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Functoriality of motivic lifts of the canonical

construction

Alex Torzewski

Abstract

Let (G,X) be a Shimura datum and K a neat open compact subgroup of G(Af ). Under mild

hypothesis on (G,X), the canonical construction associates a variation of Hodge structure on

ShK(G,X)(C) to a representation of G. It is conjectured that this should be of motivic origin.

Specifically, there should be a lift of the canonical construction which takes values in relative

Chow motives over ShK(G,X) and is functorial in (G,X). Using the formalism of mixed Shimura

varieties, we show that such a motivic lift exists on the full subcategory of representations of

Hodge type {(−1, 0), (0,−1)}. If (G,X) is equipped with a choice of PEL-datum, Ancona has

defined a motivic lift for all representations of G. We show that this is independent of the choice

of PEL-datum and give criteria for it to be compatible with base change. Additionally, we provide

a classification of Shimura data of PEL-type and demonstrate that the canonical construction is

applicable in this context.

1 Introduction

Let (G,X) be a Shimura datum. By design, there is a functor Rep(G) → VHS/X which assigns
a Q-valued variation of Hodge structures on X to a representation of G. For any neat open com-

pact K ≤ G(Af ), let S := ShK(G,X) denote the corresponding Shimura variety, defined over its

reflex field via canonical models. For well-behaved (G,X), the variations of Hodge structure con-
structed on X descend to S(C). We call the resulting functor Rep(G) → VHS/S(C) the canonical

construction and denote it by µH
G .

The canonical construction should be of motivic origin. Specifically, there should be a canonical

⊗-functor µmot
G : Rep(G) → CHM/S to the category of relative Chow motives over S, such that

Rep(G) CHM/S

VHS/S(C)

µmot
G

µH
G

H•
B

=⇒

commutes up to canonical natural isomorphism. Here H•
B denotes the relative Betti realisation

enriched to take values in variations of Hodge structure. The functor µmot
G should also be well

behaved under change of G etc. In particular, the canonical construction should produce variations
of Hodge structure which arise from geometry.

As an example, for the usual modular curve datum (GL2,H), if V denotes the standard rep-

resentation of GL2, then µH
G(V ) is isomorphic to H1

B(E → S)∨, where E → S is the universal

elliptic curve. The obvious choice for µmot
G (V ) is then the relative Chow motive h1(E → S)∨ (in the

notation of Theorem 2.8).

Let Rep(G)AV denote the full subcategory of Rep(G) whose objects are of Hodge type {(−1, 0),
(0,−1)}, i.e. for any (h : S → G) ∈ X, the restriction of V to S is (z ⊕ z̄)-isotypical. Alternatively,
the objects of Rep(G)AV are those for which their image under µH

G is the dual of H1
B(A → S) for

some abelian variety A→ S (see Lemma 5.5).
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1 Introduction

The first aim of this paper is to show that µmot
G can be defined on Rep(G)AV with the desired

properties:

THEOREM 1.1 Let (G,X) be a Shimura datum and K ≤ G(Af ) be a neat open compact sub-

group. Write S for the corresponding Shimura variety ShK(G,X). There is a canonical ⊗-functor

µmot
G : Rep(G)AV → CHM/S for which the following diagram

Rep(G)AV CHM/S

VHS/S(C)

µmot
G

µH
G

H•
B

=⇒

commutes up to a canonical natural isomorphism. Now let f : (G′,X′) → (G,X) be a morphism of

Shimura data and K ≤ G(Af ),K
′ ≤ G′(Af ) neat open compact subgroups with f(K ′) ≤ K. Let

E′ be the reflex field of S′, then we also denote by f the induced map S′ := ShK′(G,X′) → SE′ :=
ShK(G,X)E′ → S between the corresponding Shimura varieties. Then there is a commutative prism:

Rep(G)AV CHM/S

VHS/S(C)

Rep(G′)AV CHM/S′

VHS/S′(C)

f∗

µH
G

µmot
G

f∗

H•
B

µH

G′

µmot
G′

H•
B

f∗

where the vertical maps are base change by f .

This is stated more precisely as Theorem 6.4. Note that the reflex field of (G′,X′) is allowed

to be strictly larger than that of (G,X). The method of proof is to use the formalism provided by

mixed Shimura varieties. Mixed Shimura varieties, as defined by Pink, generalise the traditional
definition by allowing for non-reductive algebraic groups. Crucially, objects such as universal

elliptic curves fit into this framework, i.e. they are mixed Shimura varieties and their structure

maps are given by functoriality of mixed Shimura data.

Canonical constructions exist more generally than just the Hodge case. For example, the ℓ-
adic étale canonical construction associates a lisse ℓ-adic sheaf on S (considered as defined over
its reflex field via canonical models) to a representation of G. The functor µmot

G should lift every

incarnation of the canonical construction. In Section 10, we show this in the case of the étale
canonical construction.

For PEL-type Shimura data much stronger results on lifting µH
G are known due to work of

Ancona [Anc15]. For Shimura data with a fixed choice of PEL-datum, Ancona has been able to
define a functor AncG defined on all of Rep(G) (see Thm. 8.7). Unfortunately, it is not directly

clear that AncG commutes with pull back via a morphism of Shimura data. Moreover, it is not
clear that AncG is independent of the choice of PEL-datum (recall that a Shimura variety may

admit multiple distinct PEL-data, see Example 7.8).

In the latter part of this paper, we show that AncG is independent of the choice of PEL-datum

(Lemma 9.3 and Theorem 9.7) and in many cases commutes with morphisms of Shimura varieties.
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2 Relative motives

More precisely, call a morphism of Shimura data each with chosen (possibly unrelated) PEL-data

f : (G′,X′) → (G,X) admissible if

f∗V is a summand of V ′⊕k for some k,

as G′-representations, where V ′, V denote the representations given in the PEL-data on the source
and target respectively. The motivation for this definition is that it ensures that we may use func-

toriality of mixed Shimura data to compare f∗AncG(V ) and AncG′(V ′).

THEOREM 1.2 Given f : (G′,X′) → (G,X) an admissible morphism of PEL-type Shimura varieties

each with chosen PEL-data, then the following diagram commutes:

Rep(G) CHM/S

Rep(G′) CHM/S′

f∗

AncG

=⇒

f∗

AncG′

up to a specified natural isomorphism. Moreover, there is a prism analogous to that of Theorem 1.1.

This is made precise in Theorem 9.7.

Not all morphisms f are admissible (see Example 11.1), but in Corollary 11.3 we show that
every f for which the source only has factors of symplectic type (see Lemma 7.5) is admissible. In

any case, it is easy to decide if a given morphism is admissible.

One application of results such as the above is in the theory of Euler systems. In this context it is

often required to pullback classes lying in the cohomology of Shimura varieties under morphisms

of Shimura data. It is also necessary to switch between various cohomology theories. For this
reason it is desirable to be able to perform such operations at the motivic level. There has been

significant recent progress in this direction due to Lemma’s construction of motivic classes on

Siegel threefolds [Lem17]. If functoriality results are available Lemma’s classes have the potential
to yield Euler systems for a multitude of different Shimura varieties (see for example [LSZ17],

particularly Section 6).

One other observation from practical applications is that it is desirable to have such results

with F -coefficients for F/k a number field. For this reason all the following is phrased to allow for
coefficients.

Finally, in Section 7 we provide a self-contained classification of the groups arising from PEL-
data (see Lemma 7.5), which as a consequence demonstrates that PEL-type Shimura data are

sufficiently well-behaved to apply the canonical construction. This is something which is well-

known, but for which we are not aware of a reference for.

Acknowledgements: I would like to especially thank David Loeffler for suggesting the research

topic and for providing guidance throughout. I am also deeply indebted to Giuseppe Ancona for
many helpful discussions and explaining his results to me. I would also like to thank an anonymous

referee for their helpful feedback and suggestions.

2 Relative motives

We now recall some background on relative motives.
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2 Relative motives

NOTATION 2.1 Assume that k is a field of characteristic zero equipped with a fixed embedding into

C. Given a k-variety Z, we write Z(C) for its complex points considered as a complex manifold.

In this section, we fix S to be a smooth quasi-projective k-scheme. For simplicity, we shall

assume that all components of S have the same dimension dS .

DEFINITION 2.2 Following [DM91, Sec. 1], fix an adequate equivalence relation ∼ on all k-varieties

and let X,Y be smooth projective S-schemes. Assume for simplicity thatX,Y are equidimensional

of dimensions dX , dY respectively. We define the group of degree p correspondences from X to Y ,
up to equivalence by ∼, to be

CorrpS(X,Y ) = AdX−dS+p
∼ (X ×S Y ),

where Ad∼(−) denotes the Q-vector space of codimension d cycles up to equivalence by ∼. Pro-
ceeding as in the classical case we obtain the category M∼/S of relative motives over S with respect

to ∼, whose objects are triples (X, e, n) consisting of a variety X , an idempotent e ∈ Corr0S(X,X)
and an integer n ∈ Z corresponding to Tate twists. The category M∼/S is a Q-linear ⊗-category,
with the tensor structure being given by fibre product over S.

We are mostly concerned with the case when ∼ is taken to be rational equivalence ∼rat, in
which case we denote M∼/S by CHM/S, or homological equivalence ∼hom with respect to singu-

lar cohomology (or equivalently any choice of ℓ-adic cohomology), in which case we denote the

resulting category by HomM/S. These categories are referred to as relative Chow motives over S
and relative homological motives over S respectively1. Write Hi

B(Z(C),Q) for the singular coho-

mology of a variety Z/k. Since homological equivalence is coarser than rational equivalence we
obtain a forgetful map

CHM/S → HomM/S,

which is full.

If SmProjVar/S denotes the category of (not necessarily irreducible) smooth projective vari-

eties over S, then there is a functor h : (SmProjVar/S)op → CHM/S which assigns to a variety
X/S its motive (X,∆X , 0) where ∆X is the diagonal cycle of X ×S X . The same is also true of

homological motives.

For any adequate equivalence relation, the construction of M∼/S is compatible with change
of S, i.e. given f : S′ → S, we obtain pullback functors f∗ : M∼/S → M∼/S

′ by base changing

triples in the obvious way.

REMARK 2.3 This construction has been extended to the case when S → k is quasi-projective but
not necessarily smooth by Corti–Hanamura [CH00].

DEFINITION 2.4 Let F/Q be a number field. We define (CHM/S)F to be the category with the

same objects as CHM/S but for which Hom(CHM/S)F /S(A,B) = HomCHM/S(A,B)⊗Q F . We then

define CHMF /S to be the pseudo-abelianisation ((CHM/S)F )
♮ of (CHM/S)F and refer to it as

the category of relative Chow motives over S with coefficients in F . We shall frequently use that it

is equivalent to think of a Chow motive with coefficients in F as an object M of ((CHM/S)F )
♮ or

as an object of CHM/S together with an inclusion F →֒ EndCHM/S(M) (see [Del79, Sec. 2] or for
more details [AK02, Sec. 5]). We define HomMF /S analogously.

DEFINITION 2.5 Let AbVar/S denote the category of abelian varieties over S. We denote by

CHMab
F /S,HomMab

F /S the smallest rigid linear symmetric tensor subcategories which contain the
motives of abelian varieties and are closed under taking subobjects and Tate twists.

1It may be better to refer to HomM/S as “naive homological motives”. This is because, unlike in the case of S = k, our
homological motives admit non-trivial maps between objects which should be considered to live in different cohomological
degrees. As a result, they do not coincide with what we may reasonably expect of “relative numerical motives”.
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3 Realisations

THEOREM 2.6 There is a unique section I of the projection N : CHMab
F /S → HomMab

F /S which is a

linear symmetric tensor functor, commutes with Tate twists and is such that

h|AbVarop = I ◦ N ◦ h|AbVarop .

Proof. This follows from work of O’Sullivan [O’S11, pf. of Thm. 6.1.1] (see also [Anc15, Thm.

7.1]). More precisely, O’Sullivan checks that any quotient of “Chow theory” by a proper ideal has a

right inverse which is unique subject to the above conditions. But cycles which are homologically
equivalent to zero form a proper ideal within CHM/S. The same reasoning applies for motives

with coefficients.

REMARK 2.7 Morphisms in the image of I are symmetrically distinguished in the sense of [O’S11,
Def. 6.2.1]. O’Sullivan checks that the pullback of a symmetrically distinguished cycle is symmetri-

cally distinguished [O’S11, Thm. iii) p2]. From this, it is easy to see check that, given a morphism
f : S′ → S, there is a natural isomorphism f∗ ◦ I =⇒ I ◦ f∗ since both compositions yield a

symmetrically distinguished Chow cycle lying over a numerical cycle, but there is only one such

cycle (cf. [O’S11, Thm. 6.2.5]).

THEOREM 2.8 ([DM91, Thm. 3.1]) Let A/S be an abelian variety of dimension n, then within

CHMF /S there is a decomposition

h(A) =

2n
⊕

i=0

hi(A),

such that, if [n] : A→ A denotes multiplication by n, then

h([n]) =

2n
⊕

i=0

ni · idhi(A) .

The analogous statement for homological motives also holds but is automatic. The second

condition ensures that the decomposition is compatible with change of A and S as well as applying

any of the standard realisations. Another consequence is:

THEOREM 2.9 (Künneth Formula) The decomposition h(A) =
⊕

i h
i(A) respects the Künneth for-

mula, i.e.

hk(A×A′) =
⊕

i+j=k

hi(A)⊗ hj(A′).

THEOREM 2.10 ([Kin98, Prop. 2.2.1]) Given an abelian variety A/S, the map

End(A)op ⊗ F → EndCHMF /S(h
1(A))

is an isomorphism.

3 Realisations

NOTATION 3.1 Let S
t
→ k be a smooth quasi-projective variety over a number field and VHS/S(C)

denote the category of Q-valued variations of Hodge structure on S(C). For any finite field ex-
tension F/Q, we may define VHSF /S(C) analogously to Definition 2.4 (note we do not require

F ⊂ R).

5



4 The canonical construction

LEMMA 3.2 For any S/k a smooth quasi-projective variety. There are relative Hodge realisation

functors

H•
B : HomMF /S → VHSF /S(C),

which send h(X
p
→ S)(i) to

⊕

j R
jp∗FX(C)(i). These are natural in S.

This construction is spelt out in [Tor18, Cor. 4.5.7].

REMARK 3.3 In contrast to the case when S is a field, the relative Hodge realisation functors are not
faithful in general. This is due to the presence of non-trivial morphisms between objects which are

pure of different weights. In their work, Corti–Hanamura correct this by introducing a realisation

functor taking values in a derived category. This is not necessary for our purposes as we shall
only require faithfullness for elements of HomHomMF /S(h

i(X), hi(Y )) with X,Y abelian varieties,

which is true of H•
B (cf. [Tor18, Remark 4.5.8]). Note that for abelian varieties Hi

B(X(C)) =
H•
B(h

i(X)), by Theorem 2.8.

REMARK 3.4 In Lemma 3.2, by naturality in S we mean that given f : S′ → S, there is a natural

isomorphism ξ : f∗ ◦ H•
B =⇒ H•

B ◦ f∗. For an object X
p
→ S this is given by the proper base

change map f∗Rip∗FX(C) → RipS′,∗f
∗FX(C).

All the above also holds in the étale case, which we now record for use in Section 10.

NOTATION 3.5 Let ℓ be any prime and λ a prime of F dividing ℓ. Given a scheme X , we write
Étλ/S for the category of lisse Fλ-sheaves on X and Fλ,X for the constant Fλ-sheaf on a scheme

X with coefficient group Fλ.

LEMMA 3.6 There are relative étale realisation functors

H•
λ : HomMF /S → Étλ/S,

which send X
p
→ S to

⊕

iR
ip∗Fλ,X . These are natural in S.

4 The canonical construction

NOTATION 4.1 For an algebraic group G/Q and a field F of characteristic zero let RepF (G) denote

the category of representations of GF over F . We shall usually consider an object V ∈ RepF (G)
as a representation V of G over Q together with a map F →֒ EndG(V ). We also set Rep(G) :=
RepQ(G).

NOTATION 4.2 Throughout (G,X) will denote a Shimura datum (which we often interchange with

(G, h) for h ∈ X). We shall always assume that our Shimura data are such that the identity

connected component of the centre of G is an almost-direct product of a Q-split torus and an
R-anisotropic torus. This ensures that all real cocharacters of the centre are in fact defined over Q.

Upon fixing a choice of neat open compact K ≤ G(Af ), we denote ShK(G,X) by S, always

considered to be defined over the reflex field. We follow a similar convention for (G′,X′) with
K ′ ≤ G′(Af ) etc. If f : (G′,X′) → (G,X) is a morphism of Shimura data for which f(K ′) ≤ K,

then we also denote by f the induced map f : S′ → S, even when the reflex fields may decrease.

CONSTRUCTION 4.3 ([Pin90, Ch. 1]) Given an element (ρ : GF → GL(V ))
∈ RepF (G), we may define a variation of Hodge structure on S(C) as follows: consider V as

6



5 Mixed Shimura varieties

Q-representation of G together with an action of F . Then the underlying local system corresponds

to the cover

G(Q)\(X× (G(Af )/K)× V ) → G(Q)\(X× (G(Af )/K)),

where g ∈ G(Q) acts by (hx, t, v) 7→ (ghxg
−1, gt, ρ(g)v). The stalk at a point (hx, t) is identified

with corresponding fibre {(hx, t, v) | v ∈ V } ∼= V and as such may be given the Q-Hodge structure
defined by the map ρ ◦ hx : S → GR → GL(VR). This is independent of the choice of representative

and can be checked to define a variation of Hodge structure (this uses the almost-direct product

condition on the centre of G, for more details see [Pin90, Ch. 1]).

This extends to a functor µH
G : RepF (G) → VHSF /S(C) referred to as the canonical construction

(where H stands for Hodge).

CONSTRUCTION 4.4 Let V ∈ RepF (G) and f be as above. There is a canonical isomorphism of local

systems κV : f∗µH
G(V ) → µH

G′(f∗V ) and this is also a morphism of variations of Hodge structure
as it respects the Hodge structure on each fibre. The collection κ := (κV )V then defines a natural

isomorphism:

RepF (G) VHSF /S(C)

RepF (G
′) VHSF /S

′(C)

f∗

µH
G

=⇒

f∗

µH

G′

5 Mixed Shimura varieties

Mixed Shimura data, as defined by Pink [Pin90], extend the traditional definition to not neces-

sarily reductive algebraic groups. We briefly recall the basic properties of mixed Shimura data, but

in the restricted setting of where the homogeneous space is a conjugacy class of morphisms from
the Deligne torus (as opposed to a finite cover of such a space) as this is true of all the data we

shall consider.

A mixed Shimura datum consists of a pair (P, X̃) with P/Q a connected algebraic group and a

subspace X̃ ⊆ Hom(SC, PC) satisfying the requirements of [Pin90, Sec. 2.1]. In the case that P is

reductive, i.e. that P has trivial unipotent radical, we recover the classical definition of Shimura
data, which we shall refer to as the pure case.

For any neat open compactK ≤ P (Af ), there is an associated mixed Shimura variety ShK(P, X̃),
which is algebraic over its reflex field [Pin90, Thm. 11.18]. A morphism of mixed Shimura
data f : (P ′, X̃′) → (P, X̃) is a map P ′ → P for which f(X̃′) ⊆ X̃. Pairs of neat open com-

pact subgroups K ≤ P (Af ) and K ′ ≤ P ′(Af ) with f(K ′) ≤ K give rise to algebraic maps

ShK′(P ′, X̃′) → ShK(P, X̃) [Pin90, Sec. 3.4].

Any mixed Shimura datum (P, X̃) admits a map to the pure Shimura datum (G,X) where G
is the quotient of P by its unipotent radical and X is given by postcomposing elements of X̃ with

π : P → G (cf. [Pin90, Prop. 2.9]).

We shall always assume that our mixed Shimura varieties satisfy the stronger condition that:
the centre of G = P/Ru(P ) is an almost-direct product of a Q-split torus and a torus which is

R-anisotropic (so the weight cocharacter π◦h◦w : Gm,R → GR is rational for h ∈ X̃). These ensure
that there is a canonical construction for mixed Shimura varieties associating variations of mixed

Hodge structure on ShK(P, X̃) to representations of Rep(P ) (see [Pin90, Sec. 1.18]).

7



5 Mixed Shimura varieties

Universal abelian varieties can be seen as instances of mixed Shimura varieties (see Example

5.6). In this section, we shall observe that the theory of mixed Shimura varieties automates the
creation of certain abelian varieties over pure Shimura varieties in a functorial way.

DEFINITION 5.1 Let (G,X) be a (pure) Shimura datum and V ∈ RepF (G). We consider V as
a Q-representation together with an F -structure F →֒ EndG(V ). For any choice of hx ∈ X,

V ⊗Q C decomposes as a direct sum of one dimensional C-subrepesentations upon each of which

z ∈ S(R) = C× acts as multiplication by z−pi z̄−qi for some pi, qi. We say that V has Hodge type

given by set {(p1, q1), (p2, q2), ..., (pn, qn)} of (pi, qi) occurring in the above decomposition. Since

different choices of hx define isomorphic R-Hodge structures, this is independent of the choice of
hx.

The Hodge type of a representation V ∈ Rep(G) coincides with the Hodge type of µH
G(V ) as a

variation of Hodge structure on S(C).

NOTATION 5.2 Let RepF (G)
AV denote the full subcategory of RepF (G) whose objects have Hodge

type contained in {(−1, 0), (0,−1)}.

Given V ∈ RepF (G)
AV, considering V as a representation over Q, we may form the semi-direct

product V ⋊G as an algebraic group over Q. Let p : V ⋊G→ G denote the projection map and X̃

consist of the elements t ∈ Hom(SC, (V ⋊G)C) for which p ◦ t ∈ XC.

LEMMA 5.3 Let (G,X) be a (pure) Shimura datum V ∈ RepF (G)
AV, then (V ⋊ G, X̃) is a mixed

Shimura datum.

Proof. The unipotent radical of V ⋊G is V . If, in the notation of [Pin90, Sec. 2.1], we set U = V ,

then it is easy to check the conditions directly. Alternatively, use that (V ⋊G, X̃) is an instance of
a unipotent extension in the sense of [Pin90, Prop. 2.17]. Note that we are assuming (G,X) has

rational weight and the centre is an almost-direct product of a Q-split and R-anisotropic torus. The

datum (V ⋊G, X̃) then also satisfies the corresponding strengthened condition of a mixed Shimura
variety.

Mixed Shimura data of the form (V ⋊G, X̃) are the only non-pure data we shall need to consider.

LEMMA 5.4 Let (G,X) be a Shimura datum, K ≤ G(Af ) a neat open compact subgroup and V ∈

Rep(G). Then for any choice of K-stable full rank Ẑ-lattice L ≤ V (Af ), L⋊K is a neat open compact
subgroup of V ⋊G.

Proof. This is an easy exercise, for example see [Tor18, pf. of Lem. 4.7.4].

LEMMA 5.5 For any Shimura datum (G,X) and V,K,L as above, the map

ShL⋊K(V ⋊G, X̃) → ShK(G,X) has the structure of an abelian variety.

Proof. This is [Pin90, 3.22 a)] (the zero section is given by the Levi section ι : G→ V ⋊G).

Moreover, this is functorial in the sense that given a homomorphism of representations f : V →
V ′ with L ≤ V (Af ) and L′ ≤ V ′(Af ) and f(L) ≤ L′, then the induced map of mixed Shimura

varieties ShL⋊K(V ⋊ G, X̃) → ShL⋊K(V ⋊ G, X̃′) respects the group structure. The existence of

the projection and identity section maps force (V ⋊ G, X̃) to have the same reflex field as (G,X)
[Pin90, Sec. 11.2(b)].

EXAMPLE 5.6 If a Shimura datum (G,X) has a PEL-datum with standard representation V (see

Definition 7.2), then for any neat open compact K and K-stable Ẑ-lattice L of V (Af ) (we shall

always take our lattices to be of full rank), ShL⋊K(V ⋊ G, X̃) → ShK(G,X) is isogeneous to the

universal abelian variety defined by the PEL-datum.
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5 Mixed Shimura varieties

LEMMA 5.7 i) Let (G, h) be a Shimura datum and K a neat open compact subgroup. Given V,W ∈

RepF (G)
AV and K-stable Ẑ-lattices LV , LW of V (Af ), W (Af ), then as abelian varieties over S,

there is a canonical isomorphism

Sh(LV ⊕LW )⋊K((V ⊕W )⋊G,X̃V⊕W )

∼= ShLV ⋊K(V ⋊G, X̃V )×S ShLW⋊K(W ⋊G, X̃W ),

where X̃V , X̃V , X̃V⊕W are as in Notation 5.2.

ii) Given a morphism of pure Shimura data f : (G′, h′) → (G, h), neat open compact subgroups

K ′ ≤ G′(Af ),K ≤ G(Af ) with f(K ′) ≤ K, and V ∈ RepF (G)
AV together with a K-stable

Ẑ-lattice L, then there is a canonical isomorphism of abelian S′-schemes

ShL⋊K(V ⋊G, X̃)ShK′(G′,X′)
∼= Shf∗L⋊K′(f∗V ⋊G′, X̃′),

where f∗L is the lattice L considered as a K ′-stable Ẑ-lattice.

Proof. Both statements follow immediately from the characterisation of fibre products for mixed
Shimura data given in [Pin90, Sec. 3.10].

CONSTRUCTION 5.8 We now define a functor µmot
G : RepF (G)

AV → CHMF /S as follows: given

V ∈ RepF (G)
AV, let L be a full rank Ẑ-lattice of V (Af ) which is stable under K. We then set

µmot
G (V ) = h1(ShL⋊K(V ⋊K, X̃))∨ as a motive with rational coefficients which we equip with an

F -structure F →֒ EndCHM/S(µ
mot
G (V )) in the following way. Let

T := {α ∈ EndG(V ) | α(L) ⊆ L}.

For any α ∈ EndG(V ), α(L) is a Ẑ-lattice and so there exists an n ∈ N such that n · α(L) ≤ L.

In other words, T ⊗Z Q = EndG(V ). Thus, we may act on h1(ShL⋊K(V ⋊ K, X̃))∨ by F =
(T ∩F )⊗ZQ with the first factor acting via functoriality of mixed Shimura varieties and the second

by Q-linearity of CHM/S. This uses that the actions of Z as subring of T ∩ F (i.e. addition via the

group law as an abelian variety) and as a subring of Q coincide, which follows from Theorem 2.8.
In contrast, this would not be true for h(SK,V )

∨ and this does not define an element of CHMF /S.

Given a morphism f : V → V ′, let n ∈ N be large enough to ensure that f(nL) ≤ L′. We obtain

maps

(π∨
n )∗ : h

1(ShL⋊K(V ⋊G, X̃))∨ → h1(ShnL⋊K(V ⋊G, X̃))∨,

f∗ : h
1(ShnL⋊K(V ⋊G, X̃))∨ → h1(ShL′⋊K(V ′ ⋊G, X̃′))∨,

where the first map is obtained by applying h1(−)∨ to the dual of the map of abelian varieties

πn : ShnL⋊K(V ⋊ G, X̃) → ShL⋊K(V ⋊ G, X̃) which is given by functoriality of mixed Shimura

varieties, whilst the second is h1(−)∨ of the map of mixed Shimura varieties induced by f . We
then set µmot

G (f) to be 1/n times the composite f∗ ◦ (π∨
m)∗. By construction the morphisms µmot

G (f)
will respect the F -action.

PROPOSITION 5.9 Given a choice of Ẑ-lattice for each V ∈ RepF (G)
AV as above, then the correspond-

ing µmot
G is a well-defined ⊗-functor RepF (G)

AV → CHMF /S. The functor µmot
G is independent of the

choice of lattice for each V , up to canonical natural isomorphism.

Proof. We first remark that µmot
G (f) is independent of the choice of n. This follows as the construc-

tions for n and for nm differ by 1/m · (π∨
m)∗ ◦ πm,∗ = 1/m · [m]∗, but, for an abelian variety A/S,

[m] acts on h1(A)∨ by multiplication by m (Theorem 2.8).

9



6 Direct images for mixed Shimura varieties

That µmot
G respects composition follows from the commutativity of the following diagram, for

any f : V → V ′, m ∈ N and n s.t. f(nL) ≤ L′

ShnL⋊K(V ⋊G, X̃) ShmnL⋊K(V ⋊K, X̃)

ShL′⋊K(V ′ ⋊G, X̃′) ShmL′⋊K(V ′ ⋊G, X̃′)

π∨
m

f f

π∨
m

and thus it is clear that µmot
G defines a functor.

Given choices L1, L2 for each V and corresponding functors µmot
G,1, µ

mot
G,2, we define a natural

transformation ψ : µmot
G,1 → µmot

G,2 by setting ψV to be 1/n times the map

h1(ShL1⋊K(V ⋊G, X̃))∨
(π∨

n )∗
→ h1(ShnL1⋊K(V ⋊G, X̃))∨

id∗→ h1(ShL2⋊K(V ⋊G, X̃))∨

for any n such that nL1 ≤ L2. That this defines a natural transformation again follows from

the commutativity of the above square. Moreover, as isogenies become invertible after applying
h1(−)∨, we find that ψ defines a natural isomorphism.

REMARK 5.10 If f : V → W is a non-zero homomorphism of representations of G over Q and we
fix a neat open compact subgroup K of G and K-stable Ẑ-lattices LV ≤ V , LW ≤ W such that

f(LV ) ≤ LW , then ShLV ⋊K(V ⋊ G, X̃V ) → ShLW⋊K(W ⋊ G, X̃W ) is non-zero as a morphism of

abelian varieties (for example, using the explicit description of the points over C). Together with
Theorem 2.10 this demonstrates that µmot

G is faithful.

NOTATION 5.11 Given V ∈ RepF (G)
AV, we shall denote the mixed Shimura variety ShL⋊K(V ⋊

G, X̃) simply by SK,V . We use p : SK,V → S and ι : S → SK,V to denote the maps induced by

the projection and Levi section as well as the induced maps on their analytifications. We continue

accordingly for (G′, h′).

LEMMA 5.12 Given a morphism of Shimura data f : (G′,X′) → (G,X), a neat open compact K ≤

G(Af ), K
′ ≤ G′(Af ) with f(K ′) ≤ K, and a choice of stable Ẑ-lattices for all elements of RepF (G),

RepF (G
′), then the following diagram commutes:

RepF (G)
AV CHMF /S

RepF (G
′)AV CHMF /S

′

f∗

µmot
G

=⇒

f∗

µmot
G′

up to a natural isomorphism ψ : f∗ ◦ µmot
G =⇒ µmot

G′ ◦ f∗.

Proof. From Lemma 5.7 ii) and that the canonical projectors defining hi commute with pullback,

we obtain isomorphisms

(h1(SK,V )
∨)S′

∼= h1(S′
K′,f∗V )

∨.

The natural isomorphism is then given by taking these maps and possibly composing the maps

defined in the proof of Proposition 5.9 if the lattice chosen for f∗V is not f∗L.

6 Direct images for mixed Shimura varieties

In this section, we check that µmot
G lifts the canonical construction and is compatible with base

change.
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LEMMA 6.1 Given a Shimura datum (G,X) and V ∈ RepF (G)
AV, then there is a canonical identifi-

cation of µH
G(V ) and the dual of H1

B(SK,V (C)) = R1p∗FSK,V (C), where p : SK,V (C) → S(C) denotes

the usual projection.

Proof. The canonical construction can be extended to mixed Shimura varieties as we now recall.

Let (P, X̃) be a mixed Shimura datum and Q ≤ P (Af ) a neat open compact subgroup. A represen-
tation W ∈ RepF (P ), which we consider as a Q-representation ρ : P → GL(W ) together with an

F -structure, defines a local system

µH
P (W ) := P (Q)\(X̃× (P (Af )/Q)×W )

on ShQ(P, X̃)(C) = P (Q)\(X̃ × (P (Af )/Q)). Similarly to Construction 4.3, each fibre {(x, k, v) |
v ∈ W} ∼= W has a well-defined mixed Hodge structure given by ρ ◦ hx and µH

P (W ) has the

structure of a graded-polarisable variation of Hodge structure. This extends to a ⊗-functor

µH
P : RepF (P ) → VHSF / ShQ(P, X̃)(C).

This is functorial in the sense that, given f : (P ′,X′) → (P,X) and Q ≤ P (Af ), Q
′ ≤ P ′(Af ) with

f(Q′) ≤ Q, then there is a canonical isomorphism

f∗µH
P (W ) = µH

P ′(f∗W ).

For the purposes of the lemma, the key fact is that pushforwards of sheaves arising via the canonical

construction correspond to group cohomology. More specifically, in the notation of the lemma, the

following diagram commutes:

Rep(V ⋊G) VHS/SK,V (C)

Rep(G) VHS/S(C)

Hi(V,−)

µH
V ⋊G

Rip∗

µH
G

where the left vertical map is group cohomology (see [Wil97, Thm. II.2.3, Prop. I.1.6c)]). In the
case of the one dimensional trivial representation, this yields identifications

µH
G(H

1(V, F )) = R1p∗FSK,V (C).

But, H1(V, F ) = V ∨ as desired.

NOTATION 6.2 Write ϕV for the isomorphism H1
B((SK,V )(C))

∨ ∼
→ µH

G(V ) and ϕ = (ϕV )V for the

collection as V ranges over V ∈ RepF (G)
AV.

LEMMA 6.3 i) Let (G, h) be a Shimura datum and α : V1 → V2 a morphism in RepF (G)
AV. Fix

a neat open compact subgroup K ≤ G(Af ) and let α also denote the map (SK,V1
)(C) →

(SK,V2
)(C). Then the following diagram commutes:

H1
B((SK,V1

)(C))∨ µH
G(V1)

H1
B((SK,V2

)(C))∨ µH
G(V2)

ϕV1

(α∗)∨ µH
G (α)

ϕV2

ii) Let f : (G′, h′) → (G, h) be a morphism of Shimura data and K ≤ G(Af ),K
′ ≤ G′(Af ) neat

open compact subgroups with f(K ′) ≤ K. For any V ∈ RepF (G)
AV, the following diagram

11



6 Direct images for mixed Shimura varieties

commutes:

f∗H1
B(SK,V (C))

∨ f∗µH
G(V )

H1
B((S

′
K′,f∗V )(C))

∨ µH
G′(f∗V )

f∗(ϕV )

H1
B(ψV ) κV

ϕf∗V

Proof. We prove the first case, the other is similar. The strategy is to reduce to a group theoretic

context via a Tannakian argument using work of Wildeshaus. Fix a connected component S0 of
S(C) and let S0

K,Vi
denote the connected component p−1

i (S0). In [Wil97, Thm. II.2.2] it is checked

that the canonical construction produces variations of Hodge structure which are admissible in the

sense of [Kas86]. Since the Vi are unipotent, objects in the image of µH
Vi⋊G

(in the notation used

in the proof of Lemma 6.1) admit a filtration by objects pulled back from S0. Let VHS′/S0 denote
the category of admissible variations of Hodge structure on S0 and pi-UVar/S

0
K,Vi

denote the full

subcategory of VHS′/S0
K,Vi

whose objects admit a filtration for which the graded objects are pulled

back from elements of VHS′/S0. The functors µH
G , µ

H
Vi⋊G

take values in these categories.

Fix y ∈ S0 and for i = 1, 2 set xi = ιi(y), where ιi denotes the canonical Levi section. For

i = 1, 2, let Pi,xi
denote the Tannaka dual of pi-UVar/S

0
K,Vi

and Gy the Tannaka dual of VHS′/S0

all with the obvious fibre functors. The map Pi,xi
→ Gy induced by p∗i is surjective (e.g. [DM82,

Prop. 2.21a)]). Lastly, set Vi,xi
= ker(Pi,xi

→ Gy).

Consider the diagram:

p1-UVar/S0
K,V1

p2-UVar/S0
K,V2

VHS′/S0

Rjp1,∗

α∗

Rjp2,∗

This does not commute, but there is an obvious natural transformation Rjp2,∗ =⇒ Rjp1,∗α
∗. The

calculation of higher direct images in pi-UVar/SK,Vi
coincides with the usual higher direct image

as elements of VHSF /S
0
K,Vi

(cf. [Wil97, Sec. I.4]). The maps Rjpi,∗ are not ⊗-functors, but we

claim that when viewed in the Tannakian setting, the above triangle becomes:

Rep(P1,x1
) Rep(P2,x2

)

Rep(Gy)
Hj(V1,x1

,−)

α∗

Hj(V2,x2
,−)

and the natural transformation becomes the usual map

Hj(V2,x2
,−) =⇒ Hj(V1,x1

, α∗(−)).

To see this, note that p∗i corresponds to inflation from Gy and has right adjoint pi,∗, whilst (−)Vi,xi

is right adjoint to inflation.

Since the canonical construction is a ⊗-functor, after taking duals we obtain a diagram of short

exact sequences:

0 Vi,xi
Pi,xi

Gy 1

0 Vi Pi G 1

ti r (1)

12



6 Direct images for mixed Shimura varieties

where ti is the dual of µH
Vi⋊G

and r the dual of µH
G . Moreover, the left vertical map Vi,xi

→ Vi is an

isomorphism [Wil97, p. 96] (this would not be true without restricting to admissible variations of
Hodge structure). This shows that the following square commutes:

Rep(Pi) Rep(Pi,x)

Rep(G) Rep(Gy)

t∗i

H1(Vi,−) H1(Vi,xi
,−)

r∗

(2)

as in the proof of Lemma 6.1. In the case of the trivial representation Q, this yields maps
r∗H1(Vi,Q) → H1(Vi,xi

,Q) which are dual to ϕVi
. Since the diagrams of (1) are compatible

with α∗, the squares of (2) form a prism:

Rep(P2) Rep(P2,x2
)

Rep(P1) Rep(P1,x)

Rep(G) Rep(Gy)

α∗ α∗

A purely group theoretic argument now checks that, consequently, there is a commutative square:

H1(V1,x1
,Q) r∗H1(V1,Q)

H1(V2,x2
,Q) r∗H1(V2,Q)

α∗ r∗α∗

Taking Tannaka and linear duals we now obtain the square in i).

We are now able to prove Theorem 1.1 of the introduction.

THEOREM 6.4 Let (G, h) be an arbitrary Shimura datum andK ≤ G(Af ) neat open compact. Denote

by S the Shimura variety ShK(G, h). Then the following diagram commutes,

RepF (G)
AV CHMF /S

VHSF /S(C)

µmot
G

µH
G

H•
B

=⇒

up to natural isomorphism given by ϕ : H•
B ◦µmot

G =⇒ µH
G (where ϕ is as in Notation 6.2). Moreover,

under pullback by f : (G′,X′) → (G,X), the triangles for (G,X), (G′,X′) form a commutative prism:

RepF (G)
AV CHMF /S

VHSF /S(C)

RepF (G
′)AV CHMF /S

′

VHSF /S
′(C)

f∗

µH
G

µmot
G

f∗

H•
B

µH

G′

µmot
G′

H•
B

f∗

13
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for which each face has a given natural transformation, all of which are compatible.

Proof. That ϕV defines a natural isomorphism for the first triangle is Lemma 6.3 i). The commuta-
tivity of the other individual faces in the prism is given by the natural isomorphisms: ψ of Lemma

5.12 for the rear face, κ of Construction 4.4 for the front left face, and ξ of Remark 3.4 for the
front right.

Due to O’Sullivan’s Theorem 2.6 (cf. Remark 2.7), we need only prove the compatibility state-

ment for homological motives. As a result, we reduce to showing that the two natural isomor-

phisms H•
B ◦ f∗ ◦ µmot

G =⇒ H•
B ◦ µmot

G′ ◦ f∗ (which are functors from RepF (G) → VHSF /S
′(C))

defined by

f∗H1
B(SK,V (C))

∨ H1
B(ψV )
→ H1

B((S
′
K′,f∗V )(C))

∨,

f∗H1
B(SK,V (C))

∨ f∗ϕV
→ µH

G(V )S′(C)

κ−1

V→ µH
G′(f∗V )

ϕ−1

f∗V

→ H1
B((S

′
K′,f∗V )(C))

∨,

coincide, here κ is as defined in Construction 4.4 and ψ is as defined in Lemma 5.12. This follows
from Lemma 6.3 ii).

7 Classification of PEL-data

In the case of PEL-type Shimura data, significantly stronger results than Theorem 6.4 are pos-
sible. In this section, we provide a classification of PEL-type Shimura data after base change to

R.

NOTATION 7.1 Given an algebra B/Q, we write BF for B⊗QF . Similarly if W is a B-module, then
WF denotes W ⊗Q F .

DEFINITION 7.2 A PEL-datum is a tuple (B, ∗, V, 〈 , 〉, h) consisting of: a semi-simple Q-algebra
B with a positive (anti-)involution ∗ on B, that is an anti-commutative involution such that

trBR/R(bb
∗) > 0 for all 0 6= b ∈ BR, together with a finite dimensional B-module V equipped

with an alternating non-degenerate Q-valued pairing 〈 , 〉 on V such that, for b ∈ B, u, v ∈ V

〈bu, v〉 = 〈u, b∗v〉,

and finally a choice of R-algebra homomorphism h : C → EndBR
(VR) such that

{

〈h(z)u, v〉 = 〈u, h(z̄)v〉 ∀z ∈ C, u, v ∈ V

〈u, h(i)u〉 is positive definite
,

(the first condition ensures that 〈u, h(i)v〉 is symmetric).

Let G be the algebraic group whose R-points, for any Q-algebra R, are defined by

G(R) =

{

g ∈ AutBR
(VR)

∣

∣

∣

∣

∃µ(g) ∈ R× such that 〈gu, gv〉 = µ(g)〈u, v〉 for

all u, v ∈ V ⊗R

}

.

Note G is connected if and only if G has no factors of “orthogonal type” (see Lemma 7.5). For

z ∈ C×, we automatically have that h(z) ∈ G(R). We also denote by h the induced map S → GR.

NOTATION 7.3 Any semisimple R-algebra with positive involution splits as a product of simple

factors each of which is of one of the following types (see for example [Kot92, p. 386]):
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• symplectic: (Mn(R), A 7→ At)

• linear: (Mn(C), A 7→ Āt), where (−̄) denotes coefficientwise complex conjugation.

• orthogonal: (Mn(H), A 7→ Āt), where (−̄) denotes the (anti-)involution a + bi + cj + dij 7→
a− bi− cj − dij coefficientwise.

In particular, all symplectic BR-modules split as an orthogonal direct sum of submodules only acted
on non-trivially by a single simple factor of one of the above types, and G1,R splits accordingly.

NOTATION 7.4 Given an algebraic group G, we denote by G◦ the connected component of the
identity. We define the following algebraic groups over R:

• Let Ua,b be the indefinite unitary group whose R-points consist of elements ofMa+b(C) which
preserve a Hermitian form of signature (a, b). There is an obvious isomorphism Ua,b ∼= Ub,a
and (Ua,b)C ∼= GLa+b,C.

• Set J =

(

0 −1
1 0

)

and let O∗
2n be the algebraic group defined by

O∗
2n(A) =











g ∈ O2n(A⊗ C)

∣

∣

∣

∣

∣

∣

∣

ḡt







J
. . .

J






g =







J
. . .

J

















,

for an R-algebra A. Note that (O∗
2n)C

∼= O2n.

The following is well-known, but we have been unable to reference explicitly in the literature.

LEMMA 7.5 Let (B, ∗, V, 〈 , 〉, h) be a PEL-datum.

i) Fix a decomposition of (BR, ∗) into factors of symplectic, linear and orthogonal types respectively,

as in Definition 7.3, then

G1,R
∼=

∏

i

Sp2gi ×
∏

j

Uaj ,bj ×
∏

k

O∗
2rk ,

with each factor acting on the factor of VR for which the action of BR factors through the corre-

sponding Mn(R), Mn(C) or Mn(H).

ii) If G1,R has no factors isomorphic to Un,0 for n ≥ 2, then (G◦, h) defines a Shimura datum. In

particular, if G1,R additionally has no factors of orthogonal type, then (G, h) is a Shimura datum.

iii) In any case, the identity connected component of the centre of G◦ is an almost-direct product of a

Q-split torus and an R-anisotropic torus.

Proof. These properties are well-known, but we provide proofs of the statements we have been

unable to find references for. In [Kot92, Lem. 4.1] it is shown that (G, h) satifies (1.5.1), (1.5.2)

and (1.5.3) of [Del71], even without the assumption of ii). To show ii) it remains to show that Gad

has no factors of compact type under the above assumption. This and iii) will be easy to deduce

from i).

In order to classify the factors of G1,R which may arise it suffices to assume that BR is simple of
each type appearing in Definition 7.3. Moreover, we are able to reduce to the case ofBR isomorphic

to R, C or H by an easy Morita equivalence argument.

We shall make repeated use of the following result of Kottwitz: Let (C, ∗) be an R-algebra with

positive involution and (W, 〈 , 〉, h), (W ′, 〈 , 〉′, h′) be two triples that together with (C, ∗) satisfy
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the conditions of Definition 7.2 with R in place of Q. Then if W and W ′ are isomorphic as C⊗RC-

modules, with C acting via h and h′ respectively, then (W, 〈 , 〉) and (W ′〈 , 〉′) are isomorphic as
symplectic (C, ∗)-modules [Kot92, Lemma 4.2].

First assume that (BR, ∗) = (R, ∗ = id). Then
(

W = R⊕2, 〈 , 〉 =

(

0 1
−1 0

)

, h(i) =

(

0 −1
1 0

))

is a triple as above with corresponding BR ⊗R C-module C. As a result, any symplectic (BR, ∗)-
module VR must split as an orthogonal direct sum of terms isomorphic to W . By definition, G1(R)
for W⊕n is Sp2n.

Now assume that (BR, ∗) = (C, ∗ = z 7→ z̄). In this case, BR ⊗R C ∼= C× C has two irreducible

modules. The triple given by (C, trC/R(xiȳ), h(i) = i) (resp. (C,− trC/R(xiȳ), h(i) = −i)) corre-
sponds to the C ⊗R C-summand on which the C actions agree (resp. disagree). So if we denote

these modules by A and B respectively, then any (BR, ∗)-module is isomorphic to A⊕a ⊕ B⊕b. For

such a module, G1(R) consists of elements of GLn(C) which also preserve a pairing of signature
(b, a). In other words, G1,R is the indefinite unitary group Ub,a.

Finally, in the quaternion case we shall assume that (BR, ∗) = (Hop, ∗) (with Hop an exposi-
tional choice). Then BR ⊗R C ∼= M2(C) has a unique non-trivial irreducible module, which is of

R-dimension 4. This is realised by the triple (H, trH/R(xjỹ), h(i) = j) where Hop acts by right multi-

plication and y 7→ ỹ is the (anti-)involution given by y = a+bi+cj+dij 7→ a+bi−cj+dij. As such,
all symplectic (Hop, ∗)-modules are isomorphic to H⊕n for some n. In this case, EndHop(H⊕n) ∼=
Mn(H), with H acting by left multiplication and taking adjoints with respect to the pairing coin-

cides with A 7→ Ãt. If we embed H →֒ M2(C) by i 7→

(

i 0
0 −i

)

and j 7→

(

0 1
−1 0

)

and

extend this to an embedding Mn(H) →֒ M2n(C), then matrix transposition restricts, on the image
of Mn(H), to taking adjoints. As a result, we may view G1 as the algebraic group whose R-points

consists of elements of O2n(C) which lie in the image of Mn(H). Since the image of Mn(H) consists

of matrices g for which ḡ diag(J, ..., J) = diag(J, ..., J)g, these are precisely elements of O∗
2n(R).

To deduce ii), note that Gad
1

∼= Gad (indeed, the cokernel of Gad
1 →֒ Gad is a proper quotient of

Gm). From the above calculations we find that the only possible factors of Gad
1 of compact type

are Un,0 ∼= U0,n for n ≥ 2. For iii), first note that the largest anisotropic subtorus of Z(G◦) must

be contained in Z(G◦
1). But from the above calculation (Z(G◦

1)
◦)R is always anisotropic. Indeed,

Z(Sp2g) is finite whilst Z(Ua,b), Z(SO
∗
2n)

∼= Z(SO∗
2) are both isomorphic to U1.

The factorisation of Lemma 7.5 i) justifies the naming convention of Definition 7.3.

REMARK 7.6 In [Kot92] Kottwitz, allows Shimura data to have (not necessarily connected) reduc-
tive groups G of the form considered in Lemma 7.5 when G1,R has no factors isomorphic to Un,0
for n ≥ 2. Ancona’s results also hold in this generality and so ours will as well.

DEFINITION 7.7 A Shimura datum (G, h) which arises as in Lemma 7.5 is said to be of PEL-type

and the corresponding (B, ∗, V, 〈 , 〉, h) is said to be a PEL-datum for (G, h).

If we fix such a PEL-datum for (G, h), then we say that V ∈ Rep(G) is the standard representa-

tion of G. Shimura data with a fixed choice of PEL-datum have an explicit moduli interpretation
(see for example [Mil17, Sec. 8]).

EXAMPLE 7.8 From the proof of Lemma 7.5, it is easy to see that a Shimura datum may admit

multiple distinct PEL-data due to Morita equivalence. As an explicit example, consider the PEL-

datum

(

Q, ∗,Q⊕2,

(

0 1
−1 0

)

, h(a+ bi) =

(

a −b
b a

))

, which corresponds to the usual modu-

lar curves Shimura datum (GL2,H).
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8 Ancona’s construction

There is also a PEL-datum

(

M2(Q), ∗ = (−)t,Q⊕4,

(

0 I2
−I2 0

)

, h(a+ bi) =

(

aI2 −bI2
bI2 aI2

))

,

whereM2(Q) acts diagonally on Q⊕4 = Q⊕2⊕Q⊕2. ThenG is isomorphic to GL2 embedded within

GL4(Q) via

(

a b
c d

)

7→

(

aI2 bI2
cI2 dI2

)

, so that the associated Shimura datum is again (GL2,H).

8 Ancona’s construction

In the case of PEL-type Shimura data, Ancona has described a lift of µH
G defined on all of

RepF (G) [Anc15]. But, as defined, it is not immediately clear that it is well behaved with respect

to pullbacks or is even independent of the choice of PEL-datum (cf. Example 7.8). In this section
we briefly recall Ancona’s construction, but in the language of mixed Shimura varieties.

LEMMA 8.1 Given a Shimura datum (G, h) with a choice of PEL-datum (B, ∗, V, 〈 , 〉, h), then for all

fields F/Q, all objects of RepF (G) are, up to isomorphism, direct summands of some space of the form
⊕k

i=1 V
⊗ak
F ⊗ V ⊗bk

F (with VF = V ⊗Q F ).

Proof. As V is a faithful G-representation, this follows from the proof of [DM82, Prop. 2.20].

THEOREM 8.2 ([Anc15, Prop. 8.5]) Given a Shimura datum (G, h) with a PEL-datum (B, ∗, V, 〈 , 〉, h),

let K be a neat open compact subgroup of G(Af ) and L a Ẑ-lattice of VF (considered as a represen-

tation over Q). Then for any n ∈ N, there is a canonical inclusion of rings a : EndRepF (G)(V
⊗n
F ) →֒

EndHomMF /S(h
1(SVF ,K)∨⊗n) such that the diagram

EndRepF (G)(V
⊗n
F ) EndHomM/S(h

1(SVF ,K)∨⊗n)

EndVHS/S(C)(µ
H
G (VF )

⊗n)
µH
G

a

H•
B

commutes. Here, we have used the isomorphism ϕVF
: H1

B((SVF ,K)(C))∨ → µH
G(VF ) of Lemma 6.1 to

identify End(µH
G(VF )

⊗n) and End(H1((SVF ,K)(C))⊗n).

REMARK 8.3 Ancona’s strategy is to lift endomorphisms of VF itself (in our presentation, this is via

functoriality of mixed Shimura varieties) and permutations of V ⊗n
F in the obvious way, and then

additionally lift cycles arising from the polarisation via Poincaré duality and Hard Lefschetz (both

of which have a motivic interpretation). Ancona then shows that endomorphisms of the above

kinds generate all of EndRepF (G)(V
⊗n
F ) in the case of PEL-type Shimura varieties. Whilst Ancona’s

result allows for Shimura data corresponding to orthogonal groups, the analogous statement does

not hold for special orthogonal groups, which would require lifting additional cycles.

CONSTRUCTION 8.4 ([Anc15, pf. of Thm. 8.6]) There is a ⊗-functor AncG : RepF (G) → HomMF /S
defined as follows: set AncG(V

⊗n
F ) = h1(SVF ,K)∨⊗n and let AncG(α) for α ∈ End(V ⊗n

F ) be defined

via the map of Theorem 8.2. By Hom-tensor adjunction, Theorem 8.2 also defines a motivic lift of

the map 1 → V ⊗V ∨. More generally, to define the image of elements of Hom(V ⊗a
F ⊗V ∨⊗b

F , V ⊗c
F ⊗

V ∨⊗d
F ) it suffices to fix the image of Hom(V

⊗(a+d)
F , V

⊗(b+c)
F ), but for weight reasons this is zero

unless a− b = c− d, in which case it is covered by Theorem 8.2.

This also allows us to define, for any choice of idempotent e, the image of a direct summand

e · (
⊕

V ⊗an
F ⊗ V ∨⊗bn

F ). Since every element of W ∈ RepF (G) is of this form by Lemma 8.1, if

we pick a fixed isomorphism θW : W
∼
→ eW · (

⊕

V
⊗aW,n

F ⊗ V
∨⊗bW,n

F ) for each W , then we can
compatibly extend AncG to all of RepF (G). Finally, by composition with the section of Theorem

2.6, we obtain a functor RepF (G) → CHMF /S, which we also denote AncG.
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9 Compatibility with base change

LEMMA 8.5 The construction of AncG is, up to natural isomorphism, independent of all choices made.

Proof. Fix W ∈ RepF (G) and two summands of tensor spaces, e ·
⊕

V akF ⊗ V ∨⊗bk
F , e′ ·

⊕

V
⊗a′k
F ⊗

V
∨⊗b′k
F , which are both isomorphic to W . We must provide an isomorphism

e ·
⊕

h1(SVF ,K)∨ak ⊗ h1(SVF ,K)⊗bk → e′ ·
⊕

h1(SVF ,K)∨a
′
k ⊗ h1(SVF ,K)⊗b

′
k .

Given the compatibility of the Künneth formula with mixed Shimura varieties, we may assume that

W is irreducible and there is a corresponding isomorphism e · (V ⊗a
F ⊗V ∨⊗b

F ) → e · (V ⊗a′

F ⊗V ∨⊗b′

F ).

As before, it suffices to assume that b = b′ = 0. For weight reasons, we must then have that

a = a′. Finally, since Lemma 8.2 lifts all elements of EndRepF (G)(V
⊗a
F ), we obtain a motivic lift of

the isomorphism between the two tensor space representatives of W . For varying W , this yields a
natural isomorphism and so the desired independence.

REMARK 8.6 Let (G,X) be a Shimura datum with a chosen PEL-datum for which all objects of
Rep(G)AV are direct summands of V ⊕n for varying n. Then the argument given above can be

adapted to show that AncG extends µmot
G up to natural isomorphism. If the PEL-datum only has

factors of symplectic type in the sense of Definition 7.3, then this always holds (see Lemma 11.2).
This can also be checked to hold much more generally.

THEOREM 8.7 ([Anc15, Thm. 8.6]) Let (G, h) be a Shimura datum of PEL-type with a fixed PEL-
datum (B, ∗, V, 〈 , 〉, h). Fix also a choice of neat open compact subgroup K ≤ G(Af ) and denote by

S the Shimura variety ShK(G, h). Then the following diagram commutes,

RepF (G) CHMF /S

VHSF /S(C)

AncG

µH
G

H•
B

=⇒

up to canonical natural isomorphism.

Proof. The natural isomorphism necessarily depends on the choice of AncG. Explicitly, in the

notation of Construction 8.4, write ηG,V for

µH
G(θ

−1
W ) ◦ (eW ·

⊕

(ϕ
⊗aW,n

VF
⊗ ϕ

∨⊗bW,n

VF
)),

where ϕVF
is as defined in Notation 6.2. That ηG := (ηG,V )V defines a natural isomorphism now

follows from Lemma 6.3 i).

9 Compatibility with base change

In this section, we give conditions to ensure Ancona’s construction and Theorem 8.7 are com-

patible with base change, i.e. there is a commutative prism analogous to that of Theorem 6.4.

Let f : (G′, h′) → (G, h) be a morphism of Shimura data each with a chosen PEL-datum. Denote

their standard representations by V ′, V respectively. By Lemma 8.1, f∗V ∼= e · (
⊕

n(V
⊗an ⊗

V ∨⊗bn)). In order to show that Anc(−) is compatible with f , we would need to construct an
isomorphism

f∗(h1(SK,V )
∨)

∼
−→ e ·

(

⊕

h1(SK′,V ′)∨⊗an ⊗ h1(SK′,V ′)⊗bn
)

.

Unfortunately, such a morphism cannot be constructed using just functoriality of mixed Shimura

varieties. For this reason we make the following restriction:
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9 Compatibility with base change

DEFINITION 9.1 Let f : (G′, h′) → (G, h) be a morphism of PEL-type Shimura data each with a

choice of PEL-datum with standard representations V ′, V . If

(⋆) f∗V ∼= e · V ′⊕n for some n ∈ N and idempotent e ∈ EndRep(G′)(V
′⊕n),

then we say that f is an admissible morphism of Shimura varieties with PEL-data.

Note that if f is admissible, then f∗VF ∼= eF · V ′⊕n
F for any F . Admissibility implies that there

is exists a map (SK,V )S′ →
∏n
i=1 S

′
K′,V ′ as abelian varieties over S′.

EXAMPLE 9.2 Given a PEL-datum (B, ∗, V, 〈 , 〉, h) andB ⊆ B′ a Q-subalgebra, then (B′, ∗, V, 〈 , 〉, h)
is also a PEL-datum. If (G, h), (G′, h) denote the respective Shimura data, then the induced map

(G′, h) →֒ (G, h) with the above choices is an admissible morphism.

LEMMA 9.3 The identity map (G,X) → (G,X) is admissible for any choice of PEL-data for the source

and target.

Proof. Let V ′, V be the standard representations of the source and target respectively and B′, B the
chosen Q-algebras. It suffices to show that VR is a summand of some V ′⊕n

R . It is a consequence of

Lemma 7.5 i) that the pairs (BR, VR) and (B′
R, V

′
R) may only differ up to Morita equivalence (given

that they both correspond to G1,R). To be more explicit, say BR has a factor Ma(H) with corre-
sponding factor (H⊕a)⊕n of VR, then B′

R has a factor Mb(H) with corresponding factor (H⊕b)⊕n of

V ′
R. The corresponding factor of G1,R is then O∗

2n acting in the obvious way. It is then clear that VR
is a summand of some number of copies of V ′

R as GR-modules.

EXAMPLE 9.4 In Example 7.8, we described two PEL-data for (GL2,H), one with standard repre-

sentation V ′ = Q⊕2 and the other with standard representation V = Q⊕2⊕Q⊕2. The identity map

(GL2,H) → (GL2,H) is admissible for each of the two ways of assigning each (GL2,H) a distinct
choice of the two PEL-data. Indeed, id∗ V ′ ∼= (i1 ◦ π1) · V and id∗ V ∼= V ′⊕2.

Not all morphisms of Shimura data with chosen PEL-data are admissible (see Example 11.1),

but in Section 11 we show that if the PEL-datum on the source has only factors of symplectic type
then it is admissible. In any case, it is easy to check if a given morphism is admissible.

We now assume f : (G′, h′) → (G, h) is admissible and fix one such isomorphism as in (⋆).

CONSTRUCTION 9.5 We now have canonical isomorphisms:

f∗AncG(V ) = h1(SK,V )
∨
S′

= h1((SK,V )S′)∨,

using that the canonical projectors hi commute with pullbacks [DM91, Thm. 3.1],

Lem. 5.7
= h1(S′

K′,f∗V )
∨

(⋆)
= h1(S′

K′,e·V ′⊕n)∨

= e · (h1(S′
K′,V ′)⊕n)∨

= AncG′ f∗V.

by Lemma 5.7 i) and the Künneth formula 2.9. Write λV for this composite. For VF , there is an

analogous λVF
.

NOTATION 9.6 As functors on RepF (G), we extend this to a putative natural isomorphism λ : f∗ ◦
AncG =⇒ AncG′ ◦f∗ as follows: Let W ∈ RepF (G). Since the construction of AncG′ is indepen-

dent of the choice of the θ′W ′ (Lemma 8.5), we are free to assume that, for W ∈ RepF (G) with
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9 Compatibility with base change

θW : W
∼
→ eW ·(

⊕

V ⊗an
F ⊗V ∨⊗bn

F ), then θ′f∗W is obtained from f∗θW by taking the tensor products

and direct sums of (the base change of) the isomorphism of (⋆). So we have,

f∗AncG(W ) = eW · (
⊕

h1(SK,VF
)∨⊗ak
S′ ⊗ h1(SK,VF

)⊗bkS′ ),

AncG′ f∗(W ) = eW · (
⊕

(e ·
⊕

h1(S′
K′,V ′

F
))∨⊗ak ⊗ (e ·

⊕

h1(S′
K′,V ′

F
))⊗bk)).

There is now an obvious choice for λW given by taking sums and products of λVF
and its dual.

THEOREM 9.7 Let f : (G′, h′) → (G, h) be an admissible morphism of PEL-type Shimura data with

fixed PEL-data. Then

i) the following diagram commutes:

RepF (G) CHMF /S

RepF (G
′) CHMF /S

′

f∗

AncG

=⇒

f∗

AncG′

up to natural isomorphism given by λ : f∗ ◦AncG′ =⇒ AncG′ ◦f∗.

ii) there is a commutative prism

RepF (G) CHMF /S

VHSF /S(C)

RepF (G
′) CHMF /S

′

VHSF /S
′(C)

f∗

µH
G

AncG

f∗

H•
B

µH

G′

AncG′

H•
B

f∗

for which the prescribed natural isomorphisms on each face are compatible.

Proof. For i), we must check that λ is a natural isomorphism. In view of Theorem 2.6 (whose sec-
tion is used in Construction 8.4 to define AncG), it suffices to check commutativity after projection

to homological motives. Moreover, since the functorH•
B(−) is injective on HomHomMF /S′(hi(A1), h

i(A2))
for A1, A2 abelian varieties over S′ (see Remark 3.3), it is enough to check that H•

B(λ) : H
•
B ◦ f∗ ◦

AncG =⇒ H•
B ◦AncG′ ◦f∗ is a natural isomorphism. But we already have a natural isomorphism

H•
B ◦ f∗ ◦AncG =⇒ H•

B ◦AncG′ ◦f∗, namely by composing the realisations of the natural isomor-

phisms of the other faces appearing the prism of ii) (this doesn’t use the compatibility statement of
ii)). So it suffices to check that H•

B(λ) coincides with the one already constructed. We need only

check this for VF itself, i.e. that

H•
B(λVF

) = η−1
S′,f∗VF

◦ κVF
◦ f∗(ηS,VF

) ◦ ξ−1
h1(SK,VF

).

Here ηS,VF
is as defined in the proof of Theorem 8.7, κ is as defined in Construction 4.4 and ξ is

as defined in Remark 3.4.
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10 Étale canonical construction

Applying ξh1(SK,VF
) to both sides, this means checking the equality of:

f∗H1
B((SK,VF

)(C))→H1((SK′,f∗VF
)(C))

(⋆)
→ e ·H1

B((S
′
K′,V ′

F
)(C)),

f∗H1
B((SK,VF

)(C))
f∗ϕVF→ f∗µH

G(VF )
κV→ µH

G′(f∗VF )
ϕ−1

f∗VF→ H1
B((SK,fV

F
)(C))

(⋆)
→ e ·

⊕

H1
B((S

′
K′,V ′

F
)(C)),

where, in the second line the composite of the last two maps is η−1
S′,f∗VF

, as defined in Theorem

8.7. The equality now follows from the commutativity of:

f∗H1
B((SK,VF

)(C)) f∗µH
G(VF )

H1
B((S

′
K′,f∗VF

)(C)) µH
G′(f∗VF )

f∗(ϕVF
)

H1(λVF
) κVF

ϕf∗VF

as shown in Lemma 6.3 ii).

In proving i) we, in fact, verified the compatibility statement of ii).

Note that the statement of Theorem 9.7 i) is independent of the choice of realisation. Since the

identity map is always admissible (Lemma 9.3), this shows that Ancona’s construction is indepen-
dent of the choice of PEL-datum.

10 Étale canonical construction

Canonical constructions arise more generally than just the Hodge realisation, and both µmot
G

and Ancona’s construction should also be lifts of any such construction. We sketch this for the

étale realisation following [Wil97, Sec. II.4]. We use the notation of the étale realisation described

in Lemma 3.6 .

NOTATION 10.1 Let (G,X) be a Shimura datum and K be a neat open compact subgroup of G(Af ).
We consider S := ShK(G,X) to be defined over its reflex field E/Q via canonical models. Let

V ∈ RepF (G) and L be a K-stable full rank Ẑ-sublattice of V (Af ). Recall from Section 5 that

there is a mixed Shimura variety SK,V := ShL⋊K(V ⋊G, X̃) whose reflex field is the same as that
of S. The projection and Levi section then define regular maps p : SK,V → S, ι : S → SK,V .

CONSTRUCTION 10.2 Let (G,X) be a Shimura datum and K ≤ G(Af ) neat open compact. If

K ′ ≤ K is an open normal subgroup, then there is a right action of K/K ′ on ShK′(G,X). Since we

are assuming that the centre of G is an almost-direct product of a Q-split and R-anisotropic torus,
the action of K/K ′ is free on C-points and

ShK′(G,X) −→ ShK(G,X)

is an étale cover of smooth algebraic varieties with Galois group K/K ′ (see [Pin92, Prop. 3.3.3.
and (3.4.1)]).

Taking the inverse limit over K ′ ≤ K we obtain a pro-Galois covering of ShK(G,X) with Galois
group K. Then, in the notation of Section 3, any Fλ-linear continuous representation of K will

define a lisse Fλ-sheaf on ShK(G,X).
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10 Étale canonical construction

Given (GF
ρ
→ GL(V )) ∈ RepF (G), we obtain such a representation via

K →֒ G(Af ) ։ G(Qℓ) →֒ G(Fλ) = GF (Fλ)
ρ(Fλ)
→ GL(V )(Fλ).

This defines a functor

µét
G : RepF (G) → ÉtFλ

/S,

which we refer to as the étale canonical construction.

LEMMA 10.3 Given a Shimura datum (G,X) and V ∈ RepF (G)
AV, then there is a canonical identifi-

cation ϕV,λ : H
1
λ(SK,V )

∨ ∼
→ µét

G(V ).

Proof. The étale canonical construction extends verbatim to mixed Shimura varieties. As in the
Hodge case, the diagram

RepF (V ⋊G) ÉtFλ
/SK,V

RepF (G) ÉtFλ
/S

Hi(V,−)

µét
V ⋊G

Rip∗

µét
G

commutes [Wil97, Thm. II.4.7, Thm. I.4.3]. The dual of the desired isomorphism is given by

commutativity in the case of the trivial representation F .

LEMMA 10.4 i) Let (G,X) be a Shimura datum and α : V1 → V2 a morphism in RepF (G)
AV. Fix

a neat open compact subgroup K ≤ G(Af ) and let α also denote the map SK,V1
→ SK,V2

. Then

the following diagram commutes:

H1
λ(SK,V1

)∨ µét
G(V1)

H1
λ(SK,V2

)∨ µét
G(V2)

ϕV1,λ

(α∗)∨ µH
G (α)

ϕV2,λ

ii) Let f : (G′,X′) → (G,X) be a morphism of Shimura data and K ≤ G(Af ),K
′ ≤ G′(Af ) neat

open compact subgroups for which f(K ′) ≤ K. Write E′ for the reflex field of (G′,X′) (so

E′ ⊇ E). For any V ∈ RepF (G)
AV, the following diagram commutes:

f∗(H1
λ(SK,V )

∨)E′ f∗µét
G(V )E′

H1
λ(S

′
K′,f∗V )

∨ µét
G′(f∗V )

f∗(ϕV,λ)

ϕf∗V,λ

Here, on the top row, f∗ denotes pullback via the map SK′,f∗V → (SK,V )E′ and (−)E′ pullback

via (SK,V )E′ → SK,V .

Proof. As for Lemma 6.3, but using [Wil97, Cor. I.3.2 i)].

We now obtain results analogous to Theorem 6.4 and Lemmas 8.7, 9.7, whose proofs are near
enough identical.

LEMMA 10.5 Let (G,X) be an arbitrary Shimura datum and K ≤ G(Af ) neat open compact. Denote

by S the Shimura variety ShK(G,X). Then the following diagram commutes,

RepF (G)
AV CHMF /S

ÉtFλ
/S

µmot
G

µét
G

H•
λ

=⇒
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11 Results on admissibility

up to natural isomorphism given by ϕ : H•
λ◦µ

mot
G =⇒ µH

G . Moreover, under pullback by f : (G′,X′) →
(G,X), the triangles for (G,X), (G′,X′) form a commutative prism for which the given natural trans-

formations on each face are compatible.

LEMMA 10.6 i) Let (G, h) be a Shimura datum of PEL-type with a fixed PEL datum (B, ∗, V, 〈 , 〉, h).
Fix also a choice of neat open compact subgroupK ≤ G(Af ) and denote by S the Shimura variety
ShK(G, h). Then the following diagram commutes,

RepF (G) CHMF /S

ÉtFλ
/S

AncG

µét
G

H•
λ

=⇒

up to canonical natural isomorphism.

ii) Given a morphism of Shimura data f : (G′, h′) → (G, h), each of PEL-type with a fixed datum,

which is admissible in the sense of Definition 9.1, then the triangles for (G, h) and for (G′, h′) to-
gether with base change form a commutative prism as in Theorem 9.7. Each face has a prescribed

natural isomorphism which altogether are compatible.

11 Results on admissibility

In this section, we give additional results on the admissibility of morphisms of Shimura data
with chosen PEL-data. Firstly, not all such morphisms are admissible:

EXAMPLE 11.1 Let (G′, h′) be defined by the PEL-datum

(Q(i), ∗,Q(i)⊕2, (− trQ(i)/Q(xiȳ)⊕ trQ(i)/Q(xiȳ)), h
′)

where h′ : C → EndR(C
⊕2) is the map which sends z to multiplication by (z, z̄). We write GU1,1

for G′. Then (GU1,1)R coincides with the usual generalised unitary group of complex matrices

preserving, up to scaling, a Hermitian form of signature (1,−1).

Let χ denote the two dimensional representation of GU1,1 given by the composition

χ : GU1,1
det
−→ ResQ(i)/QGm

z/z̄
−→ U1 −→ GL(Q(i)).

Here, the determinant is given by considering GU1,1 ⊂ AutQ(i)(Q(i)⊕2) whilst U1 denotes the

norm one elements of Q(i) and the final map is given by the action of U1 on Q(i) by multiplication.

Note that the image of χ preserves the symmetric non-degenerate pairing trQ(i)/Q(ab̄) and that,
after base change to R, χ is trivial on the image of h′.

Now let V ′ denote the standard representation of GU1,1 and consider the representation

GU1,1 −→ GSp(V ′)×GO(Q(i))
⊗
−→ GSp(V ′ ⊗Q Q(i)).

Since χ is trivial on imh′, this is a morphism of Shimura data when GSp(V ′ ⊗Q Q(i)) is given the

PEL-datum

(Q, ∗ = id, V ′ ⊗Q Q(i), 〈 , 〉V ′ ⊗Q(i), h(z) =

(

z 0
0 z̄

)

⊗ id).

It can be checked that f∗(V ′ ⊗Q Q(i)) ∼= V ′ ⊗ χ is not isomorphic to V ′⊕2, for example by base

changing to C where GU1,1 becomes isomorphic to Gm ×GL2. As a result, f is not admissible.
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In contrast, in the symplectic case there are no non-admissible morphisms. In particular, there

do not exist non-trivial representations χ which are trivial on the image of h in the symplectic case.

LEMMA 11.2 Let (G,X) be a Shimura datum with a choice of PEL-datum (B, ∗, V, 〈 , 〉, h) for which

BR only has factors of symplectic type (in the sense of Definition 7.3). Then all objects of Rep(G)AV

are direct summands of V ⊕k for some k.

Proof. It suffices to show the analogous statement after base change to C. LetW be a C-representation

ofGC of Hodge type {(−1, 0), (0,−1)}. By Lemma 7.5, G1,C
∼=

∏

i Sp2mi
. Accordingly, W |G1,C

splits
as a direct sum of irreducibles on which G1,C acts via projection to some simple factor.

CLAIM Let T be an irreducible representation of Sp2n that upon restriction to the subspace

S ⊃ U1
∼=

{(

aIg −bIg
bIg aIg

) ∣

∣

∣

∣

a2 + b2 = 1

}

(z ⊕ z̄)-isotypical. Then T is isomorphic to the standard representation.

Proof of Claim. Since Sp2n is simply connected, it is equivalent to show the analogous statement

for irreducible representations of sp2n that upon restriction to
(

0 −bIg
bIg 0

)

have weights {1,−1}. In the notation of [FH91, Sec. 17.2], these are precisely irreducible repre-

sentations with highest weight λ1L1 + ...+ λnLm, for λi integers with λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 and
for which

∑

λi = 1. As such, the only possible highest weight is L1, which does indeed correspond

to the standard representation.

From the proof of Lemma 7.5, the image of U1 under h can be assumed to have the form

given in the claim on each simple factor and since W is of Hodge type {(−1, 0), (0,−1)}, W |h(U1)

is (z ⊕ z̄)-isotypical. By the claim, the irreducible factors of W |G1,C
must be summands of the

standard representations of the corresponding factor of G1,C, and therefore also of VC.

Since the action of scalar matrices on W is determined by its weight, the functor Rep(GC)
AV →

Rep(G1,C) is faithful. In particular, there is at most one representation, up to isomorphism, of

G′
C of Hodge type {(−1, 0), (0,−1)} restricting to any representation of G1,C. Since all irreducible

representations of W |G1,C
are summands of the standard representation of G′

1,C and the standard

representation of GC is one representation restricting to the standard representation of G1,C, we

must have the all irreducible objects of Rep(GC)
AV are direct summands of VC.

Lemma 11.2 does not hold in the orthogonal case, but is true upon restriction to G◦.

Under the assumptions of the lemma AncG extends µmot
G up to natural isomorphism (see Re-

mark 8.6). We also find:

COROLLARY 11.3 Let (G′,X′) be a Shimura datum with a choice of PEL-datum (B′, ∗′, V ′, 〈 , 〉′, h′)
for which BR only has factors of symplectic type (in the sense of Definition 7.3). Then for any Shimura

datum (G, h) with a choice of PEL-datum, any map f : (G′, h′) → (G, h) is admissible (i.e. satisfies

(⋆) of Definition 9.1).
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