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Abstract

We consider C*-algebra Sg,m, which is a g¢-twist of two Cuntz-
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class of €%, does not depend on q. For the case |[q| = 1 we give an
explicit description of all ideals in &% ,,,. In particular, &} ,, contains
a unique largest ideal M,. Then we identify & ,,/M, with the Rieffel
deformation of O, ® O,, and use a K-theoretical argument to show
that the isomorphism class does not depend on gq.
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1 Introduction

1. Since early 80-th, a wide study of non-classical models of mathematical
physics, quantum group theory and noncommutative probability (see e.g.,
[5, 18, 20, 36, 38, 50]) gave rise to a number of papers on operator algebras
generated by various deformed commutation relations, see [6, 32, 37] etc. A
general approach to the study of these relations has been provided by the
framework of quadratic *-algebras allowing Wick ordering (Wick algebras),
see [27]. The class of Wick algebras includes, among others, deformations
of canonical commutation relations of quantum mechanics, some quantum
groups and quantum homogeneous spaces, see e.g., [19, 33, 46, 41]. On
the other hand, one can consider Wick algebras as a deformation of Cuntz-
Toeplitz algebra, see [10, 14, 27].

Let {T}, i,j,k,l=1,d} CC, T} = T;lz Wick algebra W (T'), see [27], is
the *-algebra generated by elements a;, aj, j =1, d subject to the relations

d

* _ l *

aja; = 0;;1 + E T aay,.
k=1

It was shown in [27] that properties of W (T') depend on a self-adjoint operator
T called the operator of coefficients of W (T). Namely, let 3 = C? and ey,
..., eq be the standard orthonormal basis of H. Construct

d
T: H®? = H®?, Te,®e = Z Til,zei R e;.
ij=1

Notice that the subalgebra of W (T') generated by {a;}9_, is free and can be
identified with the full tensor algebra F = @, , H®" via

k
ail...aikl—>eil®~-~®eik6f}(® .

Definition 1. The Fock representation of W (T') is the unique irreducible
s-representation 7mrr determined by a cyclic vector €2, ||Q2|| = 1, such that

7TF7T(CL*)Q = O, ] = 1, d

J
The problem of existence of mpp is non-trivial and is one of the central

problems in representation theory of Wick algebras. Some sufficient condi-
tions are collected in the following theorem, see [6, 24, 27].
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Theorem 1. The Fock representation wpr of W(T) exists if one of the
conditions below s satisfied

e The operator of coefficients T > 0;
o ||T]| <v2-1;

o T is braided, i.e. 1@T)(T®1)(1®T)=To1)(1eT)(1x1T)
on H® and ||T|| < 1. Moreover, if ||T|| < 1 then wrr is a faithful
representation of W(T') and ||mpr(a;)|| < (1 — T2, If||T|| =1,
one can not guarantee boundedness of mpr and in this case ker mpr is a
x-ideal Jo generated as a *-ideal by ker(1+T'). Hence w1 is a faithful
representation of W(T')/Js.

Another important question in the theory of Wick algebras is the question
of stability of isomorphism classes of W(T') = C*(W (7)) for the case ||T|| <
1. The following problem was posed in [26].

Conjecture 1. Let T : H®? — H®? be a self-adjoint braided operator and
||T|| < 1. Then W(T') ~ 'W(0).

In particular, the authors of [26] have shown that the conjecture holds
for the case ||T|| < v/2 — 1, for more results on the subject see [14], [29].

Consider the case T'= 0 in a few more details. If d = dim H = 1, then
W (0) is generated by a single isometry s, s*s = 1. In this case the universal
C*-algebra & of W(0) exists and is isomorphic to the C*-algebra generated
by the unilateral shift S in l5(Z,). Notice also that mpo(s) =S, so the Fock
representation of the C*-algebra € is faithful. The ideal J in &, generated by
1 — ss* is isomorphic to the algebra of compact operators and &/J ~ C(S?),
see [9]. When d > 2, W(0) is generated by s;, s}, such that

The Fock representation mp4 acts on J := Fy as follows

Tra(s)2=¢;j, Tra(sjlen @ @€y =e€; @€, @ ®ey, k>1,
Wde(SDQ =0, ﬂ-F,d(S;)eil ® - e, =06, e, k> 1.

The universal C*-algebra generated by W (0) with d > 2 exists and is called
the Cuntz-Toeplitz agebra (920). It is isomorphic to C*(mr (W (0))), so the
Fock representation of Ofio) is faithful, see [10]. Further, the ideal J generated
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by 1 — Z;l:l sjs; 1s the unique largest ideal in O((io). It is isomorphic to the

algebra of compact operators on F,;. The quotient (‘)g)) /J is called the Cuntz
algebra Q4. It is nuclear (as well as O((io)), simple and purely infinite, see [10]
for more details.

2. In this paper we study the C*-algebras £ ,, generated by Wick algebras
with operator of coefficients 1" described as follows. Let H = C"@C™, |¢| < 1
and

Tu ®ug =0, TU1®U2:O, Up, Us E(Cn, V1, Vg E(Cm,
Tuv=qu®u, Tveu=qu®v, uecC" veCm

We denote the corresponding Wick algebra by W EY . Notice that T' satisfies
the braid relation and ||T|| = |¢| < 1 for any n,m € N. In particular, the
Fock representation 7, exists for [¢| < 1 and is faithful on WEY | for |q| < 1.

The case n = 1, m = 1 was studied by various authors. Namely, W E{
is generated by isometries s, sy subject to the relations

* *

It is easy to see that the corresponding universal C*-algebra € exists for
any |q| < 1.
If |¢| < 1, the main result of [25] states that £f; ~ 8{? = 0 for any
lg| < 1. In particular the Fock representation of €7 ; is faithful.
The case |q| = 1 was studied in [30, 40, 47]. In this situation the additional
relation
S§251 = (S152

holds in € ;. Tt was shown that €7 ; is nuclear for any |¢| = 1. Let M, be the
ideal generated by the projections 1—s;s} and 1—sys5. Then €Y /M, ~ A,,
where A, is the non-commutative torus, see [42],

* * * * * * *
.Aq =C (Ul, U9 | U1 = U1U = 1, UgUg = UUy = 1, UsU1 = qu1u2).

If ¢ is not a root of unity, then the corresponding non-commutative torus A,
is simple and M, is the unique largest ideal in €7 ;. Let us stress that unlike
the case |¢| < 1, the C*-isomorphism class of €7 | is “unstable” with respect
to g. Namely, €7 ~ P iff Ay, ~ A,,, see [30, 40, 47].

One can consider another higher-dimensional analog of £f,. For a set
{qij};{j:l of complex numbers such that |g;| < 1, ¢;; = Gj;, ¢ = 1, and
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d > 2, one can consider a C*-algebra €y, y, generated by s;, s, j = 1,d
subject to the relations

* _ * _ *
sis; =1, s8;/8; = qijS;5;-

The case |g;;| < 1 was considered in [34], where it was proved that €, 3
is nuclear and the Fock representation is faithful. It turned out that the
fixed point C*-subalgebra of €, .} with respect to the canonical action of T
is an AF-algebra and is independent of {¢;;}. However the conjecture that
€ gy = €0y remains open.

The case |g;;| = 1 was studied in [23, 30, 40]. It was shown that £, ; is
nuclear for any such family {¢;;} and the Fock representation is faithful. For
more details on ideal structure and representation theory see [23, 30].

We focus on the study of €%, with n,m > 2 (the case n =1, m > 2 will
be considered separately, see [49]). It is generated by isometries {s;}}_;, and
{t,},, satisfying commutation relations of the following form

S:‘szov 1<i#j<mn,
tits =0, 0<r#s<m, (1)
sitr =qtys;, 0<j<n, 0<r<m.

The analysis is separated into two conceptually different cases, |¢| < 1 and

gl = 1.

If |¢| < 1, we show that €1, ~ &) = 0 where the latter is the
Cuntz-Toeplitz algebra with n + m generators.

For the case |¢| = 1, we prove that &1, 1s nuclear, contains a unique
largest ideal My, and the quotient O, ®, O,, = &I, /M, is simple and
purely infinite for any q specified above. Then we use the Kirchberg-Phillips
classification Theorem, see [31, 39], to get one of our main results. Namely
we show that

On @y O = O @ O

for any ¢ € C, |q| = 1. Further we prove, that the Fock representation of &7 ,
is faithful for any |g| = 1 and use this fact to prove that €7 is isomorphic
to the Rieffel deformation of O @ 0. Next we show that the isomorphism
class of M, is independent on ¢ and consider €7, as an (essential) extension
of 0, ® O,,, by M, and study the corresponding Ext group. In particular, if
ged(n — 1,m — 1) = 1, this group is zero. Thus in this case, €, and &, .
both determine the zero class in Ext(O,, ®, O,,, M,). We stress that unlike
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the case of extensions by compacts, one can not immediately deduce that two
trivial essential extensions are isomorphic. So the problem of isomorphism
&4, ~ &), remains open for further investigations.

3. Recall how the algebras generated by isometries discussed above, are
related to algebras of deformed canonical commutation relations.

We start with the case of one degree of freedom. The algebra G, of
g-deformed canonical commutation relations, see [2, 36], is generated by ele-
ments a, a* such that

a*a—qaa® =1,

where ¢ € [—1,1]. It is known, see [26], that the universal C*-algebra G,
generated by G, exists for ¢ € [-1,1) and G, ~ € for any ¢ € (—1,1).

The algebra G, 4 of quon commutation relations with d degrees of freedom
was introduced and studied in [5, 18, 20, 50]. Namely, G, 4 is generated by
aj, aj, j = 1,d, subject to the commutation relations

ata; = ;1 + qaal, i,j=1,d, qe(0,1).

Notice that the operator 7', corresponding to Gy 4 has the form
Te;, ®e; =qe; @ e

so it is a braided contraction with ||T|| = ¢. In particular, for ¢ < v/2 — 1
one has G, 4 ~ 09, where G, 4 is the C*-algebra generated by G, 4.

A multiparameter version of quons was considered in [6, 37, 38]. The
corresponding *-algebra Gy}, ¢ij = @y |¢i5] < 1,4, j = 1, d, is generated by

aja; = 651 + gijaza;, i,j=1,d

The operator T" acts as T'e; ® e; = g;je; ® e;, so it is a braided contraction as
well. For |g;;| < v/2—1 we get Sa,} =~ O However, if |g;;| = 1 for all i # j,
and |g;;| < 1, then Gygq,3 > Eqq,,3, see [40].

Take k € (0,1) and ¢ € C, |¢| = 1. Construct H = C* @ C™, n, m > 2
and define T': H®? — H®? as follows

Tus ® ug = kug ®uy, if either uq, us € C" or uy, ug € C™
Tuv=quv®u, ifueC" veCm

Denote the corresponding Wick algebra by WE%* and its universal C*-

n,m

algebra by €2% . This C*-algebra is generated by s;, t,, j = 1,n, r = 1,m,

6



subject to the relations

S:Sj = 51J1 + kaij,
£, = 641 + kit 2)

Sity = qtp85, t.8; = q8jt,.

Relations (2) can be regarded as an example of system considered in [4] in
the case of finite degrees of freedom. Applying the general stability result,
we get that 4% ~ &7 for k < V2 — 1.

Notice that for k£ = +1 we get a discrete analogue of commutation rela-
tions for generalized statistics introduced in [35].

2 The case |¢| < 1

We start with some lemmas. Let A, denote the set of all words in alphabet
{1,n}. For any non-empty g = (u1,..., ), and a family of elements by,
..., by, we denote by b, the product b,, ---b,,; we also put by = 1. In this
section we assume that any word p belongs to A,,.

Lemma 1. Let Q =Y, s;st, then

* *
E sulds, = E Sy S,

lul=k vl=k+1
Proof. Straightforward. O
Lemma 2. For any x € &} ,, one has
H S suss| < ).
|ul=k

Proof. 1. First prove the claim for positive x. In this case one has 0 < x <
|z[|1. Hence 0 < s,xs;, < ||z||s,s};, and

|32 suesi] < st - 32 s
|

lul=k ul=k

Note that sy sy = dux, i1, A € Ay, || = |[A| = k, implying that {s,s} | |u| = k}
form a family of pairwise orthogonal projections. Hence [| 37, _; sus)ll = 1,
and the statement for positive x is proved.
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2. For any x € €] . write A =37 s,ws), then A* =3 s,xs),

and
A*A = Z SuT TS,
|u|=k
Then by the proved above,

IA]? = [|AA]| < 2" = ||=]*. O
Construct & = (1 — Q)t;, [ = T, m.

Lemma 3. The following commutation relations hold

sity=0, i=1,n, l=1m,
=0, l#r Lr=1m,
tit,=1—gPQ >0, r=Tm.

Proof. We have s*(1 — Q) = 0, implying that sit; = 0 for any i = 1,7, and
[=1,m.
Further,

Bh=t1—-Qt =t — Y tisisity=01— Y |g|*sititis] =
i=1 =1

=04(1 — |¢I*Q). O

Proposition 1. For any r =1, m, one has

t, = i Z qksu?rs;.

k=0 || =k

In particular, the family {s;,t,, i =1,n, r =1, m} generates EL -
Proof. Put M} = Z\m:k qksuﬁs;, k € Z,. Then
Mj=t,—Qty =1, — Y susitr,
lul=1

and

M= q"s, (1= Q)tys;, = Y su(1—Q)spt, =

lul=k lul=k
_ * _ *
= E susutr E susutr.
lul=k lul=k+1



Then

N
SJTV:Z Z SuS,br = Z SulrS),.

k=0 lu[=N+1 lu[=N+1

Since || 32, =1 Sutrspll < |It-|| = 1 one has that S§, — ¢, in €1, as N —
00. U

Suppose that €9 is realised by Hilbert space operators. Consider the

n,m
left polar decomposition ¢, = t,-¢,, where ¢ = t*t, = 1—|¢|2Q > 0, implying
that ¢, is an isometry and

s

t, =1, cteél r

n,m?

L

Lemma 4. The following commutation relations hold

~
Il
—
S
<
I

1,

E

and .
tt=c it =0, r#l O

Summing up the results stated above, we get the following

Theorem 2. Let &, = (1 — Q)t,(1 — |¢|2Q)~2, r = T,m. Then the family

{s:, 1, }7_™, generates &L s and

s;s; =051, it =041, sit, =0, i,j=1,n, r,l=1,m.

.

N

Proof. Tt remains to note that Z, tA(l — 1¢]?Q)z, so t, € C*(t,, Q), so by

Proposition 1 the elements s;, t., ¢ = 1,n, r = 1,m, generate &7 . O

Corollary 1. Denote by v;, i = 1,n +m, the isometries generating &), =

O%,,.. Then Theorem 2 implies that the correspondence

Vi S, t=1,n, Uyt r=1m,

extends uniquely to a surjective homomorphism ¢: &), — &%
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0

n,m*

Our next aim is to construct the inverse homomorphism ¢: €1 = — &
To do it, put

n

Q= Zvivf Wy = Upgr (1 — \q|2@)%, r=1,m.

i=1

Then @'w, =1 — |¢[?Q, and @*w, = 0 if r # I, r,l = T, m. Construct

o
— ko % —
w, = E E @ UW,, T =

k=0 [pu|=k

—_

7m7

where £ runs over A,,, and set as above v, = v, - --v,,. Note that the series
above converges with respect to norm in €2 .

Lemma 5. The following commutation relations hold

wiw; = 0,1,  viw, = quwvl, i=1,n, r,l=1m.

Proof. First we note that viw, = 0, and w!v; = 0 for any i = 1,n, and
J =1, m, implying that

vyw, =0, wivs =0, forany nonempty 6 € A,,, r=1,m.
Let [A] # |ul, A, g € An. I |A| > |, then A = Ay with |A| = x| and
V3V = 05,05
Otherwise p = uf3, || = |A| and
VYV, = 0x\aUs.
So, if [A| > |p| one has
UNW, VU, WU, = O3 AW, VW0, = 0,

and if |p| > |A|, then

ko kS sk~ _
VAW, VYU, W,V = M\aUAW, VW, v, = 0.
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Since vy = 0,a1, if || = [A[, one has

N N
wiw, = lim (303 lafos@ies) - (303 lal'vai; )

k=0 |\|=k 1=0 |p|=1
N N
= lim E E ki, 0" = lim E E Wi, W
N—oo |q‘ rAYurty Noo |q‘ rUAYRET Yy
k=0 || =k, |p|=l k=0 |A],|ul=k,
N N
= lim ey w0t = lim 2y (1 — |qlPQ?*)v*
Jim YN ol o e, = im0 gl o1~ [qlPQ);
k=0 |ul=k k=0 |ul=k
N
— Lm Z(Z 2k ¥ Z 2k+2,, v*)
Ne—oo |q| 12 |q| 2
k=0 |u|=k lul=k+1
— lim (1— 2§ UU*>:1,
N—o00 |q| Hon
lul=N+1

Since wiw; = 0, r # [, the same arguments as above imply that w'w, = 0,

r 1.
For any non-empty pu € A, write o(u) = 0 if |u| = 1, and o(u) =
(2, ..., pg) if |u| = k > 1. Further, for any ¢ = 1,n, r = 1,m one has

oo 0
* o k _x ~ ok ok~ k ~ % *
V; Wy = § E qs; UMUJTU“ = U; Wy + § E q 6iM1UU(M)wTUU(u)Ui

k=0 |ul=k k=1 || =k

=q i Z quuﬁrv;vz‘ = qu, ;. O

k=0 || =k

Lemma 6. For any r = 1, m, one has @, = (1 — Q)w,.

Proof. First note that (1 — Q)v; =0, i = 1, n, implies that

(1-=Q)v. =0, |ul €Ay n#0.

Then
(1= Qo =1-Q)(X Y dva;)
k=0 |u|=k
=1-Q)w, + > Y ¢"1 - Quui,v; = (1 - Q).
k=1 |u|=k
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To complete the proof it remains to note that @vnw =0,r=1,m. So,
~ ~ ~. 1
Qwr = Qvn-‘rr(l - |q|2Q)2 =0.

O

0

n,m’

Theorem 3. Let v;, i = 1,n + m, be the isometries generating & and

Q=>" vl Put

Wy = Vpir(1 — |q\2@)% and w, = Z Z quuﬁrv;.

k=0 || =k

Then

* * * * ..
v;v; = 0;;1,  wiw =onl, viw, =quv;, i,7=1,n, rl=1

, M.
Moreover, the family {v;, w,}7_,"™ | generates E .
Proof. We need to prove only the last statement of the theorem. We have

Un4r = wr(l - ‘Q|2©>_% = (1 - @)wT(l - ‘Q|2©)_% S C*(whviv L= 17—”)

. T 0
Hence v;, w,, 1 = 1,n, r = 1, m, generate 8n,m- ]

Corollary 2. The statement of Theorem 3 and the universal property of €1 ,
imply the existence of a surjective homomorphism : L~ — Eg,m defined
by

U(si) =wv;, Y(t,)=w., i=1n, r=1m.
Now we are ready to formulate the main result of this section.
Theorem 4. For any q € C, |q| < 1, one has an isomorphism &4, ~ &) .

Proof. In Theorem 2, we constructed the surjective homomorphism ¢: ng —
&1, defined by

(i) = si,  P(Vnr) =%, i=1n, r=1,m.

Show that : €1, — &) from Corollary 2 is the inverse of . Indeed, the
equalities ¥ (s;) = v;, i = 1,n, imply that

b1-Q=1-Q
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Then, since ¥(t,) = w,, we get

and
Y(t) = (1 - 1qPQ)7%) = @1 — |¢PQ) " = vuyy, r=Tm.
SO7 ¢§0(UZ) = ¢(82) = Uia TPSO(Um—r) = ¢(%\7“> = Un-i—?“v 7’ = 17”7 r= 17m7 a“nd

w(p = ’ldg%m
Show that py) = idgs . Indeed,

~

o(@,) = p(var(1 - g?Q)2) = 6,(1 — |¢|?Q)Z =1,, r=T1,d.

Then for any r = 1, m, one has

p(wy) = Z Z qk@(%)@(@r)wﬁ = Z Z qksuasz = 1.

k=0 |ul=k k=0 |ul=k

SO, pr(sl) = SO('UZ) = Si, (p,@b(tr) = QO(’LUT) = tT’> L= 1,7’L, r= 1,m. H

3 The case [¢| =1

In this section, we discuss the case |g| = 1. Notice that for |¢q| = 1, the
relations in &7 imply that ¢;s;, = gsit;, i = 1,n, j = 1,m. Indeed, for

Bij = tjs; — gsit; we have directly Bj;B;; = 0.

3.1 Auxiliary results

In this subsection we collect some general facts about C*-dynamical systems,
crossed products and Rieffel deformations which we will use in our consider-
ations.

3.1.1 Fixed point subalgebras

First we recall how properties of a fixed point subalgebra of a C*-algebra
with an action of a compact group are related to properties of the whole
algebra.
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Definition 2. Let A be a C*-algebra with an action 7 of a compact group
G. A fixed point subalgebra A7 is a subset of all @ € A such that v,(a) = a
for all g € G.

Notice that for every action of a compact group GG on a C*-algebra A one
can construct a faithful conditional expectation £, : A — A" onto the fixed
point subalgebra, given by

&wwaéwmmm

where A is the Haar measure on G.
A homomorphism ¢ : A — B between C*-algebras with actions « and 3
of a compact group G is called equivariant if

poa, = f,0pforany g€ G.

Proposition 2 ([7], Section 4.5, Theorem 1, 2). 1. Let vy be an action of
a compact group G on a C*-algebra A. Then A is nuclear if and only
if A7 is nuclear.

2. Let p : A — B be an equivariant x-homomorphism. Then ¢ is injective
on A if and only if @ is injective on A®.
3.1.2 Crossed products

Given a locally compact group G and a C*-algebra A with a G-action «,
consider the full crossed product C*-algebra A x, G, see [48]. One has two
natural embeddings into the multiplier algebra M(A %, G),

Z'AZA—>M(A>4(XG), 'é(;ZG—)M(AXIaG),
(ia(a)f)(s) = af(s), (ic()f)(s) =au(f(t7's)), t.s€G, a€A,

for f € C.(G, A).

Remark 1. Obviously, ig(s) is a unitary element of M (A x,G) for any s € G.
Recall that ¢ determines the following homomorphism denoted also by ig

ic: C*(G) — M(A %, G)
defined by
idﬂzéﬂ%dﬂW%
14



where A is the left Haar measure on G.
Notice that for any g € C.(G, A) one has

(ic(N)g)t) = f a9,

where -, denotes the product in A X, G. In particular, when A is unital we
can identify i¢(f) with f-, 14, and in fact i¢ maps C*(G) into A x, G. Also
notice that

ic(t)iala)ig(t) ™ =ia(ai(a)) € M(A %, G).

If p is an equivariant homomorphism between C*-algebras A with a G-
action o and B with a G-action 3, then one can define the homomorphism

NG AN G = BxgG, (pxG)(f)1) =¢(f(t)), feCG A).
Let A be a unital C*-algebra with G-action a. Then 14: C — A,
LA()\) = )‘1A>

is an equivariant homomorphism, where G acts trivially on C. Since Cx G =
C*(@), one has that

taxG: C*(G)— Ax,G.
In fact, in this case we have
Lg XN G = ig, (3>

where ig: C*(G) — A %, G is described in Remark 1. Indeed, for any
g € G.(G, A) one has

@anuw@zjjwwmrMMt

G

= | ronioate s
((f()1a) o 9)(s) = ((La X G)(f) -a 9)(5),
implying ig(f) = (ta ¥ G)(f) for any f € C*(G).
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3.1.3 Rieffel’s deformation

Below, we recall some basic facts on Rieffel’s deformations. Given a C*-
algebra A equipped with an action o of R” and a skew symmetric matrix
© € M,(R), one can construct the Rieffel deformation of A, denoted by
Ag, see [1, 43]. In particular the elements a € A such that x — «,(a) €
C>*(R", A) form a dense subset A, in Ag and for any a,b € A, their product
in Ag is given by the following oscillatory integral (see [43]):

a-eb ::/ / @ (a)ay (b)e*™ ¥ drdy, (4)

where (-, ) is a scalar product in R™.
In what follows, we will be interested in periodic actions of R", i.e., we
assume that « is an action of T". Given a character y € T" ~ Z", consider

x=1a€A:a,(a) = x(2)a for every z € T"}.

A= A,

XEZL™

Then

where some terms could be equal to zero, and A, - A\, C A\, 1,, AL = A_,.
So, Ay, x € Z", can be treated as homogeneous components of Z"-grading
on A. Conversely, any Z"-grading of A determines an action of T" on A: for
a € A, we let a;(a) = > P)q (see, e.g., [48]).

For a periodic action a of R™ on a C*-algebra A and a skew-symmetric
matrix © € M, (R), construct the Rieffel deformation Ag. Notice that all
homogeneous elements belong to A.,. Apply formula (4) toa € A,, b € Ay

a-o b:/ / 27mi(© ,p 27r2yq be 2mi{x,y) dflfdy

— / e27rz(yq>/ e27rz(x —O(p )) 2mi(x,y) dl’dy
n Rn

a-b/ WA, o dy

— 2mO(P).9) ¢ . .

Thus, given a € A, and b € A, one has

a-gb=e>o®ay . p (5)
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Remark 2. Notice that Ag also possesses a Z"-grading such that (Ag), = A,
for every p € Z". Due to (5), we have a -9 b = a - b for any a,b € Ay,
p € Z". Indeed, for any skew symmetric © € M, (R") and p € Z", one has
(©p, £p) = 0. The involution on (Ag), coincides with the involution on A,.

Consider a C*-dynamical system (A, T" «), and its covariant representa-
tion (7, U) on a Hilbert space H. For any p € Z" ~ T", put

H, = {h € H | Uh = PR},
Then H = D,z I, (see [48]).

Proposition 3 ([8], Theorem 2.8). Let (m,U) be a covariant representation

of (A, T, ) on a Hilbert space H. Then one can define a representation mg
of Ag as follows: '
mo(a)é = MO Ur(a)e,

for every £ € Hy, a € Ay, p,q € Z". Moreover, mg s faithful if and only if
7 18 faithful.

It is known that Rieffel’s deformation can be embedded into M (A x,R"),
but for the periodic actions we have an explicit description of this embedding.

Proposition 4 ([45], Lemma 3.1.1). The following mapping defines an em-
bedding

iAe : A@ — M(A Ao Rn), iA@(ap) = iA(ap)iRn(—G)(p)),
where p € Z" and a, is homogeneous of degree p.

Proposition 5 ([28], Proposition 3.2 and [45], Section 3.1). Let (A, R", «)
be a C*-dynamical system with periodic o and unital A. Put Ag to be the
Rieffel deformation of A. There exist a periodic action a® of R" on Ag and
an isomorphism ¥ : Ag X 0 R" — A x, R"™ such that the following diagram
15 commutative

C*(R") ~ Co(R")

ign ign

Ag X 0 R" L > A X, R"
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Namely, a®(a) = a(a) holds for any a € A,, p € Z". Then it is easy to
verify that i, : Ae — M(A X, R™) with ign: R™ — M(A x, R™) determine
a covariant representation of (Ae, R", a®) in M(A x, R"). Hence, by the
universal property of crossed product we get the corresponding homomor-
phism

U: Ag X0 R" — M(A 3, R").

In fact, the range of ¥ coincides with A x,R™ and ¥ defines an isomorphism
U: Ag Xpe R" — A x, R, (6)

see [28, 45] for more detailed considerations.
The following propositions shows that Rieffel’s deformation inherits prop-
erties of the non-deformed counterpart.

Proposition 6 ([28], Theorem 3.10). A C*-algebra Ag is nuclear if and only
if A is nuclear.

Proposition 7 ([28], Theorem 3.13). For a C*-algebra A one has

KQ(A@) = KQ(A) and Kl(A@) = Kl(A)

3.1.4 Rieffel’s deformation of a tensor product

In this part we apply Rieffel’s deformation procedure to a tensor product of
two nuclear unital C*-algebras equipped with an action of T.

Let A, B be C*-algebras with actions o and § of T. Then there is a
natural action o ® 3 of T? on A ® B defined as

(a ® ﬁ)m,sﬂz(a ® b) = Oy (CL) ® 54,02 (b)

Consider the induced gradings on A and B:

A=EPA4,, B=EPB,.

P1EZ p2EZL

Then the corresponding grading on A ® B is

A@B:= P A, @B,

(p1,p2)t€Z?
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In particular, a® 1 € (A® B) @, 0 and 1 @b € (A® B)op,)t, where a € Ay,
and b € B,,.
Given ¢ = ¥ consider

o -( % 7). @

2

We construct the Rieffel deformation (A ® B)e,.

Proposition 8. One has the following homomorphisms

na: A= (A® B)e,, nala) =a®1,
ng: B — (A® B)e,, na(b) =1®0,

such that for homogeneous elements a € Ay, and b € B, it holds
n5(b) e, nala) = ™M n4(a) -6, 5 (D).

Proof. Recall that Z2-homogeneous components of A ® B and (A ® B)g
coincide and will be considered the same. Let e; = (1,0)%, eo = (0,1)".

Given a € A,, we have

q

nala) =a®1 € (A® B)o,)per

implying that
na(a)" =a"®@1€ ((A® B)o,)-pe-

Let a; € A,, and as € A,,. Then
na(ar) -e, na(az) = e iP1Oalen)p2e) (g @ 1) (ay ® 1) = ayas @ 1 = na(aras).

Thus 74 is a homomorphism. The arguments for 7z are the same.
Given a € A,, and b € B,,, one has

na(a) -e, np(b) = 627Ti(@q(p161)717262>(a ®1)(1b) = ¢TI0 g @ b,
ne(b) e, nala) = 627Ti(@q(p262)717161>(1 @b)(a®1) = TP g @) |,

implying that

ns(b) ‘e, nala) = ™72, (a) -6, np(b).
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3.2 Fock representation of &}

In this part we show that the Fock representation of €2  is faithful, and

n,m

apply this result to show that €, is isomorphic to the Rieffel deformation
((‘)&?) ® OSS))@Q, where ©, is specified in (7).
Definition 3. The Fock representation of €7  is the unique up to unitary

equivalence irreducible x-representation 7}, determined by the action on vac-
uum vector Q, [|Q]] =1,

Tp(s5)Q =0, 7L(t;)Q2=0, j=1n, r=1m.

Denote by 7g,, the Fock representation of 00 &1, acting on the space

Fn=T(H,) =CQOEPHE, H,=C"
d=1

described by formulas

TEn($)2 =€, Trn(sj)en ®es, Qe =€ Qe Qe - Q ey,
TEn(S])Q =0, Tra(si)e, e, @@ e, = 0,6, @+ Re,, deEN,

where ey, ..., e, is the standard orthonormal basis of },. Notice that mp,,

is the unique irreducible faithful representations of (920), see for example [26].

Recall that the Fock representation of €% exists for any ¢ € C, [q] < 1.
For |g| = 1, one has ||T'|| = 1, and the kernel of the Fock representation of the
Wick algebra W E] = coincides with the x-ideal J, generated by ker(1 +T),
see Introduction. In our case,

1]2 = <tT8j — QSjtr, j = 1,71,, r = 1,n>

Denote by El . the quotient WEY  /J,. Obviously, &% = C*(EL ). So
one has the following corollary of Theorem 1.

Proposition 9. The Fock representation of &, ., exists and is faithful on the
*-subalgebra B C &Y .

Below we give an explicit formula for mp(s;), mp(t,). Consider the Fock
representations 7, and g, of x-subalgebras C*({si,...,s,}) = oY ¢
&L, and C*({t1,...,tn}) = 0% ¢ &1, respectively. Denote by Q, € F,

and €2, € F,, the corresponding vacuum vectors.
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Theorem 5. The Fock representation 7% of &L acts on the space F =
F, ® F,, as follows

where di(\) acts on Fy,, k =n,m by
AN =, G(NX =NX, XeH leN.

Proof. 1t is a direct calculation to verify that the operators defined above
satisty the relations of €] . Since mpy is irreducible on JFy, k = m,n, the
representation 7. is irreducible on F,, ® &,,,. Finally put Q = Q,, ® Q,,,, then
obviously

Tp(s5)Q2 =0, and ()2 =0, j=1n,r=1m
Thus 7% is the Fock representation of &f . O

Remark 3. In some cases, it will be more convenient to present the operators
of the Fock representation of €1 . in one of the alternative forms,

or

Th(sj) = Tra(s;) ® du(gh), j=T1,n,

() = 15, @ Tpm(t,), r=1,m,
which are obviously unitary equivalent to the one presented in the statement
above.

Consider the action « of T? on &2

n,m)

asolvﬂpz (Sl) - 627‘-“01 87,) a‘P17<P2 (tT’) = 627”;802-[:7”.

Recall, see Section 3.1.1, that the conditional expectation, associated to « is
denoted by F,.

Proposition 10. The fized point C*-subalgebra (€% ,,) is an AF-algebra.
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Proof. The family {smsultuztm, pi,v1 € Ny, po, 9 € Ay} is dense in Snm,
thus the family {E,(s., 55 tut;,), Hi1,v1 € Ay, pio,v2 € Ay} is dense in
(€ ,,)%. Further,

Eo(8,55, tusty,) = 0, if |p1| # 11| or |pa| # [1a],

and Eq (8,55, tt,) = Sui5y,tusty, otherwise. Hence

(Enm)® = cls{su s, tusty,, [l = [l |pe| = |12, g1 € A, pio,va € Ay}
Put A}, = C,

Alo =cl.s{sy s, || = vi| = ki, i, € An}, ki €N,
and AJ, = C,

A’; = cl.s{t,t, Vo lpo| = 12| = kg, 1,1 € An}, k€N
It is easy to see that zy = yz, v € AM RS Agfo. Let
>ty
k1+ko=k
Evidently Af is a finite-dimensional subalgebra in (€2 )¢ for any k € Z,

and
er = | Az 0

keZy

Remark 4. Define unitary operators Uy, ,,, (¢1,92) € T? on F,, @ F,, as
follows: '
Ui = dule™#) @ d (772,

Then (7}, Uy, »,) is a covariant representation of (€2

n,m?

2 ).

Theorem 6. The Fock representation 7§, of €4 . is faithful.

m,n

Proof. Consider the action o™ of T? on 7,(€% ) induced by the action o on
€ m

ag W%(SJ) ezmwﬁ%( ) Sior02>

$1,$2
aghwﬂ%(tr) = e%wzﬁ%( ) =T o
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To see that a?  , is an automorphism of 7% (€7 ) we notice that the oper-

¥1,$2
ators S; satisty the defining relations in €7, and

J,P1,$2) T’“78017802 ?

S* Q=1 Q=0.

7,1,2 T¥1,$2

Evidently the family {Sj e, 0055701 00 Trprions Ty on ) j=1721 18 irreducible
and therefore defines the Fock representation of €7 . Thus, by the unique-
ness of the Fock representation, there exists a unitary Vi, ,, on ¥ = 3, @ F,,,

such that for any j = 1,n, » = 1, m, one has

Sjmm@z = Ad(vcm,cpz) © W%(Sj)a T2 = Ad(vcm,w) © W%(Tr)a

e

implying that of ,

Evidently,

is an automorphism of (€2 ) for any (1, @2) € T2

Tt Ehm = T (&)

is equivariant with respect to o and a™.
By Proposition 2, the representation 7% is faithful on &1, if and only if
it is faithful on (€2, .)*. Further, by Proposition 10,

(&,) = J Ag

keZy

Evidently A} C Ef,,, k € Z,. Hence by Proposition 9, 7%, is faithful on Ag
for any k € Z,. It is an easy exercise to show that a representation of an
AF-algebra is injective if and only if it is injective on the finite-dimensional

subalgebras. O

The next step is to construct a representation of (OSLO) ® OSS))@Q corre-

sponding to the Fock representation mp, ® 7p,, of OSLO) ® OSP.
The pair (7p;, @ Trm, Uy p,) determines a covariant representation of
(0% ® O° T2 «), where as above

04501,@2(5&' ®1) = 627rw1(5j ® 1), a@17@2(1 ®t,) = €2mm(1 ®t,).

Notice that for p = (p1, p2)' € Z3, the subspace HEP' @ HEP? is the (pq, p2)'-
homogeneous component of F related to the action of U, ,, and (F), = {0}
for any p € Z* \ Z2.

Recall also that §; = s; ® 1 is contained in e; = (1,0)*-homogeneous
component and tAr =1®t, is in e5 = (0,1)*-homogeneous component with
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respect to . Now one can apply Proposition 3. Namely, given £ = &£ ® & €
HEPr @ HEIP2 one gets

(TFn @ Trm)e,(55) § = 2O c1.p) Thn @ Trm(S;) & =

= Thn(8;)61 © €720 €y = (g, (55) @ din(q77)) &,

and

(TEn ® vam)@q(t:)f _ 2mi(©qc2,p) Thn ® vam(A,,)f _
(

_ em’pl ¥0 51 ® 7TF7m(tr) 52 = dn(q%) ® 7"-F,m(tr)) 5

Notice that for any j = 1,n, and r = 1, m,

(7TF,n & 71-F,m)(aq (gj)Q = 07 (WF,n ® WF,m)Gq(A:)Q = 0.

Theorem 7. For any q € C, |q| = 1, the C*-algebra €%, is isomorphic to
(0) (0)
(on ® Om )@q-

Proof. Proposition 8 implies that elements (O, ® O,,)e, 2 5; = 5; ® 1 and
(0, ® Om)@q 5t =1®t, satisfy

-~

/8\;?5’\@ = 52]1 &® 1, t:ts = 57‘31 & 1, t:gj = qgjt

*
e

Hence, by the universal property one can construct a surjective homomor-
phism ®: &4 — (07 ® ON))e, defined by

(I)(Sj) = /S\ju (I)(tr> :%\r’ ] = 1,'”:, r = 1,m.

Notice that due to the considerations above, 7% = (7p, ® 7rF7m)@q o®. Since
71 is faithful representation of €4 = we deduce that ® is injective. O

n,m)

The nuclearity of 09 09 and Proposition 6 immediately imply the
following

Corollary 3. The C*-algebra €9 is nuclear for any q € C, |q| = 1.

n,m

The nuclearity of €% ,, can also be shown using more explicit arguments.
One can use the standard trick of untwisting the g-deformation in the crossed
product, which clarifies informally the nature of isomorphism (6). Namely,
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for ¢ = ™% consider the action a4 of Z on &¢ . defined on the generators
as

o/;(sj) = eMheog, o/q“(tr) —e Theor i =1,....n,r=1,...,m, k€7

Denote by the same symbol the similar action on &), ~ 0 @ 0F . Here
we denote by 3; and #, the generators of S

Proposition 11. For any ¢o € [0,1), one has an isomorphism €%, X o, 7 =~
&l Xa, Z.
n,m Qq

Proof. Recall that 8}17m X o, Z is generated as a C*-algebra by elements s;, t,
and a unitary u, such that the following relations satisfied

usjut =e"s;, ut,ut =e "™, j=1,n, r=1m.

Put 5; = s;u and t, = t, u. Obviously, Sj, t, and u generate Enm Nay L.
Further,
sisEp =01, titp = 0.1

and

Sity = Sjut,u = e TSt = e U = e T s u = G St

In a similar way we get ?;tAr = qt:’sj, j=1,n,r=1,m. Finally

o~ ok ’i7r<p0/\‘ % . —iﬂgpo/\
usju” = e ""s;,  ut,ut =e ty.
Hence the correspondence
§j = Sj, tj'—>tj, U — u,
. . . q 1 . .
determines a homomorphism ®,: €1 | %o, Z — &, ,, Xa, Z. The inverse is
constructed evidently. O

Let us show the nuclearity of €2 again. Indeed, €}, = o @ o
is nuclear. Then so is the crossed product 8,117m Xa, Z. Then due to the
isomorphism above, & = x,, Z is nuclear, implying the nuclearity of &7
see [3].

We finish this part by an analog of the well-known Wold decomposition
theorem for a single isometry. Recall that

Q= Zn:sjs;, P = Zm:t,,t:.
j=1 r=1
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Theorem 8 (Generalised Wold decomposition). Let 7: &% — B(H) be a
x-representation. Then

H =3, ®&Hy ®Hs D Hy,

where each H;, j = 1,2,3,4, is invariant with respect to w, and for m; = 7 4,
one has

o H; =F K for some Hilbert space K, and m1 = 7} ® 1x;
e (1 —-Q)=0,m(1l—P)#0;
o m(1—P) =0, m(1— Q) #0;
e (1 -Q)=0, m(1—-P)=0;
where any of H;, 7 =1,2,3,4, could be zero.

Proof. We will use the fact that any representation of O is a direct sum of
a multiple of the Fock representation and a representation of O,,.
So, restrict 7 to 09 ces and decompose H = Hp @ Hp, where

and (095, is a multiple of the Fock representation. Denote

Sj = m(s) loce, Q= m(Q) locp -

Since

Hr = @ Sx(ker Q),

AEAL
it is invariant with respect to w(¢.), w(t), r = 1,m. Indeed, t,Q = Qt,
in € . implying the invariance of ker @) with respect to m(t,) and m(t}).

n,m)?

Denote ker @ by G and T, := 7 (t,) [g. Then
w(t)SNE = ¢NSm(t)E = ¢NS\TE, €€
Thus Hp ~ &F,, ® § with

ﬂ-(sj) rﬂ'fF: WF,n(‘Sj) ® 197 ﬂ-(tT> rﬂ'fF: dn(q) ® TT7 j = 17”7 r= 17m7

where the family {7,} determines a *-representation 7 of 0% on g.
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Further, decompose G as § = §r® S+ into an orthogonal sum of subspaces
invariant with respect to 7, where G = F,, ® K,

Top(ty) =Tpm(ty) ®1x, r=1m, and 7 [9# (1-P)=0.

Thus Hp = (F, ® F, @ KX) @ (F, ® G7) and

T3 (55) = (TEn(s)) ® 1g,, @ 1) © (Trals;) @ 1g), J =
7-‘-9{1?@?) = (dn(q> ® 71-F,m(tr) ® 1K) ©® <d & 7T‘9L >

Put H; = F, ® F, ® K = F ® X and notice that that 7 [5,= 75 @ 1, see
Remark 3. Put Hz = F, ® G and 73 = 7 |y, i-e.,

T3(85) = TEn(s)) ® Lo, m3(tn) = dn(q) @ TgL(tr), J=1,n, r=1m.

Evidently, m3(1 — P) = 0 and m3(1 — @) # 0.
Finally, applying similar arguments to the invariant subspace H3 one can
show that there exists a decomposition

Hy = Hy @ Hy
into the orthogonal sum of invariant subspaces, where
e Hy =59, ® L and
ma(sj) =7 lsg, (85) = dp(Q)R7(55), malty) == [9g, (tr) = Tpm(t,) @1,
for a representation 7 of O,,. Evidently, my(1 — Q) = 0, m(1 — P) # 0.
e For my := 7 [4, one has

7T4(1—Q):0, 7T4(1—P>:0

3.3 Ideals in Sq

In this part, we give a complete description of ideals in €4
independence on the deformation parameter q.

and prove their

n,m?
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For . .
Q:Zsjs;, P:Ztrt:.
7=1 r=1

we consider two-sided ideals, M, generated by 1 — P and 1 — @, I generated
by 1 — @, J4 generated by 1 — P, and J, generated by (1 — Q)(1 — P).
Evidently,
J,=31n74 =777

Below we will show that any ideal in €7 | coincides with the one listed above.

To clarify the structure of J{, I3 and J,, we use the construction of twisted
tensor product of a certain C*-algebra with the algebra of compact operators
K, see [47]. We give a brief review of the construction, adapted to our
situation.

Recall that the C*-algebra K can be considered as a universal C*-algebra
generated by a closed linear span of elements e, 1, v € A, subject to the
relations

€urvn €pavs = Oyt €pavns  €pywy = Cunpns  Vis i € A,
here ey := epp is a minimal projection.
Definition 4. Let A be a C*-algebra,
a={a,, pei,} CAut(A), where ag = idy,

and ey, p,v € A, be the generators of K specified above. Construct the
universal C*-algebra

(A, K), =C*(a € A e, €K| aeu = epa;, (a,(a)).

We define A ®, K as a subalgebra of (A, K), generated by ax, a € A C
(A, K)y, 2 € KC (A, K),.

Notice that (A4, K), exists for any C*-algebra A and family o C Aut(A),
see [47].
Remark 5.
1. Let z, = ey. Then ax, = x,a,(a), ax}, = x}a,'(a), a € A, compare
with [47].

2. For any a € A one has e,,a = a;;'

o (ay(a))e,, implying that

(aew)” = a, (au(a))ew,.

3. For any a1, ay € A one has (a1€4,1,)(02€450,) = Ouypr 0105, (0, (02)) €411
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Proposition 12 ([47]). Let A be a C*-algebra and
a={oy,, peA,} CAut(A) with oy = ida.
Then the correspondence
aeu — aua) ® e, a€ A pvel,
extends by linearity and continuity to an isomorphism
Ay AR K= A®K,
where ALY is constructed via the correspondence
a® e o, (a)en, a€A, ey,
Remark 6. For x,, = e,p, 1 € A, one has, see [47],
Ay(ar,) = aua) @z,  Aulaz)) =a @z,
The following functorial property of ®,K can be derived easily. Consider
o = () uer,, CAut(A), 8= (Bu)uen,, C Aut(B).

Suppose ¢ : A — B is equivariant, i.e. ¢(o,(a)) = Bu(p(a)) for any a € A
and p € A,,. Then one can define the homomorphism

0P AR, K = B3 K, ¢&F° (ak)=¢la)k, ac A, keK,
making the following diagram commutative

B
A K 2% BesK

b L

ARK 2%, BeK
Namely, it is easy to verify that
(Az' o (p®idk) 0 Ay)(aew) = la)e = ¢ &) (aew), a €A, p,v € Ay,

An important consequence of the commutativity of the diagram above is
exactness of the functor ®,K. Let

B = (Bu)uern CAUt(B), a = (au)uen, CAut(A), ¥ = (3)uer, C Aut(C)
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and consider a short exact sequence

0 »y B "5 A 25 O > 0

where 1, g are equivariant homomorphisms. Then one has the following
short exact sequence

00— BasK 20 A, K 2% 0@, K — 0

Now we are ready to study the structure of the ideals 37,J3,J, C &%
We start with J{. Notice that

N =clsA{t,t,s,(L—=Q)s; , p1,v1 € Ny, pig, 10 € A}

Put B, =5, (1 —Q)s;,, g1, 1 € Ay, Then E,,,, satisfy the relations for
matrix units generating K. Moreover, c.l.s. {E,,, p,v € A,} is an ideal in
O isomorphic to K.

Consider the family a? = (a,,)uen, C Aut(OgrOL)) defined as

a,(t,) = q‘“‘tr, a,(ty) = q_‘“‘t:, weAN, r=1m.

Proposition 13. The correspondence aey, +— aF,,, a € OSS), v € Ay,
extends to an isomorphism

Agi: 09 @, K — 7.
Proof. We note that for any uq,v1 € A, and pus, 5 € A, one has

bt Emyl:q(\V1|—W1|)(|M2\—|V2|)Emult tt =F a” (am(t t* ))

12"y 12"y M1V M2 vy
Thus, due to the universal property of <(‘)£2), K) 44, the correspondence
aey, — ak,,

determines a surjective homomorphism A, : O @ae K — J9.

It remains to show that A, ; is injective. Since the Fock representation
of €2 is faithful, we can identify J{ with 7% (J{). It will be convenient for
us to use the following form of the Fock representation, see Remark 3,

Th(s;) = TEn(s;) ® 1y, == 5; ® 1g,,, 7 = 1,n,
Th(ty) = do(q) @ Tpm(ty) == dn(q) ® T, ¥ =1,m.

30



In particular, for any pi,14 € Ay, o, 0 € Ay,

W%(t t* Emm) _ dn(qul—\uzl)Sm(l N Q)Sul QT T

K2 vo M2 vos
Consider A ;0 AL7: 0P 9K — 74.(37). We intend to show that
Aq,l e} A;ql = 7TI17‘7

where 7}. is the restriction of the Fock representation of OV 0% to Koo,
and K is generated by E,, specified above. Notice that the family

{tuztzz ® Emuu Hi, V1 € Am o, Vo € Am}
generates 0¥ @ K. Then

A;ql(t t, ® Euwl) = O‘_l(t t, )euwl = q_‘ul‘(|u2‘_|y2|)tﬂ2t1t2el‘ll/l7

K2 vy 1 \"H2 %o

and

AQ,IOA;‘ZI(t t, ® E,ulvl) = q_ml'(‘M'_‘W‘)ﬂ%(t t, Emvl)

12 vy H2 o

= q—\ul\(qu\—le)dn(qluz\—lwl)Sm(1 —-Q)S;, ®T,, T,

— q—\ﬂl\(qu\—|V2|)q\u1\(l#z\—|V2|)Smdn(q\u2|—\1/2\)(1 _ Q)Szl ® TuzT:Q
= Sﬂl(l - Q)S;/kl ® TﬂQTIjQ = Tr:fl'—'(Eﬂll’l ® t#2tzg>7

where we used relations d,(\)S; = AS;d,(\), 7 = 1,n, A € C, and the
obvious fact that

d(MN(1-Q)=1-0Q.
To complete the proof we recall that 7k is a faithful representation of

oY ®0° | so its restriction to K® 0Y is also faithful, implying the injectivity
of A,. O

Remark 7. Evidently, J, is a closed linear span of the family
{tuQ(l — P)t;sm(l — Q)Szl, M1,V € An, Mo, Vo € Am} C T{

Moreover, c.l.s{t,,(1 — P)t;,, p2,v2 € Ap} = K C O, Tt is easy to see
that
aplt (1 — P)E2) = grlliai=lady (1 p)g:

12

so every o, € o can be regarded as an element of Aut(K).
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A moment reflection and Proposition 13 give the following corollary

Proposition 14. Restriction of Ay1 to K ®4.0 K C (97(2) Rae K gives an
1somorphism
A1 K®e K— .

To deal with J§, we consider the family ¢ = {8,, p € A,,} C Aut(O,(qo))
defined as

Bu(sj) = q_MSja Bu(s;) = q‘“‘sj, j=1n.
Proposition 15. One has an isomorphism A, o: O,(qo) ®ge K — J3.

Obviously, A, 2 induces the isomorphism K ®gs K ~ J,, where the first

term is an ideal in O and the second in O respectively.
Write
e K= 00 ¢ K= 0

for the canonical embeddings and
Gn: (920) — Ony  Qm: 052) — O,
for the quotient maps. Let also
€0j: 30— 75, =12
be the embeddings and
mey: 5 —=39/34, §=1,2,
the quotient maps. Notice also that the families af C Aut(OSS)), B C

Aut((‘)go)) determine families of automorphisms of O,, and O, respectively,
also denoted by a4 and (9.

Theorem 9. One has the following isomorphism of extensions

g1
0 > I, = g1
lAaqu;} lAaqOA;% l:

0 —— KoK 22% 90 g K %% 0 oK —— 0

Tq,1

» 31/, —— 0

and

€q,2 Tg,2

0 > Iy > J4
Aﬂqu;é lAquA;é l:

0 — > KoK 2% 00 g K 22% 9, g K —— 0

»33/3, —— 0
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Proof. Indeed, each row in diagram (9) below is exact and every non-dashed
vertical arrow is an isomorphism. The bottom left and bottom right squares
are commutative due to (8). The top left square is commutative due to the
arguments in the proof of Proposition 13 combined with Remark 7. Hence
there exists a unique isomomorphism

making the diagram (9) commutative

€q,1 Tg,1

0 > Iy > J9 » 313y —— 0

|
_ -1
lAq,} lAQal :éq’l
a 3

q
57n®2q

m @
0 — > K@K 72 00 @, K 2% 0,, ®us K —— 0

lAaq lAaq lAaq

0 —— K@K 8%, 90 g K %%, 9 g K — 0

(9)

The proof for J4 is similar. O
The following Lemma follows from the fact that M, = J{ 4 J3.
Lemma 7.
M, /I, ~31/3,®9%/3, ~ 0, KD O, @ K.

Theorem 9 implies that J,,3{,J4 are stable C*-algebras. It follows from
[44], Proposition 6.12, that an extension of a stable C*-algebra by K is also
stable. Thus, Lemma 7 implies immediately the following important corol-
lary.

Corollary 4. For any q € C, |q| = 1, the C*-algebra M, is stable.

Denote the Calkin algebra by (). Recall that for C*-algebras A and B
the isomorphism

Ext(A @ B,K) ~ Ext(A, K) @ Ext(B, K)
is given as follows. Let

11: A= A® B, u(a)=(a,0), 13:B—A®B, (b)=(0,b).
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For a Busby invariant 7 : A& B — () define
F:Ext(A® B,K) — Ext(A,K) @ Ext(B,K), F(r) = (70,7 0).

It can be shown, see [21], that F determines a group isomorphism.

Remark 8. Consider an extension

0 » B > B > A > 0 (10)

Let i: B — M(B) be the canonical embedding. Define § to be the unique
map such that

B(e)i(b) =i(eb), foreverybe B, e € E.

Then the Busby invariant 7 is the unique map which makes the diagram
commute.

0 y B —— M(B) —— M(B)/B —— 0

I

0 > B » B >

> 0

We will use both notations [E] and [7] in order to denote the class of the
extension (10) in Ext(A, B).
Let [M,] € Ext(31/3,®794/9,,93,), [91] € Ext(37/3,,9,), [93] € Ext(33/3,,7,)
respectively be the classes of the following extensions
0—79,—M,— 3/, ®9%/3, — 0,
0—9,—3—737/3,—0,
0—J, 38 —79%/3,— 0.

Lemma 8.

(M) = ([37], [93]) € Ext(31/34,34) @ Ext(35/3,,34) =~ Ext(I]/I, ©I5/34,3,).
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Proof. Consider the following morphism of extensions:

/

jq —Z> M(jq) ’ M(Jq)/Jq

> o

q
1

J

7

q

A

| |

jq —‘«—> M(jq) ’ M(Jq)/Jq
/ . 52/ TM/

Jg — ™ M, » 31/3,©33/7,

Here
b J‘{ — M(Jq), Ba: My, — M(Jq),

are homomorphisms introduced in Remark 8, the arrow
Ji: 3 =M,
is the inclusion, and the arrow
v 2 931/3, = 31/3, ®33/7,
has the form ¢ (z) = («,0).
Notice that for every b € J, and = € J{ one has

(B2 0 j1)(2)i(b) = i(jr(x)b) = i(xb) = B (2)i(b).

By the uniqueness of 31, we get B3 o j; = f1. Thus the following diagram
commutes

71 2y M(d,)
[
Mq —2> M@q)

Further, Remark 8 implies that for Busby invariants 92 and Ty, the squares
below are commutative

M(jq) — M(jq)/jq M(jq) B M(jq>/jq

S

3 —— 31/3, M, —— 31/, 33/3,
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Hence the square
qu

J?/jq —1> M(jq)/Jq

|n

99/3, @ 93/9, — M(3,)/9,

is also commutative. Thus, 759 = Ty, © t1. By the same arguments we get
Tyg = T, O L2, where

Lo i]g/jq — j?/jq@jg/jm L2(y) = (an)'

Thus
[7a,] = ([T, © 1], [7aq, © ta]) = ([79], [7]).

In the following theorem we give a description of all ideals in €7 .

Theorem 10. Any ideal J C €Y, coincides with one of I, 31, I3, M,,.

n,m

Proof. First we notice that 37/, ~ O,, ® K, 74/J, ~ O, ® K are simple.
Hence for any ideal g such that J, C J C J{ or I, € J C J2, one has J = J,,
or =174 or g =71

Further, using the fact that M, = J{ + J4 and I, = J] N J% we get

M,/ ~33/7, ~ 0, K.

So if J9 C J C M,, then again either § = J] or J = M,.
Below, see Theorem 13, we show that EZM/Mq is simple and purely
infinite. In particular, M, contains any ideal in &7 , . see Corollary 7.

Let § C &7, be an ideal and 7 be a representation of &7, such that

ker m = J. Notice that the Fock component 7 in the Wold decomposition of
7 is zero. Thus, by Theorem 8,

7T:7T2@7T3@7T4, (11)

and J = ker m = ker moNker m3Nker 74. Let us describe these kernels. Suppose
that the component my is non-zero. Since m(1 — Q) = 0 and m(1 — P) # 0,
we have

I{ C kermy C M,,
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implying ker mo = J4. Using the same arguments, one can deduce that if
the component 73 is non-zero, then ker 7y = J%, and if 7, is non-zero, then
ker my = M.

Finally, if in (11) mo and 73 are non-zero then J = kerm = J,. If either
7o # 0 and w3 = 0 or w3 # 0 and m5 = 0, then either J = J{ or J = J2. In the
case my = 0 and 73 = 0 one has J = kermy = M,. O

Corollary 5. All ideals in &, are essential. The ideal I is the unique
manimal ideal.

In particular, the extension
0—=79,—-M,—79/1, 9%/, — 0

is essential. Indeed, the ideal K = J, C &}, is the unique minimal ideal.
Since an ideal of an ideal in a C*-algebra is an ideal in the whole algebra, J,
is the unique minimal ideal in M, thus it is essential in M,.

The following proposition is a corollary of Voiculescu’s Theorem, see The-

orem 15.12.3 of [3].

Proposition 16. Let Ey, Fy be two essential extensions of a nuclear C*-
algebra A by K. If [Ey] = [Es] € Ext(A,K) then Ey ~ Ej.

Theorem 11. For any g € C, |g| =1, one has M, ~ M.

Proof. By Theorem 9, [J{] € Ext(0,, ® K,K), and [J3] € Ext(0, ® K, K)
do not depend on ¢. By Lemma 8, [M,| does not depend on ¢g. Thus by
Corollary 5 and Proposition 16, M, >~ M;. O

3.4 Simplicity and pure infiniteness of 0, ®, O,

The next step is to show that the quotient O, ®, O,, = &1 ,,/M,, being
nuclear, is also simple and purely infinite.
It is easy to see that

M, =cl.s{s,t, (1 —P)'(1—Q)=t, s },

V2 T 2

where p; € Ap, v; € Appy j=1,2, and ¢ € {0,1}, 1 +£5 # 0.
We denote the generators of O,, ®, O,, in the same way as generators of
&1 - Notice, that for any k € N, the following relations hold in O, ®, Oy,

Z sxsy =1, Z tt, =1,

AEAR, A=k VEAm, [v|=k
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and
0, ®q Oy, = c.l.s.{smsfmtult;, wi € Ay, vj € Ay}

Consider the action a of T? on O, ®q O,

2Tip1 _ 2mipa s —
Qg po(Sj) =€ Si, O o(tr) =€ t., j=1n, r=1m.

Construct the corresponding faithful conditional expectation E,, and denote
by A, the fixed point C*-algebra of (0, ®,0,,), see Section 3.1.1. Similarily
to the case of €1 one has

n,m?

E. (s, 85 tt,) =0, if either |pg| # |pe| or |tn] # |1a],

2 V1 2

Eo(8580,tntn,) = Susiptnty, i [p| = [us| and |v1| = [us].

V1 %vy V1 vy

Lemma 9. If v,y € A, then

situts, =112, si, sty = ¢ Tl st =T,

V1%vg V1%vg V1%vg V1%vg j’

If py, p2 € Ay, then

. * o gleal=lp2] * g — glml=lp2l —
LS Sy, =4 Spr Sy, lis 5.5, s =4 S, swtl, 1=1,m.

As in the proof of Proposition 10, denote
‘AO = C ‘Ak = Span{sﬂl ;27 |lu’1| = ‘:u2| = k? Hi € An}? k€ Na
AS=C, AL =span{t, t., |n|=|nl =k v cAy,}, keN.

1% 1/27

Recall also that AY ~ M,«(C) and A5 ~ M,x(C), see [10].

Put Ag =C,
Z Af - AR
ki+ko=

= [ AL

keZ4

and set

By Lemma 9, for any x € A} and y € A}, one has zy = yz. Thus A, is an
AF-subalgebra in 0, ®, 0,, and A,, ~ A,, for any ¢1,q2 € C, || = |q2| = 1.

To prove pure infiniteness of O,, ®, O,, we essentially follow Chapter V.4
of [13].

Denote by F in'; the span of monomials s, s}, t,,t;, such that

max{|p], |po]} + max{|p], o]} < k.
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Proposition 17. For any k € N there exists an isometry w, € O, ®, O,
such that
Eo(z) = wjzwy, for any x € Finl,

and wiyw, =y for any y € A’;.
Proof. Let s, = s3%sy and t., = t3*¢,. Consider the isometries

k
Wg,1 = E 565485,

16|=k,0€An

wpa = Yttt}

‘)\IZkA)\EAm

and

Then, see Lemma V.4.5 of [13],

wz,ﬁmszgwk,l =0, if |/~"1‘ 7£ |/~"2|7 |/~"2‘ <k i€ A,

and
wz,ﬁms;wk,l = SMSZW if |:u1| = |:u2|’ |:ul| < k>ﬂz € A,.
Analogously,
wZ’Qtl,lt,’jzwk,g = O, if |V1| §£ ‘I/2|, |Vz| S ]{?, v; € Am,
and
wi oty W = t, b, if (1] = [, v < kv € Ay

By Lemma 9 we get

Wy 1t t, = gl

w;;lt t :q(\V1|—\V2\)(2k+1)t t* wlilv

*
Loy t,, Wi 1,

v1tyy V1 %o
wk,25u13:2 — q(\ul|—W2\)(2k+1)8u1322wk72’
wz,2sl¢1$;2 = —(Wl|—W2‘)(2k+1)8u1$;2wz72.

Then

(2k+1)2 —(2k+1)2

* *
Wk 2Wk,1 = 4 Wg1Wk,2, WgoWk1 = ( Wi, 1 Wy o-

Let wy = wyowy,1. Evidently wy is an isometry. Then for any |u;| < k and
|v;| <k one has

* * * = g((lvil=lo2)=(pa|=[p2])) (2k+1), % * * *
WSy Syt by, W = Wy 184184 Wh,1 Wy otu by Wi 2,
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implying that for any |u;| < k, and || < k,

WieSpy Syt by, wi =0, if [ ] # [pe| or || # s,
and

* * * * * :

WS Sy tun b, Wk = Sy Spytunty,, i [pa] = |po| and || = [ual.

Hence, for any z € Fink one has wjzw), = E,(x) and wiyw;, = y for y €
k

A7 O

Remark 9. Since A’; is finite-dimensional, it is a direct sum of full matrix
algebras, where matrix units are represented by s,,t,,t;,s% , || = |pal,
lv1] = |vo] and |p| + [v1] = k. In particular, any minimal projection in
A]; is unitary equivalent in A'; to a “matrix-unit projection” having form
St by, s, with |p1] + || = k. So any minimal projection in A} has the
form wu* for some isometry u € €7 .

The following statement is the main result of this Subsection.

Theorem 12. For any non-zero x € O, ®, O, with |q| = 1, there exist
a,be 0, ®, 0, such that axb = 1.

Proof. The proof repeats the arguments of the proof of Theorem V.4.6 in
[13]. We present it here for the reader’s convenience.

Let O ® 04 5 x # 0. Then z*x > 0 and E,(x*z) > 0. After normalisa-
tion of # we can suppose that ||E,(z*z)|| = 1. Find k € Nand y = y* € Fin}
such that ||z*z — y|| < 1. Since E, is a contraction, one has

. 1 3
|Ea(ae) = Bal) < 7 and [ Ea(w)l > 5

Further, wiyw, = E4(y). Since E,(y) = E,(y)* € .A’;, by the spectral
theorem for a self-adjoint operator on a finite-dimensional Hilbert space,
there exists a minimal projection p € A’;, such that

PEa(y) = Eo(y)p = | Ea(y)| - p.

As noted above, p = wu* for an isometry u € 0,, ®, O,,. Put

-1 *
2= || Ea(y)l 7w puwy.
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Then ||z]| < %, and
2y2" = || Ea(y)l| ™ wpwiywipu = || Ea(y) |~ u"pEa(y)pu
= |1 Ea) I | Ba(y) |u*pu = w*uw'u = 1.

Then

>~ =

11— 2z”2z"|| = ||aye” — 2x”2z"|| < [l2]* - [ly — 2"z <

QW =~
Wl

Hence zz*z2z* is invertible in 0,,&,0,,. Let c € 0,,®,0,, satisfies cza*rz* = 1,
then for a = czx* and b = z* one has azb = 1. O

The following corollary is immediate.

Theorem 13. The C*-algebra O,, ®, O,, is nuclear, simple and purely infi-
nite.

Given g = e*™#0_ consider

0 $o
@q:(_soo (2) )7 (12)

and construct the Rieffel deformation (O, ® Oy,)e,
Corollary 6. The following isomorphism holds:
On ®q O >~ (0, ® Oy, -

Proof. As in the proof of Theorem 7, the universal property of O, ®@, O,
implies that the correspondence

sji—>s; @1, t,—=1&¢t, j=1n,r=1m,
extends to a surjective homomorphism ®: 0, ®,0,, = (0, ®0y,)e,. Finally,

the simplicity of O,, ®, O,, implies that ¢ is an isomorphism. O

Remark 10. The isomorphism established in Corollary 6 is equivariant with
respect to the introduced above actions of T? on O ®, O,, and (0, ® Om)e,
respectively.

The simplicity of 0,, ®, O, implies that M, C & ,, is the largest ideal.
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Corollary 7. The ideal M, C € is the unique largest ideal.

n,m

Proof. Let n: €1, — 0, ®; O, be the quotient homomorphism. Suppose
that J C &7 ,, is a two-sided x-ideal. Due to the simplicity of O, ®, O, we
have that either n(J) = {0} and J € M, or n(d) = 0,, ®, O,,. In the latter
case, 1 + = € J for a certain x € M,. For any 0 < ¢ < 1, choose N, € N,
such that for

Z Z Z \Ijuelli;vwzsm ty, (1= P)H(1 - Q)”t;su; €M,

€1,e2€4{0,1}, p1, H2E€An, V1, v2€EA,
c1t+ea0  |wjl<Ne  |vjl<Ne

one has ||z — z.|| < . Notice that for any u € A,,, v € A, with |u|, |v| > N.
one has sjt;z. = 0.
Fix p € A, and v € A, || = |v] > N, then

Yo = st (L —2)t,s, = 1 — sity(z — x.)t,s, € 7.

Thus [|syt;(x — ze)t,s,l| < € implies that y. is invertible, so 1 € . O

3.5 The isomorphism 0O, ®,0,, ~ 0, ® O,,

In this section we prove the main result of Section 3. Namely, we show that
for each q, |q| =1,
O0n ®q O, =~ O, ® Op,.

In [17], the authors have shown that for every C*-algebra A with an action
a of R, there exists a KK-isomorphism t, € KK;(A, A x, R). This ¢, is a
generalization of the Connes-Thom isomorphisms for K-theory. Below we will
denote by o : KK(A,B) x KK(B,C) - KK(A,C) the Kasparov product,
and by X : KK(A,B)x KK(C,D) - KK(A®C, B® D) the exterior tensor
product. Given a homomorphism ¢ : A — B, put [¢] € KK (A, B) to be the
induced KK-morphism. For more details see [3, 22].

We list some properties of t, that will be used below.

1. Inverse of t, is given by t5, where & is the dual action.
2. If A = C with the trivial action of R, then the corresponding element
t1 € KKl((C, Co(R)) ~ 7

is the generator of the group.
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3. Let ¢ : (A,a) — (B, ) be an equivariant homomorphism. Then the
following diagram commutes in KK-theory

Aty Ax, R

o o

B -5 BxsR

4. Let B be an action of R on B. For the action v =idy ® f on A® B
we have
t-y =14 K tg.

We will need the classification result by Kirchberg and Philips:

Theorem 14 ([31], Corollary 4.2.2). Let A and B be separable nuclear unital
purely infinite simple C*-algebras, and suppose that there exists an invertible
elementn € KK (A, B), such that [ta]on = [tg], where 14 : C — A is defined
by ta(l) =14, and g : C — B is defined by tp(1) = 1. Then A and B are
1somorphic.

Theorem 15. The C*-algebras O,, ®, O, and O,, ® O,, are isomorphic for
any |q| = 1.

Proof. Throughout the proof we will distinguish between the actions of T?
on 0, ® O, and on O,, ®,; O,,, denoting the latter by a?. Due to Theorem
13, the both algebras are separable nuclear unital simple and purely infinite.

Further, Corollary 6, Proposition 5, and Remark 10 yield the isomorphism

U (0, ®0,) X0 R = (0, ®, 0,) Xae R
Decompose the crossed products as follows:

(0, @ Op) Ha R? ~ (0, @ Op) Xo, R Xg, R,
(On Kyq Om) X qa R? ~ (On Kyq Om) X o R X g R.

Define
to =ty © (Loym M ta,) € KK(Op @ O, (0, @ 0,) X0 R?),
taq - tafll ¢] (1CO(R) IX tag) c KK(On ®q Om, (On ®q Om) ><lozq RQ),
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Then
N=tewo[V]ot,' € KK(O,®;0m, O0,®0,,)

is a K K-isomorphism. The property [t0,%,0.] © 1 = [to,20,] follows from
the commutativity of the following diagram

1

tlo(]-CO(R)gtl) (1CD(R>|X’t1)_IOt;

C > C[)(RQ) s C
lbon(@qom LOn@qO’ny Wom NRQ Lon®oml
On @ O =5 (0, @y Opy) X R2 v » (0, ®O0p) X R2 25 0, ® 0,
0

Remark 11. After our paper was submitted, we were informed by Prof.
M. Weber that in unpublished part of his PhD thesis he studied a multi-
parameter twisted tensor product of Cuntz algebras and obtained indepen-
dently the analog of Theorem 15.

3.6 Computation of Ext for &7 ,,

Here we show that Ext(O,, ®, O,,, M) = 0 if ged(n — 1,m — 1) = 1. We use
the isomorphism O,, ®, 0, >~ 0,, ® Oy, |q| = 1.
Recall the notion of UCT property for K K-theory, see [3].

Definition 5. Suppose A and B are separable nuclear C*-algebras. We say
that a pair (A, B) satisfies the Universal Coefficient Theorem (UCT), if the
following sequences are exact, j € Zo,

0 — @B Eat}(Kip1(A), Kisj(B)) = KK;(A, B) — €D Hom(Ki(A), Ki4;(B)) — 0.

i€ZL2 1€ 22
We say that A satisfies UCT if (A, B) satisfies UCT for every B.

It is known that O, ®, 0,, ~ 0, ® O, satisfies UCT. The following
statement is an easy consequence of the Kunneth formula.

Theorem 16. Let d = ged(n —1,m —1). Then

Ko(0, ®, Op) = Z/dZ, Ki(0, @, O) ~ Z/dZ,
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Proof. The Kunneth formula for K-theory, see [3] Theorem 23.1.3, gives the
following short exact sequences, j € Zs,

0= P Ki(0,)@2Ki4;(0m) = K;(0,00,) = @D Torf(Ki(0,,), Kisj+1(0)) = 0

1€202 1€202

It is a well known fact in homological algebra, see [15], that for an abelian
group A
Tor%(A,Z/dZ) ~ Anna(d) = {a € A | da = 0}.

In particular,
Tor®(Z/nZ,Z./mZ) ~ 7] ged(n, m)Z.

Recall that, see [11],
Ko(0,)=2/(n—1)Z, K;(0,)=0.
Hence, for O, ® O,,, one has the following short exact sequences:

05 Z/(n—1)Z&zZ)(m—1)Z — Ko(Op @ Op) — 0 — 0,
0—-0— Ki(0,®0,) —Z/dZ — 0. O

Next step is to compute the K-theory of M,.
Theorem 17. Let d = ged(n — 1,m —1). Then
KoM,) ~Z/dZ & Z, K;1(M,) ~ 0.
Proof. By Theorem 7, Proposition 7, and [11], Proposition 3.9,

Ko(€9,,) = Ko((0) @ 0W)e,) = Ko(0) @ 0%) = Z,
Ki(€9,,) = K1 (0 @ 00)e,) = K1 (0% ® 09,) = 0.

Applying the 6-term exact sequence for
0=-K—=>M;—0,9K®0, K- 0,

we get
7 —— KoM, —— Z)(n—1)Z&Z)(m — 1)Z

T |

0+—— Kl(Mq) < 0
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Then K;(M,) = 0, and elementary properties of finitely generated abelian
groups imply that
Ko(M,) =Z & Tors,

where Tors is a direct sum of finite cyclic groups.
Further, the following exact sequence

0— M, — &, — 0,8 0, —0

gives

KoM, —2— Z y 7.)dZ

| |

7.)dZ 4 0 < 0

The map p : Ko(M,) ~ Z & Tors — Z has form p = (py, p2), where

p1: 4 — 2L, pso: Tors — Z.
Evidently, po = 0, and p # 0 implies that ker p; = {0}. Thus,

ker p = Tors = Im(i) ~ Z/dZ. O
Theorem 18. Letd = ged(n—1,m—1) = 1. Then Ext(0, ®,0,,,M,) = 0.

Proof. Recall that for nuclear C*-algebras Ext(A, B) ~ K K,(A, B).
We use the sequence from Definition 5 for j =1, A = 0,, ®, O,,, and
B =M

0 — @D Eat}(Ki(A), Ki(B)) - KEKy(A, B) = @D Hom(K;(A), K;11(B)).

i€Zs i€Zs
Since Ky(A) = K1(A) =Z/dZ and Ko(B) =Z ® Z/dZ, K1(B) = 0, one has
Hom(Ko(A), Ki(B)) =0, Hom(K1(A), Ko(B)) = Z/dZ,
and, see [15],
Ext},(Ko(A),Ko(B)) = Z/dZ ® 7.)dZ, Exty(K.(A), Ki(B)) = 0.
Hence the following sequence is exact

0—Z/dZ & Z/dZ — KK1(0, ®; Op, M,) = Z/dZ — 0.
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By Theorem 18, for the case of gcd(n—1,m—1) = 1 one can immediately
deduce that extension classes of

O—>Jv[q—>83hm—>(‘)n®q0m—>0,

and
0= M — &), — 0, @0, =0,

coincide in Ext(0, ® O,,, M) and are trivial. These extensions are essential,
however in general case one does not have an immediate generalization of
Proposition 16. Thus the study of the problem whether €1, ~ &} would
require further investigations, see [12, 16].
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