-cycles is spanned by the classes

H2 HE1 HE2 −E2
1 −E2

2 −E2
3 −E2

4 −E2
5

α1 1 0 0 0 0 0 0 0

α2 1 −1 0 0 0 0 0 0

α3 1 −1 −1 0 0 0 0 0

α4 1 0 0 −1 0 0 0 0

α5 1 −2 0 −1 0 0 0 0

α6 2 −2 −1 −1 −1 0 0 0

α7 2 −1 −1 0 0 −1 −1 0

α8 3 −3 −2 −1 0 −1 −1 −1

α9 3 −3 −1 −3 −1 −1 0 0

α10 4 −4 −4 −1 −1 −1 −1 −1

The first 6 classes are pulled back from classes on toric varieties that are easily checked to be
nef. Similarly, α7 is pulled back from a nef class on X4

2,2. The last class α10 can be written as

D2, where D is the divisor class 2H−
∑

i Ei. This is the pullback of the class D̃ = 2H−
∑

i Ei

on X5
5 , which was shown to be nef in Theorem 4.1, so D is a nef divisor, and hence by Lemma

1.2, we know that α10 = D2 is nef too.

It remains to treat α8 and α9, which we do by decomposition. We start with α8, which
can be decomposed as follows:

α8 H2 HE1 HE2 −E2
1 −E2

2 −E2
3 −E2

4 −E2
5

β1 1 0 −1 0 0 0 0 −1

β2 2 −3 −1 −1 0 −1 −1 0

The class β1 is pulled back from a nef class on the toric variety X4
1,1 and so is nef. The class

β2 is represented by the proper transform of a quadric containing L1, intersecting L2, and
passing through p3 and p4. Let Π be a 3-dimensional linear space containing L1 and passing
through p3 and p4; then Π intersects L2 in a point, call it p2. Let π be the plane spanned
by L1 and p2 and let π′ be any plane containing p3 and p4: then Q = π ∪ π′ is a quadric
with class β. Swapping the roles of p2 and p3, say, we see that the base locus of the linear
system |Q| consists of a union of lines in Π. Writing down the classes of linear 1-cycles on
X3

3,1, we check that Q has positive degree on any such class. So Q is nef inside the proper
transform of Π. It follows that any 2-cycle which intersects α8 and hence β2 negatively must
be contained in the proper transform of Π. On the other hand, by Lemma 6.2, we know that
2-cycles in X3

3,1 are linearly generated, and α8 is in the dual of the linear cone. Hence α8 is
nef, as required.

For α9 we consider the following decomposition:

α9 H2 HE1 HE2 −E2
1 −E2

2 −E2
3 −E2

4 −E2
5

γ1 1 0 0 0 0 −1 0 0

γ2 1 −2 −1 −1 0 0 0 0

γ3 1 −1 −2 0 −1 0 0 0
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Again the first class is pulled back from a nef class on a toric variety, hence is nef. For γ2 (and
similarly for γ3), we argue as follows: γ2 is represented by the proper transform of a plane π
containing L1 and intersecting L2 in a point. Let Π be the 3-dimensional space spanned by
L1 and L2. The proper transform Π̃ of Π is a toric variety X3

2 . One checks that the proper
transform of π is a nef divisor in X3

2 , hence any surface intersecting γ2 negatively must lie in

Π̃. On the other hand, as X3
2 is toric, its cone of effective divisors is linearly generated, and

so γ2 has non-negative degree on surfaces contained in X3
2 .
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de morphismes des schémas. III. Inst. Haute Études Sci. Publ. Math. No. 28 (1966).
Available at http://www.numdam.org/item/PMIHES_1966__28__5_0

[Kl] S. Kleiman. The transversality of a general translate. Compos. Math. 28 no.3 (1974),
287–297.

[Li] Q. Li. Pseudo-effective and nef cones on spherical varieties. Math. Z. 280 3–4 (2015),
945–979.

[M2] Macaulay2 computations. Ancillary files provided with this ArXiv posting.

[Nor] W. Bruns, B. Ichim, T. Römer, R. Sieg and C. Söger. Normaliz. Algorithms for rational
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