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First-Order Algorithms Converge Faster than O(1/k) on Convex

Problems

Ching-pei Lee · Stephen J. Wright

Abstract It is well known that both gradient descent and stochastic coordinate descent achieve a global
convergence rate of O(1/k) in the objective value, when applied to a scheme for minimizing a Lipschitz-
continuously differentiable, unconstrained convex function. In this work, we improve this rate to o(1/k). We
extend the result to proximal gradient and proximal coordinate descent on regularized problems to show
similar o(1/k) convergence rates. The result is tight in the sense that a rate of O(1/k1+ǫ) is not generally
attainable for any ǫ > 0, for any of these methods.

Keywords Gradient descent methods · Coordinate descent methods · Proximal gradient methods · Convex
optimization · Complexity

1 Introduction

Consider the unconstrained optimization problem

min
x

f(x), (1)

where f has domain in an inner-product space and is convex and L-Lipschitz continuously differentiable for
some L > 0. We assume throughout that the solution set Ω is non-empty. (Elementary arguments based
on the convexity and continuity of f show that Ω is a closed convex set.) Classical convergence theory for
gradient descent on this problem indicates a O(1/k) global convergence rate in the function value. Specifically,
if

xk+1 := xk − αk∇f(xk), k = 0, 1, 2, . . . , (2)

and αk ≡ ᾱ ∈ (0, 1/L], we have

f (xk)− f
∗ ≤

dist(x0, Ω)2

2ᾱk
, k = 1, 2, . . . , (3)

where f∗ is the optimal objective value and dist(x,Ω) denotes the distance from x to the solution set. The
proof of (3) relies on showing that

k (f (xk)− f
∗) ≤

k
∑

T=1

(f (xT )− f
∗) ≤

1

2ᾱ
dist(x0, Ω)2, k = 1, 2, . . . , (4)
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where the first inequality utilizes the fact that gradient descent is a descent method (yielding a nonincreasing
sequence of function values {f(xk}). We demonstrate in this paper that the bound (3) is not tight, in the
sense that k(f(xk) − f

∗) → 0, and thus f(xk) − f
∗ = o(1/k). This result is a consequence of the following

technical lemma.

Lemma 1 Let {∆k} be a nonnegative sequence satisfying the following conditions:

1. {∆k} is monotonically decreasing;
2. {∆k} is summable, that is,

∑∞

k=0∆k <∞.

Then k∆k → 0, so that ∆k = o(1/k).

Proof The proof uses simplified elements of the proofs of Lemmas 2 and 9 of Section 2.2.1 from [14]. Define
sk := k∆k and uk := sk +

∑∞

i=k∆i. Note that

sk+1 = (k + 1)∆k+1 ≤ k∆k +∆k+1 ≤ sk +∆k. (5)

From (5) we have

uk+1 = sk+1 +
∞
∑

i=k+1

∆i ≤ sk +∆k +
∞
∑

i=k+1

∆i = sk +
∞
∑

i=k

∆i = uk,

so that {uk} is a monotonically decreasing nonnegative sequence. Thus there is u ≥ 0 such that uk → u, and
since limk→∞

∑∞

i=k∆i = 0, we have sk → u also.

Assuming for contradiction that u > 0, there exists k0 > 0 such that sk ≥ u/2 > 0 for all k ≥ k0, so that
∆k ≥ u/(2k) for all k ≥ k0. This contradicts the summability of {∆k}. Therefore we have u = 0, so that
k∆k = sk → 0, proving the result. ⊓⊔

Our claim about the fixed-step gradient descent method follows immediately by setting ∆k = f(xk)− f
∗

in Lemma 1. We state the result formally as follows, and prove it at the start of Section 2.

Theorem 1 Consider (1) with f convex and L-Lipschitz continuously differentiable and nonempty solution
set Ω. If the step sizes satisfy αk ≡ ᾱ ∈ (0, 1/L] for all k, then gradient descent (2) generates objective values
f(xk) that converge to f∗ at an asymptotic rate of o(1/k).

This result shows that the o(1/k) rate for gradient descent with a fixed short step size is universal
on convex problems, without any additional requirements such as the boundedness of Ω assumed in [4,
Proposition 1.3.3]. In the remainder of the paper, we show that this faster rate holds for several other
smooth optimization algorithms, including gradient descent with fixed steps in the larger range (0, 2/L),
gradient descent with various line-search strategies, and stochastic coordinate descent with arbitrary sampling
strategies. We then extend the result to algorithms for regularized convex optimization problems, including
proximal gradient and stochastic proximal coordinate descent.

Except for the cases of coordinate descent and proximal coordinate descent which require a finite-
dimensional space so that all the coordinates can be processed, our results apply to any inner-product
spaces. Assumptions such as bounded solution set, bounded level set, or bounded distance to the solution
set, which are commonly assumed in the literature, are all unnecessary. We can remove these assumptions
because an implicit regularization property causes the iterates to stay within a bounded area.

In our description, the Euclidean norm is used for simplicity, but our results can be extended directly to
any norms induced by an inner product,1 provided that Lipschitz continuity of ∇f is defined with respect
to the corresponding norm and its dual norm.

1 We meant that given an inner product < ·, · >, the norm ‖ · ‖ is defined as ‖x‖ :=
√
< x, x >.
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Related Work. Our work was inspired by [13, Corollary 2] and [4, Proposition 1.3.3], which improve conver-
gence for certain algorithms and problems on convex problems in a Euclidean space from O(1/k) to o(1/k)
when the level set is compact. Our paper develops improved convergence rates of several algorithms on con-
vex problems without the assumption on the level set, with most of our results applying to non-Euclidean
Hilbert spaces. The main proof techniques in this work are somewhat different from those in the works cited
here.

For an accelerated version of proximal gradient on convex problems, it is proved in [2] that the convergence
rate can be improved fromO(1/k2) to o(1/k2). Accelerated proximal gradient is a more complicated algorithm
than the nonaccelerated versions we discuss, and thus [2] require a more complicated analysis that is quite
different from ours.

[6] have stated a version of Lemma 1 with a proof different from the proof that we present, using it to
show the convergence rate of the quantity ‖xk − xk+1‖ of a version of the alternating-directions method
of multipliers (ADMM). Our work differs in the range of algorithms considered and the nature of the
convergence. We also provide a discussion of the tightness of the o(1/k) convergence rate.

2 Main Results on Unconstrained Smooth Problems

We start by detailing the procedure for obtaining (4), to complete the proof of Theorem 1. First, we define

M(α) := α− 1
2Lα

2. (6)

From the Lipschitz continuity of ∇f , we have for any point x and any real number α that

f (x− α∇f(x)) ≤ f(x)−∇f(x)⊤ (α∇f(x)) +
L

2
‖α∇f(x)‖

2
= f(x)−M(α)‖∇f(x)‖

2
. (7)

Clearly,

α ∈

(

0,
1

L

]

⇒ M(α) ≥ 1
2α > 0, (8)

so in this case, we have by rearranging (7) that

‖∇f(x)‖2 ≤
1

M(α)
(f(x)− f(x− α∇f(x))) ≤

2

α
(f(x)− f(x− α∇f(x))) . (9)

Considering any solution x̄ ∈ Ω and any T ≥ 0, we have for gradient descent (2) that

‖xT+1 − x̄‖
2 = ‖xT − αT∇f(xT )− x̄‖

2 = ‖xT − x̄‖
2 + α2

T ‖∇f(xT )‖
2 − 2αT∇f(xT )

⊤ (xT − x̄) . (10)

Since αT ∈ (0, 1/L] in (10), from (9) and the convexity of f (implying ∇f(xT )
T (x̄− xT ) ≤ f

∗ − f(xT )), we
have

‖xT+1 − x̄‖
2 ≤ ‖xT − x̄‖

2 + 2αT (f (xT )− f (xT+1)) + 2αT (f∗ − f (xT )) . (11)

By rearranging (11) and using αT ≡ ᾱ ∈ (0, 1/L],

f (xT+1)− f
∗ ≤

1

2ᾱ

(

‖xT − x̄‖
2 − ‖xT+1 − x̄‖

2
)

. (12)

We then obtain (4) by summing (12) from T = 0 to T = k − 1 and noticing that x̄ is arbitrary in Ω.
Theorem 1 applies to step sizes in the range (0, 1/L] only, but it is known that gradient descent converges

at the rate of O(1/k) for both the fixed step size scheme with ᾱ ∈ (0, 2/L) and line-search schemes. Next,
we show that o(1/k) rates hold for these variants too. We then extend the result to stochastic coordinate
descent with arbitrary sampling of coordinates.
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2.1 Gradient Descent with Longer Steps

In this subsection, we allow the steplengths αk for (2) to vary from iteration to iteration, according to the
following conditions, for some γ ∈ (0, 1]:

αk ∈ [C2, C1], C2 ∈

(

0,
2− γ

L

]

, C1 ≥ C2, (13a)

f (xk − αk∇f(xk)) ≤ f (xk)−
γαk

2
‖∇f(xk)‖

2
, (13b)

Note that these conditions encompass a fixed-steplength strategy with αk ≡ C2 as a special case, by setting
C1 = C2, and noting that condition (13b) is a consequence of (7). (Note too that αk ≡ C2 ∈ (0, (2 − γ)/L]
can be almost twice as large as the bound 1/L considered above.)

The main result for this subsection is as follows.

Theorem 2 Consider (1) with f convex and L-Lipschitz continuously differentiable and nonempty solution
set Ω. If the step sizes αk satisfy (13), then gradient descent (2) generates objective values f(xk) converging
to f∗ at an asymptotic rate of o(1/k).

We give two alternative proofs of this result to provide different insights. The first proof is similar to
the one we presented for Theorem 1 at the start of this section. The second proof holds only for Euclidean
spaces. This proof improves the standard proof of [10, Section 2.1.5].

We start from the following lemma, which verifies that the iterates remain in a bounded set and is used
in both proofs.

Lemma 2 Consider algorithm (2) with any initial point x0, and assume that f is convex and L-Lipschitz-
continuously differentiable for some L > 0. Then when the sequence of steplengths αk is chosen to satisfy
(13), all iterates xk lie in a bounded set. In particular, for any x̄ ∈ Ω and any k ≥ 0, we have that

‖xk+1 − x̄‖
2 ≤ ‖x0 − x̄‖

2 +
2C1

γ
(f (x0)− f (xk+1)) + 2C2

k
∑

T=0

(f∗ − f (xT )) (14)

≤ ‖x0 − x̄‖
2 +

2C1

γ
(f (x0)− f

∗) . (15)

Proof By (13b) and the convexity of f , (10) further implies that for any T ≥ 0,

‖xT+1 − x̄‖
2 − ‖xT − x̄‖

2 ≤
2αT

γ
(f (xT )− f (xT+1)) + 2αT (f∗ − f (xT )) . (16)

We know that the first term is nonnegative from (13b), while the second term is nonpositive from the
optimality of f∗. Therefore, (16) implies

‖xT+1 − x̄‖
2
− ‖xT − x̄‖

2
≤

2C1

γ
(f (xT )− f (xT+1)) + 2C2 (f

∗ − f (xT )) . (17)

We then obtain (14) by summing (17) for T = 0, 1, . . . , k and telescoping. By noting that f(xk) ≥ f
∗ for all

k, (15) follows. ⊓⊔

The first proof of Theorem 2 is as follows.

Proof (First Proof of Theorem 2) We again consider Lemma 1 with ∆k := f(xk) − f∗, which is always
nonnegative from the optimality of f∗. Monotonicity is clear from (13b), so we just need to show summability.
By rearranging (14) and noting f(xk+1) ≥ f

∗, we obtain

2C2

k
∑

T=0

∆T ≤ ‖x0 − x̄‖
2 − ‖xk+1 − x̄‖

2 +
2C1

γ
∆0 ≤ ‖x0 − x̄‖

2 +
2C1

γ
∆0. ⊓⊔
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For the second proof of Theorem 2, we first outline the analysis from [10, Section 2.1.5] and then show
how it can be modified to produce the desired o(1/k) rate. Denote by x̄T the projection of xT onto Ω (which
is well defined because Ω is nonempty, closed, and convex). We can utilize the convexity of f to obtain

∆T ≤ ∇f(xT )
⊤ (xT − x̄T ) ≤ ‖∇f(xT )‖dist (xT , Ω) ,

so that

‖∇f(xT )‖ ≥
∆T

dist(xT , Ω)
. (18)

By subtracting f∗ from both sides of (13b) and using αk ≥ C2 and (18), we obtain

∆T+1 ≤ ∆T −
C2γ∆

2
T

2dist (xT , Ω)
2 .

By dividing both sides of this expression by ∆T∆T+1 and using ∆T+1 ≤ ∆T , we obtain

1

∆T+1
≥

1

∆T
+

C2γ∆T

2dist (xT , Ω)2∆T+1

≥
1

∆T
+

C2γ

2dist (xT , Ω)2
. (19)

By summing (19) over T = 0, 1, . . . , k − 1, we obtain

1

∆k
≥

1

∆0
+

k−1
∑

T=0

C2γ

2dist (xT , Ω)2
⇒ ∆k ≤

1
∑k−1

T=0
C2γ

2dist(xT ,Ω)2

. (20)

A O(1/k) rate is obtained by noting from Lemma 2 that dist(xT , Ω) ≤ R0 for some R0 > 0 and all T , so
that

k−1
∑

T=0

1

dist (xT , Ω)
2 ≥

k

R2
0

. (21)

Our alternative proof uses the fact that (21) is a loose bound for Euclidean spaces and that an improved
result can be obtained by working directly with (20). We first use the Bolzano-Weierstrass theorem (a
bounded and closed set is sequentially compact in a Euclidean space) together with Lemma 2, to show that
the sequence {xk} approaches the solution set Ω.

Lemma 3 Assume the conditions in Lemma 2 and in addition that f has domain in a Euclidean space
f : ℜn → ℜ. We have

lim
k→∞

dist (xk, Ω) = 0. (22)

Proof The proof is similar to [13, Proposition 1]. Assume for contradiction that (22) does not hold. Then
there are ǫ > 0 and an infinite increasing sequence {ki}, i = 1, 2, . . . , such that

dist (xki
, Ω) ≥ ǫ, i = 1, 2, . . . . (23)

From Lemma 2 and that {xki
} ⊂ ℜn, we can the sequence {xki

} lies in a compact set and therefore has an
accumulation point x∗. From (19), we have

1

∆ki+1

≥
1

∆ki

+
C2γ

2ǫ2
,

so that 1/∆k ↑ ∞ and hence ∆k ↓ 0. By continuity of f , it follows that f(x∗) = f∗, so that x∗ ∈ Ω by
definition, contradicting (23). ⊓⊔

We note that a result similar to Lemma 3 has been given in [5] using a more complicated argument with
more restricted choices of α.
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Proof (Second Proof of Theorem 2, for Euclidean Spaces) We start with (20) and show that

lim
k→∞

1
C2γ

2

∑k−1
T=0

1

dist(xT ,Ω)2

1
k

= 0,

or, equivalently,

lim
k→∞

k
∑k−1

T=0
1

dist(xT ,Ω)2

= 0. (24)

From the arithmetic-mean / harmonic-mean inequality,2 we have that

0 ≤
k

∑k−1
T=0

1

dist(xT ,Ω)2

≤

∑k−1
T=0 dist(xT , Ω)2

k
. (25)

Lemma 3 shows that dist(xT , Ω)→ 0, so by the Stolz-Cesàro theorem (see, for example, [9]), the right-hand
side of (25) converges to 0. Therefore, from the sandwich lemma, (24) holds. ⊓⊔

2.2 Coordinate Descent

We now extend Theorem 1 to the case of randomized coordinate descent. Our results can extend immediately
to block-coordinate descent with fixed blocks. Our analysis for coordinate descent requires Euclidean spaces
so that coordinate descent can go through all coordinates.

The standard short-step coordinate descent procedure requires knowledge of coordinate-wise Lipschitz
constants. Denoting by ei the ith unit vector, we denote by Li ≥ 0 the constants such that:

|∇if(x)−∇if(x+ hei)| ≤ Li |h| , for all x ∈ ℜn and all h ∈ ℜ, (26)

where ∇if(·) denotes the ith coordinate of the gradient. Note that if ∇f(x) is L-Lipschitz continuous, there
always exist L1, . . . , Ln ∈ [0, L] such that (26) holds. Without loss of generality, we assume Li > 0 for all i.
Given parameters {L̄i}

n
i=1 such that L̄i ≥ Li for all i, the coordinate descent update is

xk+1 ← xk −
∇ikf (xk)

L̄ik

eik , (27)

where ik is the coordinate selected for updating at the kth iteration. We consider the general case of stochastic
coordinate descent in which each ik is independently identically distributed following a fixed prespecified
probability distribution p1, . . . , pn satisfying

pi ≥ pmin, i = 1, 2, . . . , n;
n
∑

i=1

pi = 1, (28)

for some constant pmin > 0. Nesterov [11] proves that stochastic coordinate descent has a O(1/k) convergence
rate (in expectation of f) on convex problems. We show below that this rate can be improved to o(1/k).

Theorem 3 Consider (1) with f convex and nonempty solution set Ω, and that componentwise-Lipschitz
continuous differentiability (26) holds with some L1, . . . , Ln > 0. If we apply coordinate descent (27) and at
each iteration, ik is independently picked at random following a probability distribution satisfying (28), then
the expected objective Ei0,i1,...,ik−1

[f(xk)] converges to f∗ at an asymptotic rate of o(1/k).

2 This inequality says that for any real numbers a1, . . . , an > 0, their harmonic mean does not exceed their arithmetic mean.
Namely,

n
∑

n

i=1
a−1

i

≤
∑

n

i=1
ai

n
.
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Proof From (26) and that L̄i ≥ Li, by treating all other coordinates as non-variables, we have that for any
T ≥ 0,

f

(

xT −
∇if (xT )

L̄i
ei

)

− f (xT ) ≤ −
1

2L̄i
‖∇if (xT )‖

2, i = 1, . . . , n, (29)

showing that the algorithm decreases f at each iteration. Consider any x̄ ∈ Ω, by defining

r2T :=

n
∑

i=1

L̄i

pi
‖(xT − x̄)i‖

2
, (30)

we have from (27) that

r2T+1 = r2T +
1

L̄iT piT
‖∇iT f (xT )‖

2
−

2

piT
∇iT f (xT )

⊤
(xT − x̄)iT .

By taking expectation over iT on both sides of the above expression, we obtain from the convexity of f and
(29) that

EiT

[

r2T+1

]

− r2T
(29)

≤
1

pmin

n
∑

i=1

2pi

(

f (xT )− f

(

xT −
∇if (xT )

L̄i
ei

))

− 2∇f (xT )
⊤
(xT − x̄)

≤
2

pmin
(f (xT )− EiT [f (xT+1)]) + 2 (f∗ − f (xT )) . (31)

By taking expectation over i0, i1, . . . , iT−1 on (31) and summing (31) over T = 0, 1, . . . , k, we obtain

2

k
∑

T=0

(

Ei0,...,iT−1 [f(xT )]− f
∗
)

≤ r20 − Ei0,...,ik

[

r2k+1

]

+
2 (f (x0)− Ei0,...,ik [f (xk+1)])

pmin

≤ r20 +
2 (f (x0)− f

∗)

pmin
.

The result now follows from Lemma 1. ⊓⊔

3 Regularized Problems

We turn now to regularized optimization in an inner-product space:

min
x

F (x) := f(x) + ψ(x), (32)

where both terms are convex, f is L-Lipschitz-continuously differentiable, and ψ is extended-valued, proper,
and closed, but possibly nondifferentiable. We also assume that ψ is such that the prox-operator can be
applied easily, by solving the following problem for any given y and any λ > 0:

min
x

ψ (x) +
1

2λ
‖x− y‖

2
.

We assume further that the solution set Ω of (32) is nonempty, and denote by F ∗ the value of F for all
x ∈ Ω. We discuss two algorithms to show how our techniques can be extended to regularized problems.
They are proximal gradient (both with and without line search) and stochastic proximal coordinate descent
with arbitrary sampling.
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3.1 Short-Step Proximal Gradient

Given L̄ ≥ L, the kth step of the proximal gradient algorithm is defined as follows:

xk+1 ← xk + dk, dk := argmin
d
∇f(xk)

⊤d+
L̄

2
‖d‖2 + ψ (xk + d) . (33)

Note that dk is uniquely defined here, since the subproblem is strongly convex. It is shown in [3,12] that
F (xk) converges to F

∗ at a rate of O(1/k) for this algorithm, under our assumptions. We prove that a o(1/k)
rate can be attained.

Theorem 4 Consider (32) with f convex and L-Lipschitz continuously differentiable, ψ convex, and nonempty
solution set Ω. Given any L̄ ≥ L, the proximal gradient method (33) generates iterates whose objective value
converges to F ∗ at a o(1/k) rate.

Proof The method (33) can be shown to be a descent method from the Lipschitz continuity of ∇f and the
fact that L̄ ≥ L. From the optimality of the solution to (33) and that xk+1 = xk + dk,

−
(

∇f(xk) + L̄dk
)

∈ ∂ψ (xk+1) , (34)

where ∂ψ denotes the subdifferential of ψ. Consider any x̄ ∈ Ω. We have from (33) that for any T ≥ 0, the
following chain of relationships holds:

‖xT+1 − x̄‖
2
− ‖xT − x̄‖

2

= 2d⊤T (xT − x̄) + ‖dT ‖
2

= 2d⊤T (xT + dT − x̄)− ‖dT ‖
2

= 2

(

dT +
∇f(xT )

L̄

)⊤

(xT+1 − x̄)−
2

L̄
∇f(xT )

⊤ (xT + dT − x̄)− ‖dT ‖
2

(34)

≤ 2
ψ (x̄)− ψ (xT+1)

L̄
−

2

L̄
∇f(xT )

⊤ (xT − x̄)−
2

L̄
∇f(xT )

⊤dT − ‖dT ‖
2

≤
2

L̄

(

(ψ (x̄)− ψ (xT+1)) + f (x̄)−

(

f (xT ) +∇f(xT )
⊤dT +

L̄‖dT ‖
2

2

))

≤
2 (F ∗ − F (xT+1))

L̄
, (35)

where in the last inequality, we have used

f(x+ d) ≤ f(x) +∇f(x)⊤d+
L

2
‖d‖2 ≤ f(x) +∇f(x)⊤d+

L̄

2
‖d‖2. (36)

By rearranging (35) we obtain

F (xT+1)− F
∗ ≤

L̄

2

(

‖xT − x̄‖
2 − ‖xT+1 − x̄‖

2
)

.

The result follows by summing both sides of this expression over T = 0, 1, . . . , k− 1 and applying Lemma 1.
⊓⊔
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3.2 Proximal Gradient with Line Search

We discuss a line-search variant of proximal gradient, where the update is defined as follows:

xk+1 ← xk + dk, dk := argmin
d
∇f(xk)

⊤d+
1

2αk
‖d‖2 + ψ (xk + d) , (37)

where αk is chosen such that for given γ ∈ (0, 1] and C1 ≥ C2 > 0 defined as in (13a), we have

αk ∈ [C2, C1], F (xk + dk) ≤ F (xk)−
γ

2αk
‖dk‖

2. (38)

This framework is a generalization of that in Section 2.1, and includes the SpaRSA algorithm of [15], which
obtains an initial choice of αk from a Barzilai-Borwein approach and adjusts it until (38) holds. The approach
of the previous subsection can also be seen as a special case of (37)-(38) through the following elementary
result, whose proof is omitted.

Lemma 4 Consider a convex function ψ, a positive scalar a > 0 and two vectors b and x. If d is the unique
solution of the strictly convex problem

min
d

b⊤d+
a

2
‖d‖

2
+ ψ(x+ d),

then

b⊤d+
a

2
‖d‖

2
+ ψ(x+ d)− ψ(x) ≤ −

a

2
‖d‖

2
. (39)

By setting b = ∇f(x), 1/αk ≡ a = L̄ > 0 (where L̄ ≥ L), this lemma together with (36) implies that (38)
holds for any γ ∈ (0, 1]. Moreover, it also implies that for any k ≥ 0,

F (xk+1)− F (xk) = f (xk + dk)− f (xk) + ψ (xk + dk)− ψ (xk)

(36)

≤ ∇f (xk)
⊤
dk +

L

2
‖dk‖

2
+ ψ (xk + dk)− ψ (xk)

= ∇f (xk)
⊤ dk +

1

2αk
‖dk‖

2 + ψ (xk + dk)− ψ (xk) +

(

L

2
−

1

2αk

)

‖dk‖
2

(39)

≤ −
1

2αk
‖dk‖

2
+

(

L

2
−

1

2αk

)

‖dk‖
2

=−

(

1

αk
−
L

2

)

‖dk‖
2 .

Therefore, for any γ ∈ (0, 1], (38) holds whenever

α > 0,−
γ

2αk
≥ −

(

1

αk
−
L

2

)

,

or equivalently

αk ∈

(

0,
2− γ

L

]

,

which is how the upper bound for C2 is set.
We show now that this approach also has a o(1/k) convergence rate on convex problems.

Theorem 5 Consider (32) with f convex and L-Lipschitz continuously differentiable, ψ convex, and nonempty
solution set Ω. Given some γ ∈ (0, 1] and C2 and C1 such that C1 ≥ C2 and C2 ∈ (0, (2 − γ)/L], then the
algorithm (37) with αk satisfying (38) generates iterates {xk} whose objective values converge to F ∗ at a
rate of o(1/k). Moreover, the sequence of iterates is bounded.
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Proof From the optimality conditions of (37), we have

−

(

∇f(xT ) +
1

αT
dT

)

∈ ∂ψ (xT+1) . (40)

Now consider any x̄ ∈ Ω. We have from (37) that for any T ≥ 0, the following chain of relationships holds:

‖xT+1 − x̄‖
2
− ‖xT − x̄‖

2

= 2d⊤T (xT + dT − x̄)− ‖dT ‖
2

= 2 (dT + αT∇f(xT ))
⊤ (xT+1 − x̄)− 2αT∇f(xT )

⊤ (xT + dT − x̄)− ‖dT ‖
2

(40)

≤ 2αT (ψ (x̄)− ψ (xT+1))− 2αT∇f(xT )
⊤ (xT − x̄)− 2αT∇f(xT )

⊤dT − ‖dT ‖
2

≤ 2αT (ψ (x̄)− ψ (xT+1))− 2αT∇f(xT )
⊤ (xT − x̄)− 2αT∇f(xT )

⊤dT

= 2αT (ψ (x̄)− ψ (xT+1))− 2αT∇f(xT )
⊤ (xT − x̄)− 2αT∇f(xT )

⊤dT + αTL‖dT ‖
2
− αTL‖dT ‖

2

≤ 2αT

(

ψ (x̄)− ψ (xT+1) + f (x̄)−

(

f (xT ) +∇f(xT )
⊤dT +

L

2
‖dT ‖

2

))

+ αTL‖dT ‖
2

(38)

≤ 2αT (F ∗ − F (xT+1)) +
2Lα2

T

γ
(F (xT )− F (xT+1))

≤ 2C2 (F
∗ − F (xT+1)) +

2LC2
1

γ
(F (xT )− F (xT+1)) . (41)

By rearrangement, of this inequality, we obtain

F (xT+1)− F
∗ ≤

LC2
1

γC2
(F (xT )− F (xT+1)) +

1

2C2

(

‖xT − x̄‖
2 − ‖xT+1 − x̄‖

2
)

,

and by summing both sides and using telescoping sums, we find that
∑∞

T=0(F (xT+1) − F
∗) <∞, thus the

conditions of Lemma 1 are satisfied by ∆T := F (xT )− F
∗, and the o(1/k) rate follows.

By summing the inequality above finitely over T = 0, 1, . . . , k − 1, we obtain

0 ≤

k−1
∑

T=0

(F (xT+1)− F
∗) ≤

LC2
1

γC2
(F (x0)− F

∗) +
1

2C2

(

‖x0 − x̄‖
2 − ‖xk − x̄‖

2
)

.

By rearranging this inequality, we obtain a uniform upper bound on ‖xk− x̄‖, thus showing that the sequence
{xk} is bounded. ⊓⊔

3.3 Proximal Coordinate Descent

We now discuss the extension of coordinate descent to (32), with the assumption (26) on f , Euclidean domain
of dimension n, sampling weighted according to (28) as in Section 2.2, and the additional assumption of
separability of the regularizer ψ, that is,

ψ(x) =

n
∑

i=1

ψi(xi), (42)

where each ψi is convex, extended valued, and possibly nondifferentiable. As in our discussion of Section 2.2,
the results in this subsection can be extended directly to the case of block-coordinate descent.

Given the component-wise Lipschitz constants L1, L2, . . . , Ln and algorithmic parameters L̄1, L̄2, . . . , L̄n

with L̄i ≥ Li for all i, proximal coordinate descent updates have the form

xk+1 ← xk + dkikeik , dkik := argmin
d∈ℜ
∇ikf(xk)d+

L̄ik

2
d2 + ψik ((xk)ik + d) . (43)
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With pi ≡ 1/n for all i, [8] showed that the expected objective value converges to F ∗ at a O(1/k) rate. When
arbitrary sampling (28) is considered, (43) is a special case of the general algorithmic framework described
in [7]. The latter paper shows the same O(1/k) rate for convex problems under the additional assumption
that for any x0, we have

max
x:F (x)≤F (x0)

dist (x,Ω) <∞. (44)

We show here that with arbitrary sampling according to (28), (43) produces o(1/k) convergence rates for
the expected objective on convex problems, without the assumption (44).

The following result makes use of the quantity rk defined in (30).

Theorem 6 Consider (32) with f and ψ convex and nonempty solution set Ω. Assume further that (42) is
true, and that (26) holds with some L1, L2, . . . , Ln > 0. Given {L̄i}

n
i=1 with L̄i ≥ Li for all i, suppose that

proximal coordinate descent defines iterates according to (43), with ik chosen i.i.d. according to a probabil-
ity distribution satisfying (28). Then Ei0,i1,...,ik−1

[F (xk)] converges to F ∗ at an asymptotic rate of o(1/k).
Moreover, given any x̄ ∈ Ω, the sequence of Ei0,...,ik−1

r2k is bounded.

Proof From (26), we first notice that in the update (43),

F
(

xk + dkikeik
)

− F (xk) ≤ ∇ikf(xk)d
k
ik
+
L̄ik

2

(

dkik
)2

+ ψik

(

(xk)ik + dkik
)

− ψik

(

(xk)ik
)

. (45)

From Lemma 4, the method defined by (43) is a descent method. Optimality of the subproblem in (43) yields

−
(

∇iT f (xT ) + L̄iT d
T
iT

)

∈ ∂ψiT

(

(xT )iT + dTiT
)

. (46)

By taking any x̄ ∈ Ω, and using the definition (30), we have:

r2T+1 = r2T +
2L̄iT

piT

(

d⊤iT
)⊤ (

xT + dTiT − x̄
)

iT
−
L̄iT

piT

(

dTiT
)2

= r2T +
2

piT

(

∇iT f (xT ) + L̄iT d
T
iT

)⊤ (

xT + dTiT − x̄
)

iT
−
L̄iT

piT

(

dTiT
)2

−
2

piT
∇iT f (xT )

⊤
(xT − x̄)iT −

2

piT
∇iT f (xT )

⊤
dTiT

(46)

≤ r2T +
2

piT

(

ψiT (x̄iT )− ψiT

(

(xT )iT + dTiT
)

−∇iT f (xT )
⊤
(xT − x̄)iT

)

−
2

piT

(

∇iT f (xT )
⊤ dTiT +

L̄iT

2

∥

∥dkiT
∥

∥

2
)

≤ r2T +
2

piT

(

ψiT (x̄iT )− ψiT

(

(xT )iT
)

−∇iT f (xT )
⊤
(xT − x̄)iT

)

(47)

−
2

piT

(

∇iT f (xT )
⊤ dTiT +

L̄iT

2

∥

∥dTiT
∥

∥

2
+ ψiT

(

(xT )iT + dTiT
)

− ψiT

(

(xT )iT
)

)

.

By taking expectation over iT on both sides of (47) and using the convexity of f together with (45), we
obtain

EiT

[

r2T+1

]

− r2T

≤ 2 (ψ (x̄)− ψ (xT ) + f (x̄)− f (xT )) + 2

(

n
∑

i=1

F (xT )− F
(

xT + dTi ei
)

)

≤ 2 (F ∗ − F (xT )) +
2

pmin

n
∑

i=1

pi
(

F (xT )− F
(

xT + dTi ei
))

(48a)

= 2 (F ∗ − F (xT )) +
2

pmin
(F (xT )− EiT [F (xT+1)]) , (48b)
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where in (48a) we used the fact that (43) is a descent method. By taking expectation over i0, . . . , ik on (48b),
summing over T = 0, . . . , k, and applying Lemma 1, we obtain the result.

Boundedness of Ei0,...,ik−1
[r2k] follows from the same telescoping sum and the fact that F (xk) decreases

monotonically with k. ⊓⊔

Our result shows that, similar to gradient descent and proximal gradient, proximal coordinate descent
and coordinate descent also provide a form of implicit regularization in that the expected value of rk is
bounded. Since rk can be viewed as a weighted Euclidean norm, this observation implies that the iterates
are also in a sense expected to lie within a bounded region.

Our analysis here improves the rates in [8,7] in terms of the dependency on k and removes the assumption
of (13a) in [7]. Even aside from the improvement from O(1/k) to o(1/k), Theorem 6 is the first time that
a convergence rate for proximal stochastic coordinate descent with arbitrary sampling for the coordinates
is proven without additional assumptions such as (44). By manipulating (48b), one can also observe how
different probability distributions affect the upper bound, and it might also be possible to get better upper
bounds by using norms different from (30).

4 Tightness of the o(1/k) Estimate

We demonstrate that the o(1/k) estimate of convergence of {f(xk)} is tight by showing that for any ǫ ∈ (0, 1],
there is a convex smooth function for which the sequence of function values generated by gradient descent
with a fixed step size converges slower than O(1/k1+ǫ). The example problem we provide is a simple one-
dimensional function, so it serves also as a special case of stochastic coordinate descent and the proximal
methods (where ψ ≡ 0) as well. Thus, this example shows tightness of our analysis for all methods without
line search considered in this paper.

Consider the one-dimensional real convex function

f(x) = xp, (49)

where p is an even integer greater than 2. The minimizer of this function is clearly at x∗ = 0, for which
f(0) = f∗ = 0. Suppose that the gradient descent method is applied starting from x0 = 1. For any descent
method, the iterates xk are confined to [−1, 1] and we have

‖∇2f(x)‖ ≤ p(p− 1) for all x with |x| ≤ 1,

so we set L = p(p− 1). Suppose that ᾱ ∈ (0, 2/L) as above. Then the iteration formula is

xk+1 = xk − ᾱ∇f(xk) = xk

(

1− pᾱxp−2
k

)

, (50)

and by Lemma 2, all iterates lie in a bounded set: the level set [−1, 1] defined by x0. In fact, since p ≥ 4 and
ᾱ ∈ (0, 2/L), we have that

xk ∈ (0, 1] ⇒ 1− pᾱxp−2
k ∈

(

1−
2p

p(p− 1)
xp−2
k , 1

)

⊆

(

1−
2

p− 1
, 1

)

⊆

(

2

3
, 1

)

,

so that xk+1 ∈
(

2
3xk, xk

)

and the value of L remains valid for all iterates.
We show by an informal argument that there exists a constant C such that

f(xk) ≈
C

kp/(p−2)
, for all k sufficiently large. (51)

From (50) we have

f(xk+1) = xpk+1 = xpk

(

1− pᾱxp−2
k

)p

= f(xk)
(

1− pᾱf(xk)
(p−2)/p

)p

. (52)
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By substituting the hypothesis (51) into (52), and taking k to be large, we obtain the following sequence of
equivalent approximate equalities:

C

(k + 1)p/(p−2)
≈

C

kp/(p−2)

(

1− pᾱ
C(p−2)/p

k

)p

⇔

(

k

k + 1

)p/(p−2)

≈

(

1− pᾱ
C(p−2)/p

k

)p

⇔

(

1−
1

k + 1

)p/(p−2)

≈ 1− p2ᾱ
C(p−2)/p

k

⇔ 1−
p

p− 2

1

k + 1
≈ 1− p2ᾱ

C(p−2)/p

k

This last expression is approximately satisfied for large k if C satisfies the expression

p

p− 2
= p2ᾱC(p−2)/p.

Stated another way, our result (51) indicates that a convergence rate faster than O(1/k1+ǫ) is not possible
when steepest descent with fixed steplength is applied to the function f(x) = xp provided that

p

p− 2
≤ 1 + ǫ,

that is,

p ≥ 2
1 + ǫ

ǫ
and p is a positive even integer.

We follow [1] to provide a continuous-time analysis of the same objective function, using a gradient flow
argument. For the function f defined by (49), consider the following differential equation:

x′(t) = −α∇f(x(t)). (53)

Suppose that
x(t) = t−θ (54)

for some θ > 0, which indicates that starting from any t > 0, x(t) lies in a bounded area. Substituting (54)
into (53), we obtain

−θt−θ−1 = −αpt−θ(p−1),

which holds true if and only if the following equations are satisfied:
{

θ = αp,

−θ − 1 = −θp+ θ,

from which we obtain
{

θ = 1
p−2 ,

α = 1
p(p−2) .

Since x decreases monotonically to zero, for all t ≥ (p− 1)/(p− 2),

L = p (p− 1)

(

p− 1

p− 2

)−θ(p−2)

= p(p− 2)

is an appropriate value for a bound on ‖∇2f(x)‖. These values of α and L satisfy 0 < α ≤ 1
L , making α a

valid step size. The objective value is f(x(t)) = t−p/(p−2), matching the rate of (51).
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