
THE TRIANGLE GROUPS (2, 4, 5) AND (2, 5, 5) ARE NOT SYSTOLIC
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Abstract. In this paper we provide new examples of hyperbolic but nonsystolic groups by
showing that the triangle groups (2, 4, 5) and (2, 5, 5) are not systolic. Along the way we
prove some results about subsets of systolic complexes stable under involutions.

1. Introduction

Systolicity of simplicial complexes is a combinatorial notion of nonpositive curvature which
is different in nature than the more widely studied notions of CAT(0) or hyperbolic spaces.
It was first introduced by Januszkiewicz and Świątkowski [JS06] as well as Haglund [Hag03].
Recall that a group is systolic if it admits a geometric action on a systolic complex.
It was shown by Przytycki and the second author in [PS16] that almost all triangle groups
are systolic. They construct an explicit systolic complex on which the triangle groups act
geometrically by embedding their Davis complex in a larger, systolic complex to which the
geometric action extends. This process of systolizing forced them to exclude the triangle
groups (2, 4, 4), (2, 4, 5) and (2, 5, 5). In the same paper it was shown that the group (2, 4, 4)
is not systolic and that hence such a construction will never exist for that group. Whether
or not the remaining two groups are systolic remained open.

1.1. Main results and key ideas. In the present paper we close this gap and prove that
the two hyperbolic triangle groups (2, 4, 5) and (2, 5, 5) are also not systolic. In hindsight this
shows that the systolization procedure of [PS16] was best possible within the class of triangle
groups.
Recall that a cycle of length n in a flag simplicial complex X is a set of n edges in X which
topologically forms a sphere. We say that the complex X is k-large for some k ≥ 4 if every
cycle C of length strictly less than k has a diagonal, that is an edge in X connecting two
nonconsecutive vertices on C. If a complex X is connected, simply connected, and all its
vertex links are 6-large we will say X is systolic. Note that every 6-large, connected and
simply connected complex is systolic.
Our main result is the following.

Theorem 1.1. The triangle groups (2, 4, 5) and (2, 5, 5) are not systolic.

This theorem in particular implies that these two groups are nonsystolic while being hyper-
bolic groups. To our knowledge they are thus the first 2-dimensional examples of groups
with these two properties. In higher dimensions examples of nonsystolic hyperbolic groups
had been constructed by Januszkiewicz and Swiatkowski in their work on filling invariants
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[JS07]. However, their methods do not apply in our situation as the tools they use only work
in dimensions greater than 2.
In order to show that a given group is not systolic one needs to proof that it cannot act
geometrically on a systolic complex. We will obtain Theorem 1.1 as a consequence of the
following fixed point theorem for actions of these groups on systolic complexes.

Theorem 1.2. Suppose Γ is one of the groups (2, 4, 5) and (2, 5, 5). For every simplicial
action of Γ on a systolic complex X there exists a Γ-invariant simplex in X. In particular,
every such action on the geometric realization of X has a global fixed point.

We close this section with two final remarks.
It is worth noting that the two groups in question seem to share a property with finite groups
here as those also satisfy an analogous fixed point theorem Theorem 2.2 that can be obtained
from results of Chepoi and Osajda [CO15].
Nonsystolicity of the triangle group (2, 4, 5) has previously been addressed by Andrew Wilks
in his unpublished manuscript [Wil17]. His methods would probably extend with some ad-
ditional work to the other case as well. We have included some remarks comparing both
manuscripts in appropriate places. Compare in particular Remarks 4.3 and 3.12.

1.2. Strategy of proof. In this section we provide further details on the strategy of the
proof of Theorem 1.2.
Let in the following Γ be either the triangle group (2, 4, 5) or (2, 5, 5), i.e. Γ has the following
presentation

Γ =
〈
{r, s, t} | x2 ∀ x ∈ {r, s, t}, (rs)2, (st)j , (rt)5〉 where j = 4 or 5.

We wish to show that every simplicial action of Γ on a systolic complex X has a Γ-invariant
simplex. Throughout this paper we will assume that every action of Γ on a complex X is
simplicial.
At first we start by examining subsets of X that are stable under one of the standard genera-
tors r, s or t. More precisely, for a given u ∈ {r, s, t} we examine in Section 3 the structure of
the subcomplex Xu, called invariance set, spanned by those vertices in X that are either fixed
by u or mapped to an adjacent vertex. We prove in Proposition 3.6 that the complex Xu is
a systolic, isometrically embedded, full subcomplex of X and that its maximal simplices are
stabilized by u. From Chepoi and Osajda’s fixed point theorem for simplicial actions of finite
groups on systolic complexes, which we restate in Theorem 2.2, one can deduce that the set
Xu ∩Xv is nonempty for any pair of generators u 6= v ∈ {r, s, t}.
Another key ingredient is Proposition 3.9 which shows that the orbit structure for the dihedral
subgroups of (2, 4, 5) or (2, 5, 5) under a geometric action has a very specific bicycle-like shape
as illustrated in Figure 1. There are three cases for a given a ∈ Xu ∩Xv: either all vertices
in a〈u,v〉 are connected to a common vertex (see the left "wheel" of the bicycle in Figure 1)
or form a bipartite graph with a clique of the same size (see the right hand side "wheel" in
Figure 1) or they form a clique themselves (illustrated by the bicycle’s saddle in Figure 1).
This structure of orbits of vertices in intersections of invariance sets breaks down for dihedral
groups of order 12 and larger which is also the reason why the proof of Theorem 1.2 only can
work for small triangle groups. Compare also Remark 3.10 and Example 3.11.
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Figure 1. We illustrate Proposition 3.9 in this figure which explains the
structure of the orbits of vertices a in pairwise intersections Xu ∩ Xv of in-
variance sets.

As a next step we construct in Section 4 a minimal surface spanned by a triangle whose sides
are geodesics in the invariance sets Xr, Xs, Xt. From the fact that the pairwise intersections
of two of these sets are nonempty we obtain three vertices a, b and c in the complex X each
contained in an intersection of a pair of the invariance sets. Any such three vertices a, b, c
hence span a geodesic triangle in X which is fully contained in the set

⋃
u∈{r,s,t}Xu which in

turn supports a minimal, systolic surface S by a Lemma of Elsner [Els09a, Le. 4.2] which we
have restated here as Lemma 2.5.
The proof of the Theorem 1.2 is carried out in Section 8 and is done by contradiction. So we
suppose that Γ acts without stabilizing a simplex on a systolic complex X. We then choose
vertices x, y, z, with x ∈ Xr ∩Xs, y ∈ Xs ∩Xt and z ∈ Xt ∩Xr, and the surface S minimally
with respect to length of the bounding geodesics as well as surface area. Proposition 4.4 then
implies that one can choose x, y and z to be pairwise distinct.
Tedious examination of the surface’s properties (in Sections 4 and 5) and detailed study of
the defects at corners in Section 6 and along the sides of S in Section 7 will lead us to narrow
down the possible structure of the surface to a small list of cases presented in Figure 16.
Working through those cases one by one we arrive at a contradiction in each of them which
implies that the action cannot be fixed point free. Hence Theorem 1.2 follows.

Organization of the paper. Section 2 contains basic definitions and known properties of
systolic complexes, which we use throughout the paper. For a larger class of groups generated
by involutions we study the invariance sets Xu in Section 3 and prove properties which might
be of independent interest. The specific construction of the minimal surface S is carried out
in Section 4. By Proposition 4.4 S is not degenerate if the considered action does not fix a
simplex. The fact that S does not just consist of a single 2-simplex is then shown in Section 5
that S is not a single 2-simplex. The defects of the corners and those along the sides of S are
then studied in Sections 6 and 7. The proof of the fixed point theorem is finally carried out
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in Section 8. Note, that we deal with the two groups simultaneously in most places and that
we will say so explicitly, when we don’t. Moreover all actions are assumed to be simplicial.

Acknowledgment. We wish to thank to Piotr Przytycki for helpful conversations and his
comments on an earlier version of the manuscript. While preparing the first version of
this paper we learned that Adam Wilks [Wil17] independently showed that the reflection
group (2, 4, 5) is not systolic. The authors acknowledge (partial) funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) – 281869850 (RTG 2229).

2. Preliminaries

The main purpose of this section is to fix notation and to summarize properties of systolic
complexes and minimal surfaces therein.

2.1. Systolicity. In this subsection we quickly recall some basic definitions and properties
of systolic complexes.
Let X be a simplicial complex. We call the elements of the 0-skeleton X(0) of X vertices and
its 1-simplices edges. So an edge (a, b) is an unordered pair of vertices a and b. A path of
length n in X is a sequence (v0, v1, v2 . . . vn) of vertices of X where (vi, vi+1) is an edge of X
for all i ∈ {0, 1, . . . , n− 1}. A closed path in X is a path where the first and the last vertex
coincide. A closed path of length at least three with vi 6= vj for all i, j ∈ {1, . . . , n} is called
a cycle. The distance d(x, y) of two vertices is the length of a shortest path from x to y. We
write a ∼ b for vertices a and b that are connected by an edge and will say that a and b are
adjacent.
We say that a complex X is k-large for some k ≥ 4 if every cycle C of length strictly less
than k has a diagonal, that is an edge in X connecting two nonconsecutive vertices on C. A
complex X is systolic if it is connected, simply connected, and all its vertex links are 6-large.
Note that every 6-large, connected and simply connected complex is systolic.
We will make repeated use of the combinatorial Gauss-Bonnet Theorem and hence recall its
statement from [Els09a, Le 3.2].

Proposition 2.1 (Combinatorial Gauss-Bonnet). Suppose ∆ is a simplicial disc, then∑
v∈∆(0)

def(v) = 6.

If in addition ∆ is systolic, then the sum of the defects of its boundary vertices is at least 6,
with equality if and only if ∆ has no inner vertices with negative defects.

As already noticed by Wilks [Wil17, Thm. 2.7] the following is a consequence of Theorem C
in work of Chepoi and Osajda [CO15].

Theorem 2.2 (Little fixed point theorem). For every simplicial action of a finite group G
on a systolic complex X there exists a simplex σ in X which is invariant under G.

2.2. Minimal surfaces. In this section we define minimal surfaces and collect some of their
properties.
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Definition 2.3 (Surfaces). A subcomplex S ⊆ X which is isomorphic (as a simplicial com-
plex) to a triangulated 2-disc is called a surface. The boundary of the surface is the cycle
C corresponding to the boundary of the 2-disc. We say that S is spanned by C. The area
A = A(S) of a surface (or 2-disc) S is the number of triangles in S. We say that S is minimal
if there is no other surface spanned by C that has smaller area.

We compare our notion of a surface with Elsner’s definition in [Els09a] in the following
remark.

Remark 2.4 (Comparison of definitions). Elsner defines in [Els09a] a surface spanning a cycle
γ as a simplicial map S from a triangulated 2-disc ∆ toX such that S maps ∂∆ isomorphically
onto γ. Furthermore Elsner calls a surface S : ∆→ X in a systolic complex X minimal if ∆
has minimal area among all surfaces extending S|∂∆. Translated in the language of Elsner,
Januszkiewicz and Świątkowski show in [JS06, Le 1.6] that for every cycle in a systolic
complex X there exists a surface which is injective on each simplex of the triangulation of ∆.
Elsner also proves existence of minimal surfaces and shows that their pre-images are systolic
disks, compare [Els09a, Le. 4.2]. It is not hard to see that minimality of the map combined
with injectivity on the simplices imply that a minimal surface (in the sense of Elsner) is an
injective map. Hence it makes sense to define surfaces as subcomplexes of a complex itself.

In the following we always work with Definition 2.3. The following is a reformulation of
[Els09a, Le. 4.2] to our statement and holds with almost the same proof.

Lemma 2.5 (Systolicity of minimal surfaces). Every cycle C in a systolic complex spans a
minimal surface which will necessarily be systolic.

2.3. Defect. A big technical piece of work in the proof of Theorem 1.2 is the study of defects
of vertices and sums of defects of vertices along bounding geodesics of the constructed minimal
surface. It is defined as follows.

Definition 2.6 (Defect of vertices in a disc). Let ∆ be a simplicial 2-disc. For any vertex
v ∈ ∆ the defect of v is defined by the following formula:

def(v) =
{

6− |{triangles in ∆ containing v}| if v /∈ ∂∆,
3− |{triangles in ∆ containing v}| if v ∈ ∂∆.

One may think of the defect as a local way to measure how far a complex is from being
systolic. Note that each inner vertex of a systolic disc ∆ has nonpositive defect.

Definition 2.7 (Defect along a geodesic). Let ∆ be a simplicial 2-disc and γ a path in the
boundary of ∆. The defect along γ, denoted by def(γ), is defined to be the sum of the defects
of all of its inner vertices, i.e. all vertices on γ different from its endpoints. If a path has no
inner vertices its defect is defined to be 0.

The following lemma is an immediate consequence of [Els09a, Fact 3.1] and its proof.

Lemma 2.8 (Defects along geodesics in the boundary). Let ∆ be a systolic disc and γ a
geodesic in ∆ which is contained in ∂∆. Then:

(1) def(v) ≤ 1 for any inner vertex v of γ.
(2) for all inner vertices vi and vk of γ with def(vi) = def(vk) = 1 there exists i < j < k

such that def(vj) < 0.
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(3) def(γ) ≤ 1.

Item two in the lemma says that if there are two inner vertices of defect one on a geodesic γ,
then they are separated by an inner vertex of negative defect.

3. Invariance sets: Subcomplexes stable under involutions

In this section we investigate the behavior of certain subcomplexes that are almost fixed
by an involution. The main result in this section which plays a crucial role in the proof of
Theorem 1.2 is the bicycle property stated in Proposition 3.9.

3.1. Invariance sets. We define here for arbitrary simplicial involutions their invariance sets
and discuss some of their general properties. We emphasize that all results in the present
section hold true for arbitrary simplicial involutions of a systolic complex X.
Here and in the following we denote the image of a simplex Σ ∈ X under a simplicial
automorphism u by Σu and the image under the product u · v ∈ Γ by Σvu. Note that
simplices which are (setwise) fixed under u are contained in Xu.

Definition 3.1 (Invariance sets). For a simplicial involution u on a systolic complex X we
define its invariance set Xu to be the flag simplicial complex in X spanned by those vertices
x in X(0) for which either xu = x or xu ∼ x.

Lemma 3.2 (u-invariant simplices). Let u be a simplicial involution of a systolic complex X.
Suppose a1, . . . , ak is a clique in Xu. Then ai ∼ au

j for all 1 ≤ i, j ≤ k. In other words, the
vertices a1, . . . , ak, a

u
1 , . . . , a

u
k span a u-invariant simplex in X. In particular, for any pair of

adjacent vertices a ∼ b in Xu one has au ∼ b and a ∼ bu.

Proof. Recall that either au
i = ai or au

i ∼ ai by definition of Xu. Suppose first that k = 2.
We want to conclude that then a1 ∼ au

2 . This is clear if one of the vertices a1, a2 is fixed
by u, as the action of u on X is simplicial. We assume for a contradiction that ai 6= au

i for
both i = 1 and 2. Then (a1, a

u
1 , a

u
2 , a2) is a 4-cycle which has a diagonal as X is systolic.

Since u acts simplicially on X, the existence of one of the diagonals implies the existence of
the other. Therefore both diagonals are contained in X and the vertices a1, a2, a

u
1 , a

u
2 span a

u-invariant simplex in X. The rest of the statement follows by induction on k and the fact
that we can apply the first induction step to any pair ai, aj . �

The next lemma shows that commuting involutions give rise to a simplex that is stable under
their span.

Lemma 3.3 (〈u, v〉-invariant simplices). Suppose u, v are commuting involutions on X. Then
for any x ∈ Xu ∩Xv the set x〈u,v〉 spans a simplex that is invariant under u and v.

Proof. It is clear that if they span a simplex it must be stable under both u and v. As
x ∈ Xu ∩ Xv we have that x ∼ xu and x ∼ xv. As the action is simplicial we also have
that xuv ∼ xv and that xvu ∼ xu. But then from the fact that u and v commute we obtain
xuv = xvu and the vertices in the orbit x〈u,v〉 either form an edge, a triangle or a 4-cycle. In
case they form a 4-cycle there must exist at least one and hence both diagonals. �

Lemma 3.4 (u-invariant mid-simplex). Let u be a simplicial involution on X. For any
x ∈ X(0) with d(x, xu) = 2 the vertices adjacent to both x and xu span a u-invariant simplex.
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Proof. Let a and b two vertices which are simultaneously adjacent to x and xu. Then
(a, x, b, xu) is a 4-cycle which has a diagonal by 6-largeness. As x � xu, the vertices a
and b are connected by an edge. Since X is flag, (a, b, x) and (a, b, xu) span a simplex. With
the same argument all the common neighbors of x and xu span a simplex. It is stabilized by
u since u preserves distances. �

Proposition 3.5 (Geodesics in Xu). Any two vertices x and y in Xu are connected by a
(1-skeleton) geodesic in X which is contained in Xu.

Proof. The proof is by induction on the distance n of x and y. The statement is clear if n = 0
or 1.
Let x, y in Xu be at distance n in X. As X is connected there exists a geodesic γ =
(x0, x1, . . . , xn) from x = x0 to y = xn in X. We want to show that γ can be chosen in Xu.
If xi = xu

i or xi ∼ xu
i for some i ∈ {1, . . . , n − 1}, then xi ∈ Xu and we can find via the

induction hypothesis a geodesic in Xu connecting x and y. Hence we assume that no xi is
contained in Xu for all i ∈ {1, . . . , n − 1}. Let S be a minimal surface spanned on the two
geodesics γ and γu. We choose x, y and the geodesic γ connecting them in such a way that
the area of S is minimal.
By Lemma 2.5 the surface S is systolic and hence the sum of the defects at its boundary
vertices is ≥ 6 by Proposition 2.1. Lemma 2.8 then implies that def(γ) ≤ 1 and def(γu) ≤ 1.
Let D :=

∑
v∈{x,xu,y,yu} def(v) be the sum of the defects of x, xu, y, yu in S, where we omit

possible repetition. From what we have argued D ≥ 4.
Case 1: x 6= xu and def(x) + def(xu) ≥ 3.
In this case def(x) + def(xu) = 3 as otherwise x1 = xu

1 which contradicts the assumption
that xi /∈ Xu for all i. Therefore one of the vertices x, xu has defect 1 and the other defect 2.
Hence x1 ∼ xu

1 , i.e. x1 ∈ Xu, which is a contradiction.
Case 2: x 6= xu and def(x) + def(xu) = 2.
We will obtain that d(x1, x

u
1) = 2 and that there exists some x′ in S adjacent to x, x1 and

xu
1 . This is clearly fulfilled if x has defect 0 and xu has defect 2 or in case that x and xu have

both defect 1. In the remaining case, vertex x has defect 2 and xu has defect 0. Then xu is
adjacent to x, x1 and xu

1 . We illustrate these situations in Figure 2.
By Lemma 3.4 the vertices adjacent to both x1 and xu

1 span a u-stabilized simplex. In
particular x′ is contained in Xu. If d(x′, y) < n, we could find by induction hypothesis a
geodesic inXu connecting x and y via x′ which contradicts minimality of S. Thus d(x′, y) = n.
Then γ′ := (x′, x1, . . . , xn := y) is a geodesic connecting x′ and y and the minimal surface
spanned by γ′ and γ′u does not contain vertex x, i.e. is properly contained in S. Replacing
x by x′, we obtain a minimal surface with a smaller area than S, contradicting the way we
have chosen S.
Case 3: x = xu.
In this case x has defect at most one, as otherwise x1 ∼ xu

1 or x1 = xu
1 contradicting the fact

that x1 /∈ Xu. So the defects at y and yu sum up to at least three and since any vertex on
the boundary of S has defect at most two, the vertices y and yu are distinct. Thus, switching
the roles of x and y, we are in case 1.
Case 4: x 6= xu and def(x) + def(xu) ≤ 2.
This case is covered by cases (1)–(3) by switching the roles of x and y.



8 ANNETTE KARRER, PETRA SCHWER, KOEN STRUYVE

x y

xu = x′ yu

x1

xu1

γ

γu

def(x) = 2,def(xu) = 0

x y

xu yu

x1
γ

γu

x′

def(x) = 1,def(xu) = 1

x y

xu yu

x1
γ

γu

x′

def(x) = 0,def(xu) = 2

xu1

xu1

Figure 2. This illustrates Case 2 of the proof of Proposition 3.5.

Summarizing the observation of the four cases we obtain that all of the xi must be contained
in Xu and the assertion follows. �

Proposition 3.6 (Properties of Xu). For any u ∈ {r, s, t} the complex Xu is a systolic,
isometrically embedded, full subcomplex of X and its maximal simplices are stabilized by u.

Proof. The complex Xu is stable under u and by Proposition 3.5 its 1-skeleton is isometrically
embedded into X. The fact that Xu is a full subcomplex of X is clear by definition. Now
[Els09b][Prop. 3.4] implies that Xu is systolic. The fact that maximal simplices are u-stable
directly follows from Lemma 3.2. �

3.2. The bicycle property. In this section we examine the shape of the orbits of vertices
in a systolic complex under the action of a small dihedral group. The main result is Proposi-
tion 3.9 which explains the occurring dichotomy and will be referred to as the bicycle property.
The reason why we chose this name is illustrated in Figure 1.
We first prove a technical lemma.
Denote by H the dihedral group of order 2n. Write u and v for the two involutions that
generate H and suppose that H acts geometrically on a systolic complex X. Let a be a
vertex in Xu ∩Xv.

Lemma 3.7. Denote by H be a dihedral group of order 2n with n ≤ 5 generated by two
involutions u and v and suppose H acts on a systolic complex X. For any vertex a in
Xu ∩Xv the orbit aH either spans a simplex or the 1-skeleton of X contains a Hamiltonian
cycle of aH , i.e. a cycle whose vertex set is aH , of length 2n without a diagonal.
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Proof. Since a ∈ Xu ∩Xv, the complex X contains the closed path
P = (a, au, avu, auvu, . . . , a(vu)n = a).

This closed path contains all elements of aH . Note that a might be fixed by u or v or both.
Hence, two consecutive vertices in P might coincide. Let C be the graph whose vertex set
consists of all the vertices that occur in P and whose edge set consists of all edges that occur
in P . Then C is either a single vertex or a single edge or a Hamiltonian cycle of aH . We have
to study the case that C is a Hamiltonian cycle of aH . By Burnside’s lemma, 2n is divisible
by the length of the cycle C.
If |aH | < |H| then |aH | ∈ {1, 2, 4, 5} again using Burnside’s lemma. By 6-largeness the cycle
C then has at least one diagonal d connecting a pair of vertices at distance m > 1 on C.
Using the group action we may conclude that any pair of vertices at distance m on C is
connected by an edge. Using 6-largeness again we conclude that C has all possible diagonals
and hence its vertices span a simplex.
Suppose now that |aH | = |H|. If there is no diagonal on C then we are done. Now let d
be a diagonal connecting two vertices of distance 1 < m ≤ n on C. By the same argument
as above any pair ov vertices at distance m is connected by an edge. Since 2n < 10 this
implies the existence of cycles of length 4 or 5 each of which has one and hence all diagonals
by 6-largeness and using the group action. Thus C spans a simplex. �

The following example illustrates that Lemma 3.7 is not satisfied by dihedral groups of order
larger than 10.

Example 3.8. Fix a natural number n and construct as follows a simplicial complex which
admits a natural action of the dihedral group of order 2n. Let C be a cycle of length 2n. Add
to C an edge between every pair of vertices at distance two and let Z be the flag simplicial
complex on the cone over the resulting graph. Figure 3 shows the complex one obtains for
n = 6. The action of the dihedral group of order 2n on C extends to an action on Z having
the conepoint as a fixed point. Examining the links of all vertices one can verify that the
complex Z is systolic if and only if n is at least 6.

aav au
auv

auvu

auvuv

avu

avuv

Figure 3. An example that not all dihedral groups satisfy Lemma 3.7. The
dihedral group of order 12 acts on the pictured systolic complex.

We now prove one of the main properties needed for the proof of Theorem 1.2.

Proposition 3.9 (bicycle property). Fix n ≤ 5 and let H be the dihedral group of order 2n
generated by involutions u and v. Suppose further that H acts on a systolic complex X and
let a be a vertex in Xu ∩Xv. Then one of the following two statements is true:

(1) The orbit aH spans a simplex.
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(2) The orbit aH forms an |H|-cycle C without diagonals and there exists a vertex b in
X such that bH supports an H-stabilized simplex Σ and such that the vertices of C
and the vertices of Σ span a complete bipartite graph. Moreover, each vertex of Σ is
contained in Xu ∩Xv.

If n ∈ {1, 2}, only the first case occurs.
Remark 3.10. Proposition 3.9 plays a crucial role in the proof of our main result. The key
features we need there is on one hand the property that two of the three standard Coxeter
generators commute and on the other hand that any pair of generators generates a dihedral
group with the properties listed in Proposition 3.9. Note that the groups (2,3,3), (2,3,4) and
(2,3,5) also show this behavior. But in contrast to (2,4,4) (2,4,5) and (2,5,5) they are finite.
We deal with larger n in Example 3.11 below.

We are now ready to prove Proposition 3.9.

Proof. Let C be the Hamiltonian cycle on aH as obtained in Lemma 3.7 and S a minimal
surface spanned by C. We aim to prove existence of a vertex b with the following three
properties:

(1) b ∈ Xu ∩Xv

(2) b is adjacent to three consecutive vertices on C
(3) bH spans a simplex.

It then remains to prove that the vertices of C and those of bH span a complete bipartite
graph. We obtain this from the 6-largeness of X and the way in which the dihedral group
acts. Assume without loss of generality that b is adjacent to a, au and av. Using the group
action we obtain that a is connected to every vertex of bH . But then X contains the closed
path (a, av, buv, bu) and 6-largeness implies that a ∼ buv. Analogously we obtain that a ∼ bvu

and also that av ∼ bvuv. We then conclude that X contains the closed path (a, av, bvuv, bvu).
Using 6-largeness again we obtain that a ∼ bvuv and with similar arguments that b ∼ buvu.
Repeating these steps we can show that a is adjacent to every element of bH .
It thus remains to prove that we have a vertex b satisfying the listed properties. This is done
by an examination of the defects of vertices on the boundary of S. There are two cases. We
study two cases.
Case 1: The boundary of S contains three consecutive vertices of defect 1
Using the group action we may assume that these vertices are a, au and av. Let b the neighbor
of a in the interior of S. Since au and av have defect 1 we obtain that b ∼ au, b ∼ av, b ∼ avu

and b ∼ auv. Therefore all these 5 consecutive vertices on C are adjacent to b. We show that
bH spans the simplex we are looking for.
Using the group action we have that bu ∼ av and au ∼ bv. As X contains the cycles
(b, au, bu, av) and (b, au, bv, av) and as C does not have diagonals, b has to be either equal or
adjacent to bu and bv, i.e. b ∈ Xv ∩Xu. Furthermore X contains the cycle (au, bu, av, bv) and
since C does not have diagonals, bu is adjacent to bv. Thus the natural Hamiltonian cycle of
bH has a diagonal. We apply Lemma 3.7 to conclude that bH is a simplex.
Case 2: The boundary of S does not contain three consecutive vertices of defect 1
As a first step we will show that S is isometric to the surface pictured in Figure 4. The vertex
b pictured in Figure 4 is adjacent to a, au, av and avu. We will prove that b ∈ Xu ∩Xv and
that bH spans a simplex.
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In order to prove that S is isometric to the surface shown in Figure 4observe that C has
length 10: Because C does not contain diagonals, each vertex on the boundary of S has a
defect of at most 1. By Proposition 2.1 the defects along the boundary of S sum up to at
least 6. If 2n < 10 and ∂S does not contain three consecutive vertices of defect 1, the sum of
defects has to be less than 6 which is a contradiction. Hence the length of C is at least 10.

b
c

d

avuv

a

au

av

auv auvuv

auvuvu

avuvu

auvuavu

= avuvuv

Figure 4. This surface is a special case appearing in the proof of Proposition 3.9.

We show as a next step that S contains exactly four inner vertices. Using the isoperimetrical
inequalities of Lemma 3.4 in [Els09a] we obtain that any systolic disc ∆ of perimeter l has
A ≤ 1

6 l
2. Hence S contains at most 16 2-simplices. Picks Formula, see [Els09a, Le 3.3], implies

that S has at most four inner vertices. If ∂S contains at most three inner vertices, the interior
of S contains at most one 2-simplex. This implies that the boundary of S contains at most
three vertices of defect 0 and thus three consecutive vertices of defect 1 which contradicts
our assumptions. Therefore, S contains four inner vertices. Because these 4 vertices span a
subcomplex consisting of two 2-simplices, exactly four vertices on the boundary of S have
defect 0 and 6 vertices on the boundary of S have defect 1. The surface shown in Figure 4
is the only systolic complex satisfying these conditions which implies that S is isometric to
this surface.
The vertex b in Figure 4 is adjacent to a, au, av and avu. We will prove that b ∈ Xu ∩ Xv

and that bH spans a simplex.
First we prove that b ∈ Xu ∩ Xv. As X contains the closed 4-path (b, a, bv, auv) we obtain
that b ∼ bv or b = bv by 6-largeness. It remains to prove that b = bu or that b ∼ bu. If b = bu,
we are done. Hence we assume that b 6= bu. Since C does not contain a diagonal one has
that a � avu. If b ∼ avu we can exchange S with a surface whose boundary contains three
consecutive vertices of defect 1. Then b ∼ bu by Case 1. Hence we suppose that b � avu.
Furthermore, a � d. Otherwise (a, av, auv, c, d) is a 5-cycle and by 6-largeness it can be
triangulated to a surface containing three 2-simplices. These three 2-simplices then lead to
the existence of a surface with boundary C that has less triangles than S which contradicts
minimality. Thus, a � d. By 6-largeness, the cycle (a, b, d, avu, bu) contains the remaining
two diagonals, i.e. we have b ∼ bu and bu ∼ d. It follows that b ∈ Xu ∩Xv.
It remains to prove that bH spans a simplex. By Lemma 3.7, bH spans a simplex if the
Hamiltonian cycle of bH contains a diagonal. We prove this by showing that bv ∼ bu. This
follows from the existence of a certain 5-cycle. To form this 5-cycle, we need that cv ∼ d.
To prove this we consider the closed path (bv, b, cv, avu, d). If b ∼ avu or bv ∼ avu, we can
exchange S with a surface whose boundary contains three consecutive vertices of defect 1.
Hence we suppose that b � avu and bv � avu. Then cv ∼ d, because otherwise there is a 4- or
5-cycle without a diagonal. Recall that we have seen already that bu ∼ d. Hence, X contains
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the closed path (a, bv, cv, d, bu). We show that this closed path contains the desired diagonal
connecting bv and bu. Recall that we have proven that a � d. Analogously we see that a � vc.
Hence bv ∼ bu because otherwise X contains a 4- or 5-cycle without a diagonal. �

Proposition 3.9 is not true for dihedral groups of order larger than 10 as illustrated in the
next example.

Example 3.11. Consider the flag simplicial complex whose 1-skeleton is obtained as follows.
We take the 1-skeleton of the simplicial complex of Example 3.8. This 1-skeleton consists of a
vertex v and a cycle C = (x1, x2, . . . , x2n−1). We add a further cycle C ′ = (y1, y2, . . . , y2n−1)
of length 2n. We connect each vertex yi on C ′ with the vertices xm(i−1), xm(i) and xm(i+1),
where m(i) denotes i mod 2n, i ∈ {1, . . . , 2n− 1}. The example is illustrated in Figure 5 for
n = 6 . The obtained simplicial complex is systolic if and only if n is at least 6. Accordingly,
a vertex a on the cycle C ′ does not satisfy the properties of the last proposition if and only
if n is at least 6.

a
au

auv

auvu

auvuv

av

avu

avuv

Figure 5. The dihedral group of order 12 acts on the pictured systolic com-
plex and does hence not satisfy the assertion of Proposition 3.9. Compare also
Example 3.11.

Remark 3.12. The bicycle property discussed in Proposition 3.9 is related to properties Wilks
proves in Lemmas 4.2, 4.6 and 4.8 of [Wil17]. In addition what we prove in Lemma 3.7 is
similar to what is done in Lemmas 4.3 and 4.4 in [Wil17].

4. Construction of a minimal surface S

The aim of the present section is to show existence of a very specific minimal surface in X.
We start by fixing the following notation for the entire section.

4.1. The setup. We begin with fixing some notation.

Notation 4.1. Suppose Γ is either (2, 4, 5) or (2, 5, 5), that is Γ admits one of the two
following presentations:〈

r, s, t, |r2 = s2 = t2 = (rs)2 = (st)j = (rt)5〉 where j = 4 or 5.

Let X be a systolic complex and suppose that Γ acts on X.
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Using the notation we just introduced we obtain by Theorem 2.2 that the intersection Xu∩Xv

of the respective stabilized subcomplexes of X is nonempty for any choice of u 6= v with
{u, v} ⊂ S.
We then choose vertices x ∈ Xs ∩ Xr, y ∈ Xs ∩ Xt, and z ∈ Xr ∩ Xt and three geodesics
connecting them, i.e. γs : x y in Xs, γt : y  z in Xt, and γr : z  x in Xr in such a way
that the resulting cycle is minimal in length.
Note that if Xr ∩Xs ∩Xt 6= ∅ this means that x = y = z, all the geodesics are trivial and
the cycle formed by the three geodesics consist of a single vertex.
In case that Xr∩Xs∩Xt = ∅ the three vertices will be pairwise different and each geodesic is
of length at least one. Let C be the cycle formed by the concatenation of the three geodesics,
i.e. C = γr ? γt ? γs and choose a surface S spanned by C that is minimal in area. By
Lemma 2.5, such a surface S exists. We will refer to the vertices x, y, z as the corners and
call the three geodesics sides of S. We illustrate this situaiton in Figure 6.

x

y

z

γs ⊂ Xs

γt ⊂ Xt

γr ⊂ Xr

Figure 6. The surface S with corners x, y and z and sides γs, γt and γr.

In the next lemma we prove that in case the intersection of the invariance sets is nonempty
there exits a global fixed point.

Lemma 4.2 (Existence of a fixed point). If Γ acts on a systolic complex X with Xr∩Xs∩Xt 6=
∅ then there exists a Γ-invariant simplex in X. In particular, every such action on the
geometric realization of X has a global fixed point.

Proof. First observe that we may assume that x〈u,w〉 spans a simplex for all u,w ∈ S. If
x〈u,w〉 does not span a simplex for some u,w ∈ {r, s, t} there exists another vertex with the
desired properties by Proposition 3.9 and 6-largeness.
Let M = x〈r,s〉 ∪ x〈r,t〉 ∪ x〈s,t〉 and let X ′ be the simplicial subcomplex of X spanned by
M ∪M t ∪M s ∪M r. We aim to show that X ′ is a simplex stabilized by Γ. Figure 7 serves
as an illustration of the situation.
Proposition 3.9 implies that the orbit x〈u,w〉 contains at most 5 elements for arbitrary u,w ∈
{r, s, t}. Using the Γ-action we conclude that then either xuw = xwu or xuw = xuwu. Hence
the set of vertices in x〈s,t〉 ∪ x〈r,t〉 is contained in Xt and spans a simplex τ by Lemma 3.2.
Using 6-largeness one can see that the union τ s ∪ τ r ∪ τ sr of these simplices also forms a
simplex and therefore X ′ is a simplex.
It remains to prove that X ′ is stable under Γ. Fix a vertex a ∈ X ′. We need to show that
au ∈ X ′ for all u ∈ {r, s, t}. In case a ∈M this is clear by construction. In case a is contained
in Mw, w ∈ {r, s, t} we proceed as follows. If u = w, the claim follows directly. Otherwise
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a = vuw.x = xwuv or a = vwu.x = xuwv. So u appears as the second or third letter in the
element that is acting. By Proposition 3.9 the orbit x〈u,w〉 contains at most 5 elements for
any choice of u,w ∈ {r, s, t}.
We had observed earlier that either xuw = xwu or xuw = xuwu. By Proposition 3.9, the
orbit ux〈v,w〉 spans a simplex with at most 5 vertices. The same is true for wx〈u,v〉. Hence
(ux)vw = (ux)wv or (ux)vw = (ux)vwv and (wx)vu = (wx)uv or (wx)vu = uxvuv which implies
that au is contained in X ′. Therefore ΓX ′ = X ′ and we are done. �

xr

xrs

x

xrt = xrtr

xt

xst = xsts

xrst = xsrt

xstrxrts

xtr = xtrt

xtrs

xts = xtst
xs

= xstrt

Figure 7. X ′ as described in the proof of Lemma 4.2. The complex spanned
by M is shown in dark gray.

Remark 4.3. Lemma 4.2 is closely related to [Wil17, Thm 1.2] which implies that for the
group (2, 4, 5) the intersection Xr ∩ Xs ∩ Xt is always nonempty. Note that the proof of
Theorem 1.2 in [Wil17] is quite involved.

We will now show that in case the given action does not fix a simplex the minimal surface
we have constructed will not be degenerate.

Proposition 4.4 (Existence of a nondegenerate minimal surface). Suppose Γ acts on a
systolic complex X without fixing a simplex. Then S contains at least one 2-simplex.

Proof. Suppose for a contradiction that S does not contain a 2-simplex and thus is either a
single vertex or an edge. In this case, at least two of the three corners of S agree and we
have that Xs∩Xt∩Xr 6= ∅. But then Lemma 4.2 implies that the action stabilizes a simplex
which is a contradiction. Hence S contains at least one 2-simplex. �
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4.2. The nondegenerate case. Under the assumption that Γ acts without stabilizing a
simplex on a systolic complex X - and thus that S is nondegenerate - we prove two lemmata.
While Lemma 4.5 will only be used once in the proof of Lemma 6.6 the second Lemma 4.6
will be crucial in numerous proofs throughout the paper to show nonexistence of certain
diagonals.

Lemma 4.5 (Adjacency). Suppose Γ acts without stabilizing a simplex on a systolic complex
X. Let S be the surface constructed in Section 4.1. Fix u ∈ {r, s, t} and suppose that a is an
inner vertex of the side γu of defect 1. Then the unique neighbor of a in the interior of S is
adjacent to au.

Proof. If a = au, then there is nothing to prove, so suppose otherwise. Let b and c be the
neighbors of a on γu. By Lemma 3.2 we have that b ∼ au ∼ c. As a has defect 1 it has a
unique neighbor d in the interior of S and b ∼ d ∼ c. But then there is a 4–cycle on the
vertices (b, d, c, au) which has to have a diagonal. However, b and c are not adjacent, as γu is
a geodesic. But then au must be adjacent to d. �

Lemma 4.6 (nonadjacency). Suppose Γ acts without stabilizing a simplex on a systolic
complex X. Let S be the surface constructed in Section 4.1. Fix a vertex u ∈ {r, s, t}
and suppose there exist two adjacent vertices a and b on γu, where a is an inner vertex of
defect 1. Let c be the unique neighbor of a in S not contained in γu. Then b is not adjacent
to cu and c is not adjacent to bu. In particular b 6= bu.

Proof. Note first that c is not adjacent to cu by minimality of the area of S. Let d be the
neighbor of a other than b on γu (which exists as a is an inner vertex), and assume that c is
adjacent to bu. As the action is simplicial this is equivalent to the case where b is adjacent
to cu. Then the path (d, c, b, cu, du) forms a 4- or a 5-cycle (depending on whether d = du or
not). In each case, b is adjacent with neither d by minimality of the length of γu and also
not adjacent to du by Lemma 3.2. Hence it would follow that c is adjacent with cu, which is
a contradiction. �

5. The surface S is not a 2-simplex

In this section we will show, see Proposition 5.6, that for an action without a Γ- invariant
simplex the surface S will not consist of a single simplex.
For the rest of this section suppose that Γ acts without stabilizing a simplex. Thus Proposi-
tion 4.4 implies that there is a nondegenerate surface S satisfying the properties of Section 4.1.
We will use the Notation as introduced in Notation 4.1 in particular.

Lemma 5.1 (Existence of many edges). If S is a 2-simplex, then a ∼ b for all vertices
a ∈ x〈r,s〉 and b ∈ y〈r,s〉 ∪ z〈r,s〉.

Proof. By Lemma 3.2, z ∼ xr and y ∼ xs and, since r and s commute, x〈r,s〉 spans a simplex
which is stabilized by r and s according to Lemma 3.3. Thus X contains the closed path
(z, xr, xs, y). Then either z ∼ xs or y ∼ xr by 6-largeness. Without loss of generality we
assume that z ∼ xs. Then X contains the closed path C ′ = (zr, z, xs, xsr) and hence xs ∼ zr

and z ∼ xrs = xsr. Therefore z ∼ a for all a ∈ x〈r,s〉. The action of Γ is simplicial which
implies that a ∼ b for all a ∈ x〈r,s〉 and b ∈ z〈r,s〉.
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The closed path C = (y, z, xrs, zs, ys) in X is either a 4– or a 5–cycle depending on whether
y = ys or not. We show that it has the diagonal (ys, xrs). Note that z � zs since otherwise
z would be contained in Xs ∩ Xt ∩ Xr and S would not be minimal. If C has length 4 it
follows by 6-largeness that y = ys ∼ xrs. If C has length 5 and (ys, xrs) is not in X, then C
has the diagonal (ys, z), as otherwise (ys, z, xrs, zs) would form a 4-cycle without diagonals.
nonexistence of (ys, z) implies nonexistence of the diagonal (y, zs). Thus C would contains
at most one diagonal which contradicts 6-largeness.
We conclude that X contains the closed path (ys, xrs, xr, y) and by 6-largeness follows that
ys ∼ xr and y ∼ xrs. Furthermore y ∼ xs by Lemma 3.2. Hence y ∼ a where a ∈ x〈r,s〉. Since
r and s commute, x〈r,s〉 spans a simplex stabilized by r and s by Lemma 3.3. The action of
Γ is simplicial, therefore a ∼ b for all a ∈ x〈r,s〉 and b ∈ y〈r,s〉. �

We show that we can reduce the considerations to the case in which y〈s,t〉 and z〈r,t〉 span a
simplex.

Lemma 5.2 (Existence of a simplex). If S is a 2-simplex, then we may assume that y〈s,t〉

and z〈r,t〉 span a simplex.

Proof. We assume that z〈r,t〉 does not span a simplex. Then there exists by Proposition 3.9
a vertex z̄ ∈ Xr ∩ Xt which is adjacent to z so that z̄〈r,t〉 spans a simplex. We will show
that x and y are adjacent to z̄. Then x, y and z̄ span a surface S′ with the same minimality
properties as S and z̄〈r,t〉 spans a simplex. If y〈r,t〉 spans a simplex, S′ is a surface we are
looking for. Otherwise repeat the arguments after replacing z with y and r with s. We then
obtain a surface S′′ spanned by x, ȳ and z̄ with the same minimality properties as S′ in which
ȳ〈r,t〉 spans a simplex. As the vertex z̄ does not change, also z̄〈r,t〉 spans a simplex in S′′ and
S′′ is a surface we are looking for.
First we will show that x ∼ z̄. Suppose that x is not adjacent to z̄.
Lemma 3.2 implies that y ∼ zt and from Proposition 3.9 one can conclude that z̄ is adjacent
to zt and zr. Hence X contains the 5-cycle C := (x, y, zt, z̄, zr). By Proposition 3.9, zr

and zt are not adjacent. As x � z̄, x is not adjacent to zt as otherwise (x, zt, z̄, zr) would
be an 4-cycle without diagonals. Hence the remaining diagonals (y, zr) and (y, z̄) of C are
contained in X.
We now construct a 5–cycle C ′. We have shown that y ∼ z̄. By Proposition 3.9, z̄ ∼ ztr.
We have seen that y ∼ zt and hence ztr ∼ yr. Lemma 5.1 implies that x ∼ yr. One may
then conclude that the complex X contains the 5-cycle C ′ := (x, y, z̄, ztr, yr). Recall that
y � yr and x � z̄ by assumption. Hence z̄ � yr as otherwise (yr, x, y, z̄) would form a 4-cycle
without diagonals. The remaining two diagonals (x, ztr) and (y, ztr) of C ′ are contained in
X. Then zt ∼ yr and (x, y, zt, ry) forms a 4-cycle without diagonals which is a contradiction.
Therefore x ∼ z̄.
It now remains to show that y ∼ z̄. Lemma 3.2 implies y ∼ zt and by Proposition 3.9 one
has z̄ ∼ zt and z ∼ zr. As x ∼ z̄, X contains the 4-cycle (x, y, zt, z̄). If it contains the
diagonal (y, z̄), we are done. Otherwise it contains the diagonal (x, zt) by 6-largeness. Then
(x, zt, z̄t, zr) forms a 4-cycle. By Lemma 3.2 the vertex x is adjacent to zr and zt ∼ z̄t. By
Proposition 3.9 we have z̄t ∼ zr. Furthermore Proposition 3.9 implies that this cycle does
not contain the diagonal (zr � zt). Hence x ∼ z̄t and also xt ∼ z̄.
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Then X contains the closed path (x, y, yt, xt, z̄) which does not contain the diagonal (x, xt)
as otherwise x ∈ Xt. If x � yt the 5–cycle (x, y, yt, xt, z̄) has to have the diagonals (y, z̄) and
(yt, z̄). If x ∼ yt the complex X contains the 4-cycle (x, y, xt, z̄) and again y is adjacent to
z̄. �

Lemma 5.3 (Existence of edges). If S is a 2-simplex and X contains the edge (ys, z) then
ys ∼ zt.

Proof. Observe that by Lemma 5.2 the orbit y〈s,t〉 spans a simplex. Since ys ∼ z in X, there
exists the closed path (z, ys, yst, zt). If this path is not a 4-cycle, we are done. Otherwise it
contains one of the two possible diagonals by 6-largeness. But then ys ∼ zt. �

Lemma 5.4 (Existence of more edges). If S is a 2-simplex and X contains the edge (x, zrt),
then y ∼ zr.

Proof. Let (x, zrt) be contained inX. First we consider the case where x � yt. By Lemma 3.2,
x ∼ zr and thus xt ∼ zrt. Hence X contains the closed path (x, y, yt, xt, zrt). It is a 4- or
5-cycle depending on whether y = yt or not. We consider the more difficult case where y 6= yt.
Then x � yt by assumption and x � xt since otherwise x ∈ Xr∩Xs∩Xt. But this contradicts
minimality of S. By 6-largeness the cycle has the two diagonals (y, zrt) and (yt, zrt) which
implies y ∼ zr using the Γ-action.
Consider now the remaining case where x ∼ yt. Recall that xt ∼ zrt by Lemma 3.2. Hence
X contains the 4-cycle (x, yt, xt, zrt). Since x � xt it contains by 6-largeness the diagonal
(yt, zrt) and hence y ∼ zr. �

Lemma 5.5 (nonexistence of edges). If S is a 2-simplex and X does not contain the edge
(y, zr), then x � yt.

Proof. Observe that by Lemma 5.2 the orbit z〈r,t〉 spans a simplex. Suppose for a contradic-
tion that x ∼ yt. By Lemma 3.2 the vertex x ∼ zr and thus xt ∼ zrt. The complex X then
contains the closed path C = (x, yt, xt, zrt, zr). It is a 4- or 5-cycle depending on whether
zr = zrt or not. We consider the most difficult case in which it is a 5-cycle. Clearly it does not
contain the diagonal (x, xt) since otherwise x ∈ Xs ∩Xt ∩Xr. It is yt � zrt by assumption.
Furthermore it does not contain the diagonal (x, zrt) because otherwise (x, zrt, xt, yt) would
form a 4-cycle without diagonals. Using the Γ-action we conclude that xt � zr. But then C
contains at most 1 diagonal which contradicts 6-largeness. �

We are now ready to prove the main result in this section saying that S contains more than
just a single 2-simplex.

Proposition 5.6 (S is not a 2-simplex). If Γ acts without stabilizing a simplex on a systolic
complex X the surface S is not a 2-simplex.

Proof. Recall that in the given situation Xr ∩ Xs ∩ Xt = ∅. We prove the proposition
by contradiction arriving at statements that either contradict 6-largeness or the fact that
Xr ∩Xs ∩Xt 6= ∅. So suppose that S is a 2-simplex.
By Lemma 5.2 we know that y〈s,t〉 and z〈r,t〉 span a simplex. First we show that X contains
at least one of the two edges (y, zr) and (y, zs). Second, we show that X contains exactly
one of these two edges.
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We assume that one of the two edges exists and arrive at a contradiction to 6-largeness.
Hence S is not a single 2-simplex.
Claim 1: X contains either (y, zs) or (y, zr).
Suppose for a contradiction that X does neither contain (y, zs) nor (y, zr). Then the 4-cycle
(x, zr, zt, y) has the diagonal (x ∼ zt) by 6-largeness. Then X contains the closed path
(x, ys, yst, xt, zt). Lemma 3.2 implies that x ∼ ys and that ys ∼ yst as y〈s,t〉 spans a simplex.
Using the action we see that yst ∼ xt and xt ∼ zt. By assumption x � xt and z � ys and
we obtain that zt � yst. Then x � yst as otherwise (x, zt, xt, yst) would form an 4-cycle
without diagonals. Hence the remaining two diagonals are contained in X by 6-largeness.
In particular xt ∼ ys. But then (x, ys, xt, z) forms a 4-cycle without diagonals. This is a
contradiction. Hence X contains either (y, zs) or (y, zr).
Claim 2: X contains exactly one of the two edges (y, zs) and (y, zr).
We have proven already that at least one of both edges is contained in X. Hence it remains
to prove that both edges are not contained simultaneously. Assume that X contains both
edges (y, zs) and (y, zr). The existence of (y, zs) and (y, zr) implies the existence of the edges
(zs, yrs) and (yrs, zr) as r and s commute. Hence X contains the closed path (y, zs, yrs, zr)
which is a 4-cycle. By 6-largeness it contains a diagonal. If y ∼ yrs then ys ∼ yr and
X contains the 4-cycle (ysr, y, ys, yr). Since s and r commute both diagonals exists which
implies that y ∼ yr. But this is impossible since then S would not be minimal. Thus the
cycle has no diagonals which contradicts 6-largeness. Analogously if zs ∼ zr then X contains
the 4-cycle (zrs, z, zr, zs) without diagonals an we have arrived at contradiction.
We are now ready to prove the main assertion.
By Claim 2, the complex X contains exactly one of the two edges (y, zs) and (y, zr). For
symmetrical reasons we may assume that X contains the edge (y, zs), but not the edge (y, zr).
As z〈r,t〉 and y〈s,t〉 span a simplex, ys = ytst or ys ∼ ytst. By Lemma 5.1, X contains the edge
(x, zs) and by Lemma 5.3, X contains the edge (ys, zt). Furthermore z ∼ yt by Lemma 3.2.
Thus X contains the closed path C1 = (ys, zt, xt, zst, ytst). A case by case analysis shows that
C1 is a cycle of length 4 or 5 depending on whether ys = ytst or not. First we show that C1
does not contain the diagonal (ys, xt). To arrive a contradiction we assume that C1 contains
the diagonal (ys, xt). Then X contains the closed path C2 = (x, ys, xt, zrt, zr), because of
Lemma 5.1 and as z〈r,t〉 is a simplex. Observe that it is a 5-cycle.
We show that C2 contains the diagonal (ys, zr). Assume that this is not the case. By
assumption C2 does not contain the diagonal (x, xt). Thus it does not contain the diagonal
(zr, xt) since otherwise (x, zr, xt, ys) would be a 4-cycle without a diagonal. So C2 contains
the remaining two diagonals. In particular x ∼ zrt. This contradicts Lemma 5.4. Hence C2
contains the diagonal (ys, zr). But then X contains the closed path C3 = (ys, zs, zrs, yrs, zr),
as s and r commute and X contains the edge (z, ys).
A case analysis shows that the length of C3 is 4 or 5 depending on whether z = zr or not.
If the length is only 4, there exists the diagonal (ys, yrs) or (zr, zrs) which both leads to a
contradiction. Thus the cycle has length 5. By assumption it does not contain the diagonals
(zr, zrs), (ys, yrs) and (zs, yrs). Thus it contains the remaining diagonals. In particular
ys ∼ zrs. But then (ys, zr, yrs, zrs) forms a 4-cycle without a diagonal. This contradicts
6-largeness.
We have now shown that C1 does not contain the diagonal (ys, xt). Since z /∈ Xs the cycle
C1 does not contain (zt, zst). Then ys � zst since otherwise (ys, zst, xt, zt) would be a cycle
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of length 4 without a diagonal. So C1 has the two diagonals (zt, ytst) and (ytst, xt). In
particular y ∼ zst. Then X contains the 4-cycle (y, zst, xt, zt) by Lemma 5.1 and Lemma 3.2.
The diagonal (zt, zst) does not exist by construction and by Lemma 5.5 one has y � xt. But
then it is a 4-cycle without diagonals which contradicts 6-largeness. �

6. Defects at corners of S

In this section we study the defects on the corners of the minimal surface S. Notation is as
in Section 4. Note that not all the sides of S need to contain inner vertices. There exists
however, by Proposition 5.6 at least one side with at least one inner vertex.
We assume that Γ acts without stabilizing a simplex on a systolic complex X. Proposition 4.4
implies then the existence of a nondegenerate minimal surface S satisfying the hypotheses of
Section 4.

6.1. Defects at any corner. The statements of this first subsection hold for arbitrary sides
and corners of S. We use the following notation.

Notation 6.1. Let a, b and c denote the three corners of S and u, v and w the tree involutions
generating Γ. Here we suppose that

• a is the vertex in Xu ∩Xw,
• b the vertex in Xu ∩Xv and
• c the vertex in Xv ∩Xw.

We denote the geodesic sides of S by γu ⊂ Xu, γv ⊂ Xv and γw ⊂ Xw. So {a, b, c} =
{x, y, z} and {u, v, w} = {r, s, t}, but we do not specify the pairwise orders of the generators.
Furthermore denote by

• au, respectively bu, be the neighbors of a, respectively b, on γu,
• bv, respectively cv, be the neighbors of b, respectively c, on γv and let
• cw, respectively aw, be the neighbors of c, respectively a, on γw,

in case the respective sides have interior vertices. Note that it is possible that au = bu, bv = cv

and cw = aw.
Figure 8 summarizes these choices and should serve as a quick reminder for how we named
the various vertices.

a

au

bu b

bv

cv

cw

aw

c

γv

γu

γw

Figure 8. Notation for the surface S in this section.

We may directly establish some upper bounds on defects.
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Lemma 6.2 (Defect bounded by 2). With notation as in 6.1 we have:

(1) The defect of any of the corners of S is at most 2.
(2) Suppose that both γu and γw have at least one inner vertex and that def(au) =

def(aw) = 1. Then def(a) ≤ 1.

Proof. The first item follows from the minimality of the circumference of S. To see the second
item suppose that a has defect two. Then au and aw are connected by an edge. In addition
the defect of both au and aw equals one, hence they are connected to a common vertex d 6= a.
We may conclude that then the vertex d is in Xu ∩ Xw and may then replace a by d and
shorten γu and γw contradicting the minimality of S. �

The next two lemmata may seem a bit random. However, these situations will arise naturally
in later proofs.

Lemma 6.3 (Defect bounded by 1). Suppose a〈u,w〉 spans a simplex and γu has at least one
inner vertex. If in addition one of the following two conditions holds, then def(a) ≤ 1.

(1) γw has at least one inner vertex, aw
u ∼ aw and au � aw.

(2) γw has no inner vertices, aw
u ∼ c and au � c.

Proof. Observe that in the second case, where γw does not contain inner vertices, one has
aw = c. We handle both cases simultaneously. Suppose for a contradiction that a has defect
2. The orbit a〈u,w〉 spans a simplex, by assumption aw

u ∼ aw, and by Lemma 3.2 we have that
(au, auw, aw

u , aw, au) forms a cycle. Note that this cycle has at least length 4 as aw
u 6= aw 6= au

by assumption and au 6= au since otherwise au = au ∼ aw. Minimality of S implies that
au � aw and au � aw

u . Hence au ∼ auw by 6-largeness. But then (au, a
uw, aw

u , a
w
w) forms a

4-cycle, so either au ∼ aw
u or auw ∼ aw

w which both lead to contradictions. �

Lemma 6.4 (Spanned simplex). Suppose we have au ∼ aw
w in S and that one of the following

two conditions holds:

(1) def(a) = 2, def(au) = 1 and def(aw) = 0 and both γu and γw have at least one inner
vertex.

(2) S consists of two 2-simplices, the only inner vertex on γu is au and X contains the
edge cw ∼ b.

Assume further that S contains the edge (aw, a
w
u ), where c = aw in the second case. Then S

can be chosen so that a〈u,w〉 spans a simplex.

Note that the second case of Lemma 6.4 implies that aw = c.

Proof. We handle both cases simultaneously. The surface S as in item 1 of the lemma is
illustrated in Figure 9(a). Suppose that a〈u,w〉 does not span a simplex. In particular this
implies that |a〈u,w〉| 6= 4 by 6-largeness. Then Proposition 3.9 implies that the orbit aH forms
a cycle without diagonals and that there is a common neighbor f ∈ Xu ∩ Xw of a, aw and
au such that f 〈u,w〉 is a simplex. Then X contains the cycle (f, au, au, aw, a

w) by Lemma 3.2
which has diagonals. Lemma 4.6 implies that aw is not adjacent to au and since the orbit aH

forms a cycle without diagonals au 6= aw. So the cycle contains two of the three diagonals
(au, a

w), (f, au) and (f, aw). If it contains the two diagonals (f, au) and (f, aw), we obtain
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Figure 9. A situation in the proof of Lemma 6.4.

a new surface S′ with the same minimality properties as S by replacing a with f . Continue
with this surface in place of S.
In the two remaining cases au ∼ aw. Then X contains the cycle (f, au, au, a

w) as illustrated
in Figure 9(b). This cycle has to contain a diagonal and since the orbit aH forms a cycle
without diagonals, X contains the diagonal (f, au). In particular fw ∼ aw

u . By assumption
aw ∼ aw

u . Thus X contains the cycle (fw, aw
u , aw, au, f) as illustrated in Figure 9(c). This

cycle has to have diagonals and aw
u � au by the minimality of S. Hence either aw ∼ fw,

au ∼ fw(⇔ f ∼ aw
u ) or aw ∼ f . If aw ∼ f , X contains the two diagonals (f, au) and (f, aw)

and we obtain a new surface S′ with the same minimality properties as S by replacing a with
f like above.
The remaining case is that aw

u ∼ f . By assumption, aw ∼ aw
u which implies that aw

w ∼ au and
X contains the cycle (aw

u , f, au, a
w
w) as illustrated in Figure 10(a). This cycle has to contain

a diagonal. Minimality of the surface implies that au � aw
u and that X contains the diagonal

(f, aw
w). In the second case aw = c and by assumption cw ∼ b. We then obtain a surface S′

with the same minimality properties as S by exchanging a with f and c with cw. Otherwise
S satisfies the properties of the first item and γu and γw contain at least one inner vertex.
Let a′u and a′w be the neighbors of au and aw different from a on the boundary of S . Using
the assumption on the defects of a, au and aw we obtain that a′u ∼ a′w. Moreover aw

w ∼ a′w by
Lemma 3.2. Hence X contains the cycle (au, a

w
w, a

′
w, a

′
u) as illustrated in Figure 10(b). Then

6-largeness implies that one of the diagonals (au, a
′
w) and (aw

w, a
′
u) exists. In both cases we

obtain a surface S′ with the same minimality properties as S by exchanging a with f and aw

with aw
w as illustrated in Figures 10(c) and 10(d). �

Lemma 6.5 (Bounding defects at a corner). Assume that both γu and γw have at least one
inner vertex. If au has defect 1 and aw has defect 0, then a has defect at most 1.
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Figure 10. This figure illustrates the proof of Lemma 6.4.

Proof. We prove the claim by contradiction. Assume that a has defect 2. Let a′u and a′w be
the neighbors of au and aw different from a on γu and γw respectively.
If au is not adjacent to aw

w, then the sequence (a, aw
w, a

′
w, a

′
u, au) forms a 5-cycle by Lemma 3.2.

As a is not adjacent to either a′u or a′w for minimality reasons, this 5-cycle contains at least
one of the two diagonals (au, a

′
w) and (aw

w, a
′
u). In either case there occurs a 4-cycle without

a diagonal which is a contradiction. So au is adjacent to aw
w.

By Lemma 6.4 we may assume that a〈u,w〉 spans a simplex. Then Lemma 4.6 implies that au

is not adjacent to aw
u . But then a has defect at most 1 by Lemma 6.3 and we have reached

a contradiction. �

6.2. Defects at the corner of S whose involutions commute. This subsection concerns
the corner of S whose involutions commute. Here we use the notation as in Section 4.
Note that the considered triangle groups contain two involutions which commute and recall
from Notation 4.1 that we denoted them by r and s. They correspond to two sides of S
which we denote by γs and γr with common corner x. Let xs be the neighbor of x on γs and
xr be the neighbor of xr on γr. Notice that xr ∼ xs by 6-largeness. The next three lemmas
consider configurations at this special corner.

Lemma 6.6 (Defects provided inner vertices). With r and s the commuting involutions
assume that both γr and γs have at least one inner vertex. If def(xr) = def(xs) = 1 then
def(x) ≤ 0.

Proof. Suppose that def(xr) = def(xs) = 1 and let d be the unique neighbor of x in the
interior of S.
By Lemma 4.6 we have that d is neither adjacent to xs nor to xr. Examining the 5-cycle
(xs, xr, xr, d, xs) we obtain that xs ∼ xr.
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Figure 11. This illustrated the situation of Lemma 6.7. The 4-cycle in (b)
induces the existence of the dashed diagonal.

We repeat the same argument using Lemma 4.5 with xs replaced by xs
s or with xr replaced by

xr
r and obtain that xs ∼ xr ∼ xr

s ∼ xs
r ∼ xs (as xs

s ∼ xr
r implies xr

s = (xs
s)sr ∼ (xr

r)sr = xs
r).

This yields a 4-cycle which cannot have a diagonal as xs is not adjacent with xr
s and xr is

not adjacent with xs
r. Otherwise xs or xr would be contained in Xs ∩Xr, contradicting the

minimality of S. This proves the lemma. �

Lemma 6.7 (Bounding defect). Assume that both γr and γs have at least one inner vertex.
If def(xs) = 1 and def(xr) = −1 then def(x) ≤ 1.

Proof. A surface satisfying the conditions of the lemma is illustrated in Figure 11(a). We
assume that x has defect 2 and show that this implies that xs

s ∼ xr
s or xr

r ∼ xs
r. If xs

s ∼ xr
s,

we conclude that X contains the cycle (xs, x
s
s, x

r
s, x

sr
s ) using the action of Γ. This cycle is

illustrated in Figure 11(b). By 6-largeness this cycle has a diagonal. Since r and s commute,
the existence of any diagonal implies that xs ∼ xr

s. But then xs is contained in Xs and Xr

and we can choose xs as corner of S instead of x yielding a surface with smaller area than S
which contradicts minimality of S. If xr

r ∼ xs
r, we obtain by similar arguments that xr ∼ xs

r,
contradicting again minimality of S.
So it remains to show that xs

s ∼ xr
s or xr

r ∼ xs
r. Let d be the neighbor of xs different from x on

γs. Notice that x〈r,s〉 has 4 elements since r and s commute. Using 6-largeness and the fact
that x ∈ Xs ∩Xr we obtain that x〈r,s〉 is a simplex. Thus xr ∼ xs. By Lemma 3.2 the vertex
xr ∼ xr and xs ∼ xs. Since x has defect 2 the complex X contains the cycle (xs, xr, xr, xs).
By Lemma 4.6 this cycle does not have the diagonal (xr, x

s). Thus xs ∼ xr which implies
that x ∼ xr

s.
Since def(xr) = −1 and def(xs) = 1 we obtain that xr ∼ d. Since xs and xr are both
contained in Xs, Lemma 3.2 implies that d ∼ xs

s and xs
s ∼ x. Thus X contains the cycle

x ∼ xr ∼ d ∼ xs
s. Since γs is a geodesic, this cycle does not have the diagonal (x, d). Thus

xr ∼ xs
s.

We obtain moreover that xr
s ∼ xrs

r , xs
r ∼ xrs

r and xs
r ∼ xs

s from the fact that xs ∼ xs
s, xr ∼ xr

r

and xr ∼ xs. Since x ∈ Xs we also conclude using Lemma 3.2 that x ∼ xs
s and that X

contains the cycle (xrs
r , x

s
r, x

s
s, x, x

r
s). This cycle has to have diagonals. By Lemma 4.6 we

obtain that xr � xs and thus this cycle does not contain the diagonal (x, xs
r). There are thus
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four remaining possibilities for the diagonal. If xs
s ∼ xr

s, we are done. If xs
r ∼ xr

s, X contains
the cycle (xs

r, x
r
s, x, x

s
s) and since x � xs

r it follows xr
s ∼ xs

s and we are done. In the remaining
two cases xs ∼ xr

r. If xs
s ∼ xrs

r , then xs ∼ xr
r since Γ operates simplicial. If x ∼ xrs

r , then
X contains the cycle (xrs

r , x
s
r, x

s
s, x) and since x � xs

r we conclude that xrs
r ∼ xs

s and thus
xs ∼ xr

r.
Using the Γ-action and the fact that xs ∼ xr

r we obtain a cycle (xs, x
r
r, x

sr
s , x

s
r, xs). But then

xr
s ∼ xs

s or xr
r ∼ xs

r and we are done. �

7. Defects along the sides of S

We assume in this section that Γ acts without stabilizing a simplex on a systolic complex
X and study defects along the sides of a nondegenerate minimal surface S as constructed in
Section 4. In the following we use notation as in 6.1. In particular, γu denotes an arbitrary
side of S. We will show that one can choose S in such a way that the defect along any side
is nonnegative.
We summarize some first observations about the defects along a side obtained from simple
counting arguments.

Lemma 7.1 (Counting defects). The defect along any side γu satisfies the following proper-
ties.

(1) If def(au) < 0, then def(γu) ≤ 0.
(2) If def(au) = −1 and def(γu) = 0, then the vertex closest to b on γu with nonzero

defect has defect 1.
(3) If def(au) = −1 and def(γu) = −1, then the vertex closest to bu on γu with nonzero

defect has defect −1.
(4) If def(au) ≤ −2, then def(γu) ≤ −1.
(5) If def(au) = −2 and def(γu) = −1, then the vertex closest to b on γu with nonzero

defect has defect 1.
(6) If def(au) < 0 and def(bu) < 0 and one of them has defect at most −2, then def(γu) ≤
−2.

(7) If def(γu) = 1, the vertex on γu closest to either end of γu with nonzero defect has
defect 1.

Proof. By Lemma 2.8, any vertex on γu has defect at most 1. Furthermore two vertices
of positive defect on γu are separated by a vertex of negative defect. The claim follows by
counting. �

The key tool of this section is an edge swap, made precise in Definition 7.2, which allows us
to vary the surface S by replacing two triangles forming a square that touches the boundary
by a square on the same four vertices but with the other possible diagonal. Such a move will
keep minimality of the surface intact while altering its defects on the boundary. The main
goal is to prove that there always exists a sequence of edge-swaps such that the resulting
surface only contains sides of nonnegative defect.

Definition 7.2 (Edge-swaps and swap surfaces). Let S be a surface and γu one of its sides.
Let p and q be two adjacent inner vertices in γu. Let m and m′ be two distinct vertices
in S \ γu. Suppose that (p,m,m′, q) forms a 4-cycle with diagonal (m, q). If a surface S′
differs from another surface S by replacing the two simplices on p, q,m and on q,m,m′ by
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the simplices on p,m,m′ and p,m′, q, i.e. swapping the edge (q,m) by (p,m′), we say S′ is
obtained by an edge-swap along γu from S. We call S′ a swap-surface of S (along γu) if S′ is
obtained from S by a sequence of edge-swaps along (the same) γu. A repeated swap-surface
S′ of S is the end result of a sequence of swap-surfaces of S (along several sides), i.e. obtained
by a sequence of edge-swaps which might be along changing sides.

Note that if a corner has defect 2 it may happen that an edge-swap along one of its incident
sides simultaneously is an edge swap along the other incident side.
The following lemma shows the existence of a swap-surface if two adjacent inner vertices of
a side γu have defect 1 and defect 0 respectively.
Lemma 7.3 (Existence of edge-swaps). Let p and q be adjacent inner vertices on γu of defect
1 and 0 respectively. Let m be the unique neighbor of p in S not contained in γu and let m′ be
the neighbor of q other than m not contained in γu. Then there exists a surface S′ obtained
by an edge-swap along γu. In particular, the 1-skeleton of S′ contains the edge (p,m′) and S
the edges (q,m).

Proof. Let d 6= p be the neighbor of q on γu. Then (p,m,m′, d, qu) forms a 5-cycle (by
Lemma 3.2) and hence has two diagonals. As p is not adjacent to d (as otherwise γu would
not be a geodesic), and m not adjacent to qu by Lemma 4.6, the only remaining possibility is
that qu and p are both adjacent to m′. Thus the vertices p, q,m and m′ span a 3-simplex ∆.
Two of the faces of this 3-simplex are triangles in S, namely (p, q,m) and (m, q,m′) which
can be replaced by the triangles (p, q,m′) and (p,m,m′) to obtain the desired surface S′. �

Note that the following lemma in particular applies to the case where the defect along γu is
1. It will be used numerous times throughout the remainder of this section.
Lemma 7.4 (Moving defects with swaps). If the vertex closest to a on γu with nonzero defect
has defect 1, one can replace the surface S by a surface S′ obtained by an edge-swap along γu

such that au has defect 1 in S′.

Proof. Let a′u be the vertex closest to a on γu with nonzero defect and n its distance to au. if
n = 0, we are done. Suppose that n > 0. Let āu be the vertex on γu that has distance n−1 to
au. By assumption, the defect of au is zero and the defect of āu is one. We apply Lemma 7.3
to these two vertices. This way, we obtain a new surface whose 1-skeleton differs from S by
swapping two edges incident to āu and a′u. By construction, a′u has defect 0 and āu has defect
1 in the new surface. By repeating this procedure n times, we obtain a swap surface where
all the swaps happened along γu and in which au has defect 1. Each edge-swap exchanges
an edge ei for an edge e′i in X such that the four endvertices of ei and e′i are contained in a
4-cycle in the 1-skeleton of S. Furthermore, either ei or e′i is contained in S. Hence, we can
apply the n-th edge-swap to S. The resulting surface S′ is obtained by an edge-swap along
γu and au has defect 1. Hence S′ is the desired surface. �

Lemma 7.5 (Effect of swaps on defects of edges). If S′ is a surface obtained from S by an
edge-swap along γu, then the following is true.

(1) The defect of γu in S is the same as the defect of γu in S′.
(2) The defects of γw and γv in S′ differ from their defects in S by at most 1.

Proof. Every edge-swap as in Lemma 7.3 changes the defects of the vertices of the involved
edges on the boundary curve of S. Clearly the two vertices of the edge in γu are not contained
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in γv ∪ γw. If the other two vertices are contained in the boundary of S, the defect of one of
them increases and the defect of the other decreases by 1. Thus the defect of γw remains the
same if it contains both vertices or none of them. It changes by 1, if it contains one vertex.
The same holds for γv. �

Lemma 7.6 (Effects of swaps on defects of corners). Suppose S′ is a swap-surface of S along
γu. Then the defects of the corners a, b on γu in S′ are the same as in S. Corner c has defect
2 in S if and only if it has defect 2 in S′.

Proof. Every edge-swap obtained by Lemma 7.3 changes the defects of the vertices of the
swapped edges if they are on the boundary of S. By construction these vertices are not the
corners associated with γu. In particular the defects of the corners incident to γu do not
change. If one of them correspond to the remaining corner not incident to γu, this corner has
defect at most 1. �

Lemma 7.7 (Preserving defects). If v is an inner vertex of γv or γw of defect 1, then its
defect stays the same under any edge-swap along γu if v is not adjacent to a vertex w of γu

with the following properties:

(1) w has defect 0
(2) w is a neighbor of one of the corners incident to γu and this corner has defect 2.

Proof. Let v be an inner vertex of defect 1 not contained in γu such that its defect changes
by an edge-swap along γu. Then the defect of v is contained in one of the swapped edges.
Let w be the second vertex of this edge. By definition it is contained in γu and has defect
1 or 0. It has not defect 1 as otherwise w would be a corner of defect 1 and would not be
contained in an edge of the swap. Hence w has defect 0. Then w is incident to exactly three
2-simplices, the vertex v is incident to exactly two 2-simplices and v and w are adjacent.
Then w is adjacent to a corner incident to γu having defect 2. �

Lemma 7.8 (Noncommuting involutions). If def(c) = 1 and both vertices on the boundary
of S closest to c with nonzero defect have defect 1, then the involutions corresponding to c do
not commute. In particular, if a corner and its incident sides have defect 1 the corresponding
involutions do not commute.

Proof. Let γw and γv denote the sides incident with c. Then Lemma 7.4 implies that there
exists a surface S′ obtained from S via an edge-swap along γw in which def(cw) = 1. By
Lemma 7.6 the defect of c does not change. We apply Lemma 7.4 again to γv and obtain a
surface Ŝ in which cv has defect 1 by applying an edge-swap to S′ along γv. Using Lemmas 7.6
and 7.7 the defects of c and cw do not change. The fact that the involutions do not commute
is then obtained from Lemma 6.6. �

Lemma 7.9 (Bounding defects of vertices). Suppose that def(γu) = 1 and that γu has exactly
2 inner vertices. Then min(def(a), def(b)) ≤ 1.

Proof. We assume for a contradiction that the defect along γu is 1, γu has exactly two inner
vertices and that both incident corners a and b have defect 2. Then γu contains just the
vertices au and bu. One of them, say au, has defect 0 and the other vertex bu has defect 1.
By Lemma 7.3, we can replace S by a surface in which def(au) = 1 and def(bu) = 0 by
swapping the edges (au, b

u
u) and (bu, a

u
u). In particular, both edges are contained in X. Hence
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Figure 12. This illustrates the proof of Lemma 7.9. The last picture on the
bottom shows the constructed 4-cycle which does not have a diagonal.

we are in the situation as illustrated in Figure 12(a). Note that X contains the two 4-cycles
(au, au, b

u
u, a

u
w) and (au, au, b

u
u, a

u
w) which are marked by thick edges in Figure 12(b) By 6-

largeness, they contain a diagonal each. The edges (au, bu
u) and (au

u, b
u) are not contained

in X as otherwise a ∼ bu or au ∼ b using the simplicial action and this then implies that
γu is not a geodesic. Hence X contains the edges (au, a

u
w) and (bu, a

u
w) which are drawn in

gray in Figure 12(b). We conclude that X contains the 4-cycle (au, bu, b
u
v , a

u
w) (as illustrated

in Figure 12(c)) which, by 6-largeness, contains a diagonal. For symmetrical reasons we
may assume that the same 4-cycle also has the diagonal (au

w, bu). But then X contains the
closed path C := (a, au, au

w, bu, aw) which is shown in Figure 12(d). It is a 4-cycle or 5-cycle
depending on whether a = au or not. This cycle does not contain the diagonal (a, bu) as
otherwise γu would not be a geodesic. The vertices aw and au

w are not adjacent as otherwise
aw would be contained in Xw and Xu and S would not have minimal area. Hence edge (a, au

w)
is not contained in X as otherwise (a, au

w, bu, aw) would be a 4-cycle without diagonals. In
particular a 6= au. We conclude that C is a 5-cycle that does not contain the diagonals
(a, au

w), (a, bu) and (au
w, aw). By 6-largeness C contains the remaining two diagonals (au, bu)

and (au, aw). The edge (au, bu) is shown in Figure 12(d). We observe that X contains the
closed path (a, au, bu, b

u
u) which is pictured in Figure 12(e). Hence, a ∼ bu. This contradicts

the fact that γu is a geodesic. �

Lemma 7.10 (Number of inner vertices). If every side of S contains at least one inner vertex
and def(a) = def(b) = 2, then γu contains at least three inner vertices.
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Proof. Suppose for a contradiction that γu contains exactly two inner vertices. The defects of
a and b are at most 1 by Lemma 7.9. If γu contains exactly one inner vertex x we obtain that
x ∼ a and x ∼ b. As def(a) = def(b) = 2 both a and b are contained in a single 2-simplex
each both of which contain x. As every side of S contains at least one inner vertex these two
2-simplices then can not be glued together along an edge. Hence x cannot be incident to at
least three 2-simplices and x cannot habe defect 1 which contradicts what we have observed
earlier. �

The following lemma gives conditions for when one can shift two vertices of defect 1 to the
ends of the considered side via edge-swaps.

Lemma 7.11 (Existence of swap surfaces). Suppose that def(γu) = 1 in S and that γu

contains at least 3 inner vertices. Then there exists a swap surface S′ of S along γu such that
def(au) = def(bu) = 1. Moreover, def(γu) = 1 in S′.

Proof. Let a′u be the vertex closest to a on γu that is not 0. As the defect along γu is 1, a′u
has defect 1 by Lemma 7.1 (7). Hence we can apply an edge-swap and exchange the surface
S for a surface S′ via Lemma 7.4. As γu has at least 2 inner vertices, none of the swapped
edges is incident to bu. Hence we can repeat the argument for the other corner of γu and
obtain the desired swap-surface. �

Using these lemmas we are able to prove the following proposition.

Proposition 7.12 (Nonnegative defect on sides). Given a nondegenerate minimal surface
S as constructed in Section 4 there exists a surface S′ with the same minimality properties
such that the defect along any side of S′ is 1 or 0.

Proof. Let γu be a side of S. By Lemma 2.8 the defect along γu is at most 1. It remains to
show that it is at least zero. Assume that the defect along γu is less than 0. By definition,
any corner has defect at most 2. Proposition 2.1 implies that the sum of the defects along
the boundary of S is at least 6. Thus there are only three cases we need to consider which
we have illustrated in Figure 13. We use notation as in 6.1.
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2

2

1 or 2

2

2

2
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−1
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γu γu γu
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bbb

Case (1) Case (2) Case (3)

a

Figure 13. The three cases appearing in the proof of Proposition 7.12 of
surfaces with one side of negative defect. The numbers are the defects of the
sides and corners they label.

Case (1): def(γu) = −2 and def(γv) = def(γw) = 1.
In this case all corners of S have to have defect 2 as otherwise the defects along the boundary
of S sum up to at most 5 which contradicts the combinatorial Gauss-Bonnet Lemma 2.1. By
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Lemma 7.4, there is surface S′ obtained from S by an edge-swap along γw such that cw has
defect 1 in S′. By Lemma 7.6 the defects of the corners a, b, c do not change. The vertex cv

has negative defect by Lemma 6.5 and Lemma 6.2. We conclude with help of Lemma 7.1(1),
that the defect γv in S′ is at most 0. By Lemma 7.5, the defect along γv in S′ is 1 or 0.
Hence it is equal to 0. Furthermore the defect along γw is 1 in S′ and the defect along γu

is −3,−2 or −1 in S′ by Lemma 7.5. As the defects along the boundary of S sum up to at
least 6 by the combinatorial Gauss-Bonnet Lemma 2.1, the defect along γu is −1 in S′. We
will be dealing with the surface S′ in case (3).
Case (2): def(γu) = −1 and def(γv) = def(γw) = 1.
Suppose first that c has defect 2. As in case (1) we may argue that there is a surface S′
obtained from S via an edge-swap along γw such that def(cw) = 1 and def(cv) = −1 and
where def(γw) = 1. The defect along γv is at most 0 by Lemma 7.1(1) and at least 0 by
Lemma 7.5. Thus def(γv) = 0. Lemma 7.5 then implies that the defect along the third side
in S′ is in {−2,−1, 0}. If the defect along γu is 0 we have found a desired surface. If it is −1
we have reduced the situation to the third case. If it is −2 the defects along the boundary of
S sum up to at most 5 which contradicts Proposition 2.1.
Suppose now that def(c) = 1 in S. Then a and b have both defect 2 and the involutions
corresponding to c do not commute by Lemma 7.8 as otherwise the defects along the boundary
of S sum up to at most 5. Hence the involutions corresponding to a or b commute. We will
show that this leads to a contradiction.
Recall that def(γw) = 1 in S. By Lemma 7.4 there exists surface S′ obtained from S via an
edge-swap along γw such that aw has defect 1 in S′ and a another surface Ŝ obtained from
S′ by an edge-swap along γv such that bv has defect 1. By Lemmas 7.6 and 7.7 the defect
of the corners do not change and aw and bv have defect 1 in Ŝ. The defects of both au and
bu are negative in Ŝ as otherwise the defect of the corresponding corners would be at most 1
by Lemmas 6.2 and 6.5. If either def(au) or def(bu) is < −1 the defect along γu is at most
−2 by Lemma 7.1(6). Then the defects along the boundary of S sum up to at most 5 which
contradicts Proposition 2.1. Hence au and bu have both defect −1 in Ŝ. In particular, a
and b are both adjacent to a vertex of defect 1 and a vertex of defect −1. But then neither
the involutions corresponding to a nor those corresponding to b commute as otherwise the
defect of a, respectively b, would be at most 1 by Lemma 6.7. And we have arrived at a
contradiction.
Case (3): def(γu) = −1, def(γw) = 0 and def(γv) = 1.
Suppose S is a surface with the listed properties. Then each corner of S has defect 2, as
otherwise the defects along the boundary of S sum up to less then 6. This implies that each
side of S, also γw, has at least one inner vertex. If γw does not contain an inner vertex S is
a single 2-simplex. Then the defect along no side would be negative.
By Corollary 7.10 the side γv contains at least 3 inner vertices. Hence there exists a swap-
surface S′ of S along γv such that bv and cv have defect 1 and such that the defect along γv

is 1 in S′ by Lemma 7.11. Every corner of S′ has defect 2 by Lemma 7.6. Thus the vertices
bu and cw have both negative defect by Lemma 6.5 and Lemma 6.2. By Lemma 7.1(1), the
defect along γu and γw is at most 0. If both defects are 0, we have found a desired surface.
In the remaining case one geodesic has defect 0 and the other −1 as otherwise the sum of
the defects along the boundary of S is less than 6. Potentially switching the roles of u and v
we may assume that γu has defect −1 and γw has defect 0.
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Recall that cw has negative defect. By Lemma 2.8, any vertex on γu has defect at most 1.
Furthermore two vertices of positive defect on γu are separated by a vertex of negative defect.
Hence the vertex closest to aw on γw with nonzero defect has defect 1. By Lemma 7.4 there
exists a surface S′′ obtained from S′ by an edge-swap along γw such that aw has defect 1 in
S′. From Lemma 7.6 we obtain that each corner of S′′ has defect 2. And Lemma 7.7 implies
that the vertices bv and cv have defect 1 in S′′. It follows from Lemma 2.8, that def(γv) = 1
in S′′.
Using Lemmas 6.2 and 6.5 we may argue as above and obtain that the vertices bu and cw

have both negative defect. By Lemma 7.1(1), the defect along γu and γw is at most 0. If both
defects are 0, we have found a desired surface. Otherwise, def(γw) = 0 in S′′ by Lemma 7.5
and the defect along γu is −1 because otherwise the defects along the boundary of S′′ would
not sum up to at least 6. It follows from Lemma 7.1(1) that the vertex cw has defect −1. By
Lemmas 6.2 and 6.5 the defect of au is negative. Recall that cu has negative defect and that
γu has defect −1. Hence 2.8 implies that the defect of bu is −1. All in all, S′′ is a surface in
which each corner is adjacent to a vertex of defect −1 and to a vertex of defect 1. But then
also the corner whose corresponding involutions commute is adjacent to a vertex of defect 1
and to a vertex of defect −1. This contradicts Lemma 6.7. �

We have shown that S can be chosen such that no side has negative defect. The next
proposition and the lemma afterwards establish further properties of such surfaces.

Proposition 7.13 (Bounding defects at corners). With notation as in 6.1 suppose the defect
along all sides of S is nonnegative and that γu has defect one. Then def(a) ≤ 1 and def(b) ≤ 1.

Proof. We suppose that the defect along all sides of S is nonnegative and that γu has defect
one. We distinguish three cases.
Case (1): There are no inner vertices in the sides γv and γw.
In this case, two corners have defect 2 and the third corner has defect at least 1 because the
sum of the defects along the boundary of S is at least 6 by Proposition 2.1. Because γv and
γw don’t have inner vertices and since γu has at least one inner vertex, the corner c does
not have defect two. Hence, the corners a and b have defect two and c has defect one. It
follows that the corner c is contained in exactly two 2-simplices of S and that a and b are
contained in exactly one 2-simplex respectively. As γv and γw don’t have inner vertices, the
sides γv and γw are contained in these two 2-simplices respectively and we are in the special
case illustrated in Figure 14.

au

b

c

a

Figure 14. A special case of the surface S.

We prove that this special case pictured in Figure 14 does not occur. Recall that one of
the corners of S correspond to two commuting involutions and that the orbit of this corner
under the group generated by these two involutions spans a simplex by 6-largeness. First we
will show that neither the involutions corresponding to a nor the involutions corresponding
to b commute. Therefore the commuting involutions have to correspond to c. We will see
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that this implies the existence of a 4-cycle or a 5-cycle without diagonals which contradicts
6-largeness.
Claim 1: The involutions u,w corresponding to a and b do not commute.
Assume otherwise. Then C = (au, au, c, a

w) forms a closed path by Lemma 3.2. By
Lemma 4.6 the complex X does not contain the edge (au, c). So C is a cycle of length 4
containing the diagonal (au, a

w) by 6-largeness. Hence a ∼ aw
u . Since u and w commute,

aw
u ∈ Xu (u(aw

u ) = w(au
u) ∼ aw

u because au
u ∼ au) and a ∈ Xu by definition. Thus au ∼ aw

u

by Lemma 3.2. Applying Lemma 3.2 again and using that the group action is simplicial
we conclude that (au, aw

u , c
w, c, au) forms a closed path. If c = cw it is a cycle of length 4

and contains (au, a
w
u ) or (au, c) which both lead to a contradiction by the minimality of S

or Lemma 4.6. If c 6= cw, the cycle has length 5 and the same argumentation yields that
au � aw

u and au � c. Then the existence of the diagonal (c, aw
u ) would lead to a 4-cycle

without diagonals. Hence X does not contain (c, aw
u ) and hence also not (cw, au). But then

the described 5-cycle has at most one diagonal which contradicts 6-largeness. Thus u and
w have to commute. Similarly one shows that the involutions corresponding to b do not
commute. � claim 1.
It remains to consider the subcase that the involutions v, w corresponding to corner c com-
mute. We will use the following observation.
Claim 2: If the involutions v and w corresponding to corner c commute then X contains the
two diagonals (au, c

v) and (au, c
w) but not the diagonal (b, cw).

Since v and w commute, X contains the closed path (a, au, b, c
v, cw). Using again that v and

w commute, a case by case analysis shows that it is a cycle of length 4 or 5 depending on
whether cv = cw or not. By minimality of γu, a is not incident to b. Thus either au ∼ cw or
au ∼ cv since otherwise X contains a 4-cycle without a diagonal. This argument is symmetric
hence we may assume that au ∼ cw. To arrive a contradiction assume further that b ∼ cw.
Apply Lemma 6.4 and reduce the situation to the case that a〈u,w〉 spans a simplex as au ∼ cw,
aw

u ∼ c. By Lemma 4.6 the complex X does not contain the edge (au, c). Hence a has defect
at most 1 by Lemma 6.3 which has us arrived at a contradiction. Thus it remains to consider
the case where b � cw. Then (au, c

w, cv, b) forms a 4-cycle containing the diagonal (au, c
v)

by 6-largeness. We have shown that one can reduce the situation to the case where X
contains the two diagonals (au, c

v) and (au, c
w) but not the diagonals (b, cw). This proves the

claim. � claim 2.
Recall that it remains to consider the subcase that the involutions v, w corresponding to
corner c commute. By Lemma 4.6, the complex X does not contain the edges (au, c) and
(bu, c). Hence we may apply Lemma 6.3 to the corners a and b and conclude that neither
a〈u,w〉 nor b〈u,v〉 span a simplex. By Proposition 3.9 there exists a vertex x ∈ Xv ∩Xu which
is connected to bu, b and bv and X contains the closed path (au, b

u, x, bv, c). It is not hard
to see that this is a cycle of length 5. By Proposition 3.9 the orbit of b under 〈u, v〉 spans
a cycle without diagonals. Thus bu � bv. By Lemma 4.6, c � bu. Hence there are only two
possible configurations: either x is adjacent to au and c or au ∼ x and au ∼ bv. In the former
case we obtain a new surface S′ with the same minimality properties like S by exchanging
b with x. By Proposition 3.9 we can choose x so that x〈u,v〉 spans a simplex and we arrive
a contradiction by applying Lemma 6.3 as above. In the second case X contains the closed
path C = (cw, au, b, a

v
u, c

vw) which is a 4- or 5-cycle depending on whether c = cv or not.
By assumption it does not contain the diagonal (b, cw) and it does not contain (au, a

v
u) for

minimality reasons. Notice that bw ∈ Xv since v(bw) = w(bv) ∼ bw as b ∼ bv. Thus C
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does not contain (b, cvw) as diagonal. Otherwise bw ∼ cv which leads to the existence of
(c, bw) by applying Lemma 3.2. This contradicts Claim 2. Regardless of whether X contains
the remaining diagonals of C or not, X contains a 4- or a 5-cycle without a diagonal which
contradicts 6-largeness.
Case (2): Exactly one of the two sides γv and γw does not have inner vertices
Potentially switching the roles of v and w we may assume that γw has no inner vertices.
Suppose for a contradiction that one of the corners a and b, say a, has defect two. Lemmas 7.1
and 7.4 imply the existence of a surface S′ obtained from S by an edge-swap along γu such
that the defect of au is 1. By Lemma 7.6 and Lemma 7.5, the defect along γu in S′ is 1 and
the defect of a in S′ is 2. Then au and its neighbor a′u 6= a on γu are both connected to c in
S′. If a′u = b the geodesic γv does not contain inner vertices. Then S′ is a surface as in case
(1) and we have proven already that such a surface does not exist. Hence we assume that
a′u 6= b. Then a′u is an inner vertex of γu that is connected to c and γv contains a further
vertex adjacent to c that neither coincides with a nor with a′. Hence, the degree of c in the
1-skeleton of S is at least 4 and def(c) ≤ 0. As the sum of the defects along the boundary of
S is at least 6 by Proposition 2.1., the defect along γv is 1 and def(b) = 2. We replace the
surface S′ with a surface S′′ that is obtained from S′ by an edge-swap along γv such that bv

has defect 1 in S′′ by means of Lemma 7.4. By Lemma 7.6, the defects of the corners of S′
stay the same. Then the defect of bu on γu is negative in S′′ by Lemmas 6.2 and 6.5. Hence
γu has defect at most 0 in S′′ by Lemma 7.1(1). But then the sum of the defects along the
boundary of S′′ is at most 5 which contradicts Proposition 2.1.
Case (3): Every side of S has inner vertices.
The proof in this case has to steps. In the first step we prove the claim that either a or b has
defect at most 1. In the second step we conclude that both corners have defect at most 1.
Claim 3: One corner incident to γu has defect at most 1.
To arrive a contradiction we assume that a and b have defect 2 and show the existence of a
repeated swap surfaces of S which do not satisfy all necessary properties.
The side γu contains at least 3 inner vertices by Corollary 7.10. Lemma 7.11 implies that
there exists a swap surface S′ of S along γu such that au and bu have defect 1 and such
that the defect along γu is 1 in S′. Then the vertices aw and bv have negative defect in
S′ as otherwise the corresponding corners would have defect at most 1 by Lemma 6.5 and
Lemma 6.2. By Lemma 7.1(1), the defect along γw and γv is at most 0 in S′. At least one of
them has defect 0 as otherwise the sum of the defects along the boundary of S is less than
6. By symmetrical reasons we can assume without loss of generality that the defect along
γw is 0. By Lemma 7.1(4) and Lemma 7.1(2), aw has defect −1 and the vertex closest to
c on γw has defect 1. By Lemma 7.4, there exists a surface Ŝ that is obtained from S′ by
an edge-swap along γw such that cw has defect 1 in Ŝ. By Lemma 7.6 and Lemma 7.7, the
defect of the corners and the defects of au and bu do not change. As before we observe that
aw and bv have negative defect in Ŝ and that the defect along γw and γv in Ŝ is at most 0.
If corner c has defect 2 in Ŝ , cv has negative defect by Lemma 6.5 and Lemma 6.2. Then bv

and cv have both negative defect. If one of these defects would be less than −1, the sum of
the defects along the boundary of S would be less than 6. Hence any corner is adjacent to a
vertex of defect 1 and a vertex of defect −1. In particular, the corner whose corresponding
involutions commute satisfies this property. This contradicts Lemma 6.7.
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If corner c has defect 1, the defect along γw and γv it 0 as otherwise the sum of the defects
along the boundary of S is less than 6. By Lemma 7.1(4) and Lemma 7.1(2), aw and bv have
defect −1 and the vertex closest to c on γv with nonzero defect has defect 1. Recall that cw

has defect 1. By Lemma 7.8, the involutions corresponding to c do not commute. Hence the
involutions corresponding to a or b commute. But this contradicts Lemma 6.7. We have now
shown that a or b has defect at most 1. � claim 3.
Recall that we suppose that the defect along all sides of S is nonnegative and that γu has
defect one. We are now well-prepared to prove that both corners incident to γu have defect
at most 1. We assume for a contradiction that one of the corners a and b, say a, has defect 2.
By claim 4 we may assume that b has defect at most 1. We show the existence of a repeated
swap surfaces of S which do not satisfy all necessary properties.
By Lemma 7.1(7) and Lemma 7.4, there exists a surface S′ obtained from S by an edge-
swap along γu in which au has defect 1. By Lemma 7.5, the defect along γu in S′ is 1. By
Lemma 7.6, a has defect 2 in S′ and the defect of b is at most 1 in S′. As above we conclude
that aw has negative defect in S′ and that the defect along γw is at most 0.
First we consider the case that γw has negative defect in S′. Then the defect along γu and γv

is 1, b has defect 1 and c has defect 2 as otherwise the sum of the defects along the boundary
of S′ is less than 6. We apply Lemma 7.4 and conclude that there is a surface Ŝ that is
obtained from S′ by an edge-swap along γv such that cv has defect 1 in Ŝ. By Lemma 7.6
and Lemma 7.7, the defects of the corners of S′ and the defect of au do not change. By
Lemma 6.5 and Lemma 6.2, vertices aw and cw have negative defect. If one of them would
be smaller than −1, the defect along the side γw would be at most −2 because of Lemma 2.8
and the sum of the defects along the boundary of Ŝ would be less than 6. Hence a and
c are adjacent to a vertex of defect 1 and a vertex of defect −1. Hence the corresponding
involutions do not commute by Lemma 6.7. But then the involutions corresponding to b
commute which contradicts Lemma 7.8.
It remains to consider the case where the side γw in the surface S′ has defect 0. Then aw has
defect −1 and the vertex closest to c on γw with nonzero defect has defect 1 by Lemma 7.1(4)
and Lemma 7.1(2). We apply Lemma 7.4 and obtain a surface Ŝ that is obtained from S′ by
an edge-swap along γw such that cw has defect 1 in Ŝ. By Lemma 7.6 and Lemma 7.7, the
defects of the corner a and the defect of au do not change. Hence, def(au) = 1 and def(a) = 2
in Ŝ. By Lemma 7.5, def(γw) = 0. As above follows that def(aw) = −1 in Ŝ. By Lemma 7.6,
the defect of b is at most 1 in Ŝ.
If the defect of c in Ŝ is 1, the defect along γu and γv in Ŝ is 1 as otherwise the sum of the
defects along the boundary of S is less then 6. Then the involutions corresponding to b and
c do not commute by Lemma 7.8. Hence the involutions corresponding to a commute which
contradicts Lemma 6.7.
If c has defect 2 in Ŝ , we argue like before that cv has defect −1. Because cv has defect −1,
def(γv) ≤ 0 because of Lemma 2.8. Recall that the defects along the boundary of Ŝ sum up
to 6. Hence def(γv) = 0. By Lemma 7.1(4), the vertex closest to b on γv with nonzero defect
has defect 1. As def(a) = 2, def(c) = 2, def(b) ≤ 1, def(γw) = def(γv) = 0 in Ŝ, the defect
along γu is 1 by Proposition 2.1. By Lemma 7.1(7), the vertex on γu closest to b with nonzero
defect has defect 1. Then the involutions corresponding to b do not commute by Lemma 7.8.
Note that the corners a and c are adjacent to a vertex of defect 1 and to a vertex of defect
−1. Hence the involutions corresponding to a and c do not commute by Lemma 6.7. All in
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Figure 15. A surface S studied in the proof of Lemma 7.14. If S has a corner
a that is incident to two vertices of defect 0 then X contains the subcomplex
illustrated in (a). The cycle in (b) is contained in X and has no diagonal
which contradicts 6-largeness.

all neither a nor b nor c is the corner of Ŝ whose corresponding involution commute which is
a contradiction. �

Lemma 7.14. If every side of S has at least one inner vertex, the defect along at least one
side of S is nonzero.

Proof. Assume for a contradiction that the defect along all sides is 0. If one corner would have
a defect smaller than 2, the sum of the defect along the boundary of S would be at most 5
which contradicts Proposition 2.1. Thus every corner has defect 2. We will show that at least
one corner of S, say a, is adjacent to a vertex of nonzero defect. As the defect along every side
is 0, the neighbors of a on the boundary of S have defect at least −1 by Lemma 7.1(4). By
Lemma 6.2 it is impossible that both neighbors have defect 1. By Lemma 6.5 it is impossible
that one neighbor has defect 1 and the other has defect 0. We conclude that at least one of
the two neighbors of a has defect −1.
Without loss of generality we assume that the neighbor aw of a on γw has defect −1. Then
the vertex on γw which is closest to c having nonzero defect, has defect 1 by Lemma 7.1(2).
We apply Lemma 7.4 to γw and obtain a surface S′ where the defect of cw is 1. Then the
neighbor of c on γv in S′ has negative defect by Lemma 6.2 and Lemma 6.5. As before we
observe that its defect is −1. Furthermore the defects of a, au and aw in S′ are the same
like before. Any edge-swap does not change the defects of a by Lemma 7.6. As au has
defect 1 in S, it is not contained in one of the swapped edges and hence its defect does not
change. The defect aw does not change by the definition of the edge-swap. We repeat the
same argumentation for the side γv and obtain a repeated swap-surface Ŝ of S where every
corner is adjacent to a vertex of defect 1 and a vertex of defect −1. In particular the corner
whose corresponding involutions commute has this property. By Lemma 6.7 this corner has
defect at most 1 which is a contradiction.



THE TRIANGLE GROUPS (2, 4, 5) AND (2, 5, 5) ARE NOT SYSTOLIC 35

It remains to show that one corner of S is adjacent to a vertex of nonzero defect. We show
that the corner whose involutions commute has this property. Let a be this corner. We
assume for a contradiction that au and aw have defect 0. Let a′u be the vertex on γu adjacent
to au different from a. Let aw be the vertex on γw adjacent to aw on γr other than a. Let d
be the unique inner vertex of S which is connected to au, a′u, aw and a′w. We obtain that S
contains the subcomplex shown in Figure 15(a).
By studying cycles of length 4 and 5 we will proof that X contains the black thickened
cycle pictured in Figure 15(b) and that this cycle does not have diagonals which contradicts
6-largeness of X.
First we show that X does not contain the edge (a, d). To arrive a contradiction we assume
that X contains the edge (a, d). Then the vertices a, au, aw and d form a simplex in X.
We exchange the edge (au, av) with the edge (a, d) in the 1-skeleton of S and obtain a new
surface S′ with the same minimality properties like S where a, au and aw have defect 1. This
configuration contradicts Lemma 6.6.
We show that X does not contain the edge (au, a

′
w). To arrive a contradiction we assume

that X contains the edge (au, a
′
w). Then the vertices au, aw, a′w and d form a simplex in

X. We exchange the edge (aw, d) with the edge (au, a
′
w) in the 1-skeleton of S and obtain a

new surface S′ with the same minimality properties like S where aw has defect 1 and au has
defect −1. As the involutions corresponding to a commute, this contradicts Lemma 6.7.
Similarly one can conclude that X does not contain the edge (aw, a

′
u).

But then the edges (a, a′w) and (a, a′u) are not contained in X as otherwise (a, au, d, a
′
w) and

(a, aw, d, a
′
u) would form 4-cycles without diagonals.

Observe that X contains the 5-cycle (a, au, d, a
′
w, a

w
w). As X does not contain (a, d), (au, a

′
w)

and (a, a′w), X contains the edges (au, a
w
w) and (d, aw

w), as otherwise X would contain a 4- or
5-cycle without diagonals.
The complex X contains the 5-cycle (du, a′uu , au, a

u, au
w). We have that au ∼ au

w, au
w ∼ du and

du ∼ a′uu as the group action is simplicial and a′uu ∼ au and au ∼ au by Lemma 3.2. au
w � a′uu

as otherwise aw ∼ a′u. du � au as otherwise d ∼ a. au � a′uu as otherwise a ∼ a′u. Hence X
contains the diagonals (au, a

u
w) and (au, d

u) as otherwise X contains a 4- or a 5-cycle without
diagonals.
As au ∼ au

w and au ∼ aw
w the complex X contains the edges (au

u, aw) and (aw
u , aw) and the

5-cycle (au
w, a

u
u, aw, a

w
w, a

uw
u ). However, X does not contain (au

w, aw) and the edge (au
u, a

uw
u )

as otherwise aw would be contained in Xu and S would not be minimal. Moreover, X does
not contain the edge (aw, a

uw
u ) as otherwise (au

w, a
u
u, aw, a

uw
u ) would form a 4-cycle without

diagonals. Hence X contains both diagonals (au
w, a

w
w) and (aw

w, a
u
u).

As X contains the edges (au
u, aw) , (aw

w, a
u
u) and (aw

u , aw) and because the action of Γ is
simplicial there exists the 4-cycle (au

w, a
u
u, aw, a

uw
u ). Observe that auw

u � au
u and au

w � aw as
otherwise au or aw would be contained in Xu and Xw and S would not be minimal. Hence
we have found a 4-cycle without a diagonal which contradicts 6-largeness. �

8. Proof of the fixedpoint theorem

This section contains the proof of Theorem 1.2 which we restate below for ease of reference.
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Theorem 1.2. Suppose Γ is one of the groups (2, 4, 5) and (2, 5, 5). For every simplicial
action of Γ on a systolic complex X there exists a Γ-invariant simplex in X. In particular,
every such action on the geometric realization of X has a global fixed point.

Proof. Let in the following S be a surface as constructed in Section 4. Recall that S was
chosen minimally with respect to both perimeter and area. We will prove the assertion by
contradiction and hence assume that the action of Γ does not stabilize a simplex. Proposi-
tion 4.4 and 5.6 imply that S is larger than a single 2-simplex. We consider a series of cases
for the defects of the sides of S. In each of these cases we will either arrive at a situation
that contradicts minimality or contradicting one of the numerous counting statements that
hold for S and the (sums of) defects of its vertices.
Systolicity of S and the combinatorial Gauss-Bonnet Lemma 2.1 imply that the sum of the
defects along the boundary curve C of S has to be at least 6. Further recall that the defect
along any side of S was defined as the sum of the defects of all of its inner vertices, i.e. all
vertices different from its endpoints. The two main ingredients are Propositions 7.12 and
7.13. One states that we can assume without loss of generality that the defect along any one
of the sides equals 1 or zero. The other says that two corners incident to a side have defect
at most 1, if the defect along the side is 1. By definition, any corner has defect at most 2.
By Proposition 7.12 we may assume that the defect along any one of the sides is either one
or zero.
We are thus in one of the following remaining cases which are illustrated (from left to right)
in Figure 16. The defects of the sides of S are

(a) 1 on one side and 0 on the two other sides.
(b) 1 on two sides and 0 on the third side.
(c) 1 on each side.
(d) 0 on each side and each side has inner vertices.
(e) 0 on each side and one of the sides has no inner vertices.

0

0 1

1

0

1

1

1

1 0

0

0
0

0

0

Figure 16. Cases (a) to (e) shown from left to right.

Proposition 7.13 implies that in case (a) two corners have defect 1 and in all other cases all
corners have defect 1. We deal with all the cases individually and will arrive at a contradiction
in each of them.
Case (a): Two corners of S have defect at most 1. So the sum of the defects along the
boundary of S is at most 1 + 0 + 0 + 1 + 1 + 2 = 5 which contradicts Proposition 2.1.
Case (b): Proposition 7.13 implies that any corner of S has defect at most 1. So the sum of
the defects along the boundary of S is at most 1 + 1 + 0 + 1 + 1 + 1 = 5 which contradicts
Proposition 2.1.
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Case (c): Again by Proposition 7.13 we obtain that the defects of corners is at most 1. If
only one corner has defect 0, the sum of defects along the boundary of S is at most 5. Hence
every corner has defect 1. Because every vertex with nonzero defect on the boundary of S
closest to any corner of S has defect 1 by Lemma 7.1 7, we obtain by Lemma 7.8 that there
cannot be a coner for which the involutions commute which contradicts the shape of Γ.
Case (d): This case does not occur by Lemma 7.14.
Case (e): If one corner has defect at most 1, then the sum of the defects along the boundary
of S is at most 2 + 2 + 1 = 5 which contradicts Proposition 2.1. Therefore the defect of every
corner is 2. If no side of S has inner vertices, S is just a 2-simplex which contradicts the
result in Section 5 Hence, there is one side γ of S that contains an inner vertex. As one side
of S does not have inner vertices, one corner a of γ coincides with a corner of a side γ′ of S
without inner vertices. Let c be the corner of γ′ other than a. Since a has defect 2, corner c
is connected to an inner vertex of γ. As this vertex is an inner vertex, c is connected to at
least one other vertex contained in S. But then c has degree at least three and hence defect
at most 1 and we arrive at a contradiction.
We have now proven that each case leads to a contradiction. Hence Theorem 1.2 follows. �

Theorem 1.1 is now an easy consequence of Theorem 1.2 as if the groups in question were
systolic they would admit a geometric action on a systolic complex. However we have just
seen that every (simplicial) action admits a fixed point and hence cannot be geometric.
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