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Abstract

In this paper we analyze the intersection between the norm-trace curve over Fq3 and the
curves of the form y = ax3 + bx2 + cx+ d, giving a complete characterization of the intersection
between the curve and the parabolas (a=0), as well as sharp bounds for the other cases. This
information is used for the determination of the weight distribution of some one-point AG codes
arising from the curve.
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1 Introduction

Algebraic Geometry (AG codes for short) codes form an important class of error correcting codes;
see [11,12,27].

Let X be an algebraic curve defined over the finite field Fq of order q. The parameters of the
AG codes associated with X strictly depend on some properties of the underlying curve X . In
general, curves with many Fq-rational places with respect to their genus give rise to AG codes with
good parameters. For this reason, maximal curves, that is, curves attaining the Hasse-Weil upper
bound, have been widely investigated in the literature; see for instance [3, 4, 22,26,28–30].

The determination of the intersection of a given curve X and low degree curves is often useful
for the determination of the weight distribution of the AG code arising from X ; see [1, 2, 8, 19,20].

The norm-trace curve is a natural generalization of the Hermitian curve to any extension field
Fqr . It has been widely studied for coding theoretical purposes; see [1, 10,15,21,23,24].

In this paper, we focus on the intersection between the norm-trace curves and curves of the
form y = ax3 + bx2 + cx + d over Fq3 . We characterize the intersection between the norm-trace
curve and parabolas and we provide tools to get sharp bounds in the other cases. To do so we
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investigate specific irreducible surfaces over finite fields. In addition, we partially deduce the weight
distribution of the corresponding one-point codes.

2 Preliminary Results

Throughout the paper, let p be a prime and q = pm, where m is a positive integer. Let Fq be the
finite field with q elements. An [n, k, d] linear code C over Fq is a k-dimensional subspace of Fnq
with minimum Hamming distance d. Let Ai be the number of codewords with Hamming weight i
in C.

2.1 The norm-trace curve

The norm-trace curve X is the plane curve defined over Fqr by the affine equation

x
qr−1
q−1 = yq

r−1
+ yq

r−2
+ · · ·+ yq + y. (1)

The norm N
Fqr

Fq
and the trace T

Fqr

Fq
are two well-known functions from Fqr to Fq such that

N
Fqr

Fq
(x) = x

qr−1
q−1 = xq

r−1+qr−2+···+q+1

and
T
Fqr

Fq
(x) = xq

r−1
+ xq

r−2
+ · · ·+ xq + x.

When q and r are understood, we will write N = N
Fqr

Fq
and T = T

Fqr

Fq
.

The equation x
qr−1
q−1 = yq

r−1
+ yq

r−2
+ · · · + yq + y has precisely q2r−1 solutions in A2 (Fqr), so

the curve X has q2r−1 + 1 rational points: q2r−1 of them correspond to affine places, plus a single
place at the infinity P∞.

If r = 2, X coincides with the Hermitian curve and if r ≥ 3 X is singular in P∞.

Moreover it is known that its Weierstrass semigroup in P∞ is generated by
〈
qr−1, q

r−1
q−1

〉
, see [10].

Our main aim is the study of the intersection between X and cubics of the form y = ax3 +bx2 +
cx+ d, where a, b, c, d ∈ Fqr . In particular, we focus on the intersections between X and parabolas.
The case r = 2 and a = 0 is completely investigated in [9, 19], so we deal with the more difficult
case r ≥ 3. We set the problem for the general case in Section 3, while in the rest of the paper we
concentrate on the solution to the case r = 3 and a = 0, obtaining partial results for the case a 6= 0
in Section 6.
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2.2 Algebraic Geometry Codes

We introduce here some basic notions on AG codes; for a detailed introduction to this topic, we
refer to [27, Chapter 2].

Let Fq be the finite field with q elements and X be a projective, absolutely irreducible, algebraic
curve of genus g defined over Fq. Let Fq(X ) be the field of rational functions on X and X (Fq)
be the set of rational places of X . For any divisor D =

∑
P∈X (Fq)

mPP on X , we denote by

vP (D) the valuation mP ∈ Z of D at P , and by supp(D) the support of D; the degree of D
is deg(D) =

∑
P∈supp(D) nP . The Riemann-Roch space L(D) of an Fq-rational divisor D is the

Fq-vector space
L(D) = {f ∈ Fq(X ) | (f) +D ≥ 0} ∪ {0}.

where (f) = (f)0 − (f)∞ denotes the principal divisor of f ; here, (f)0 and (f)∞ are respectively
the zero divisor and the pole divisor of f . The Fq-dimension of L(D) is denoted by `(D). It is
known that L(D) is a finite dimensional Fq-vector space and the exact dimension can be computed
using the Riemann-Roch theorem. The Fq-dimension of L(D) is denoted by `(D).

Consider now the divisor D =
∑

P∈S P , S = {P1, . . . , Pn} ( X (Fq), where all the P ’s have
valuation one. Let G be another Fq-rational divisor such that supp(G) ∩ supp(D) = ∅. Consider
the evaluation map

ev : L(G)→ (Fq)n , ev(f) = (f(P1), . . . , f(Pn)).

This map is Fq-linear and it is injective if n > deg(G).
The AG-code CL(D,G) associated with the divisors D and G is then defined as ev(L(G)). It

is well known that `(G) > `(G−D) and that CL(D,G) is an [n, `(G)− `(G−D), d]q code, where
d ≥ d∗ = n− deg(G), and d∗ is the so called designed minimum distance of the code.

3 Intersections between X and a curve y = A(x) of degree h

Our aim is to find out the intersection over Fq3 of X with the curve defined by the polynomial
y = A(x) of degree h, so A(x) = Ahx

h + · · · + A0, where Ah 6= 0 and Ai ∈ Fqr . More precisely,
given two curves X and Y lying in the affine plane A2(Fqr) we call planar intersection (or simply
intersection) the number of points in A2(Fqr) that lie in both curves, disregarding multiplicity.
Substituting y = A(x) in the equation of the norm-trace curve, we get, by the linearity of T,

N(x) = T(Ahx
h) + · · ·+ T(A1x) + T(A0).
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Given a basis B = {w0, . . . , wr−1} of Fqr over Fq, we know that there is a vector space isomorphism
ΦB : (Fq)r → Fqr such that ΦB(s0, . . . , sr−1) =

∑r−1
i=0 siwi.

The maps N,T : Fqr → Fq can be seen as maps from (Fq)r to Fq, identifying Ñ = N ◦ ΦB and

T̃ = T◦ΦB with N and T. Also, we can consider Ti := T(Aix
i) and T̃i := Ti ◦ΦB, 1 ≤ i ≤ h. From

now on, we will take as B a normal basis, i.e. a basis B = {α, αq, . . . , αqr−1}, for some α ∈ Fq3 . We

know that such a basis exists, see [17, Theorem 2.35]. A simple manipulation shows that Ñ and T̃i

are homogeneous polynomials of degree respectively r and i in Fq[x0, . . . , xr−1]. Therefore

Ñ(x0, . . . , xr−1) = T̃h(x0, . . . , xr−1) + · · ·+ T̃1(x0, . . . , xr−1) +D (2)

which is the equation of a hypersurface of Ar(Fq), where D = T(A0). Notice that the LHS has
degree r, while the RHS has degree h.

4 Case r = 3 and h = 2

We are interested in this case to find the number of possible intersections between the norm-trace
curve and the parabolas. By parabola we mean a curve y = Ax2+Bx+C, A,B,C ∈ Fq3 and A 6= 0.
These numbers help to determine some weights for the corresponding AG code, see Section 6. From
now on, B = {α, αq, αq2}.

Specializing to y = Ax2 +Bx+ C, Equation (2) reads

Ñ(x0, x1, x2) = T̃2(x0, x1, x2) + T̃1(x0, x1, x2) +D. (3)

The map Φ−1B : Fq3 → (Fq)3 induces a correspondence between Fq[x0, x1, x2] and Fq3 [x] such

that we can substitute x with x0α+ x1α
q + x2α

q2 and x2 with

x20α
2 + x21α

2q + x22α
2q2 + 2x0x1α

q+1 + 2x0x2α
q2+1 + 2x1x2α

q2+q.

Using this relation we want to write down the explicit equation of the surface (3) of AG(3, q).

T̃1 = B(x0α+ x1α
q + x2α

q2) +Bq(x0α
q + x1α

q2 + x2α) +Bq2(x0α
q2 + x1α+ x2α

q)

= x0T(αB) + x1T(αBq2) + x2T(αBq),

T̃2 =A(x0α+ x1α
q + x2α

q2)2 +Aq(x0α
q + x1α

q2 + x2α)2 +Aq
2
(x0α

q2 + x1α+ x2α
q)2

=x20T(Aα2) + x21T(Aα2q) + x22T(Aα2q2) + 2x0x1T(Aαq+1) + 2x0x2T(Aαq
2+1) + 2x1x2T(Aαq

2+q),

4



Ñ =(x0α
q2 + x1α+ x2α

q)(x0α
q + x1α

q2 + x2α)(x0α+ x1α
q + x2α

q2)

=(x30 + x31 + x32)N(α) + (x20x1 + x21x2 + x22x0)T(αq+2) + (x20x2 + x21x0 + x22x1)T(α2q+1)

+ x0x1x2(3N(α) + T(α3)).

Therefore (3) reads

0 =− (x30 + x31 + x32)N(α)− (x20x1 + x21x2 + x22x0)T(αq+2)− (x20x2 + x21x0 + x22x1)T(α2q+1)

− x0x1x2(3N(α) + T(α3)) + x20T(Aα2) + x21T(Aα2q) + x22T(Aα2q2) + 2x0x1T(Aαq+1)

+ 2x0x2T(Aαq
2+1) + 2x1x2T(Aαq

2+q) + x0T(αB) + x1T(αBq2) + x2T(αBq) +D.

(4)

Denote by S1 the surface defined by the polynomial above. Note that S1 is defined over Fq. For a
given surface, let X (Fq) be the set of its Fq-rational points.

Remark 4.1. By construction, the Fq-rational points of S1, i.e. the points in S1(Fq), correspond to
the intersections in A2(Fq3) between the norm-trace curve and the parabola y = Ax2+Bx+C. This
happens because (4) comes from a sequence of manipulations that started with N(x) = Tr(Ax2 +
Bx+C), i.e. there exists an x ∈ Fq3 such that N(x) = Tr(Ax2 +Bx+C) if and only if there exist

(x0, x1, x2) ∈ (Fq)3 that satisfies (4) and x = x0α+ x1α
q + x2α

q2.

Equation (4) can be also written as

0 =− (x0α+ x1α
q + x2α

q2)(x0α
q + x1α

q2 + x2α)(x0α
q2 + x1α+ x2α

q) +A(x0α+ x1α
q + x2α

q2)2

+Aq(x0α
q + x1α

q2 + x2α)2 +Aq
2
(x0α

q2 + x1α+ x2α
q)2 +B(x0α+ x1α

q + x2α
q2)

+Bq(x0α
q + x1α

q2 + x2α) +Bq2(x0α
q2 + x1α+ x2α

q) +D.

Consider the non-singular matrix (since we are dealing with three linearly independent elements,
see [17, Corollary 2.38])

M =

 α αq αq
2

αq αq
2

α

αq
2

α αq


and the affine change of variables in A3 defined by ψ(x0, x1, x2) = M(x0, x1, x2)

t. Let S2 be the
corresponding surface obtained from S1. Then S2 is defined over Fq3 , and has equation

X0X1X2 = AX2
0 +AqX2

1 +Aq
2
X2

2 +BX0 +BqX1 +Bq2X2 +D. (5)
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Remark 4.2. Clearly, Fq-rational points of S1 are mapped to Fq3-rational points of S2 of the form

(β, βq, βq
2
), β ∈ Fq3, and viceversa. Moreover, ψ preserves number and degree of any absolutely

irreducible component of S1 and its singularities.

Proposition 4.3. S1 is an absolutely irreducible cubic surface.

Proof. By Remark 4.2 it is sufficient to prove that S2 is absolutely irreducible. We proceed by
contradiction. If S2 is reducible, since its degree is three, then it must contain a plane. In this case
we would have

q(X0, X1, X2)(k0X0 + k1X1 + k2X2 + k3) = X0X1X2 −AX2
0 −AqX2

1 −Aq2X2
2 −BX0 −BqX1 −Bq2X2 −D (6)

where q(x0, x1, x2) is the equation of a quadric surface, kj ∈ Fq, j ∈ {0, . . . , 3}, and at least one of
k0, k1, k2 is nonzero.

Consider the intersections of S2 with the plane at the infinity, then

Q(X0, X1, X2)(k0X0 + k1X1 + k2X2) = X0X1X2

where Q(X0, X1, X2) is the polynomial given by the degree 2 terms of q(X0, X1, X2). This expres-
sion implies that two among k0, k1, k2 have to be zero, and then the plane has equation kiXi+k3 = 0
for i ∈ {0, 1, 2}. Suppose, whitout loss of generality that i = 0, then Equation (6) reads

q(X0, X1, X2)(X0 + k) = X0X1X2 −AX2
0 −AqX2

1 −Aq
2
X2

2 −BX0 −BqX1 −Bq2X2 −D

for a given k ∈ Fq.
Applying the identity principle for polynomials, we obtain that q(X0, X1, X2) = X1X2+h0X0+

h1X1 + h2X2 + h3, where hi ∈ Fq, i ∈ {0, . . . , 3}. At this point Equation (6) becomes

(X1X2 + h0X0 + h1X1 + h2X2 + h3)(k0X0 + k3) = X0X1X2 −AX2
0 −AqX2

1 −Aq2X2
2 −BX0 −BqX1 −Bq2X2 −D

and since Aq 6= 0 this cannot happen.

What we want to do now is to estimate the number of Fq-rational points of S1. Since they
correspond to the intersections between X and y = Ax2 +Bx+C, by applying the Bézout theorem
we get that

|S1(Fq)| ≤ 2(q2 + q + 1).

This bound can be improved, as we will see. A better estimate can be obtained using the Lang-Weil
bound.
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Theorem 4.4 ( [16]). Given nonnegative integers n, d and r, with d > 0, there is a positive
constant A(n, d, r) such that for every finite field Fq, and every irreducible subvariety X ⊆ Pn(Fq)
of dimension r and degree d, we have

||X (Fq)| − qr| ≤ (d− 1)(d− 2)qr−
1
2 +A(n, d, r)qr−1.

Corollary 4.5. The number of Fq-rational points on the surface S1(Fq) is bounded by

q2 + 2q
3
2 +A(3, 3, 2)q.

This bound improves Bézout’s Theorem. Also, other theoretical estimates are known; see [6].
In what follows we will provide a bound of the type

S1(Fq) ≤ q2 + ηq + µ

where µ < q and η is upper bounded by a constant (independent from q and µ). Experimentally
we found the following

Fact 4.6. For q ∈ {2, . . . , 29}, |η| ≤ 2 and µ = 1.

Conjecture 4.7. |η| ≤ 2 and µ = 1 for all q.

Recall some previous results

Theorem 4.8 ( [18], Theorem 27.1). Let S be a cubic surface over Fq. If S is birationally trivial
(i.e. to allow a Fq-birational map to P2(Fq)), then

|S(Fq)| ≡ 1 mod q.

In the case in which S1 is smooth we also know the possible values for |S1(Fq)|.

Theorem 4.9 ( [18], Theorem 23.1). Let S be a smooth irreducible cubic surface over Fq, then the
number of points of S(Fq) is exactly

|S(Fq)| = q2 + ηq + 1

where η ∈ {−2,−1, 0, 1, 2, 3, 4, 5, 7}.

In view of Theorem 4.9, we consider separately the cases S1 smooth and S1 singular.

7



5 Singular case

From now on we investigate when S1 is singular. We start by observing that the possible singular
points can only be double points, since S1 is a cubic irreducible surface. Moreover, recalling that
an isolated singularity Ps means that there exists a neighbourhood containing only Ps as singular
point, we will see that S2 has only isolated singularities. This happens beacuse the ideal defined
by its equation and the partial derivatives is zero-dimensional (as it is possible to see in the proof
of Proposition 5.13). In this context the following result is very helpful.

Theorem 5.1 ( [7]). Let S ⊂ P3(K) be a singular irreducible cubic surface defined on the field K.
Let S̄ = S(K) be the surface defined by S over K, the algebraic closure of K. Let δ be the number
of isolated double points of S̄. Then δ ≤ 4 and S is birationally equivalent (over K) to

(i) P2(K) if δ = 1, 4;

(ii) a smooth Del Pezzo surface of degree 4 if δ = 2;

(iii) a smooth Del Pezzo surface of degree 6 if δ = 3.

Recall that a smooth Del Pezzo surface is a smooth projective surface V whose anticanonical
class is ample. Many arithmetic properties of these surfaces were investigated by Manin; see [18].

What we want to do now is to find a bound of type q2 + ηq + µ for the four possible cases of
singularities (δ = 1, 2, 3, 4).

Clearly the affine singular points on S2 correspond to the solutions of
X0X1X2 = AX2

0 +AqX2
1 +Aq

2
X2

2 +BX0 +BqX1 +Bq2X2 +D

X1X2 = 2AX0 +B

X0X2 = 2AqX1 +Bq

X0X1 = 2Aq
2
X2 +Bq2

(7)

Remark 5.2. S2 has no singular point at the infinity.

Proof. A straightforward computation shows that the singular points at the infinity of S2 satisfy
the following system of equations

X0X1X2 = 0

X1X2 = 0

X0X2 = 0

X0X1 = 0

AX2
0 +AqX2

1 +Aq
2
X2

2 = 0

8



which admits only (0 : 0 : 0 : 0) as solution, which is not a point of the projective space.

Remark 5.3. Since S1 is defined over Fq if P ∈ S1(Fq) is a singular point then its conjugates with
respect to the Frobenius automorphism are also singular.

Remark 5.4. Notice also that if a singular point of S2 is Fq6-rational the corresponding singularity

of S1 will be Fq2-rational since (x0α+ x1α
q + x2α

q2)q
6

= (x0α+ x1α
q + x2α

q2)q
2
.

Before considering the classification of the four cases arising from different values of δ, we need
to examine separately the case B = 0, which turns out ot to be special.

5.1 Case B=0

In this case the singularities of the surface correspond to the solutions of
X0X1X2 = AX2

0 +AqX2
1 +Aq

2
X2

2 +D

X1X2 = 2AX0

X0X2 = 2AqX1

X0X1 = 2Aq
2
X1

(8)

A direct computation leads to the fact that if (x̄0, x̄1, x̄2) 6= (0, 0, 0) is a singular point, then
each x̄i is different from zero.

Proposition 5.5. The only possible singularities for the case B = 0 are described in the following
list:

(i) if D = 0 then, for any q, S2 admits only P = (0, 0, 0) as singular point;

(ii) if D 6= 0 and q is odd then δ = 4 and the singular points are given by (γ, γq, γq
2
), (γ,−γq,−γq2),

(−γ, γq,−γq2), (−γ,−γq, γq2), where γ = 2A
q2+q

2 .

Proof. Direct computations show that (i) comes from Equation (8), so we are left with the case
q odd and (0, 0, 0) not singular. Substituting the derivatives into the equation that defines the
surface we get 

−AX2
0 +AqX2

1 +Aq
2
X2

2 +D = 0

AX2
0 −AqX2

1 +Aq
2
X2

2 +D = 0

AX2
0 +AqX2

1 −Aq
2
X2

2 +D = 0.

9



Summing pairwise the equations gives us
2AX2

0 + 2D = 0

2AqX2
1 + 2D = 0

2Aq
2
X2

2 + 2D = 0

and, since q is odd and A 6= 0 
X2

0 = −D
A

X2
1 = − D

Aq

X2
2 = − D

Aq2

(9)

The fact that β ∈ Fq is a square if and only if βq is a square implies that all the equations
of (9) are solvable if and only if the first one is. Therefore (9) is solvable if and only if −D

A is

a square of Fq3 , but this is always true since −D
A = Aq

2+q has is an even power of A. From the

equation of the surface it follows that S2 has four singularities of the form (γ, γq, γq
2
), (γ,−γq,−γq2),

(−γ, γq,−γq2), (−γ,−γq, γq2), where γ = 2A
q2+q

2 .

Remark 5.6. Notice that in case D 6= 0 and q odd, the four singular points cannot be all distinct
conjugates with respect to the Frobenius automorphism. This comes from the explicit representation
that was given above, and from the fact that if γq = ±γ then each point can have at most one
different conjugate.

5.2 One singular point

From now on we can consider B 6= 0. From Remark 5.3 if S1 has one singular (double) point P
then P has to be Fq-rational, otherwise also its conjugate should be singular. Consider now the
sheaf of Fq-rational lines passing through P : each line, not contained in S1(Fq), can intersect S1(Fq)
in at most one more point, since P is a double point and S1 has degree three. So the number of
Fq-rational points of S1 is given by

|S1(Fq)| ≤ q2 + h(q − 1) = q2 + hq − h

where h is the number of lines contained in S1 and passing through P .

Proposition 5.7. With the same notation as before we have h = 0.

10



Proof. We want to give a bound for the maximal number of (Fq-rational) lines contained in S1 and
passing through P . For simplicity we proceed with the computations on S2, since the number of
these lines will be the same. Suppose that the corresponding singular point Q on S2 has coordinates
(a, aq, aq

2
). Then, since it is the only singular point, we have that Q is the only point that satisfies

(7). Consider now the sheaf of lines passing through Q, which has parametric equation, for b 6= 0
X0 = bt+ a

X1 = bqt+ aq

X2 = bq
2
t+ aq

2

and after doing the substitution we get that, if the line is contained into S2,

p3t
3 + p2t

2 + p1t

has to be the zero polynomial in Fq[t], where

p3 = bq
2+q+1,

p2 = −Ab2 − (Ab2)q − (Ab2)q
2

+ bq+1aq
2

+ bq
2+1aq + bq

2+qa,

p1 = −2Aab− 2(Aab)q − 2(Aab)q
2 −Bb− (Bb)q − (Bb)q

2
+ baq

2+q + bqaq
2+1 + bq

2
aq+1.

From the fact that p3 = 0 we have that N(b) has to be equal to zero, but this means that b is equal
to zero, which is a contradiction.

Putting together the previous observations we have the following result.

Proposition 5.8. If S1 has one singular Fq-rational point then

|S1(Fq)| ≤ q2. (10)

5.3 Two singular points

Call P1 and P2 the two singular points of S1, from Remark 5.3 there are two possibilities:

(i) P1 and P2 are Fq-rational;

(ii) P1 and P2 are Fq2-rational and conjugates.

11



If (i) happens then we can give similar argumentation as in Section 5.2 and get the bound |S1(Fq)| ≤
q2 + q − 1.

We look for a bound when (ii) happens: call r the line passing through P1 and P2, since it fixes
the conjugate points then it has to be Fq-rational and moreover this line has to be contained in
S1(Fq) since the intersection multiplicity of this line is at least 2 in both P1 and P2 and the surface
has degree 3. Now consider the pencil of planes passing through r and consider the cubic curve C
defined as intersection between any of these planes and S1. Clearly C is reducible and there are
two possible situations:

1. C is completely reducible. In this case C is the product of three lines contained in the surface.
Call s and s′ the two lines different from r: s and s′ cannot be Fq-rational since they do not
fix the conjugates, so they are Fq2-rational. From the fact that they are contained in S1 and
they pass through conjugate points we have that s′ = sq. From this fact we have that the
number of Fq-rational points on C \ r is 1 and that point is s ∩ s′.

2. C is the product of r and an irreducible conic D contained in the surface and it contains
exactly q points, see [14, Lemma 7.2.3]. In this case the number of Fq rational points of D
not contained in r is exactly q − 2.
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From the analysis of the two possible cases, recalling that the maximum number of lines con-
tained in a cubic surface is 27 (see [18, Chapter IV]), the first situation can happen at most in 13
cases, and so we have:

q + (q − 13)(q − 2) + 13 ≤ |S1(Fq)| ≤ q(q − 2) + q

Putting together the previous observations we have the following result.

Proposition 5.9. If S1 has two singular Fq2-rational conjugate points then

q2 − 14q + 39 ≤ |S1(Fq)| ≤ q2 − q. (11)

5.4 Three singular points

Call P1, P2 and P3 the singular points of S1, from Remark 5.3 we have the following configurations:

(i) At least one among P1, P2 and P3 is Fq-rational;

(ii) P1, P2 and P3 are Fq3-rational and conjugates.

If (i) happens then we can give similar argumentation as in Section 5.2 and get the bound |S1(Fq)| ≤
q2 + 2q − 2.

We start with observing that the three points cannot be collinear, which comes directly from
the following proposition.

Proposition 5.10. Let C be a cubic curve such that it has three double points. Then C is completely
reducible and splits in the product of three lines, each passing through a pair of its singular points.

Proof. Direct consequence of Bézout’s theorem.

In order to get an estimation of |S1(Fq)| for (ii) we change the model of the surface as the
following proposition suggests.

13



Proposition 5.11. Let S be a cubic surface over P3(Fq), considered with projective coordinates
[r0 : r1 : r2 : T ], and such that it has exactly three conjugates Fq3-rational double points, namely
P1, P2 and P3. Then S is projectively equivalent to the surface having affine equation, for certain
β, γ ∈ Fq3

r0r1r2 + βr0r1 + βqr1r2 + βq
2
r0r2 + γr0 + γqr1 + γq

2
r2 = 0.

Proof. Up to a change of projective frame we can consider the following situation

• The plane passing trough the three points is the plane at the infinity T = 0 and the triangle
of lines through them in that plane is given by r0, r1 and r2;

• O = (0 : 0 : 0 : 1) ∈ S.

From these choices we obtain the following equation for the surface S

r0r1r2 + T (α0r
2
0 + α1r

2
1 + α2r

2
2 + β0r0r1 + β1r1r2 + β2r0r2) + T 2(γ0r0 + γ1r1 + γ2r2) = 0

where αi, βi, γi ∈ Fq3 for i ∈ {0, 1, 2}. From the fact that P1, P2 and P3 are conjugates it follows

that r0, r1 and r2 are conjugates and then we get that α1 = αq0, α2 = αq
2

0 , β1 = βq0, β2 = βq
2

0 ,

γ1 = γq0 and γ2 = γq
2

0 . Consider now the plane π passing trough P1, P2 and O. Without loss
of generality, P1 is the singular point satisfying T = r1 = r2 = 0, then its coordinates will be
P1 = (p1, p2, p3, 0). Consider now the line, namely s passing through P1 and O. A general point
on that line has coordinates Pλ,µ = (λp0, λp1, λp2, µ). Substituting the coordinates of Pλ,µ into the
equation of S we obtain

0 = α0λr
2
0(Pλ,µ) + β0λ

2r0(Pλ,µ) = λ(α0r
2
0(Pλ,µ) + β0λr0(Pλ,µ)).

Now since r0(P1) 6= 0 and we want (0, µ) as double solution then α0 = 0. Iterating this process the
equation of the surface becomes

r0r1r2 + T (β0r0r1 + βq0r1r2 + βq
2

0 r0r2) + T 2(γ0r0 + γq0r1 + γq
2

0 r2) = 0.

We want to reduce the problem of counting the points in the form (α, αq, αq
2
) on the cubic

surface to the problem of counting the points in the same form on a certain quadric. To achieve
the result we apply the Cremona transform, call

z1 :=
1

r1
z2 :=

1

r2
z3 :=

1

r3
,
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dividing the equation of the surface by r1r2r3 we obtain

Q : βz3 + βqz1 + βq
2
z2 + γz2z3 + γqz1z3 + γq

2
z1z2 − 1 = 0.

Note that if γ = 0 then Q collapse to a plane.

Proposition 5.12. The quadric surface Q is absolutely irreducible.

Proof. If γ = 0 there is nothing to prove, since Q is a plane. Suppose γ 6= 0 and that Q splits in
the product of two planes π1 and π2, then

βz3+βqz1+βq
2
z2+γz2z3+γqz1z3+γq

2
z1z2−1 = (a1z1+a2z2+a3z3+a4)(d1z1+d2z2+d3z3+d4).

From the identity principles of polynomials we get that a1d1 = a2d2 = a3d3 = 0 Without loss of
generality we can consider a1 = a2 = d3 = 0 and then the equation becomes

βz3 + βqz1 + βq
2
z2 + γz2z3 + γqz1z3 + γq

2
z1z2 − 1 = (a3z3 + a4)(d1z1 + d2z2 + d4)

and this cannot happen since in the right hand side of this equality we do not have the term
z1z2.

We want to count the points on the quadric Q in the form (δ, δq, δq
2
), where δ ∈ Fq3 . Writing

down δ on the normal basis B we get δ = w1α + w2α
q + w3α

q2 . Taking w1, w2 and w3 as a set of
variables (on Fq) we obtain a Fq-rational quadric surface and its Fq-rational points are in one-to-one
correspondence with the searched ones.

β(w1α
q2 + w2α+ w3α

q) + βq(w1α+ w2α
q + w3α

q2) + βq
2
(w1α

q + w2α
q2 + w3α)+

γ(w1α+ w2α
q + w3α

q2)(w1α
q + w2α

q2 + w3α) + γq(w1α
q2 + w2α+ w3α

q)(w1α
q + w2α

q2 + w3α)+

γq
2
(w1α

q2 + w2α+ w3α
q)(w1α+ w2α

q + w3α
q2)− 1 = 0.

The points we were looking for of the first surface are in one-to-one correspondence with the Fq-
rational points on the quadric surface above. It is widely known (see [13, Section 15.3]) that, in
this case

|S1(Fq)| = q2 + ηq + 1, η ∈ {0, 1, 2} (12)

since the quadric surface Q is irreducible.

15



5.5 Four singular points

Call P1, P2, P3 and P4 the singular points of S1, applying Remark 5.3 we have the following
possibilities:

(i) At least one among P1, P2, P3 and P4 is Fq-rational;

(ii) There are two couples of Fq2-rational and conjugates singular points.

(iii) P1, P2, P3 and P4 are Fq4-rational and conjugates.

If (i) or (ii) hold then we have already found out a good bound before respectively |S1(Fq)| ≤
q2 + 3q − 3 and |S1(Fq)| ≤ q2, the last thing we have to do is show that (iii) never holds.

Proposition 5.13. Case (iii) never holds.

Proof. In order to solve this problem we use a multivariate approach, calculating the elimination
ideal with respect to all the variables less one. Consider the equations in (7): it is clear that, given
X1 and X2, the value of X0 is uniquely determined. For this reason we proceed with eliminating
the variables X0 and X1 and we obtain the elimination ideal Ix0,x1 = 〈p1, p2〉, where

p1(X1) =2X5
1A

q +X4
1B

q − 16X3
1A

q2+q+1 − 8X2
1A

q2+1Bq −X2
1B

q2+1 + 32X1A2q2 + q + 2

− 2X1AB
2q2 − 2X1A

q2B2 + 16A2q2+2Bq − 4Aq
2+1Bq2+1

p2(X1) =(X2
1 − 4Aq

2+1)(X4
1A

q +X3
1B

q − 4X2
1A

q2+q+1 +X2
1D − 4X1A

q2+1Bq

+ x1Bq2+1 − 4Aq
2+1D +AB2q2 +Aq

2
B2).

On the other hand, if we prooced eliminating the variables X0 and X1 we get the elimination
ideal Jx0,x2 = 〈q1, q2〉, where q1 = p1(X2)

q and q2 = p2(X2)
q. The fact that the two ideals are

generated by conjugate polynomials will continue to be true after symmetric annihilation of some
of their terms. After further computations using the software MAGMA, which can be completely
seen in [5], we get that one of the generators of Ix1,x2 is a polynomial of degree lower or equal to
two, namely f(X1), and one of the generators of Jx0,x2 is f(X2)

q. From this fact we get that the
singularities of S2 are at most four and if this value is achieved then they belong (at most) to the
field Fq6 , which means that the singularities of S1 are at most in the field Fq2 .
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6 Case r = 3 and h = 3

Consider the case of the intersection over Fq3 between X and the curves y = Ax3 +Bx2 +Cx+D,
A,B,C,D ∈ Fq3 and A 6= 0. After doing similar computations to those done for the case r = 3 and

h = 2 we arrive at an equation of a cubic surface Ŝ1 = Ŝ1(Fq) defined over Fq, affinely equivalent

to a surface Ŝ2 = Ŝ2(Fq) defined over Fq3 , having equation

X0X1X2 = AX3
0 +AqX3

1 +Aq
2
X3

2 +BX2
0 +BqX2

1 +Bq2X2
2 + CX0 + CqX1 + Cq

2
X2 + E

where E = T(D). In this more general case Ŝ1 may be reducible, which can possibly increase the
number of Fq-rational points of Ŝ1, but on the other hand the reasonings done for r = 3 and h = 2

can be completely extended if Ŝ1 is irreducible, so we claim the following result.

Theorem 6.1. Let r = h = 3 and consider the Fq-rational cubic surface Ŝ1 associated to the

intersections between X and y = Ax3 +Bx2 + Cx+D. If Ŝ1 is irreducible then

|Ŝ1| ≤ q2 + 7q + 1.

7 AG codes from the Norm-Trace curves

Consider the norm-trace curve over the field Fq3 : since r = 3, X has N = q2r−1 = q5 Fq3-rational
points in A2(Fq3). We also know that LFq(2q2P∞) = {ay+bx2+cx+d | a, b, c, d ∈ Fq3}. Considering
the evaluation map

ev : LFq3
(2q2P∞) −→ (Fq3)q

5

f = ãy + b̃x2 + c̃x+ d̃ 7−→ (f(P1), . . . , f(PN ))

the associated one-point code will be CL(D, 2q2P∞) = ev(LFq3
(2q2P∞)), where the divisor D is

the formal sum of all the q5-rational affine points of X (Fq3). The weight of a codeword associated
to the evaluation of a function f ∈ LFq3

(2q2P∞) corresponds to

w(ev(f)) = |X (Fq3)| − |{X (Fq3) ∩ {ãy + b̃x2 + c̃x+ d̃ = 0}}|.

1. If ã = 0 then we have to study the common zeroes of b̃x2 + c̃x+ d̃ and X (Fq3).

(a) if b̃ = c̃ = d̃ = 0 then w(ev(f)) = 0;
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(b) if b̃ = c̃ = 0 and d̃ 6= 0 then w(ev(f)) = q5;

(c) if b̃ = 0 and c̃ 6= 0 then w(ev(f)) = q5 − q2;
(d) if c̃ 6= 0 and c̃2 − 4b̃d̃ = 0 then w(ev(f)) = q5 − q2;
(e) otherwise w(ev(f)) = q5 − 2q2.

2. On the other hand, if ã 6= 0 then we have to study the common zeroes between X (Fq3) and

ãy + b̃x2 + c̃x+ d̃.

(a) if b̃ = c̃ = d̃ = 0 then w(ev(f)) = q5 − 1;

(b) if b̃ = c̃ = 0 and d̃ 6= 0 then w(ev(f)) = q5 − q2;
(c) if b̃ = 0 and c̃ 6= 0 then, applying Bézout theorem, we have that w(ev(f)) ≥ q5 − (q2 + q + 1);

(d) otherwise, from what we said previously, w(ev(f)) ≥ q5 − (q2 + 7q + 1).

We can summarize our reasonings in the following result.

Theorem 7.1. Consider the norm-trace curve X over the field Fq3, q ≥ 8, and the AG code
C = C(D, 2q2P∞) arising from X , where D =

∑
P∈X(Fq3)\P∞ P . Let {Aw}0≤w≤q5 be the weight

distribution of C, then the following results hold

(i) A0 = 1;

(ii) The minimum distance of C is q5 − 2q2;

(iii) If w > q5 − 2q2 and Aw 6= 0 then w ≥ q5 − q2 − 7q − 1;

In the cases q < 8, i.e. q = 2, 3, 5, 7, the complete {Aw}w≤q5 can be determined with a computer
and we do not report it here.
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