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HYPERRIGID GENERATORS IN C∗-ALGEBRAS

P. SHANKAR

Abstract. In this article, we show that, if S ∈ B(H) is irreducible and essen-
tial unitary, then {S, SS∗} is a hyperrigid generator for the unital C∗-algebra
T generated by {S, SS∗}. We prove that, if T is an operator in B(H) that
generates an unital C∗-algebra A then {T, T ∗T, TT ∗} is a hyperrigid generator
for A. As a corollary it follows that, if T ∈ B(H) is normal then {T, TT ∗} is
hyperrigid generator for the unital C∗-algebra generated by T and if T ∈ B(H)
is unitary then {T } is hyperrigid generator for the C∗-algebra generated by T .
We show that if V ∈ B(H) is an isometry (not unitary) that generates the
C∗-algebra A then the minimal generating set {V } is not hyperrigid for A.

1. Introduction

The classical theorems of Korovkin impressed several mathematicians since
their discovery for the simplicity and the potential. Positive approximation pro-
cess play a fundamental role in the approximation theory and it appears in a
very natural way in several problems dealing with the approximation of contin-
uous functions and qualitative properties such as monotonicity, convexity, shape
preservation and so on.

Korovkin [12] made a assertion that, if a sequence of positive linear maps
φn : C[0, 1] → C[0, 1], n = 1, 2, 3, ..., has the property

lim
n→∞

||φn(fk)− fk|| = 0, k = 0, 1, 2,

for the three functions f0(x) = 1, f1(x) = x, f2(x) = x2 then

lim
n→∞

||φn(f)− f || = 0, ∀ f ∈ C[0, 1].

The set {1, x, x2} is called a Korovkin set or test set. Korovkin [12] showed that,
the set {1, x} is not a Korovkin set. Therefore, the set {1, x, x2} is a minimal set
to satisfy the above assertion.

Korovkin’s theorem generated considerable activity among researchers in ap-
proximation theory. The generalizations make essential use of the Choquet bound-
ary in one way or another. Saskin [14] proved a remarkable theorem. Let G be a
subset of C(X) that separates points of compact Hausdorff space X and contains
constant function 1. Then G is a Korovkin set in C(X) if and only if the Choquet
boundary ∂G of G is X . That is ∂G = X .
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Arveson [4] initiated the study of noncommutative approximation theory fo-
cusing on the question: How does one determine whether a set of generators of a
C∗-algebra is hyperrigid? Arveson [4] introduced a noncommutative counterpart
of Korovkin set as follows:

Definition 1.1. A finite or countably infinite set G of generators of a C∗-algebra
A is said to be hyperrigid if for every faithful representation A ⊆ B(H) of A on
a Hilbert space H and every sequence of unital completely positive (UCP) maps
φn : B(H) → B(H), n = 1, 2, ...,

lim
n→∞

||φn(g)− g|| = 0, ∀ g ∈ G =⇒ lim
n→∞

||φn(a)− a|| = 0, ∀ a ∈ A.

Note that, a set G is hyperrigid if and only if G ∪G∗ is hyperrigid if and only if
the linear span of G is hyperrigid. If A is unital, then G is hyperrigid if and only
if G ∪ {1} is hyperrigid [15, Proposition 2.1].

The following characterization of hyperrigid operator systems due to Arveson
[4] is more of a workable definition of hyperrigidity of operator systems.

Theorem 1.2. [4, Theorem 2.1] Let S be a separable operator system generating
the C∗-algebra A = C∗(S) then S is hyperrigid if and only if every nondegenerate
representation π : A → B(H) on a separable Hilbert space, π|S has the unique
extension property in the sense that the only unital completely positive (UCP)
map φ : A → B(H) that satisfies φ|S = π|S is φ = π itself.

The interesting examples of hyperrigid generators are obtained by a direct
application of the above criterion. Arveson [4] established the noncommutative
strengthening of a classical approximation-theoretic result of Korovkin.

Theorem 1.3. [4, Theorem 3.1] Let X ∈ B(H) be a self adjoint operator with
atleast 3 points in its spectrum and let A be the C∗-algebra generated by X. Then

(i) G = {X,X2} is a hyperrigid generator for A, while
(ii) G0 = {X} is not hyperrigid generator for A.

Theorem 1.4. [4, Theorem 3.3] Let V ∈ B(H) be an isometry that generates a
C∗-algebra A. Then G = {V, V V ∗} is hyperrigid generator for A.

Arveson [4] essentially used the noncommutative Choquet boundary. He found
the hyperrigid generator for compact operators K(H).

Theorem 1.5. [4, Theorem 8.1] Let V ∈ B(H) be an irreducible compact operator
with cartesian decomposition V = A + iB, where A is a finite rank positive
operator and B is essential with KerB = {0}. Then

(i) G = {V, V 2} is hyperrigid generator for C∗-algebra K(H) of compact op-
erators. In particular every sequence of unital completely positive maps
φn : B(H) → B(H) for which

lim
n→∞

||φn(V )− V || = lim
n→∞

||φn(V
2)− V 2|| = 0,

one has
lim
n→∞

||φn(K)−K|| = 0

for every compact operator K ∈ B(H).
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(ii) The smaller generating set G0 = {V } of K(H) is not hyperrigid.

Let S = (S1, ..., Sd) denote the compression of the d-shift to the complement of
a homogeneous ideal I of C[z1, ..., zd]. Following the remark above, Kennedy and
Shalit [9, Theorem 4.12] (see also [10]) proved that, if homogeneous ideals are
sufficiently non-trivial then S is essentially normal if and only if it is hyperrigid
as the generating set of a C∗-algebra.

The main purpose of this paper is to find the minimal hyperrigid generators
for C∗-algebras. We show that, if S ∈ B(H) is irreducible and is an essential
unitary and G = {S, SS∗}. Let T = C∗(G) be the unital C∗-algebra generated
by G. Then G is a hyperrigid generator for T . We prove that, if T is an operator
in B(H) that generates a unital C∗-algebra A and G = {T, T ∗T, TT ∗}, then G
is a hyperrigid generators for the unital C∗-algebra A. As a corollary it follows
that, if T be a normal operator in B(H) that generate a unital C∗-algebra A and
let G = {T, TT ∗}. Then G is hyperrigid generator for unital C∗-algebra A. If T
be an unitary operator in B(H) that generate a C∗-algebra A and let G = {T}.
Then G is hyperrigid generator for C∗-algebra A. We show that, if V ∈ B(H)
be an isometry (not unitary) that generates a C∗-algebra A. Then the minimal
generating set G0 = {V } is not hyperrigid generator for C∗-algebra A.

2. Preliminaries

Here, we recall the necessary definitions, conventions and notations.
Let H be a separable complex Hilbert space and let B(H) be the set of all

bounded linear operators on H . A operator system S in a C∗-algebra A is a
self-adjoint linear subspace of A containing the identity of A. A operator algebra
A0 in a C∗-algebra A is a unital subalgebra of A. Given a linear map φ from a
C∗-algebra A into a C∗-algebra B we can define a family of maps φn : Mn(A) →
Mn(B) given by φn([aij ]) = [φ(aij)], n ∈ N. We say that φ is completely bounded
(CB) if ||φ||CB = supn≥1 ||φn|| < ∞. We say that φ is completely contractive (CC)
if ||φ||CB ≤ 1 and that φ is completely isometric if φn is isometric for all n ≥ 1.
We say that φ is completely positive (CP) if φn is positive for all n ≥ 1, and that
φ is unital completely positive (UCP) if in addition φ(1) = 1.

Definition 2.1. Let S be an operator system that generates a C∗-algebra A. A
unital completely positive map φ : S → B(H) is said to have the unique extension

property if it has a unique extension to a UCP map φ̃ : A → B(H)

The boundary representations ofA for S, which were introduced by Arveson [1],
are precisely the irreducible representations π : A → B(H) with the property that
the restriction π|S has the unique extension property. The existence of boundary
representations was an open question for some time. Arveson [3] proved the
existence of boundary representions for separable C∗-algebras. Davidson and
Kennedy [7] settled the existence of boundary representations for general C∗-
algebras.

Arveson [4] tried to prove the non-commutative analogue of Saskin’s theorem
[14] using theory of noncommutative Choquet boundary for unital completely
positive maps on C∗-algebras and noncommutative counterpart of the Korovkin’s
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set which is the hyperrigid set. Arveson [4] proved that if the separable operator
system is hyperrigid in the C∗-algebra then every irreducible representation of C∗-
algebra is a boundary representation for the operator system. The converse to this
result is called hyperrigidity conjecture: that is, if every irreducible representation
of a C∗-algebra is a boundary representation for a separable operator system then
the operator system is hyperrigid.

Arveson [4] showed that the hyperrigidity conjecture is true for C∗-algebras
with countable spectrum. Kleski [11] established the hyperrigidity conjecture for
all type-I C∗-algebras with additional assumptions on the co-domain. Davidson
and Kennedy[8] proved the conjecture for function systems. Clouatre [6] estab-
lished the hyperrigidity conjecture with assumption of unperforated. The hy-
perrigidity conjecture is still open for general C∗-algebras. Namboodiri, Pramod,
Shankar and Vijayarajan [13] approached the hyperrigidity conjecture with weaker
notions. They got the partial answers.

3. Essential Unitary and hyperrigidity

Let B(H) be the algebra of bounded linear operators on a separable complex
Hilbert space H and K(H) ideal of compact operators on H .
Let π : B(H) → B(H)/K(H) be the natural surjection onto the Calkin alge-
bra B(H)/K(H). The operator T ∈ B(H) is called essentially normal if π(T )
is normal in the Clakin algebra, or equivalently, T ∗T − TT ∗ is compact. The
operator S ∈ B(H) is called essentially unitary if π(S) is unitary in the Clakin
algebra, or equivalently, I−S∗S and I−SS∗ are compact. The above definitions
can be found in [5].

Here, we will have the following assumptions to proceed. Let S be a irreducible
and essential unitary but not unitary operator in B(H) and let G = {S, SS∗}. Let
S be a operator system generated by G. Let T = C∗(G) be the unital C∗-algebra
generated by G. The unital C∗-algebra T contains the compact operators K(H).

A representation ρ : T → B(H) is said to be singular representation if it
annihilates the compact operators K(H).

Lemma 3.1. Let ρ : T → B(H) be a representation, and let π : T → B(K)
be a representation such that π|S is a dilation of ρ|S . Then the subspace H is
coinvariant for π(S).

Proof. With respect to the decomposition K = H⊕H⊥. By assumption we have

π(S) =

(
ρ(S) X
Y Z

)

Note that X = PHπ(S)|H⊥. We must prove that X = 0. By assumption,
(

ρ(SS∗) X0

Y0 Z0

)
= π(SS∗) = π(S)π(S)∗ =

(
ρ(S) X
Y Z

)(
ρ(S)∗ Y ∗

X∗ Z∗

)
.

We get,

ρ(SS∗) = ρ(S)ρ(S)∗ +XX∗

Therefore, XX∗ = 0, and hence X = 0. �
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Proposition 3.2. Suppose that S is irreducible and essential unitary and
G = {S, SS∗}. Let S be a operator system generated by G and T = C∗(G).
Let ρ : T → B(H) be a singular representation. Then the restriction ρ|S has
unique extension property.

Proof. We will use the fact that a UCP map φ′ has the unique extension property
if and only if φ′ is maximal, meaning that every UCP map that dilates φ′ contains
as a direct summand [3, Proposition 2.4].

Let K be a Hilbert space properly containing H . Let π : T → B(K) be a
representation such that the restriction π|S is a dilation of ρ|S . To show that
the restriction ρ|S has unique extension property, it is enough to show that the
dilation π is trivial, that is, π|S = ρ|S ⊕ φ for some UCP map φ.

Using the Lemma 3.1, we can decompose K = H ⊕H⊥ and write

π(S) =

(
ρ(S) 0
Y Z

)
.

Since ρ is singular, ρ(S) is unitary, so it cannot be dilated to a compression.
Therefore the dilation π must be trivial.

�

Proposition 3.3. Suppose that S is irreducible and essential unitary and
G = {S, SS∗}. Let S be a operator system generated by G and T = C∗(G).
Then the identity representation of T is a boundary representation for S.

Proof. Since S is irreducible and essential unitary. The unital C∗-algebra gen-
erated by G contains the compact operators, that is, K(H) ⊆ T = C∗(G). The
operator system S ⊂ T is irreducible and contains the identity operator. By our
assumption, 0 6= K = I−SS∗ ∈ S is a compact operator, we have ||K−K|| < ||K||.
Therefore, the quotient map q : B(H) → B(H)/K(H) is not completely isomet-
ric on S. Hence by boundary theorem of Arveson [2, Theorem 2.1.1], identity
representation of T is a boundary representation for S. �

Theorem 3.4. Let S be an irreducible and essential unitary and G = {S, SS∗}.
Let T = C∗(G) be the unital C∗-algebra generated by G. Then G is a hyperrigid
generator for T .

Proof. Let S be the operator system generated by G. Note that G is hyperrigid
if and only if S is hyperrigid. By Theorem 1.2, it suffices to show that for every
nondegenerate representation ρ of T , ρ|S has the unique extension property.

The Proposition 3.2 implies that every singular nondegenerate representation
π of T , π|S has the unique extension property. By Proposition 3.3, the restriction
of the identity representation of T to S has the unique extension property. Since
every nondegenerate representation of T splits as the direct sum of a multiple of
the identity representation and a singular nondegenerate representation and by
[4, Proposition 4.4] the unique extension property passes to direct sums. Hence
every nondegenerate representation of T restricted to S has the unique extension
property. �

Example 3.5. Let H be a Hilbert space having an orthonormal basis
{en : n ≥ 0}. The unilateral shift S is defined by Sen = en+1. The C∗-algebra
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T generated by S is called the Toeplitz C∗-algebra. Observe that I − S∗S and
I −SS∗ are compact, therefore S is essential unitary. Also, S is irreducible. The
Toeplitz C∗-algebra T contains the compact operators K(H). We know that the
set {S, SS∗} also generates the Toeplitz C∗-algebra T . Hence, by Theorem 3.4,
The set {S, SS∗} is hyperrigid generator for Toeplitz C∗-algebra T .

4. Hyperrigid generators

The main purpose of this section is to find the hyperrigid generators for the
C∗-algebras generated by a single operator.

Theorem 4.1. Let T be an operator in B(H) that generate a unital C∗-algebra A
and let G = {T, T ∗T, TT ∗}. Then G is hyperrigid generators for unital C∗-algebra
A.

Proof. Let S be the operator system generated by G. By Theorem 1.2, it suffices
to show that for every nondegenerate representation π of A, π|S has the unique
extension property.

Let π : A → B(H) be a nondegenerate representation. Let φ : A → B(H) be a
UCP map satisfying φ(T ) = π(T ), φ(T ∗T ) = π(T ∗T ) and φ(TT ∗) = π(TT ∗). We
have to show that φ = π on A.

Using Stinespring theorem, we can express φ in the form

φ(S) = V ∗σ(S)V, ∀ S ∈ A.

Where σ is a representation of A on a Hilbert spaceK, V : H → K is an isometry,
and which is minimal in the sense that σ(A)V H = K.

We first claim that σ(T )V = V π(T ), We have

V ∗σ(T )∗V V ∗σ(T )V = φ(T )∗φ(T ) = π(T )∗π(T ) = π(T ∗T )

Hence,

V ∗σ(T )∗(1− V V ∗)σ(T )V = V ∗σ(T )∗σ(T )V − V ∗σ(T )∗V V ∗σ(T )V
= V ∗σ(T ∗T )V − π(T )∗π(T )
= π(T ∗T )− π(T ∗T ) = 0.

σ(T ) leaves V H invariant. Therefore σ(T )V = V V ∗σ(T )V = V φ(T ) = V π(T ).

V V ∗σ(T )(1K − V V ∗)σ(T )∗V V ∗ = V V ∗σ(T )σ(T )∗V V ∗

−V V ∗σ(T )V V ∗σ(T )∗V V ∗

= V V ∗σ(TT ∗)V V ∗ − V π(T )π(T )∗V ∗

= V π(TT ∗)V ∗ − V π(TT ∗)V ∗ = 0.

Hence (1K−V V ∗)σ(T )∗V V ∗ = 0, we conclude that V H is invariant under both
σ(T ) and σ(T )∗. Since A is generated by T it follows that σ(A)V H ⊆ V H . By
minimality we must have V H = K, which implies that V is unitary and therefore
φ(S) = V −1σ(S)V is a representation. Since φ agrees with π on a generating set.
Therefore φ = π on A. �
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Corollary 4.2. Let T be a normal operator in B(H) that generate a unital C∗-
algebra A and let G = {T, TT ∗}. Then G is hyperrigid generator for unital
C∗-algebra A.

Corollary 4.3. Let T be an unitary operator in B(H) that generate a C∗-algebra
A and let G = {T}. Then G is hyperrigid generator for C∗-algebra A.

Proposition 4.4. Let V ∈ B(H) be an isometry (not unitary) that generates a
C∗-algebra A. Then

(i) G = {V, V V ∗} is hyperrigid generator for A.
(ii) The smaller generating set G0 = {V } is not hyperrigid.

Proof. (i) follows from the Theorem 1.4. Now we will prove (ii), let S be the
operator system generated by G0. Let Id denote the identity representation of a
C∗-algebra A. Let V ∗Id(·)V be a completely positive map on the C∗-algebra A.
We have V ∗IdV |S = Id|S , but

V ∗Id(V V ∗)V = I 6= V V ∗ = Id(V V ∗).

This implies that Id representation restricted to S has two UCP map extensions
V ∗IdV and Id. Therefore the nondegenerate representation Id|S does not have
unique extension property. Using the Theorem 1.2, S is not hyperrigid operator
system in a C∗-algebra A. This will imply that G0 is not hyperrigid in A. �
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