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Abstract

We consider C∗-algebra E
q
n,m, which is a q-twist of two Cuntz-

Toeplitz algebras. For the case |q| < 1 we give an explicit formula,

which untwists the q-deformation, thus showing that the isomorphism

class of E
q
n,m does not depend on q. For the case |q| = 1 we give an

explicit description of all ideals in E
q
n,m. In particular, E

q
n,m contains

a unique largest ideal Mq. Then we identify E
q
n,m/Mq with the Rieffel

deformation of On ⊗ Om and use a K-theoretical argument to show

that the isomorphism class does not depend on q.
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1 Introduction

1. Since early 80-th, a wide study of non-classical models of mathematical
physics, quantum group theory and noncommutative probability (see e.g.,
[5, 18, 20, 36, 38, 50]) gave rise to a number of papers on operator algebras
generated by various deformed commutation relations, see [6, 32, 37] etc. A
general approach to the study of these relations has been provided by the
framework of quadratic ∗-algebras allowing Wick ordering (Wick algebras),
see [27]. The class of Wick algebras includes, among others, deformations
of canonical commutation relations of quantum mechanics, some quantum
groups and quantum homogeneous spaces, see e.g., [19, 33, 46, 41]. On
the other hand, one can consider Wick algebras as a deformation of Cuntz-
Toeplitz algebra, see [10, 14, 27].

Let {T kl
ij , i, j, k, l = 1, d} ⊂ C, T kl

ij = T
lk

ji. Wick algebra W (T ), see [27], is

the ∗-algebra generated by elements aj , a
∗
j , j = 1, d subject to the relations

a∗i aj = δij1+
d∑

k,l=1

T kl
ij ala

∗
k.

It was shown in [27] that properties ofW (T ) depend on a self-adjoint operator
T called the operator of coefficients of W (T ). Namely, let H = Cd and e1,
. . . , ed be the standard orthonormal basis of H. Construct

T : H⊗2 → H⊗2, T ek ⊗ el =

d∑

i,j=1

T lj
ikei ⊗ ej .

Notice that the subalgebra of W (T ) generated by {aj}dj=1 is free and can be
identified with the full tensor algebra F =

⊕∞
n=0H

⊗n via

ai1 . . . aik 7→ ei1 ⊗ · · · ⊗ eik ∈ H
⊗k.

Definition 1. The Fock representation of W (T ) is the unique irreducible
∗-representation πF,T determined by a cyclic vector Ω, ||Ω|| = 1, such that

πF,T (a
∗
j)Ω = 0, j = 1, d.

The problem of existence of πF,T is non-trivial and is one of the central
problems in representation theory of Wick algebras. Some sufficient condi-
tions are collected in the following theorem, see [6, 24, 27].
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Theorem 1. The Fock representation πF,T of W (T ) exists if one of the

conditions below is satisfied

• The operator of coefficients T ≥ 0;

• ||T || <
√
2− 1;

• T is braided, i.e. (1 ⊗ T )(T ⊗ 1)(1 ⊗ T ) = (T ⊗ 1)(1 ⊗ T )(1 ⊗ T )
on H⊗3 and ||T || ≤ 1. Moreover, if ||T || < 1 then πF,T is a faithful

representation of W (T ) and ||πF,T (aj)|| < (1 − ||T ||)− 1
2 . If ||T || = 1,

one can not guarantee boundedness of πF,T and in this case ker πF,T is a

∗-ideal I2 generated as a ∗-ideal by ker(1+T ). Hence πF,T is a faithful

representation of W (T )/I2.

Another important question in the theory of Wick algebras is the question
of stability of isomorphism classes of W(T ) = C∗(W (T )) for the case ||T || <
1. The following problem was posed in [26].

Conjecture 1. Let T : H⊗2 → H⊗2 be a self-adjoint braided operator and
||T || < 1. Then W(T ) ≃ W(0).

In particular, the authors of [26] have shown that the conjecture holds
for the case ||T || <

√
2− 1, for more results on the subject see [14], [29].

Consider the case T = 0 in a few more details. If d = dimH = 1, then
W (0) is generated by a single isometry s, s∗s = 1. In this case the universal
C∗-algebra E of W (0) exists and is isomorphic to the C∗-algebra generated
by the unilateral shift S in l2(Z+). Notice also that πF,0(s) = S, so the Fock
representation of the C∗-algebra E is faithful. The ideal I in E, generated by
1− ss∗ is isomorphic to the algebra of compact operators and E/I ≃ C(S1),
see [9]. When d ≥ 2, W (0) is generated by sj , s

∗
j , such that

s∗i sj = δij1, i, j = 1, d.

The Fock representation πF,d acts on F := Fd as follows

πF,d(sj)Ω = ej , πF,d(sj)ei1 ⊗ · · · ⊗ eik = ej ⊗ ei1 ⊗ · · · ⊗ eik , k ≥ 1,

πF,d(s
∗
j )Ω = 0, πF,d(s

∗
j )ei1 ⊗ · · · ⊗ eik = δji1ei2 ⊗ · · · ⊗ eik , k ≥ 1.

The universal C∗-algebra generated by W (0) with d ≥ 2 exists and is called

the Cuntz-Toeplitz agebra O
(0)
d . It is isomorphic to C∗(πF,d(W (0))), so the

Fock representation of O
(0)
d is faithful, see [10]. Further, the ideal I generated
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by 1 −∑d
j=1 sjs

∗
j is the unique largest ideal in O

(0)
d . It is isomorphic to the

algebra of compact operators on Fd. The quotient O
(0)
d /I is called the Cuntz

algebra Od. It is nuclear (as well as O
(0)
d ), simple and purely infinite, see [10]

for more details.
2. In this paper we study the C∗-algebras Eq

n,m generated by Wick algebras
with operator of coefficients T described as follows. LetH = Cn⊕Cm, |q| ≤ 1
and

Tu1 ⊗ u2 = 0, T v1 ⊗ v2 = 0, u1, u2 ∈ Cn, v1, v2 ∈ Cm,

Tu⊗ v = qv ⊗ u, Tv ⊗ u = qu⊗ v, u ∈ Cn, v ∈ Cm.

We denote the corresponding Wick algebra byWEq
n,m. Notice that T satisfies

the braid relation and ||T || = |q| ≤ 1 for any n,m ∈ N. In particular, the
Fock representation πF,q exists for |q| ≤ 1 and is faithful onWEq

n,m for |q| < 1.
The case n = 1, m = 1 was studied by various authors. Namely, WEq

1,1

is generated by isometries s1, s2 subject to the relations

s∗1s2 = qs2s
∗
1.

It is easy to see that the corresponding universal C∗-algebra E
q
1,1 exists for

any |q| ≤ 1.

If |q| < 1, the main result of [25] states that E
q
1,1 ≃ E

(0)
1,1 = O

(0)
2 for any

|q| < 1. In particular the Fock representation of Eq
1,1 is faithful.

The case |q| = 1 was studied in [30, 40, 47]. In this situation the additional
relation

s2s1 = qs1s2

holds in E
q
1,1. It was shown that Eq

1,1 is nuclear for any |q| = 1. Let Mq be the
ideal generated by the projections 1−s1s∗1 and 1−s2s∗2. Then E

q
1,1/Mq ≃ Aq,

where Aq is the non-commutative torus, see [42],

Aq = C∗(u1, u2 | u∗1u1 = u1u
∗
1 = 1, u∗2u2 = u2u

∗
2 = 1, u∗2u1 = qu1u

∗
2).

If q is not a root of unity, then the corresponding non-commutative torus Aq

is simple and Mq is the unique largest ideal in E
q
1,1. Let us stress that unlike

the case |q| < 1, the C∗-isomorphism class of Eq
1,1 is “unstable” with respect

to q. Namely, Eq1
1,1 ≃ E

q2
1,1 iff Aq1 ≃ Aq2, see [30, 40, 47].

One can consider another higher-dimensional analog of Eq
1,1. For a set

{qij}di,j=1 of complex numbers such that |qij| ≤ 1, qij = qji, qii = 1, and

4



d > 2, one can consider a C∗-algebra E{qij}, generated by sj, s
∗
j , j = 1, d

subject to the relations

s∗jsj = 1, s∗i sj = qijsjs
∗
i .

The case |qij| < 1 was considered in [34], where it was proved that E{qij}
is nuclear and the Fock representation is faithful. It turned out that the
fixed point C∗-subalgebra of E{qij} with respect to the canonical action of Td

is an AF-algebra and is independent of {qij}. However the conjecture that
E{qij} ≃ E{0} remains open.

The case |qij | = 1 was studied in [23, 30, 40]. It was shown that E{qij} is
nuclear for any such family {qij} and the Fock representation is faithful. For
more details on ideal structure and representation theory see [23, 30].

We focus on the study of Eq
n,m with n,m ≥ 2 (the case n = 1, m ≥ 2 will

be considered separately, see [49]). It is generated by isometries {sj}nj=1, and
{tr}mr=1, satisfying commutation relations of the following form

s∗i sj = 0, 1 ≤ i 6= j ≤ n,

t∗rts = 0, 0 ≤ r 6= s ≤ m, (1)

s∗jtr = qtrs
∗
j , 0 ≤ j ≤ n, 0 ≤ r ≤ m.

The analysis is separated into two conceptually different cases, |q| < 1 and
|q| = 1.

If |q| < 1, we show that Eq
n,m ≃ E0

n,m = O
(0)
n+m, where the latter is the

Cuntz-Toeplitz algebra with n+m generators.
For the case |q| = 1, we prove that Eq

n,m is nuclear, contains a unique
largest ideal Mq, and the quotient On ⊗q Om := Eq

n,m/Mq is simple and
purely infinite for any q specified above. Then we use the Kirchberg-Phillips
classification Theorem, see [31, 39], to get one of our main results. Namely
we show that

On ⊗q Om ≃ On ⊗ Om

for any q ∈ C, |q| = 1. Further we prove, that the Fock representation of Eq
n,m

is faithful for any |q| = 1 and use this fact to prove that Eq
n,m is isomorphic

to the Rieffel deformation of O
(0)
n ⊗O

(0)
m . Next we show that the isomorphism

class of Mq is independent on q and consider Eq
n,m as an (essential) extension

of On ⊗ Om by Mq and study the corresponding Ext group. In particular, if
gcd(n − 1, m − 1) = 1, this group is zero. Thus in this case, Eq

n,m and E1
n,m

both determine the zero class in Ext(On ⊗q Om,Mq). We stress that unlike
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the case of extensions by compacts, one can not immediately deduce that two
trivial essential extensions are isomorphic. So the problem of isomorphism
Eq
n,m ≃ E1

n,m remains open for further investigations.
3. Recall how the algebras generated by isometries discussed above, are
related to algebras of deformed canonical commutation relations.

We start with the case of one degree of freedom. The algebra Gq of
q-deformed canonical commutation relations, see [2, 36], is generated by ele-
ments a, a∗ such that

a∗a− qaa∗ = 1,

where q ∈ [−1, 1]. It is known, see [26], that the universal C∗-algebra Gq

generated by Gq exists for q ∈ [−1, 1) and Gq ≃ E for any q ∈ (−1, 1).
The algebra Gq,d of quon commutation relations with d degrees of freedom

was introduced and studied in [5, 18, 20, 50]. Namely, Gq,d is generated by
aj , a

∗
j , j = 1, d, subject to the commutation relations

a∗jai = δij1 + qaia
∗
j , i, j = 1, d, q ∈ (0, 1).

Notice that the operator T , corresponding to Gq,d has the form

Tei ⊗ ej = qej ⊗ ei

so it is a braided contraction with ||T || = q. In particular, for q <
√
2 − 1

one has Gq,d ≃ O0
d, where Gq,d is the C∗-algebra generated by Gq,d.

A multiparameter version of quons was considered in [6, 37, 38]. The
corresponding ∗-algebra G{qij}, qij = qji, |qij | ≤ 1, i, j = 1, d, is generated by

a∗i aj = δij1 + qijaja
∗
i , i, j = 1, d.

The operator T acts as Tei ⊗ ej = qijej ⊗ ei, so it is a braided contraction as
well. For |qij | <

√
2− 1 we get G{qij} ≃ O0

d. However, if |qij | = 1 for all i 6= j,
and |qii| < 1, then G{qij} ≃ E{qij}, see [40].

Take k ∈ (0, 1) and q ∈ C, |q| = 1. Construct H = Cn ⊕ Cm, n, m ≥ 2
and define T : H⊗2 → H⊗2 as follows

Tu1 ⊗ u2 = k u2 ⊗ u1, if either u1, u2 ∈ Cn or u1, u2 ∈ Cm

Tu⊗ v = q v ⊗ u, if u ∈ Cn, v ∈ Cm.

Denote the corresponding Wick algebra by WEq,k
n,m and its universal C∗-

algebra by Eq,k
n,m. This C∗-algebra is generated by sj , tr, j = 1, n, r = 1, m,

6



subject to the relations

s∗i sj = δij1 + k sjs
∗
i ,

t∗rtl = δrl1+ k tlt
∗
r, (2)

s∗jtr = q trs
∗
j , trsj = q sjtr.

Relations (2) can be regarded as an example of system considered in [4] in
the case of finite degrees of freedom. Applying the general stability result,
we get that Eq,k

n,m ≃ Eq
n,m for k <

√
2− 1.

Notice that for k = ±1 we get a discrete analogue of commutation rela-
tions for generalized statistics introduced in [35].

2 The case |q| < 1

We start with some lemmas. Let Λn denote the set of all words in alphabet
{1, n}. For any non-empty µ = (µ1, . . . , µk), and a family of elements b1,
. . . , bn, we denote by bµ the product bµ1 · · · bµk

; we also put b∅ = 1. In this
section we assume that any word µ belongs to Λn.

Lemma 1. Let Q =
∑n

i=1 sis
∗
i , then

∑

|µ|=k

sµQs
∗
µ =

∑

|ν|=k+1

sνs
∗
ν .

Proof. Straightforward.

Lemma 2. For any x ∈ Eq
n,m one has

∥∥∥
∑

|µ|=k

sµxs
∗
µ

∥∥∥ ≤ ‖x‖.

Proof. 1. First prove the claim for positive x. In this case one has 0 ≤ x ≤
‖x‖1. Hence 0 ≤ sµxs

∗
µ ≤ ‖x‖sµs∗µ, and
∥∥∥
∑

|µ|=k

sµxs
∗
µ

∥∥∥ ≤ ‖x‖ ·
∥∥∥
∑

|µ|=k

sµs
∗
µ

∥∥∥.

Note that s∗µsλ = δµλ, µ, λ ∈ Λn, |µ| = |λ| = k, implying that {sµs∗µ | |µ| = k}
form a family of pairwise orthogonal projections. Hence ‖∑|µ|=k sµs

∗
µ‖ = 1,

and the statement for positive x is proved.
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2. For any x ∈ Eq
n,m. write A =

∑
|µ|=k sµxs

∗
µ, then A∗ =

∑
|µ|=k sµxs

∗
µ

and
A∗A =

∑

|µ|=k

sµx
∗xs∗µ.

Then by the proved above,

‖A‖2 = ‖A∗A‖ ≤ ‖x∗x‖ = ‖x‖2.
Construct t̃l = (1−Q)tl, l = 1, m.

Lemma 3. The following commutation relations hold

s∗i t̃l = 0, i = 1, n, l = 1, m,

t̃∗r t̃l = 0, l 6= r l, r = 1, m,

t̃∗r t̃r = 1− |q|2Q > 0, r = 1, m.

Proof. We have s∗i (1− Q) = 0, implying that s∗i t̃l = 0 for any i = 1, n, and
l = 1, m.

Further,

t̃∗r t̃l = t∗r(1−Q)tl = t∗rtl −
n∑

i=1

t∗rsis
∗
i tl = δrl1−

n∑

i=1

|q|2sit∗rtls∗i =

= δrl(1− |q|2Q).
Proposition 1. For any r = 1, m, one has

tr =

∞∑

k=0

∑

|µ|=k

qksµt̃rs
∗
µ.

In particular, the family {si, t̃r, i = 1, n, r = 1, m} generates Eq
n,m.

Proof. Put M r
k =

∑
|µ|=k q

ksµt̃rs
∗
µ, k ∈ Z+. Then

M r
0 = tr −Qtr = tr −

∑

|µ|=1

sµs
∗
µtr,

and

M r
k =

∑

|µ|=k

qksµ(1−Q)trs
∗
µ =

∑

|µ|=k

sµ(1−Q)s∗µtr =

=
∑

|µ|=k

sµs
∗
µtr −

∑

|µ|=k+1

sµs
∗
µtr.
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Then

Sr
N =

N∑

k=0

M r
k = tr −

∑

|µ|=N+1

sµs
∗
µtr = tr − qN+1

∑

|µ|=N+1

sµtrs
∗
µ.

Since ‖∑|µ|=N+1 sµtrs
∗
µ‖ ≤ ‖tr‖ = 1 one has that Sr

N → tr in Eq
n,m as N →

∞.

Suppose that Eq
n,m is realised by Hilbert space operators. Consider the

left polar decomposition t̃r = t̂r ·cr, where c2r = t̃∗r t̃r = 1−|q|2Q > 0, implying
that t̂r is an isometry and

t̂r = t̃rc
−1
r ∈ E

q
n,m, r = 1, m.

Lemma 4. The following commutation relations hold

s∗i t̂r = 0, i = 1, n, r = 1, m,

t̂∗r t̂l = δrl1, r, l = 1, m.

Proof. Indeed, for any i = 1, n, and r = 1, m. one has

s∗i t̂r = s∗i t̃r c
−1
r = 0,

and
t̂∗r t̂l = c−1

r t̃∗r t̃lc
−1
r = 0, r 6= l.

Summing up the results stated above, we get the following

Theorem 2. Let t̂r = (1 − Q)tr(1 − |q|2Q)− 1
2 , r = 1, m. Then the family

{si, t̂r}ni=1
m
r=1 generates Eq

n,m, and

s∗i sj = δij1, t∗rtl = δrl1, s∗i tr = 0, i, j = 1, n, r, l = 1, m.

Proof. It remains to note that t̃r = t̂r(1 − |q|2Q) 1
2 , so t̃r ∈ C∗(t̂r, Q), so by

Proposition 1 the elements si, t̂r, i = 1, n, r = 1, m, generate Eq
n,m.

Corollary 1. Denote by vi, i = 1, n +m, the isometries generating E0
n,m =

O0
n+m. Then Theorem 2 implies that the correspondence

vi 7→ si, i = 1, n, vn+r 7→ t̂r, r = 1, m,

extends uniquely to a surjective homomorphism ϕ : E0
n,m → Eq

n,m.
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Our next aim is to construct the inverse homomorphism ψ : Eq
n,m → E0

n,m.
To do it, put

Q̃ =

n∑

i=1

viv
∗
i w̃r = vn+r(1− |q|2Q̃) 1

2 , r = 1, m.

Then w̃∗
rw̃r = 1− |q|2Q̃, and w̃∗

rw̃l = 0 if r 6= l, r, l = 1, m. Construct

wr =

∞∑

k=0

∑

|µ|=k

qkvµw̃rv
∗
µ, r = 1, m,

where µ runs over Λn, and set as above vµ = vµ1 · · · vµk
. Note that the series

above converges with respect to norm in E0
n,m.

Lemma 5. The following commutation relations hold

w∗
rwl = δrl1, v∗iwr = qwrv

∗
i , i = 1, n, r, l = 1, m.

Proof. First we note that v∗i w̃r = 0, and w̃∗
rvi = 0 for any i = 1, n, and

j = 1, m, implying that

v∗δ w̃r = 0, w̃∗
rvδ = 0, for any nonempty δ ∈ Λn, r = 1, m.

Let |λ| 6= |µ|, λ, µ ∈ Λn. If |λ| > |µ|, then λ = λ̂γ with |λ| = |µ| and

v∗λvµ = δ
λ̂µ
v∗γ.

Otherwise µ = µ̂β, |µ̂| = |λ| and

v∗λvµ = δλµ̂vβ .

So, if |λ| > |µ| one has

vλw̃
∗
rv

∗
λvµw̃rv

∗
µ = δ

λ̂µ
vλw̃

∗
rv

∗
γw̃rvµ = 0,

and if |µ| > |λ|, then

vλw̃
∗
rv

∗
λvµw̃rv

∗
µ = δλµ̂vλw̃

∗
rvβw̃rvµ = 0.
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Since v∗µvλ = δµλ1, if |µ| = |λ|, one has

w∗
rwr = lim

N→∞

( N∑

k=0

∑

|λ|=k

|q|kvλw̃∗
rv

∗
λ

)
·
( N∑

l=0

∑

|µ|=l

|q|lvµw̃rv
∗
µ

)

= lim
N→∞

N∑

k,l=0

∑

|λ|=k,|µ|=l

|q|k+lvλw̃
∗
rv

∗
λvµw̃rv

∗
µ = lim

N→∞

N∑

k=0

∑

|λ|,|µ|=k,

|q|2kvλw̃∗
rv

∗
λvµw̃rv

∗
µ

= lim
N→∞

N∑

k=0

∑

|µ|=k

|q|2kvµw̃∗
rw̃rv

∗
µ = lim

N→∞

N∑

k=0

∑

|µ|=k

|q|2kvµ(1− |q|2Q̃2)v∗µ

= lim
N→∞

N∑

k=0

(∑

|µ|=k

|q|2kvµv∗µ −
∑

|µ|=k+1

|q|2k+2vµv
∗
µ

)

= lim
N→∞

(
1− |q|2N+2

∑

|µ|=N+1

vµv
∗
µ

)
= 1.

Since w̃∗
rw̃l = 0, r 6= l, the same arguments as above imply that w∗

rwl = 0,
r 6= l.

For any non-empty µ ∈ Λn write σ(µ) = ∅ if |µ| = 1, and σ(µ) =
(µ2, . . . , µk) if |µ| = k > 1. Further, for any i = 1, n, r = 1, m one has

v∗iwr =

∞∑

k=0

∑

|µ|=k

qks∗i vµw̃rv
∗
µ = v∗i w̃r +

∞∑

k=1

∑

|µ|=k

qkδiµ1vσ(µ)w̃rv
∗
σ(µ)v

∗
i

= q

∞∑

k=0

∑

|µ|=k

qkvµw̃rv
∗
µv

∗
i = qwrv

∗
i .

Lemma 6. For any r = 1, m, one has w̃r = (1− Q̃)wr.

Proof. First note that (1− Q̃)vi = 0, i = 1, n, implies that

(1− Q̃)vµ = 0, |µ| ∈ Λn, µ 6= ∅.
Then

(1− Q̃)wr = (1− Q̃)
(∑

k=0

∑

|µ|=k

qkvµw̃rv
∗
µ

)

= (1− Q̃)w̃r +
∑

k=1

∑

|µ|=k

qk(1− Q̃)vµw̃rv
∗
µ = (1− Q̃)w̃r.
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To complete the proof it remains to note that Q̃vn+r = 0, r = 1, m. So,

Q̃w̃r = Q̃vn+r(1− |q|2Q̃) 1
2 = 0.

Theorem 3. Let vi, i = 1, n + m, be the isometries generating E0
n,m, and

Q̃ =
∑n

i=1 viv
∗
i . Put

w̃r = vn+r(1− |q|2Q̃) 1
2 and wr =

∑

k=0

∑

|µ|=k

qkvµw̃rv
∗
µ.

Then

v∗i vj = δij1, w∗
rwl = δrl1, v∗iwr = qwrv

∗
i , i, j = 1, n, r, l = 1, m.

Moreover, the family {vi, wr}ni=1
m
r=1 generates E0

n,m.

Proof. We need to prove only the last statement of the theorem. We have

vn+r = w̃r(1− |q|2Q̃)− 1
2 = (1− Q̃)wr(1− |q|2Q̃)− 1

2 ∈ C∗(wr, vi, i = 1, n).

Hence vi, wr, i = 1, n, r = 1, m, generate E0
n,m.

Corollary 2. The statement of Theorem 3 and the universal property of Eq
n,m

imply the existence of a surjective homomorphism ψ : Eq
n,m → E0

n,m defined

by

ψ(si) = vi, ψ(tr) = wr, i = 1, n, r = 1, m.

Now we are ready to formulate the main result of this section.

Theorem 4. For any q ∈ C, |q| < 1, one has an isomorphism Eq
n,m ≃ E0

n,m.

Proof. In Theorem 2, we constructed the surjective homomorphism ϕ : E0
n,m →

Eq
n,m defined by

ϕ(vi) = si, ϕ(vn+r) = t̂r, i = 1, n, r = 1, m.

Show that ψ : Eq
n,m → E0

n,m from Corollary 2 is the inverse of ϕ. Indeed, the

equalities ψ(si) = vi, i = 1, n, imply that

ψ(1−Q) = 1− Q̃.

12



Then, since ψ(tr) = wr, we get

ψ(t̃r) = ψ((1−Q)tr) = (1− Q̃)wr = w̃r, r = 1, m,

and

ψ(t̂r) = ψ(t̃r(1− |q|2Q)− 1
2 ) = w̃r(1− |q|2Q̃)− 1

2 = vn+r, r = 1, m.

So, ψϕ(vi) = ψ(si) = vi, ψϕ(vn+r) = ψ(t̂r) = vn+r, i = 1, n, r = 1, m, and

ψϕ = idE0
n,m
.

Show that ϕψ = idEq
n,m

. Indeed,

ϕ(w̃r) = ϕ(vn+r(1− |q|2Q̃) 1
2 ) = t̂r(1− |q|2Q) 1

2 = t̃r, r = 1, d.

Then for any r = 1, m, one has

ϕ(wr) =
∑

k=0

∑

|µ|=k

qkϕ(vµ)ϕ(w̃r)ϕv
∗
µ =

∑

k=0

∑

|µ|=k

qksµt̃rs
∗
µ = tr.

So, ϕψ(si) = ϕ(vi) = si, ϕψ(tr) = ϕ(wr) = tr, i = 1, n, r = 1, m.

3 The case |q| = 1

In this section, we discuss the case |q| = 1. Notice that for |q| = 1, the
relations in Eq

n,m imply that tjsi = qsitj , i = 1, n, j = 1, m. Indeed, for
Bij = tjsi − qsitj we have directly B∗

ijBij = 0.

3.1 Auxiliary results

In this subsection we collect some general facts about C∗-dynamical systems,
crossed products and Rieffel deformations which we will use in our consider-
ations.

3.1.1 Fixed point subalgebras

First we recall how properties of a fixed point subalgebra of a C∗-algebra
with an action of a compact group are related to properties of the whole
algebra.

13



Definition 2. Let A be a C∗-algebra with an action γ of a compact group
G. A fixed point subalgebra Aγ is a subset of all a ∈ A such that γg(a) = a
for all g ∈ G.

Notice that for every action of a compact group G on a C∗-algebra A one
can construct a faithful conditional expectation Eγ : A → Aγ onto the fixed
point subalgebra, given by

Eγ(a) =

∫

G

γg(a)dλ,

where λ is the Haar measure on G.
A homomorphism ϕ : A → B between C∗-algebras with actions α and β

of a compact group G is called equivariant if

ϕ ◦ αg = βg ◦ ϕ for any g ∈ G.

Proposition 2 ([7], Section 4.5, Theorem 1, 2). 1. Let γ be an action of

a compact group G on a C∗-algebra A. Then A is nuclear if and only

if Aγ is nuclear.

2. Let ϕ : A→ B be an equivariant ∗-homomorphism. Then ϕ is injective

on A if and only if ϕ is injective on Aα.

3.1.2 Crossed products

Given a locally compact group G and a C∗-algebra A with a G-action α,
consider the full crossed product C∗-algebra A ⋊α G, see [48]. One has two
natural embeddings into the multiplier algebra M(A⋊α G),

iA : A→M(A⋊α G), iG : G→M(A⋊α G),

(iA(a)f)(s) = af(s), (iG(t)f)(s) = αt(f(t
−1s)), t, s ∈ G, a ∈ A,

for f ∈ Cc(G,A).

Remark 1. Obviously, iG(s) is a unitary element ofM(A⋊αG) for any s ∈ G.
Recall that iG determines the following homomorphism denoted also by iG

iG : C
∗(G) → M(A⋊α G)

defined by

iG(f) =

∫

G

f(s)iG(s)dλ(s),

14



where λ is the left Haar measure on G.
Notice that for any g ∈ Cc(G,A) one has

(iG(f)g)(t) = f ·α g,

where ·α denotes the product in A⋊α G. In particular, when A is unital we
can identify iG(f) with f ·α1A, and in fact iG maps C∗(G) into A⋊αG. Also
notice that

iG(t)iA(a)iG(t)
−1 = iA(αt(a)) ∈M(A⋊α G).

If ϕ is an equivariant homomorphism between C∗-algebras A with a G-
action α and B with a G-action β, then one can define the homomorphism

ϕ⋊G : A⋊α G→ B ⋊β G, (ϕ⋊G)(f)(t) = ϕ(f(t)), f ∈ Cc(G,A).

Let A be a unital C∗-algebra with G-action α. Then ιA : C → A,

ιA(λ) = λ1A,

is an equivariant homomorphism, where G acts trivially on C. Since C⋊G =
C∗(G), one has that

ιA ⋊G : C∗(G) → A⋊α G.

In fact, in this case we have

ιA ⋊G = iG, (3)

where iG : C∗(G) → A ⋊α G is described in Remark 1. Indeed, for any
g ∈ Gc(G,A) one has

(iG(f) ·α g)(s) =
∫

G

f(t)αt(g(t
−1s))dt

=

∫

G

f(t)1Aαt(g(t
−1s))dt

= ((f(·)1A) ·α g)(s) = ((ιA ⋊G)(f) ·α g)(s),

implying iG(f) = (ιA ⋊G)(f) for any f ∈ C∗(G).
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3.1.3 Rieffel’s deformation

Below, we recall some basic facts on Rieffel’s deformations. Given a C∗-
algebra A equipped with an action α of Rn and a skew symmetric matrix
Θ ∈ Mn(R), one can construct the Rieffel deformation of A, denoted by
AΘ, see [1, 43]. In particular the elements a ∈ A such that x 7→ αx(a) ∈
C∞(Rn, A) form a dense subset A∞ in AΘ and for any a, b ∈ A∞ their product
in AΘ is given by the following oscillatory integral (see [43]):

a ·Θ b :=
∫

Rn

∫

Rn

αΘ(x)(a)αy(b)e
2πi〈x,y〉dxdy, (4)

where 〈·, ·〉 is a scalar product in Rn.
In what follows, we will be interested in periodic actions of Rn, i.e., we

assume that α is an action of Tn. Given a character χ ∈ T̂n ≃ Zn, consider

Aχ = {a ∈ A : αz(a) = χ(z)a for every z ∈ Tn}.

Then

A =
⊕

χ∈Zn

Aχ,

where some terms could be equal to zero, and Aχ1 ·Aχ2 ⊂ Aχ1+χ2 , A
∗
χ = A−χ.

So, Aχ, χ ∈ Zn, can be treated as homogeneous components of Zn-grading
on A. Conversely, any Zn-grading of A determines an action of Tn on A: for
a ∈ Ap we let αt(a) = e2πi〈t,p〉a (see, e.g., [48]).

For a periodic action α of Rn on a C∗-algebra A and a skew-symmetric
matrix Θ ∈ Mn(R), construct the Rieffel deformation AΘ. Notice that all
homogeneous elements belong to A∞. Apply formula (4) to a ∈ Ap, b ∈ Aq:

a ·Θ b =
∫

Rn

∫

Rn

e2πi〈Θ(x),p〉ae2πi〈y,q〉be2πi〈x,y〉dx dy

= a · b
∫

Rn

e2πi〈y,q〉
∫

Rn

e2πi〈x,−Θ(p)〉e2πi〈x,y〉dx dy

= a · b
∫

Rn

e2πi〈y,q〉δy−Θ(p) dy

= e2πi〈Θ(p),q〉a · b.

Thus, given a ∈ Ap and b ∈ Aq one has

a ·Θ b = e2πi〈Θ(p),q〉a · b. (5)
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Remark 2. Notice that AΘ also possesses a Zn-grading such that (AΘ)p = Ap

for every p ∈ Zn. Due to (5), we have a ·Θ b = a · b for any a, b ∈ A±p,
p ∈ Zn. Indeed, for any skew symmetric Θ ∈ Mn(R

n) and p ∈ Zn, one has
〈Θ p , ±p〉 = 0. The involution on (AΘ)p coincides with the involution on Ap.

Consider a C∗-dynamical system (A,Tn, α), and its covariant representa-

tion (π, U) on a Hilbert space H. For any p ∈ Zn ≃ T̂n, put

Hp = {h ∈ H | Uth = e2πi〈t,p〉h}.

Then H =
⊕

p∈Zn Hp (see [48]).

Proposition 3 ([8], Theorem 2.8). Let (π, U) be a covariant representation

of (A,Tn, α) on a Hilbert space H. Then one can define a representation πΘ
of AΘ as follows:

πΘ(a)ξ = e2πi〈Θ(p),q〉π(a)ξ,

for every ξ ∈ Hq, a ∈ Ap, p, q ∈ Zn. Moreover, πΘ is faithful if and only if

π is faithful.

It is known that Rieffel’s deformation can be embedded intoM(A⋊αR
n),

but for the periodic actions we have an explicit description of this embedding.

Proposition 4 ([45], Lemma 3.1.1). The following mapping defines an em-

bedding

iAΘ
: AΘ →M(A⋊α Rn), iAΘ

(ap) = iA(ap)iRn(−Θ(p)),

where p ∈ Zn and ap is homogeneous of degree p.

Proposition 5 ([28], Proposition 3.2 and [45], Section 3.1). Let (A,Rn, α)
be a C∗-dynamical system with periodic α and unital A. Put AΘ to be the

Rieffel deformation of A. There exist a periodic action αΘ of Rn on AΘ and

an isomorphism Ψ : AΘ ⋊αΘ Rn → A⋊α Rn such that the following diagram

is commutative

C∗(Rn) ≃ C0(R
n)

AΘ ⋊αΘ Rn A⋊α Rn

iRn iRn

Ψ
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Namely, αΘ(a) = α(a) holds for any a ∈ Ap, p ∈ Zn. Then it is easy to
verify that iAΘ

: AΘ →M(A⋊α R
n) with iRn : Rn →M(A⋊α R

n) determine
a covariant representation of (AΘ,R

n, αΘ) in M(A ⋊α Rn). Hence, by the
universal property of crossed product we get the corresponding homomor-
phism

Ψ: AΘ ⋊αΘ Rn →M(A⋊α Rn).

In fact, the range of Ψ coincides with A⋊αR
n and Ψ defines an isomorphism

Ψ: AΘ ⋊αΘ Rn → A⋊α Rn, (6)

see [28, 45] for more detailed considerations.
The following propositions shows that Rieffel’s deformation inherits prop-

erties of the non-deformed counterpart.

Proposition 6 ([28], Theorem 3.10). A C∗-algebra AΘ is nuclear if and only

if A is nuclear.

Proposition 7 ([28], Theorem 3.13). For a C∗-algebra A one has

K0(AΘ) = K0(A) and K1(AΘ) = K1(A).

3.1.4 Rieffel’s deformation of a tensor product

In this part we apply Rieffel’s deformation procedure to a tensor product of
two nuclear unital C∗-algebras equipped with an action of T.

Let A, B be C∗-algebras with actions α and β of T. Then there is a
natural action α⊗ β of T2 on A⊗B defined as

(α⊗ β)ϕ1,ϕ2(a⊗ b) = αϕ1(a)⊗ βϕ2(b).

Consider the induced gradings on A and B:

A =
⊕

p1∈Z
Ap1, B =

⊕

p2∈Z
Bp2.

Then the corresponding grading on A⊗ B is

A⊗ B :=
⊕

(p1,p2)t∈Z2

Ap1 ⊗Bp2 .
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In particular, a⊗1 ∈ (A⊗B)(p1,0)t and 1⊗ b ∈ (A⊗B)(0,p2)t , where a ∈ Ap1

and b ∈ Bp2.
Given q = e2πiϕ0 , consider

Θq =

(
0 ϕ0

2

−ϕ0

2
0

)
. (7)

We construct the Rieffel deformation (A⊗ B)Θq
.

Proposition 8. One has the following homomorphisms

ηA : A→ (A⊗ B)Θq
, ηA(a) = a⊗ 1,

ηB : B → (A⊗ B)Θq
, ηB(b) = 1⊗ b,

such that for homogeneous elements a ∈ Ap1 and b ∈ Bp2 it holds

ηB(b) ·Θq
ηA(a) = e2πip1p2ϕ0ηA(a) ·Θq

ηB(b).

Proof. Recall that Z2-homogeneous components of A ⊗ B and (A ⊗ B)Θq

coincide and will be considered the same. Let e1 = (1, 0)t, e2 = (0, 1)t.
Given a ∈ Ap, we have

ηA(a) = a⊗ 1 ∈ ((A⊗ B)Θq
)p e1,

implying that
ηA(a)

∗ = a∗ ⊗ 1 ∈ ((A⊗ B)Θq
)−p e1.

Let a1 ∈ Ap1 and a2 ∈ Ap2. Then

ηA(a1) ·Θq
ηA(a2) = e2πi〈p1Θq(e1),p2e1〉(a1 ⊗ 1)(a2 ⊗ 1) = a1a2 ⊗ 1 = ηA(a1a2).

Thus ηA is a homomorphism. The arguments for ηB are the same.
Given a ∈ Ap1 and b ∈ Bp2 , one has

ηA(a) ·Θq
ηB(b) = e2πi〈Θq(p1e1),p2e2〉(a⊗ 1)(1⊗ b) = e−πip1p2ϕ0a⊗ b,

ηB(b) ·Θq
ηA(a) = e2πi〈Θq(p2e2),p1e1〉(1⊗ b)(a⊗ 1) = eπip1p2ϕ0a⊗ b,

implying that

ηB(b) ·Θq
ηA(a) = e2πip1p2ϕ0ηA(a) ·Θq

ηB(b).
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3.2 Fock representation of Eq
n,m

In this part we show that the Fock representation of Eq
n,m is faithful, and

apply this result to show that Eq
n,m is isomorphic to the Rieffel deformation

(O
(0)
n ⊗ O

(0)
m )Θq

, where Θq is specified in (7).

Definition 3. The Fock representation of Eq
n,m is the unique up to unitary

equivalence irreducible ∗-representation πq
F determined by the action on vac-

uum vector Ω, ||Ω|| = 1,

πq
F (s

∗
j)Ω = 0, πq

F (t
∗
r)Ω = 0, j = 1, n, r = 1, m.

Denote by πF,n the Fock representation of O
(0)
n ⊂ Eq

n,m acting on the space

Fn = T(Hn) = CΩ⊕
∞⊕

d=1

H⊗d
n , Hn = Cn,

described by formulas

πF,n(sj)Ω = ej , πF,n(sj)ei1 ⊗ ei2 · · · ⊗ eid = ej ⊗ ei1 ⊗ ei2 · · · ⊗ eid ,

πF,n(s
∗
j )Ω = 0, πF,n(s

∗
j)ei1 ⊗ ei2 ⊗ · · · ⊗ eid = δji1ei2 ⊗ · · · ⊗ eid , d ∈ N,

where e1, . . . , en is the standard orthonormal basis of Hn. Notice that πF,n
is the unique irreducible faithful representations of O

(0)
n , see for example [26].

Recall that the Fock representation of Eq
n,m exists for any q ∈ C, |q| ≤ 1.

For |q| = 1, one has ‖T‖ = 1, and the kernel of the Fock representation of the
Wick algebra WEq

n,m coincides with the ∗-ideal I2 generated by ker(1 + T ),
see Introduction. In our case,

I2 = 〈trsj − qsjtr, j = 1, n, r = 1, n〉.

Denote by Eq
n,m the quotient WEq

n,m/I2. Obviously, Eq
n,m = C∗(Eq

n,m). So
one has the following corollary of Theorem 1.

Proposition 9. The Fock representation of Eq
n,m exists and is faithful on the

∗-subalgebra Eq
n,m ⊂ Eq

n,m.

Below we give an explicit formula for πF (sj), πF (tr). Consider the Fock

representations πF,n and πF,m of ∗-subalgebras C∗({s1, . . . , sn}) = O
(0)
n ⊂

Eq
n,m and C∗({t1, . . . , tm}) = O

(0)
m ⊂ Eq

n,m respectively. Denote by Ωn ∈ Fn

and Ωm ∈ Fm the corresponding vacuum vectors.
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Theorem 5. The Fock representation πq
F of Eq

n,m acts on the space F =
Fn ⊗ Fm as follows

πq
F (sj) = πF,n(sj)⊗ dm(q

− 1
2 ), j = 1, n,

πq
F (tr) = dn(q

1
2 )⊗ πF,m(tr), r = 1, m,

where dk(λ) acts on Fk, k = n,m by

dk(λ)Ωk = Ωk, dk(λ)X = λlX, X ∈ H
⊗l
k , l ∈ N.

Proof. It is a direct calculation to verify that the operators defined above
satisfy the relations of Eq

n,m. Since πF,k is irreducible on Fk, k = m,n, the
representation πq

F is irreducible on Fn ⊗Fm. Finally put Ω = Ωn ⊗Ωm, then
obviously

πq
F (s

∗
j)Ω = 0, and πq

F (t
∗
r)Ω = 0, j = 1, n, r = 1, m

Thus πq
F is the Fock representation of Eq

n,m.

Remark 3. In some cases, it will be more convenient to present the operators
of the Fock representation of Eq

n,m in one of the alternative forms,

πq
F (sj) = πF,n(sj)⊗ 1Fm

, j = 1, n,

πq
F (tr) = dn(q)⊗ πF,m(tr), r = 1, m,

or

πq
F (sj) = πF,n(sj)⊗ dm(q

−1), j = 1, n,

πq
F (tr) = 1Fn

⊗ πF,m(tr), r = 1, m,

which are obviously unitary equivalent to the one presented in the statement
above.

Consider the action α of T2 on Eq
n,m,

αϕ1,ϕ2(si) = e2πiϕ1si, αϕ1,ϕ2(tr) = e2πiϕ2tr.

Recall, see Section 3.1.1, that the conditional expectation, associated to α is
denoted by Eα.

Proposition 10. The fixed point C∗-subalgebra (Eq
n,m)

α is an AF-algebra.
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Proof. The family {sµ1s
∗
ν1
tµ2t

∗
ν2
, µ1, ν1 ∈ Λn, µ2, ν2 ∈ Λm} is dense in Eq

n,m,
thus the family {Eα(sµ1s

∗
ν1
tµ2t

∗
ν2
), µ1, ν1 ∈ Λn, µ2, ν2 ∈ Λm} is dense in

(Eq
n,m)

α. Further,

Eα(sµ1s
∗
ν1
tµ2t

∗
ν2
) = 0, if |µ1| 6= |ν1| or |µ2| 6= |ν2|,

and Eα(sµ1s
∗
ν1
tµ2t

∗
ν2
) = sµ1s

∗
ν1
tµ2t

∗
ν2

otherwise. Hence

(Eq
n,m)

α = c.l.s.{sµ1s
∗
ν1
tµ2t

∗
ν2
, |µ1| = |ν1|, |µ2| = |ν2|, µ1, ν1 ∈ Λn, µ2, ν2 ∈ Λm}.

Put A0
1,0 = C,

A
k1
1,0 = c.l.s.{sµ1s

∗
ν1
, |µ1| = |ν1| = k1, µ1, ν1 ∈ Λn}, k1 ∈ N,

and A0
2,0 = C,

A
k2
2,0 = c.l.s.{tµ2t

∗
ν2
, |µ2| = |ν2| = k2, µ1, ν1 ∈ Λn}, k2 ∈ N.

It is easy to see that xy = yx, x ∈ A
k1
1,0, y ∈ A

k2
2,0. Let

Aα
k =

∑

k1+k2=k

A
k1
1,0 ·Ak2

2,0.

Evidently Aα
k is a finite-dimensional subalgebra in (Eq

n,m)
α for any k ∈ Z+

and

(Eq
n,m)

α =
⋃

k∈Z+

Aα
k .

Remark 4. Define unitary operators Uϕ1,ϕ2, (ϕ1, ϕ2) ∈ T2 on Fn ⊗ Fm as
follows:

Uϕ1,ϕ2 = dn(e
2πiϕ1)⊗ dm(e

2πiϕ2).

Then (πq
F , Uϕ1,ϕ2) is a covariant representation of (Eq

n,m, T
2, α).

Theorem 6. The Fock representation πq
F of Eq

m,n is faithful.

Proof. Consider the action απ of T2 on πq
F (E

q
n,m) induced by the action α on

Eq
n,m

απ
ϕ1,ϕ2

πq
F (sj) = e2πiϕ1πq

F (sj) := Sj,ϕ1,ϕ2,

απ
ϕ1,ϕ2

πq
F (tr) = e2πiϕ2πq

F (tr) := Tr,ϕ1,ϕ2 .
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To see that αq
ϕ1,ϕ2

is an automorphism of πq
F (E

q
n,m) we notice that the oper-

ators Sj,ϕ1,ϕ2, Tr,ϕ1,ϕ2, satisfy the defining relations in Eq
n,m, and

S∗
j,ϕ1,ϕ2

Ω = T ∗
r,ϕ1,ϕ2

Ω = 0.

Evidently the family {Sj,ϕ1,ϕ2, S
∗
j,ϕ1,ϕ2

, Tr,ϕ1,ϕ2 , T
∗
r,ϕ1,ϕ2

}nj=1
m
r=1 is irreducible

and therefore defines the Fock representation of Eq
n,m. Thus, by the unique-

ness of the Fock representation, there exists a unitary Vϕ1,ϕ2 on F = Fn⊗Fm

such that for any j = 1, n, r = 1, m, one has

Sj,ϕ1,ϕ2 = Ad(Vϕ1,ϕ2) ◦ πq
F (Sj), Tr,ϕ1,ϕ2 = Ad(Vϕ1,ϕ2) ◦ πq

F (Tr),

implying that απ
ϕ1,ϕ2

is an automorphism of πq
F (E

q
n,m) for any (ϕ1, ϕ2) ∈ T2.

Evidently,
πq
F : E

q
n,m → πq

F (E
q
n,m)

is equivariant with respect to α and απ.
By Proposition 2, the representation πq

F is faithful on Eq
n,m if and only if

it is faithful on (Eq
n,m)

α. Further, by Proposition 10,

(Eq
n,m)

α =
⋃

k∈Z+

Aα
k .

Evidently Aα
k ⊂ Eq

n,m, k ∈ Z+. Hence by Proposition 9, πq
F is faithful on Aα

k

for any k ∈ Z+. It is an easy exercise to show that a representation of an
AF-algebra is injective if and only if it is injective on the finite-dimensional
subalgebras.

The next step is to construct a representation of (O
(0)
n ⊗ O

(0)
m )Θq

corre-

sponding to the Fock representation πF,n ⊗ πF,m of O
(0)
n ⊗ O

(0)
m .

The pair (πF,n ⊗ πF,m, Uϕ1,ϕ2) determines a covariant representation of
(O0

n ⊗ O0
m,T

2, α), where as above

αϕ1,ϕ2(sj ⊗ 1) = e2πiϕ1(sj ⊗ 1), αϕ1,ϕ2(1⊗ tr) = e2πiϕ2(1⊗ tr).

Notice that for p = (p1, p2)
t ∈ Z2

+, the subspace H⊗p1
n ⊗H⊗p2

m is the (p1, p2)
t-

homogeneous component of F related to the action of Uϕ1,ϕ2 , and (F)p = {0}
for any p ∈ Z2 \ Z2

+.
Recall also that ŝj = sj ⊗ 1 is contained in e1 = (1, 0)t-homogeneous

component and t̂r = 1 ⊗ tr is in e2 = (0, 1)t-homogeneous component with
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respect to α. Now one can apply Proposition 3. Namely, given ξ = ξ1⊗ ξ2 ∈
H⊗p1

n ⊗H⊗p2
m one gets

(πF,n ⊗ πF,m)Θq
(ŝj) ξ = e2πi〈Θq e1, p〉 πF,n ⊗ πF,m(ŝj) ξ =

= πF,n(sj)ξ1 ⊗ e−πi p2 ϕ0 ξ2 = (πF,n(sj)⊗ dm(q
− 1

2 )) ξ,

and

(πF,n ⊗ πF,m)Θq
(t̂r) ξ = e2πi〈Θq e2, p〉 πF,n ⊗ πF,m(t̂r)ξ =

= eπi p1 ϕ0 ξ1 ⊗ πF,m(tr) ξ2 = (dn(q
1
2 )⊗ πF,m(tr)) ξ.

Notice that for any j = 1, n, and r = 1, m,

(πF,n ⊗ πF,m)Θq
(ŝ∗j )Ω = 0, (πF,n ⊗ πF,m)Θq

(t̂∗r)Ω = 0.

Theorem 7. For any q ∈ C, |q| = 1, the C∗-algebra Eq
n,m is isomorphic to

(O
(0)
n ⊗ O

(0)
m )Θq

.

Proof. Proposition 8 implies that elements (On ⊗ Om)Θq
∋ ŝj = sj ⊗ 1 and

(On ⊗ Om)Θq
∋ t̂r = 1⊗ tr satisfy

ŝ∗j ŝi = δij1⊗ 1, t̂∗r t̂s = δrs1⊗ 1, t̂∗r ŝj = qŝj t̂
∗
r.

Hence, by the universal property one can construct a surjective homomor-
phism Φ: Eq

n,m → (O
(0)
n ⊗ O

(0)
m )Θq

defined by

Φ(sj) = ŝj, Φ(tr) = t̂r, j = 1, n, r = 1, m.

Notice that due to the considerations above, πq
F = (πF,n⊗ πF,m)Θq

◦Φ. Since
πq
F is faithful representation of Eq

n,m, we deduce that Φ is injective.

The nuclearity of O
(0)
n ⊗ O

(0)
m and Proposition 6 immediately imply the

following

Corollary 3. The C∗-algebra Eq
n,m is nuclear for any q ∈ C, |q| = 1.

The nuclearity of Eq
n,m can also be shown using more explicit arguments.

One can use the standard trick of untwisting the q-deformation in the crossed
product, which clarifies informally the nature of isomorphism (6). Namely,
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for q = e2πiϕ0 consider the action αq of Z on Eq
n,m defined on the generators

as

αk
q (sj) = eπikϕ0sj , αk

q (tr) = e−πikϕ0tr, j = 1, . . . , n, r = 1, . . . , m, k ∈ Z.

Denote by the same symbol the similar action on E1
n,m ≃ O

(0)
n ⊗ O

(0)
m . Here

we denote by s̃j and t̃r the generators of E1
n,m.

Proposition 11. For any ϕ0 ∈ [0, 1), one has an isomorphism Eq
n,m⋊αq

Z ≃
E1
n,m ⋊αq

Z.

Proof. Recall that E1
n,m⋊αq

Z is generated as a C∗-algebra by elements s̃j , t̃r
and a unitary u, such that the following relations satisfied

us̃ju
∗ = eiπϕ0 s̃j , ut̃ru

∗ = e−iπϕ0 t̃r, j = 1, n, r = 1, m.

Put ŝj = s̃j u and t̂r = t̃r u. Obviously, ŝj, t̂r and u generate E1
n,m ⋊αq

Z.
Further,

ŝ∗j ŝk = δjk1, t̂∗r t̂l = δrl1

and

ŝj t̂r = s̃jut̃ru = e−iπϕ0 s̃j t̃ru
2 = e−iπϕ0 t̃rs̃ju

2 = e−2πiϕ0 t̃rus̃ju = q ŝj t̂r.

In a similar way we get ŝ∗j t̂r = qt̂rŝ
∗
j , j = 1, n, r = 1, m. Finally

uŝju
∗ = eiπϕ0 ŝj, ut̂ru

∗ = e−iπϕ0 t̂r.

Hence the correspondence

sj 7→ ŝj , tj 7→ t̂j, u 7→ u,

determines a homomorphism Φq : E
q
n,m ⋊αq

Z → E1
n,m ⋊αq

Z. The inverse is
constructed evidently.

Let us show the nuclearity of Eq
n,m again. Indeed, E1

n,m = O
(0)
n ⊗ O

(0)
m

is nuclear. Then so is the crossed product E1
n,m ⋊αq

Z. Then due to the
isomorphism above, Eq

n,m ⋊αq
Z is nuclear, implying the nuclearity of Eq

n,m,
see [3].

We finish this part by an analog of the well-known Wold decomposition
theorem for a single isometry. Recall that

Q =

n∑

j=1

sjs
∗
j , P =

m∑

r=1

trt
∗
r .
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Theorem 8 (Generalised Wold decomposition). Let π : Eq
n,m → B(H) be a

∗-representation. Then

H = H1 ⊕H2 ⊕H3 ⊕H4,

where each Hj, j = 1, 2, 3, 4, is invariant with respect to π, and for πj = π ↾Hj

one has

• H1 = F ⊗K for some Hilbert space K, and π1 = πq
F ⊗ 1K;

• π2(1−Q) = 0, π2(1− P ) 6= 0;

• π3(1− P ) = 0, π3(1−Q) 6= 0;

• π4(1−Q) = 0, π4(1− P ) = 0;

where any of Hj, j = 1, 2, 3, 4, could be zero.

Proof. We will use the fact that any representation of O
(0)
n is a direct sum of

a multiple of the Fock representation and a representation of On.
So, restrict π to O

(0)
n ⊂ Eq

n,m, and decompose H = HF ⊕H⊥
F , where

π(1−Q)|H⊥
F
= 0,

and π(O0
n)|HF

is a multiple of the Fock representation. Denote

Sj := π(sj) ↾HF
, Q := π(Q) ↾HF

.

Since
HF =

⊕

λ∈Λn

Sλ(kerQ),

it is invariant with respect to π(tr), π(t
∗
r), r = 1, m. Indeed, trQ = Qtr

in Eq
n,m, implying the invariance of kerQ with respect to π(tr) and π(t∗r).

Denote kerQ by G and Tr := π(tr) ↾G. Then

π(tr)Sλξ = q|λ|Sλπ(tr)ξ = q|λ|SλTrξ, ξ ∈ G.

Thus HF ≃ Fn ⊗ G with

π(sj) ↾HF
= πF,n(sj)⊗ 1G, π(tr) ↾HF

= dn(q)⊗ Tr, j = 1, n, r = 1, m,

where the family {Tr} determines a ∗-representation π̃ of O
(0)
m on G.
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Further, decompose G as G = GF⊕G⊥
F into an orthogonal sum of subspaces

invariant with respect to π̃, where GF = Fm ⊗K,

π̃GF
(tr) = πF,m(tr)⊗ 1K, r = 1, m, and π̃ ↾G⊥

F
(1− P ) = 0.

Thus HF = (Fn ⊗ Fm ⊗K)⊕
(
Fn ⊗ G⊥

F

)
and

πHF
(sj) = (πF,n(sj)⊗ 1Fm

⊗ 1K)⊕ (πF,n(sj)⊗ 1G⊥
F
), j = 1, n,

πHF
(tr) = (dn(q)⊗ πF,m(tr)⊗ 1K)⊕

(
dn(q)⊗ π̃|G⊥

F
(tr)

)
, r = 1, m.

Put H1 = Fn ⊗ Fm ⊗K = F ⊗K and notice that that π ↾H1= πq
F ⊗ 1K, see

Remark 3. Put H3 = Fn ⊗ G⊥
F and π3 = π ↾H3 i.e.,

π3(sj) = πF,n(sj)⊗ 1G⊥
F
, π3(tr) = dn(q)⊗ π̃|G⊥

F
(tr), j = 1, n, r = 1, m.

Evidently, π3(1− P ) = 0 and π3(1−Q) 6= 0.
Finally, applying similar arguments to the invariant subspace H⊥

F one can
show that there exists a decomposition

H⊥
F = H2 ⊕H4

into the orthogonal sum of invariant subspaces, where

• H2 = Fm ⊗ L and

π2(sj) := π ↾H2 (sj) = dm(q)⊗π̂(sj), π2(tr) := π ↾H2 (tr) = πF,m(tr)⊗1L,

for a representation π̂ of On. Evidently, π2(1−Q) = 0, π2(1−P ) 6= 0.

• For π4 := π ↾H4 one has

π4(1−Q) = 0, π4(1− P ) = 0.

3.3 Ideals in Eq
n,m

In this part, we give a complete description of ideals in Eq
n,m, and prove their

independence on the deformation parameter q.
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For

Q =
n∑

j=1

sjs
∗
j , P =

m∑

r=1

trt
∗
r.

we consider two-sided ideals, Mq generated by 1−P and 1−Q, Iq1 generated
by 1 − Q, I

q
2 generated by 1 − P , and Iq generated by (1 − Q)(1 − P ).

Evidently,
Iq = I

q
1 ∩ I

q
2 = I

q
1 · Iq2.

Below we will show that any ideal in Eq
n,m coincides with the one listed above.

To clarify the structure of Iq1, I
q
2 and Iq, we use the construction of twisted

tensor product of a certain C∗-algebra with the algebra of compact operators
K, see [47]. We give a brief review of the construction, adapted to our
situation.

Recall that the C∗-algebra K can be considered as a universal C∗-algebra
generated by a closed linear span of elements eµν , µ, ν ∈ Λm subject to the
relations

eµ1ν1eµ2ν2 = δµ2ν1eµ1ν2, e∗µ1ν1
= eν1µ1 , νi, µi ∈ Λm,

here e∅ := e∅∅ is a minimal projection.

Definition 4. Let A be a C∗-algebra,

α = {αµ, µ ∈ Λm} ⊂ Aut(A), where α∅ = idA,

and eµν , µ, ν ∈ Λm be the generators of K specified above. Construct the
universal C∗-algebra

〈A,K〉α = C∗(a ∈ A, eµν ∈ K | aeµν = eµνα
−1
ν (αµ(a)).

We define A ⊗α K as a subalgebra of 〈A,K〉α generated by ax, a ∈ A ⊂
〈A,K〉α, x ∈ K ⊂ 〈A,K〉α.

Notice that 〈A,K〉α exists for any C∗-algebra A and family α ⊂ Aut(A),
see [47].

Remark 5.
1. Let xµ = eµ∅. Then axµ = xµαµ(a), ax

∗
µ = x∗µα

−1
µ (a), a ∈ A, compare

with [47].
2. For any a ∈ A one has eµνa = α−1

µ (αν(a))eµν implying that

(aeµν)
∗ = α−1

µ (αν(a))eνµ.

3. For any a1, a2 ∈ A one has (a1eµ1ν1)(a2eµ2ν2) = δν1µ2a1α
−1
µ1
(αµ2(a2))eµ1ν2 .
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Proposition 12 ([47]). Let A be a C∗-algebra and

α = {αµ, µ ∈ Λm} ⊂ Aut(A) with α∅ = idA.

Then the correspondence

aeµν 7→ αµ(a)⊗ eµν , a ∈ A, µ, ν ∈ Λm

extends by linearity and continuity to an isomorphism

∆α : A⊗α K → A⊗K,

where ∆−1
α is constructed via the correspondence

a⊗ eµν 7→ α−1
µ (a)eµν , a ∈ A, µ, ν ∈ Λm.

Remark 6. For xµ = eµ∅, µ ∈ Λm one has, see [47],

∆α(axµ) = αµ(a)⊗ xµ, ∆α(ax
∗
µ) = a⊗ x∗µ.

The following functorial property of ⊗αK can be derived easily. Consider

α = (αµ)µ∈Λm
⊂ Aut(A), β = (βµ)µ∈Λm

⊂ Aut(B).

Suppose ϕ : A → B is equivariant, i.e. ϕ(αµ(a)) = βµ(ϕ(a)) for any a ∈ A
and µ ∈ Λm. Then one can define the homomorphism

ϕ⊗β
α : A⊗α K → B ⊗β K, ϕ⊗β

α (ak) = ϕ(a)k, a ∈ A, k ∈ K,

making the following diagram commutative

A⊗α K B ⊗β K

A⊗K B ⊗K

∆α

ϕ⊗β
α

∆β

ϕ⊗idK

(8)

Namely, it is easy to verify that

(∆−1
β ◦ (ϕ⊗ idK) ◦∆α)(aeµν) = ϕ(a)eµν = ϕ⊗β

α (aeµν), a ∈ A, µ, ν ∈ Λm.

An important consequence of the commutativity of the diagram above is
exactness of the functor ⊗αK. Let

β = (βµ)µ∈Λm
⊂ Aut(B), α = (αµ)µ∈Λm

⊂ Aut(A), γ = (γµ)µ∈Λm
⊂ Aut(C)
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and consider a short exact sequence

0 B A C 0
ϕ1 ϕ2

where ϕ1, ϕ2 are equivariant homomorphisms. Then one has the following
short exact sequence

0 B ⊗β K A⊗α K C ⊗γ K 0
ϕ1⊗α

β ϕ2⊗γ
α

Now we are ready to study the structure of the ideals I
q
1 , I

q
2, Iq ⊂ Eq

n,m.
We start with I

q
1. Notice that

I
q
1 = c.l.s. { tµ2t

∗
ν2
sµ1(1−Q)s∗ν1, µ1, ν1 ∈ Λn, µ2, ν2 ∈ Λm}.

Put Eµ1ν1 = sµ1(1−Q)s∗ν1 , µ1, ν1 ∈ Λn. Then Eµ1ν1 satisfy the relations for
matrix units generating K. Moreover, c.l.s. {Eµν , µ, ν ∈ Λn} is an ideal in

O
(0)
n isomorphic to K.
Consider the family αq = (αµ)µ∈Λn

⊂ Aut(O
(0)
m ) defined as

αµ(tr) = q|µ|tr, αµ(t
∗
r) = q−|µ|t∗r, µ ∈ Λn, r = 1, m.

Proposition 13. The correspondence aeµν 7→ aEµν , a ∈ O
(0)
m , µ, ν ∈ Λn,

extends to an isomorphism

∆q,1 : O
(0)
m ⊗αq K → I

q
1.

Proof. We note that for any µ1, ν1 ∈ Λn and µ2, ν2 ∈ Λm one has

tµ2t
∗
ν2
Eµ1ν1 = q(|ν1|−|µ1|)(|µ2|−|ν2|)Eµ1ν1tµ2t

∗
ν2

= Eµ1ν1α
−1
ν1
(αµ1(tµ2t

∗
ν2
)).

Thus, due to the universal property of 〈O(0)
m ,K〉αq , the correspondence

aeµν 7→ aEµν

determines a surjective homomorphism ∆q,1 : O
(0)
m ⊗αq K → I

q
1.

It remains to show that ∆q,1 is injective. Since the Fock representation
of Eq

n,m is faithful, we can identify I
q
1 with πq

F (I
q
1). It will be convenient for

us to use the following form of the Fock representation, see Remark 3,

πq
F (sj) = πF,n(sj)⊗ 1Fm

:= Sj ⊗ 1Fm
, j = 1, n,

πq
F (tr) = dn(q)⊗ πF,m(tr) := dn(q)⊗ Tr, r = 1, m.
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In particular, for any µ1, ν1 ∈ Λn, µ2, ν2 ∈ Λm

πq
F (tµ2t

∗
ν2
Eµ1ν1) = dn(q

|µ2|−|ν2|)Sµ1(1−Q)Sν1 ⊗ Tµ2T
∗
ν2
.

Consider ∆q,1 ◦∆−1
αq : O

(0)
m ⊗K → πq

F (I
q
1). We intend to show that

∆q,1 ◦∆−1
αq = π1

F ,

where π1
F is the restriction of the Fock representation of O

(0)
n ⊗O

(0)
m to K⊗O

(0)
m ,

and K is generated by Eµν specified above. Notice that the family

{tµ2t
∗
ν2
⊗ Eµ1ν1 , µ1, ν1 ∈ Λn, µ2, ν2 ∈ Λm}

generates O
(0)
m ⊗K. Then

∆−1
αq (tµ2t

∗
ν2
⊗Eµ1ν1) = α−1

µ1
(tµ2t

∗
ν2
)eµ1ν1 = q−|µ1|(|µ2|−|ν2|)tµ2t

∗
ν2
eµ1ν1,

and

∆q,1◦∆−1
αq (tµ2t

∗
ν2
⊗ Eµ1ν1) = q−|µ1|(|µ2|−|ν2|)πq

F (tµ2t
∗
ν2
Eµ1ν1)

= q−|µ1|(|µ2|−|ν2|)dn(q
|µ2|−|ν2|)Sµ1(1−Q)S∗

ν1
⊗ Tµ2T

∗
ν2

= q−|µ1|(|µ2|−|ν2|)q|µ1|(|µ2|−|ν2|)Sµ1dn(q
|µ2|−|ν2|)(1−Q)S∗

ν1
⊗ Tµ2T

∗
ν2

= Sµ1(1−Q)S∗
ν1
⊗ Tµ2T

∗
ν2

= π1
F (Eµ1ν1 ⊗ tµ2t

∗
ν2
),

where we used relations dn(λ)Sj = λSjdn(λ), j = 1, n, λ ∈ C, and the
obvious fact that

dn(λ)(1−Q) = 1−Q.

To complete the proof we recall that π1
F is a faithful representation of

O
(0)
n ⊗O0

m, so its restriction to K⊗O
(0)
m is also faithful, implying the injectivity

of ∆q.

Remark 7. Evidently, Iq is a closed linear span of the family

{ tµ2(1− P )t∗ν2sµ1(1−Q)s∗ν1 , µ1, ν1 ∈ Λn, µ2, ν2 ∈ Λm} ⊂ I
q
1.

Moreover, c.l.s.{tµ2(1 − P )t∗ν2, µ2, ν2 ∈ Λm} = K ⊂ O
(0)
m . It is easy to see

that
αµ(tµ2(1− P )t∗ν2) = q|µ|(|µ2|−|ν2|)tµ2(1− P )t∗ν2,

so every αµ ∈ αq can be regarded as an element of Aut(K).
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A moment reflection and Proposition 13 give the following corollary

Proposition 14. Restriction of ∆q,1 to K ⊗αq K ⊂ O
(0)
m ⊗αq K gives an

isomorphism

∆q,1 : K⊗αq K → Iq.

To deal with I
q
2, we consider the family βq = {βµ, µ ∈ Λm} ⊂ Aut(O

(0)
n )

defined as
βµ(sj) = q−|µ|sj , βµ(s

∗
j ) = q|µ|s∗j , j = 1, n.

Proposition 15. One has an isomorphism ∆q,2 : O
(0)
n ⊗βq K → I

q
2.

Obviously, ∆q,2 induces the isomorphism K ⊗βq K ≃ Iq, where the first

term is an ideal in O
(0)
n and the second in O

(0)
m respectively.

Write
εn : K → O(0)

n , εm : K → O(0)
m ,

for the canonical embeddings and

qn : O
(0)
n → On, qm : O(0)

m → Om,

for the quotient maps. Let also

εq,j : Iq → I
q
j , j = 1, 2,

be the embeddings and

πq,j : I
q
j → I

q
j/Iq, j = 1, 2,

the quotient maps. Notice also that the families αq ⊂ Aut(O
(0)
m ), βq ⊂

Aut(O
(0)
n ) determine families of automorphisms of Om and On respectively,

also denoted by αq and βq.

Theorem 9. One has the following isomorphism of extensions

0 Iq I
q
1 I

q
1/Iq 0

0 K⊗K O0
m ⊗K Om ⊗K 0

εq,1

∆αq◦∆−1
q,1

∆αq◦∆−1
q,1

πq,1

≃
εm⊗idK qm⊗idK

and

0 Iq I
q
2 I

q
2/Iq 0

0 K⊗K O0
n ⊗K On ⊗K 0

εq,2

∆βq◦∆−1
q,2

∆βq◦∆−1
q,2

πq,2

≃
εn⊗idK qn⊗idK
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Proof. Indeed, each row in diagram (9) below is exact and every non-dashed
vertical arrow is an isomorphism. The bottom left and bottom right squares
are commutative due to (8). The top left square is commutative due to the
arguments in the proof of Proposition 13 combined with Remark 7. Hence
there exists a unique isomomorphism

Φq,1 : I
q
1/Iq → Om ⊗αq K,

making the diagram (9) commutative

0 Iq I
q
1 I

q
1/Iq 0

0 K⊗αq K O0
m ⊗αq K Om ⊗αq K 0

0 K⊗K O0
m ⊗K Om ⊗K 0

εq,1

∆−1
q,1

∆−1
q,1

πq,1

Φq,1

εm⊗αq

αq

∆αq ∆αq

qm⊗αq

αq

∆αq

εm⊗idK qm⊗idK

(9)

The proof for Iq2 is similar.

The following Lemma follows from the fact that Mq = I
q
1 + I

q
2.

Lemma 7.

Mq/Iq ≃ I
q
1/Iq ⊕ I

q
2/Iq ≃ Om ⊗K⊕ On ⊗K.

Theorem 9 implies that Iq, I
q
1, I

q
2 are stable C∗-algebras. It follows from

[44], Proposition 6.12, that an extension of a stable C∗-algebra by K is also
stable. Thus, Lemma 7 implies immediately the following important corol-
lary.

Corollary 4. For any q ∈ C, |q| = 1, the C∗-algebra Mq is stable.

Denote the Calkin algebra by Q. Recall that for C∗-algebras A and B
the isomorphism

Ext(A⊕ B,K) ≃ Ext(A,K)⊕ Ext(B,K)

is given as follows. Let

ι1 : A→ A⊕ B, ι1(a) = (a, 0), ι2 : B → A⊕ B, ι2(b) = (0, b).
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For a Busby invariant τ : A⊕ B → Q define

F : Ext(A⊕ B,K) → Ext(A,K)⊕ Ext(B,K), F(τ) = (τ ◦ ι1, τ ◦ ι2).

It can be shown, see [21], that F determines a group isomorphism.

Remark 8. Consider an extension

0 B E A 0 (10)

Let i : B → M(B) be the canonical embedding. Define β to be the unique
map such that

β(e)i(b) = i(eb), for every b ∈ B, e ∈ E.

Then the Busby invariant τ is the unique map which makes the diagram
commute.

0 B M(B) M(B)/B 0

0 B E A 0

i

β τ

We will use both notations [E] and [τ ] in order to denote the class of the
extension (10) in Ext(A,B).

Let [Mq] ∈ Ext(Iq1/Iq ⊕ I
q
2/Iq, Iq), [I

q
1] ∈ Ext(Iq1/Iq, Iq), [I

q
2] ∈ Ext(Iq2/Iq, Iq)

respectively be the classes of the following extensions

0 → Iq → Mq → I
q
1/Iq ⊕ I

q
2/Iq → 0,

0 → Iq → I
q
1 → I

q
1/Iq → 0,

0 → Iq → I
q
2 → I

q
2/Iq → 0.

Lemma 8.

[Mq] = ([Iq1], [I
q
2]) ∈ Ext(Iq1/Iq, Iq)⊕ Ext(Iq2/Iq, Iq) ≃ Ext(Iq1/Iq ⊕ I

q
2/Iq, Iq).
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Proof. Consider the following morphism of extensions:

Iq M(Iq) M(Iq)/Iq

Iq I
q
1 I

q
1/Iq

Iq M(Iq) M(Iq)/Iq

Iq Mq I
q
1/Iq ⊕ I

q
2/Iq

i

β1
τ
I
q
1

τMqβ2

Here
β1 : I

q
1 →M(Iq), β2 : Mq → M(Iq),

are homomorphisms introduced in Remark 8, the arrow

j1 : I
q
1 →֒ Mq

is the inclusion, and the arrow

ι1 : I
q
1/Iq → I

q
1/Iq ⊕ I

q
2/Iq

has the form ι1(x) = (x, 0).
Notice that for every b ∈ Iq and x ∈ I

q
1 one has

(β2 ◦ j1)(x)i(b) = i(j1(x)b) = i(xb) = β1(x)i(b).

By the uniqueness of β1, we get β2 ◦ j1 = β1. Thus the following diagram
commutes

I
q
1 M(Iq)

Mq M(Iq)

β1

β2

Further, Remark 8 implies that for Busby invariants τIq1 and τMq
the squares

below are commutative

M(Iq) M(Iq)/Iq

I
q
1 I

q
1/Iq

β1
τ
I
q
1

M(Iq) M(Iq)/Iq

Mq I
q
1/Iq ⊕ I

q
2/Iq

β2
τMq
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Hence the square

I
q
1/Iq M(Iq)/Iq

I
q
1/Iq ⊕ I

q
2/Iq M(Iq)/Iq

τ
I
q
1

ι1

τMq

is also commutative. Thus, τIq1 = τMq
◦ ι1. By the same arguments we get

τIq2 = τMq
◦ ι2, where

ι2 : I
q
2/Iq → I

q
1/Iq ⊕ I

q
2/Iq, ι2(y) = (0, y).

Thus
[τMq

] = ([τMq
◦ ι1], [τMq

◦ ι2]) = ([τIq1 ], [τI
q
2
]).

In the following theorem we give a description of all ideals in Eq
n,m.

Theorem 10. Any ideal J ⊂ Eq
n,m coincides with one of Iq, I

q
1, I

q
2, Mq.

Proof. First we notice that I
q
1/Iq ≃ Om ⊗ K, Iq2/Iq ≃ On ⊗ K are simple.

Hence for any ideal J such that Iq ⊆ J ⊆ I
q
1 or Iq ⊆ J ⊆ I

q
2, one has J = Iq,

or J = I
q
1, or J = I

q
2.

Further, using the fact that Mq = I
q
1 + I

q
2 and Iq = I

q
1 ∩ I

q
2 we get

Mq/I
q
1 ≃ I

q
2/Iq ≃ On ⊗K.

So if Iq ⊆ J ⊆ Mq, then again either J = I
q
1 or J = Mq.

Below, see Theorem 13, we show that Eq
n,m/Mq is simple and purely

infinite. In particular, Mq contains any ideal in Eq
n,m, see Corollary 7.

Let J ⊂ Eq
n,m be an ideal and π be a representation of Eq

n,m such that
ker π = J. Notice that the Fock component π1 in the Wold decomposition of
π is zero. Thus, by Theorem 8,

π = π2 ⊕ π3 ⊕ π4, (11)

and J = ker π = ker π2∩ker π3∩ker π4. Let us describe these kernels. Suppose
that the component π2 is non-zero. Since π2(1−Q) = 0 and π2(1− P ) 6= 0,
we have

I
q
1 ⊆ ker π2 ( Mq,
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implying ker π2 = I
q
1. Using the same arguments, one can deduce that if

the component π3 is non-zero, then ker π3 = I
q
2, and if π4 is non-zero, then

ker π4 = Mq.
Finally, if in (11) π2 and π3 are non-zero then J = ker π = Iq. If either

π2 6= 0 and π3 = 0 or π3 6= 0 and π2 = 0, then either J = I
q
1 or J = I

q
2. In the

case π2 = 0 and π3 = 0 one has J = ker π4 = Mq.

Corollary 5. All ideals in Eq
n,m are essential. The ideal Iq is the unique

minimal ideal.

In particular, the extension

0 → Iq → Mq → I
q
1/Iq ⊕ I

q
2/Iq → 0

is essential. Indeed, the ideal K = Iq ⊂ Eq
n,m is the unique minimal ideal.

Since an ideal of an ideal in a C∗-algebra is an ideal in the whole algebra, Iq
is the unique minimal ideal in Mq, thus it is essential in Mq.

The following proposition is a corollary of Voiculescu’s Theorem, see The-
orem 15.12.3 of [3].

Proposition 16. Let E1, E2 be two essential extensions of a nuclear C∗-
algebra A by K. If [E1] = [E2] ∈ Ext(A,K) then E1 ≃ E2.

Theorem 11. For any q ∈ C, |q| = 1, one has Mq ≃ M1.

Proof. By Theorem 9, [Iq1] ∈ Ext(Om ⊗ K,K), and [Iq2] ∈ Ext(On ⊗ K,K)
do not depend on q. By Lemma 8, [Mq] does not depend on q. Thus by
Corollary 5 and Proposition 16, Mq ≃ M1.

3.4 Simplicity and pure infiniteness of On ⊗q Om

The next step is to show that the quotient On ⊗q Om = Eq
n,m/Mq, being

nuclear, is also simple and purely infinite.
It is easy to see that

Mq = c.l.s.{sµ1tν1(1− P )ε1(1−Q)ε2t∗ν2s
∗
µ2
},

where µj ∈ Λn, νj ∈ Λm, j = 1, 2, and εj ∈ {0, 1}, ε1 + ε2 6= 0.
We denote the generators of On ⊗q Om in the same way as generators of

Eq
n,m. Notice, that for any k ∈ N, the following relations hold in On ⊗q Om

∑

λ∈Λn, |λ|=k

sλs
∗
λ = 1,

∑

ν∈Λm, |ν|=k

tνt
∗
ν = 1,
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and
On ⊗q Om = c.l.s.{sµ1s

∗
µ2
tν1t

∗
ν2
, µi ∈ Λn, νj ∈ Λm}.

Consider the action α of T2 on On ⊗q Om,

αϕ1,ϕ2(sj) = e2πiϕ1sj, αϕ1,ϕ2(tr) = e2πiϕ2tr, j = 1, n, r = 1, m.

Construct the corresponding faithful conditional expectation Eα, and denote
by Aq the fixed point C∗-algebra of (On⊗qOm)

α, see Section 3.1.1. Similarily
to the case of Eq

n,m, one has

Eα(sµ1s
∗
µ2
tν1t

∗
ν2
) = 0, if either |µ1| 6= |µ2| or |ν1| 6= |ν2|,

Eα(sµ1s
∗
µ2
tν1t

∗
ν2
) = sµ1s

∗
µ2
tν1t

∗
ν2

if |µ1| = |µ2| and |ν1| = |ν2|.

Lemma 9. If ν1, ν2 ∈ Λm, then

sjtν1t
∗
ν2

= q|ν1|−|ν2|tν1t
∗
ν2
sj, s∗j tν1t

∗
ν2

= q|ν1|−|ν2|tν1t
∗
ν2
s∗j , j = 1, n.

If µ1, µ2 ∈ Λn, then

tisµ1s
∗
µ2

= q|µ1|−|µ2|sµ1s
∗
µ2
ti, t∗i sµ1s

∗
µ2

= q|µ1|−|µ2|sµ1s
∗
µ2
t∗i , i = 1, m.

As in the proof of Proposition 10, denote

A
0
1 = C, A

k
1 = span{sµ1s

∗
µ2
, |µ1| = |µ2| = k, µi ∈ Λn}, k ∈ N,

A
0
2 = C, A

k
2 = span{tν1t∗ν2 , |ν1| = |ν2| = k, νi ∈ Λm}, k ∈ N.

Recall also that Ak
1 ≃Mnk(C) and Ak

2 ≃Mmk(C), see [10].
Put A0

q := C,

Ak
q :=

∑

k1+k2=k

A
k1
1 ·Ak2

2 ,

and set

Aq =
⋃

k∈Z+

Ak
q .

By Lemma 9, for any x ∈ Ak
1 and y ∈ Al

2 one has xy = yx. Thus Aq is an
AF-subalgebra in On⊗q Om and Aq1 ≃ Aq2 for any q1, q2 ∈ C, |q1| = |q2| = 1.

To prove pure infiniteness of On ⊗q Om we essentially follow Chapter V.4
of [13].

Denote by Fink
q the span of monomials sµ1s

∗
µ2
tν1t

∗
ν2

such that

max{|µ1|, |µ2|}+max{|ν1|, |ν2|} ≤ k.
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Proposition 17. For any k ∈ N there exists an isometry wk ∈ On ⊗q Om

such that

Eα(x) = w∗
kxwk, for any x ∈ Fink

q ,

and w∗
kywk = y for any y ∈ Ak

q .

Proof. Let sγ = s2k1 s2 and tγ = t2k1 t2. Consider the isometries

wk,1 =
∑

|δ|=k,δ∈Λn

sδsγs
∗
δ ,

and
wk,2 =

∑

|λ|=k,λ∈Λm

tλtγt
∗
λ.

Then, see Lemma V.4.5 of [13],

w∗
k,1sµ1s

∗
µ2
wk,1 = 0, if |µ1| 6= |µ2|, |µi| ≤ k, µi ∈ Λn,

and
w∗

k,1sµ1s
∗
µ2
wk,1 = sµ1s

∗
µ2
, if |µ1| = |µ2|, |µi| ≤ k, µi ∈ Λn.

Analogously,

w∗
k,2tν1t

∗
ν2
wk,2 = 0, if |ν1| 6= |ν2|, |νi| ≤ k, νi ∈ Λm,

and
w∗

k,2tν1t
∗
ν2
wk,2 = tν1t

∗
ν2
, if |ν1| = |ν2|, |νi| ≤ k, νi ∈ Λm.

By Lemma 9 we get

wk,1tν1t
∗
ν2

= q(|ν1|−|ν2|)(2k+1)tν1t
∗
ν2
wk,1,

w∗
k,1tν1t

∗
ν2

= q(|ν1|−|ν2|)(2k+1)tν1t
∗
ν2
w∗

k,1,

wk,2sµ1s
∗
µ2

= q(|µ1|−|µ2|)(2k+1)sµ1s
∗
µ2
wk,2,

w∗
k,2sµ1s

∗
µ2

= q(|µ1|−|µ2|)(2k+1)sµ1s
∗
µ2
w∗

k,2.

Then
wk,2wk,1 = q(2k+1)2wk,1wk,2, w∗

k,2wk,1 = q(2k+1)2wk,1w
∗
k,2.

Let wk = wk,2wk,1. Evidently wk is an isometry. Then for any |µi| ≤ k and
|νi| ≤ k one has

w∗
ksµ1s

∗
µ2
tν1t

∗
ν2
wk = q((|v1|−|v2|)−(|µ1|−|µ2|))(2k+1)w∗

k,1sµ1s
∗
µ2
wk,1w

∗
k,2tν1t

∗
ν2
wk,2,
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implying that for any |µi| ≤ k, and |νi| ≤ k,

w∗
ksµ1s

∗
µ2
tν1t

∗
ν2
wk = 0, if |µ1| 6= |µ2| or |ν1| 6= |ν2|,

and

w∗
ksµ1s

∗
µ2
tν1t

∗
ν2
wk = sµ1s

∗
µ2
tν1t

∗
ν2
, if |µ1| = |µ2| and |ν1| = |ν2|.

Hence, for any x ∈ Fink
q one has w∗

kxwk = Eα(x) and w∗
kywk = y for y ∈

Ak
q .

Remark 9. Since Ak
q is finite-dimensional, it is a direct sum of full matrix

algebras, where matrix units are represented by sµ1tν1t
∗
ν2
s∗µ2

, |µ1| = |µ2|,
|ν1| = |ν2| and |µ1| + |ν1| = k. In particular, any minimal projection in
Ak

q is unitary equivalent in Ak
q to a “matrix-unit projection” having form

sµ1tν1t
∗
ν1
s∗µ1

with |µ1| + |ν1| = k. So any minimal projection in Ak
q has the

form u u∗ for some isometry u ∈ Eq
n,m.

The following statement is the main result of this Subsection.

Theorem 12. For any non-zero x ∈ On ⊗q Om with |q| = 1, there exist

a, b ∈ On ⊗q Om such that axb = 1.

Proof. The proof repeats the arguments of the proof of Theorem V.4.6 in
[13]. We present it here for the reader’s convenience.

Let Oq
n ⊗ Oq

m ∋ x 6= 0. Then x∗x > 0 and Eα(x
∗x) > 0. After normalisa-

tion of x we can suppose that ‖Eα(x
∗x)‖ = 1. Find k ∈ N and y = y∗ ∈ Fink

q

such that ‖x∗x− y‖ < 1
4
. Since Eα is a contraction, one has

‖Eα(x
∗x)−Eα(y)‖ <

1

4
and ‖Eα(y)‖ >

3

4
.

Further, w∗
kywk = Eα(y). Since Eα(y) = Eα(y)

∗ ∈ Ak
q , by the spectral

theorem for a self-adjoint operator on a finite-dimensional Hilbert space,
there exists a minimal projection p ∈ Ak

q , such that

pEα(y) = Eα(y)p = ‖Eα(y)‖ · p.

As noted above, p = u u∗ for an isometry u ∈ On ⊗q Om. Put

z = ‖Eα(y)‖−
1
2u∗pw∗

k.
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Then ‖z‖ < 2√
3
, and

zyz∗ = ‖Eα(y)‖−1u∗pw∗
kywkpu = ‖Eα(y)‖−1u∗pEα(y)pu

= ‖Eα(y)‖−1‖Eα(y)‖u∗pu = u∗uu∗u = 1.

Then

‖1− zx∗xz∗‖ = ‖zyz∗ − zx∗xz∗‖ ≤ ‖z‖2 · ‖y − x∗x‖ < 4

3
· 1
4
=

1

3
.

Hence zx∗xz∗ is invertible in On⊗qOm. Let c ∈ On⊗qOm satisfies czx∗xz∗ = 1,
then for a = czx∗ and b = z∗ one has axb = 1.

The following corollary is immediate.

Theorem 13. The C∗-algebra On ⊗q Om is nuclear, simple and purely infi-

nite.

Given q = e2πiϕ0 , consider

Θq =

(
0 ϕ0

2

−ϕ0

2
0

)
, (12)

and construct the Rieffel deformation (On ⊗ Om)Θq
.

Corollary 6. The following isomorphism holds:

On ⊗q Om ≃ (On ⊗ Om)Θq
.

Proof. As in the proof of Theorem 7, the universal property of On ⊗q Om

implies that the correspondence

sj 7→ sj ⊗ 1, tr 7→ 1⊗ tr, j = 1, n, r = 1, m,

extends to a surjective homomorphism Φ: On⊗qOm → (On⊗Om)Θq
. Finally,

the simplicity of On ⊗q Om implies that Φ is an isomorphism.

Remark 10. The isomorphism established in Corollary 6 is equivariant with
respect to the introduced above actions of T2 on O⊗q Om and (On ⊗ Om)Θq

respectively.

The simplicity of On ⊗q Om implies that Mq ⊂ Eq
n,m is the largest ideal.
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Corollary 7. The ideal Mq ⊂ Eq
n,m is the unique largest ideal.

Proof. Let η : Eq
n,m → On ⊗q Om be the quotient homomorphism. Suppose

that J ⊂ Eq
n,m is a two-sided ∗-ideal. Due to the simplicity of On ⊗q Om we

have that either η(J) = {0} and J ⊂ Mq, or η(J) = On ⊗q Om. In the latter
case, 1 + x ∈ J for a certain x ∈ Mq. For any 0 < ε < 1, choose Nε ∈ N,
such that for

xε =
∑

ε1,ε2∈{0,1},
ε1+ε2 6=0

∑

µ1,µ2∈Λn,
|µj |≤Nε

∑

ν1,ν2∈Λm,
|νj|≤Nε

Ψ(ε1,ε2)
µ1,µ2ν1ν2

sµ1tν1(1− P )ε1(1−Q)ε2t∗ν2sµ∗
2
∈ Mq

one has ‖x− xε‖ < ε. Notice that for any µ ∈ Λn, ν ∈ Λm with |µ|, |ν| > Nε

one has s∗µt
∗
νxε = 0.

Fix µ ∈ Λn and ν ∈ Λm, |µ| = |ν| > Nε, then

yε = s∗µt
∗
ν(1− x)tνsµ = 1− s∗µt

∗
ν(x− xε)tνsµ ∈ J.

Thus ‖s∗µt∗ν(x− xε)tνsµ‖ < ε implies that yε is invertible, so 1 ∈ J.

3.5 The isomorphism On ⊗q Om ≃ On ⊗ Om

In this section we prove the main result of Section 3. Namely, we show that
for each q, |q| = 1,

On ⊗q Om ≃ On ⊗ Om.

In [17], the authors have shown that for every C∗-algebra A with an action
α of R, there exists a KK-isomorphism tα ∈ KK1(A,A ⋊α R). This tα is a
generalization of the Connes-Thom isomorphisms for K-theory. Below we will
denote by ◦ : KK(A,B)×KK(B,C) → KK(A,C) the Kasparov product,
and by ⊠ : KK(A,B)×KK(C,D) → KK(A⊗C,B⊗D) the exterior tensor
product. Given a homomorphism φ : A→ B, put [φ] ∈ KK(A,B) to be the
induced KK-morphism. For more details see [3, 22].

We list some properties of tα that will be used below.

1. Inverse of tα is given by tα̂, where α̂ is the dual action.

2. If A = C with the trivial action of R, then the corresponding element

t1 ∈ KK1(C, C0(R)) ≃ Z

is the generator of the group.
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3. Let φ : (A, α) → (B, β) be an equivariant homomorphism. Then the
following diagram commutes in KK-theory

A A⋊α R

B B ⋊β R

tα

φ φ⋊R

tβ

4. Let β be an action of R on B. For the action γ = idA ⊗ β on A ⊗ B
we have

tγ = 1A ⊠ tβ.

We will need the classification result by Kirchberg and Philips:

Theorem 14 ([31], Corollary 4.2.2). Let A and B be separable nuclear unital

purely infinite simple C∗-algebras, and suppose that there exists an invertible

element η ∈ KK(A,B), such that [ιA]◦η = [ιB], where ιA : C → A is defined

by ιA(1) = 1A, and ιB : C → B is defined by ιB(1) = 1B. Then A and B are

isomorphic.

Theorem 15. The C∗-algebras On ⊗q Om and On ⊗ Om are isomorphic for

any |q| = 1.

Proof. Throughout the proof we will distinguish between the actions of T2

on On ⊗ Om and on On ⊗q Om, denoting the latter by αq. Due to Theorem
13, the both algebras are separable nuclear unital simple and purely infinite.

Further, Corollary 6, Proposition 5, and Remark 10 yield the isomorphism

Ψ : (On ⊗ Om)⋊α R2 → (On ⊗q Om)⋊αq R2.

Decompose the crossed products as follows:

(On ⊗ Om)⋊α R2 ≃ (On ⊗ Om)⋊α1 R⋊α2 R,

(On ⊗q Om)⋊αq R2 ≃ (On ⊗q Om)⋊α
q
1
R⋊α

q
2
R.

Define

tα = tα1 ◦ (1C0(R) ⊠ tα2) ∈ KK(On ⊗ Om, (On ⊗ Om)⋊α R2),

tαq = tαq
1
◦ (1C0(R) ⊠ tαq

2
) ∈ KK(On ⊗q Om, (On ⊗q Om)⋊αq R2),
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Then
η = tαq ◦ [Ψ] ◦ t−1

α ∈ KK(On ⊗q Om,On ⊗ Om)

is a KK-isomorphism. The property [ιOn⊗qOm
] ◦ η = [ιOn⊗Om

] follows from
the commutativity of the following diagram

C C0(R
2) C

On ⊗q Om (On ⊗q Om)⋊αq R2 (On ⊗ Om)⋊α R2 On ⊗ Om

t1◦(1C0(R)
⊠ t1)

ιOn⊗qOm

(1C0(R)
⊠ t1)−1◦ t−1

1

ιOn⊗qOm⋊R2
ιOn⊗Om⋊R2

ιOn⊗Om

tαq Ψ t−1
α

Remark 11. After our paper was submitted, we were informed by Prof.
M. Weber that in unpublished part of his PhD thesis he studied a multi-
parameter twisted tensor product of Cuntz algebras and obtained indepen-
dently the analog of Theorem 15.

3.6 Computation of Ext for Eq
n,m

Here we show that Ext(On ⊗q Om,Mq) = 0 if gcd(n− 1, m− 1) = 1. We use
the isomorphism On ⊗q Om ≃ On ⊗ Om, |q| = 1.

Recall the notion of UCT property for KK-theory, see [3].

Definition 5. Suppose A and B are separable nuclear C∗-algebras. We say
that a pair (A,B) satisfies the Universal Coefficient Theorem (UCT), if the
following sequences are exact, j ∈ Z2,

0 →
⊕

i∈Z2

Ext1Z(Ki+1(A), Ki+j(B)) → KKj(A,B) →
⊕

i∈Z2

Hom(Ki(A), Ki+j(B)) → 0.

We say that A satisfies UCT if (A,B) satisfies UCT for every B.

It is known that On ⊗q Om ≃ On ⊗ Om satisfies UCT. The following
statement is an easy consequence of the Kunneth formula.

Theorem 16. Let d = gcd(n− 1, m− 1). Then

K0(On ⊗q Om) ≃ Z/dZ, K1(On ⊗q Om) ≃ Z/dZ,
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Proof. The Kunneth formula for K-theory, see [3] Theorem 23.1.3, gives the
following short exact sequences, j ∈ Z2,

0 →
⊕

i∈Z2

Ki(On)⊗ZKi+j(Om) → Kj(On⊗Om) →
⊕

i∈Z2

TorZ1 (Ki(On), Ki+j+1(Om)) → 0

It is a well known fact in homological algebra, see [15], that for an abelian
group A

TorZ1 (A,Z/dZ) ≃ AnnA(d) = {a ∈ A | da = 0}.
In particular,

TorZ1 (Z/nZ,Z/mZ) ≃ Z/ gcd(n,m)Z.

Recall that, see [11],

K0(On) = Z/(n− 1)Z, K1(On) = 0.

Hence, for On ⊗ Om, one has the following short exact sequences:

0 → Z/(n− 1)Z⊗Z Z/(m− 1)Z → K0(On ⊗ Om) → 0 → 0,

0 → 0 → K1(On ⊗ Om) → Z/dZ → 0.

Next step is to compute the K-theory of Mq.

Theorem 17. Let d = gcd(n− 1, m− 1). Then

K0(Mq) ≃ Z/dZ⊕ Z, K1(Mq) ≃ 0.

Proof. By Theorem 7, Proposition 7, and [11], Proposition 3.9,

K0(E
q
n,m) = K0((O

(0)
n ⊗ O(0)

m )Θq
) = K0(O

0
n ⊗ O0

m) = Z,

K1(E
q
n,m) = K1((O

(0)
n ⊗ O(0)

m )Θq
) = K1(O

0
n ⊗ O0

m) = 0.

Applying the 6-term exact sequence for

0 → K → Mq → On ⊗K⊕ Om ⊗K → 0,

we get

Z K0(Mq) Z/(n− 1)Z⊕ Z/(m− 1)Z

0 K1(Mq) 0
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Then K1(Mq) = 0, and elementary properties of finitely generated abelian
groups imply that

K0(Mq) = Z⊕ Tors,

where Tors is a direct sum of finite cyclic groups.
Further, the following exact sequence

0 −→ Mq −→ Eq
n,m → On ⊗q Om −→ 0

gives

K0(Mq) Z Z/dZ

Z/dZ 0 0

p

i

The map p : K0(Mq) ≃ Z⊕ Tors → Z has form p = (p1, p2), where

p1 : Z → Z, p2 : Tors → Z.

Evidently, p2 = 0, and p 6= 0 implies that ker p1 = {0}. Thus,

ker p = Tors = Im(i) ≃ Z/dZ.

Theorem 18. Let d = gcd(n− 1, m− 1) = 1. Then Ext(On ⊗q Om,Mq) = 0.

Proof. Recall that for nuclear C∗-algebras Ext(A,B) ≃ KK1(A,B).
We use the sequence from Definition 5 for j = 1, A = On ⊗q Om and

B = Mq:

0 →
⊕

i∈Z2

Ext1Z(Ki(A), Ki(B)) → KK1(A,B) →
⊕

i∈Z2

Hom(Ki(A), Ki+1(B)).

Since K0(A) = K1(A) = Z/dZ and K0(B) = Z⊕ Z/dZ, K1(B) = 0, one has

Hom(K0(A), K1(B)) = 0, Hom(K1(A), K0(B)) = Z/dZ,

and, see [15],

Ext1Z(K0(A), K0(B)) = Z/dZ⊕ Z/dZ, Ext1Z(K1(A), K1(B)) = 0.

Hence the following sequence is exact

0 → Z/dZ⊕ Z/dZ → KK1(On ⊗q Om,Mq) → Z/dZ → 0.
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By Theorem 18, for the case of gcd(n−1, m−1) = 1 one can immediately
deduce that extension classes of

0 → Mq → Eq
n,m → On ⊗q Om → 0,

and
0 → M1 → E1

n,m → On ⊗ Om → 0,

coincide in Ext(On ⊗Om,M1) and are trivial. These extensions are essential,
however in general case one does not have an immediate generalization of
Proposition 16. Thus the study of the problem whether Eq

n,m ≃ E1
n,m would

require further investigations, see [12, 16].
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algebras generated by pairs of q-commuting isometries. J. Phys. A
38(12), 2669–2680 (2005). DOI 10.1088/0305-4470/38/12/009. URL
https://doi.org/10.1088/0305-4470/38/12/009

[26] Jorgensen, P.E.T., Schmitt, L.M., Werner, R.F.: q-canonical commuta-
tion relations and stability of the Cuntz algebra. Pacific J. Math. 165(1),
131–151 (1994). URL http://projecteuclid.org/euclid.pjm/1102621916

[27] Jorgensen, P.E.T., Schmitt, L.M., Werner, R.F.: Positive represen-
tations of general commutation relations allowing Wick ordering. J.
Funct. Anal. 134(1), 33–99 (1995). DOI 10.1006/jfan.1995.1139. URL
https://doi.org/10.1006/jfan.1995.1139

[28] Kasprzak, P.: Rieffel deformation via crossed products. J. Funct.
Anal. 257(5), 1288–1332 (2009). DOI 10.1016/j.jfa.2009.05.013. URL
https://doi.org/10.1016/j.jfa.2009.05.013

[29] Kennedy, M., Nica, A.: Exactness of the Fock space repre-
sentation of the q-commutation relations. Comm. Math. Phys.
308(1), 115–132 (2011). DOI 10.1007/s00220-011-1323-9. URL
https://doi.org/10.1007/s00220-011-1323-9

[30] Kim, C.S., Proskurin, D.P., Iksanov, A.M., Kabluchko, Z.A.: The gen-
eralized CCR: representations and enveloping C∗-algebra. Rev. Math.
Phys. 15(4), 313–338 (2003). DOI 10.1142/S0129055X03001618. URL
https://doi.org/10.1142/S0129055X03001618

50



[31] Kirchberg, E.: The classification of purely infinite C∗-algebras using
Kasparov’s theory. Preprint (1994)

[32] Klimek, S., Lesniewski, A.: A two-parameter quantum deformation
of the unit disc. J. Funct. Anal. 115(1), 1–23 (1993). DOI
10.1006/jfan.1993.1078. URL https://doi.org/10.1006/jfan.1993.1078
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