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Abstract

We provide a new characterisation of Duquesne and Le Gall’s α-stable tree, α∈(1, 2],
as the solution of a recursive distribution equation (RDE) of the form T d

=g (ξ,Ti, i≥0),
where g is a concatenation operator, ξ = (ξi, i ≥ 0) a sequence of scaling factors, Ti,
i ≥ 0, and T are i.i.d. trees independent of ξ. This generalises a version of the
well-known characterisation of the Brownian Continuum Random Tree due to Aldous,
Albenque and Goldschmidt. By relating to previous results on a rather different class
of RDE, we explore the present RDE and obtain for a large class of similar RDEs that
the fixpoint is unique (up to multiplication by a constant) and attractive.

Keywords: Recursive distribution equation; R-tree; Gromov–Hausdorff distance;
stable tree

AMS subject classification: 60J80; 60J05.

1 Introduction

R-trees, constitute a class of loop-free length spaces which frequently arise as scaling limits
of many discrete trees [25]. In their own right, R-trees have diverse applications from rough
path integration theory [36] to phylogenetic models [32]. Following Aldous’s introduction
of the Brownian Continuum Random Tree (BCRT) [5, 6, 7], significant attention turned
to random R-trees. Naturally, the BCRT manifests in the asymptotics of discrete tree-
like structures, including uniform random labelled trees [5, 7] and critical Galton–Watson
trees with finite offspring variance [5]. Bewilderingly, recent applications of the BCRT
have surpassed objects not overtly tree-like, for example, random recursive triangulations
[21], random planar quadrangulations [44], and Liouville quantum gravity [23].

The BCRT was generalised by Duquesne and Le Gall’s α-stable trees [27, 28], param-
eterised by α ∈ (1, 2]. The α-stable trees are themselves a special case of Le Gall and Le
Jan’s Lévy trees [38], representing the genealogies of continuous-state branching processes
with branching mechanism ψ(λ) = λα. When α = 2, we recover the BCRT. Akin to the
BCRT, the family of α-stable trees constitutes all possible scaling limits of Galton–Watson
trees, conditioned on the total progeny, whose offspring distribution lies in the domain of
attraction of an α-stable law [24]. Likewise, α-stable trees emerge in scaling limits of
numerous discrete tree structures, e.g., vertex-cut Galton–Watson trees [22] and condi-
tioned stable Lévy forests [16]. Pursuing a dedicated approach with Lévy processes gives
links to superprocesses [27, 38], and beta-coalescents in genetic models [1, 11]. Particular
aspects of α-stable trees, such as, invariance under uniform re-rooting [35], Hausdorff and
packing measures [26, 29, 28], spectral dimensions [19], heights and diameters [30], and an
embedding property of stable trees [20], have also been closely studied.

We wish to emphasise a crucial self-similarity property of α-stable trees. This property
plausibly explains the prevalence of α-stable trees in such diverse contexts, especially in
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Figure 1: RDEs derived from the decomposition of the BCRT (simulation courtesy of Igor
Kortchemski) around a branchpoint (the red triangle) into three parts and along the spine
from the root (green square) to a random leaf (green circle) into “infinitely many” parts.

problems of a recursive nature. Decomposing an α-stable tree above a certain height or
at appropriate nodes results in the connected components after decomposition forming
rescaled independent copies of the original tree. This observation was first formalised by
Miermont [41, 42], building upon Bertoin’s self-similar fragmentation theory [12].

In this paper, we express the self-similarity of the α-stable tree by a new recursive
distribution equation (RDE) in the setting of Aldous and Bandyopadhyay’s survey paper
[9]. Given a random variable T valued in a Polish metric space (T, d), an RDE is a
stochastic equation of the form

T d
= g (ξ, Ti, i ≥ 0) on T,

where (Ti, i ≥ 0) are i.i.d. and distributed as T , g is a measurable mapping, and ξ is inde-
pendent of (Ti, i ≥ 0). RDEs are pertinent in various contexts with recursive structures,
including Galton–Watson branching processes [9], Poisson weighted infinite trees [10], and
Quicksort algorithms [51].

RDEs have been employed in the recursive construction of the BCRT by Albenque and
Goldschmidt [4], recursively concatenating three rescaled trees at a single point. Broutin
and Sulzbach [14] extended this to further recursive combinatorial structures and weighted
R-trees under a finite concatenation operation. Rembart and Winkel [49] did similarly
with R-trees under a different operation that concatenates a countable (possibly infinite)
number of rescaled trees to a branch/spine. See Figure 1.

In this paper, we consider as g the operation that concatenates at a single point a

countable number of R-trees Ti
d
= T , rescaled by ξi ≥ 0, i ≥ 0, respectively, seeking to

obtain a version of T . Theorem 3.8 shows that the law of the α-stable tree is a fixpoint
solution of an RDE of this type. This is illustrated in Figure 2. Our primary argument
appeals to Marchal’s random growth algorithm [40], which provides a recursive method of
constructing α-stable trees as a scaling limit. To explore the uniqueness of this solution
(up to rescaling distances by a constant) we first observe that we require certain finite
height moments. In the absence of this condition, further solutions can be obtained, for
example, by decorating the α-stable tree with massless branches, see Remark 3.9.

Let us explore our approach to uniqueness and attraction in the context of the liter-
ature. While our results closely resemble [4] and [14] for the (binary) BCRT and other
finitely branching structures, our methods are rather different. Indeed, our results extend
finite concatenation operations to handle trees such as the α-stable trees, whose branch
points are of countably infinite multiplicity. Extending their uniqueness and attraction
results is not straightforward using the methods of [4, 14]. On the other hand, [49] presents
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Figure 2: RDEs derived from the decomposition of a stable tree (simulation courtesy of
Igor Kortchemski) around a branchpoint (the red star) into “infinitely many” parts.

an RDE for which the law of the α-stable tree is a unique and attractive fixpoint, but
the concatenation approach of employing strings of beads (weighted intervals) and bead-
splitting processes of [47] is different. Our RDEs only require countably infinite weight
sequences such as Poisson–Dirichlet sequences and gives a less technical recursive con-
struction of α-stable trees that elucidates how mass partitions in α-stable trees relate to
urn models and partition-valued processes.

Specifically, we prove the self-similarity property of α-stable trees decomposed at a
branch point solely via the recursive nature of Marchal’s algorithm, without need for
Miermont’s fragmentation tree theory [42]. To prove our uniqueness and attraction result,
Theorem 4.2, we establish a connection between the two types of RDE, which effectively
breaks down the proofs here into a one-dimensional martingale argument, the uniqueness
and attraction of the RDE of [49] and a tightness argument that again builds on [49] by
constructing an auxiliary dominating CRT.

The structure of this paper is as follows. In Section 2, we state background results
on R-trees and α-stable trees and collect tools required to obtain our results, namely the
rigorous setup of RDEs, Pólya urn models, the Chinese restaurant process and Marchal’s
algorithm. Section 3 is dedicated to establishing an RDE for the law of the α-stable tree
and indicating other fixpoint solutions to the same RDE. In Section 4, we obtain the
uniqueness and attraction properties of the RDE solution up to multiplicative constants.
The latter arguments are in a general setup where g is the single-point concatenation
operation, but the distribution of ξ is just subject to some non-degeneracy assumptions.

2 Preliminaries

We introduce several background formalisms and theories on metric spaces of R-trees,
α-stable trees, urn schemes and recursive distribution equations. We also state a general
lemma that we will use to establish independence.
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2.1 R-trees and topologies on sets of (weighted or marked) R-trees

Definition 2.1 (R-tree) A metric space (T , d) is an R-tree if for every a, b ∈ T , the
following two conditions hold.

(i) There exists a unique isometry fa,b : [0, d(a, b)] → T such that fa,b(0) = a and
fa,b(d(a, b)) = b. In this case, let Ja, bK denote the image fa,b ([0, d(a, b)]).

(ii) If h : [0, 1] → T is a continuous injective map with h (0) = a and h (1) = b, then
h ([0, 1]) = Ja, bK, i.e. the only non self-intersecting path from a to b is Ja, bK.

A rooted R-tree (T , d, ρ) is an R-tree (T , d) with a distinguished vertex ρ ∈ T called the
root. The degree of a vertex a ∈ T is the number of connected components of T \ {a}. A
leaf is a vertex a ∈ T \{ρ} with degree one. We denote the set of leaves in T by L (T ). We
say that a ∈ T \{ρ} is a branch point if its degree is at least three. Finally, for any a ∈ T ,
we define the height of a as d (ρ, a), and the height of T as ht (T ) := supa∈T d (ρ, a).

Two rooted R-trees (T , d, ρ) and (T ′, d′, ρ′) are GH-equivalent if there exists an isome-
try f : T → T ′ such that f (ρ) = ρ′. The set of GH-equivalence classes of compact rooted
R-trees is denoted by T. The Gromov–Hausdorff distance between two rooted compact
R-trees (T , d, ρ) and (T ′, d′, ρ′) is defined as

dGH((T , d, ρ), (T ′, d′, ρ′)) := inf
φ,φ′

(
δH(φ(T ), φ′(T ′)) ∨ δ(φ(ρ), φ′(ρ′))

)
(1)

where the infimum is taken over all metric spaces (X, δ) and all isometric embeddings
φ : T → X and φ′ : T ′ → X, and where δH is the Hausdorff metric on compact subsets
of (X, δ). The Gromov–Hausdorff distance only depends on the GH-equivalence classes of
(T , d, ρ) and (T ′, d′, ρ′) and induces a metric on T, which we also denote by dGH.

There is an alternative characterisation of the Gromov–Hausdorff metric [15, The-
orem 7.3.25]. Given two compact metric spaces (X, δ) and (X ′, δ′), a correspondence
between X and X ′ is a subset R ⊆ X×X ′ such that for every x ∈ X, there exists at least
one x′ ∈ X ′ such that (x, x′) ∈ R, and conversely, for every y′ ∈ X ′, there exists at least
one y ∈ X such that (y, y′) ∈ R. The distortion of this correspondence R is defined as

dis(R) := sup
{ ∣∣δ(x, y)− δ′(x′, y′)

∣∣ : (x, x′), (y, y′) ∈ R
}
. (2)

In our setting of two compact rooted R-trees (T , d, ρ) and (T ′, d′, ρ′), we obtain

dGH

(
(T , d, ρ) ,

(
T ′, d′, ρ′

))
=

1

2
inf

R∈C(T ,T ′)
dis (R) , (3)

where C(T , T ′) is the set of all correspondences R between (T , d, ρ) and (T ′, d′, ρ′) which
have (ρ, ρ′) in correspondence, i.e. for which (ρ, ρ′) ∈ R.

We will want to specify a marked point on a compact rooted R-tree. We refer the
reader to [43, Section 6.4] for further extensions. Given two marked compact rooted
R-trees (T , d, ρ, x) and (T ′, d′, ρ′, x′), the marked Gromov–Hausdorff distance is defined as

dm
GH

(
(T , d, ρ, x),

(
T ′, d′, ρ′, x′

))
:= inf

φ,φ′

(
δH

(
φ(T ), φ′

(
T ′
))
∨ δ
(
φ(ρ), φ′

(
ρ′
))
∨ δ
(
φ(x) , φ′(x′)

))
,

where the infimum is taken over all metric spaces (X, δ) and all isometric embeddings
φ : T → X and φ′ : T ′ → X. We say two marked compact rooted R-trees are GHm-
equivalent if there exists an isometry f : T → T ′ such that f(ρ) = ρ′ and f(x) = x′. We
denote the set of equivalence classes of marked compact rooted R-trees by Tm. The marked
Gromov–Hausdorff distance only depends on the GHm-equivalence classes of (T , d, ρ, x)
and induces a metric on Tm, which we also denote by dm

GH. In the spirit of (3), we obtain
for marked compact rooted R-trees (T , d, ρ, x) and (T ′, d′, ρ′, x′),

dm
GH

(
(T , d, ρ, x) ,

(
T ′, d′, ρ′, x′

))
=

1

2
inf

R∈Cm(T ,T ′)
dis (R) . (4)
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where we denote by Cm(T , T ′) the set of all correspondences between (T , d, ρ, x) and
(T ′, d′, ρ′, x′) which have (ρ, ρ′) and (x, x′) in correspondence; cf. [43, Proposition 9(i)].

Suppose now that (X, δ) is a complete metric space. Then (X, δ, µ) is a metric measure
space if (X, δ) is further equipped with a Borel probability measure µ. We define a weighted
R-tree as a compact rooted R-tree (T , d, ρ) equipped with a Borel probability measure
µ, which we refer to as mass measure. We will often write T for a weighted R-tree,
the distance, the root and the mass measure being implicit. For two weighted R-trees
(T , d, ρ, µ), (T ′, d′, ρ′, µ′), the Gromov–Hausdorff–Prokhorov distance is defined as

dGHP((T , d, ρ, µ), (T ′, d′, ρ′, µ′)) := inf
φ,φ′

(
δH(φ(T ), φ′(T ′)) ∨ δ(φ(ρ), φ′(ρ′)) ∨ δP(φ∗µ, φ

′
∗µ
′))
)
,

where the infimum is taken over all metric spaces (X, δ) and all isometric embeddings
φ : T → X and φ′ : T ′ → X, δP denotes the Prokhorov-metric, and φ∗µ, φ′∗µ

′ are the
push-forwards of µ, µ′ under φ, φ′ respectively.

Two weighted R-trees (T , d, ρ, µ) and (T ′, d′, ρ′, µ′) are considered GHP-equivalent if
there is an isometry f : (T , d, ρ, µ) → (T ′, d′, ρ′, µ′) such that f(ρ) = ρ′ and µ′ is the
push-forward of µ under f . Denote the set of equivalence classes of weighted R-trees by
Tw. The Gromov–Hausdorff–Prokhorov distance naturally induces a metric on Tw.

Proposition 2.2 The spaces (T, dGH), (Tm, d
m
GH) and (Tw, dGHP) are Polish.

Proof. See, e.g., [31, Theorem 4.23], [43, Proposition 9(ii)] and [2, Theorem 2.7]. �

In [5, 6, 7], Aldous originally built his theory of continuum trees, in `1(N). Indeed,
some of our arguments will benefit from specific representatives in `1(U), where U is
the countable set of integer words. In any case, [7, Theorem 3] connects Aldous’s `1(N)
embedding and the above setup of weighted R-trees. So, we make the following definition.

Definition 2.3 (Continuum Random Tree) A weighted R-tree (T , d, ρ, µ) is a con-
tinuum tree if the Borel probability measure µ satisfies the following properties.

(i) µ (L (T )) = 1, that is, µ is supported by the leaves of T .

(ii) µ is non-atomic, that is, if a ∈ L (T ), then µ ({a}) = 0.

(iii) For every a ∈ T \ L (T ), we have µ (T (a)) > 0, where T (a) := {σ ∈ T : a ∈ Jρ, σK}
is the subtree above a in T .

A Continuum Random Tree (CRT) is a random variable valued in a space (of GHP-equiva-
lence classes) of continuum trees.

Note that conditions (i) and (ii) above imply that a continuum tree has uncountably
many leaves. It is not obvious how to determine the distribution of a CRT simply by its
definition. To do this, it is useful to have a notion of reduced trees.

Definition 2.4 (Reduced tree) Let (T , d, ρ, µ) be a CRT andm ≥ 1. A uniform sample
of m points according to the measure µ is a vector (V1, . . . , Vm) such that Vi ∼ µ, i =
1, . . . ,m, are i.i.d.. The associated m-th reduced subtree of (T , d, ρ, µ) is the subtree of T
spanned by V1, . . . , Vm and ρ, i.e.

⋃
1≤j≤mJρ, VjK.

The distribution of the m-th reduced subtree is fully specified by its tree shape when
regarded as a discrete, graph-theoretic, rooted tree with m labelled leaves, and by its edge
lengths. The consistent system of m-th reduced subtree distributions, m ≥ 1, may be
regarded as a system of finite-dimensional distributions of a CRT [4]. It is well-known
that they determine the distribution of a CRT on Tw.

We now turn to Marchal’s algorithm which leads to the definition of a special class of
continuum random trees, the α-stable trees with parameter α ∈ (1, 2].
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2.2 Marchal’s algorithm and α-stable trees

Marchal’s random growth algorithm generalises Rémy’s algorithm [50], and also relates to
Marchal’s earlier work on the Lukasiewicz correspondence of random trees to excursions
of a simple random walk converging to a Brownian excursion [39]. We adapt the notation
employed in Curien and Haas [20] in the following.

Definition 2.5 (Marchal’s algorithm) Given a parameter α ∈ (1, 2], we recursively
construct a sequence (Tα(n))n≥1 valued in the set of leaf-labelled discrete trees, with
Tα(n) having n leaves and a root, as follows.

(I) Initialise Tα(1) as the unique tree with one edge and two labelled endpoints, A0 and
A1. Regard A0 as the root and A1 as a marked leaf.

(II) For n ≥ 1, given Tα(n), assign weight α− 1 to each edge of Tα(n), weight d− 1−α
to each branch point of degree d ≥ 3, and no weight to other vertices. Choose an
edge or a branch point of Tα(n) with probability proportional to its weight.

(III) Distinguish two cases depending on the selection in (II).

(a) If an edge was selected, split the chosen edge into two edges at its midpoint by
a new middle vertex denoted by Vn+1. At Vn+1, attach a new edge carrying the
(n+ 1)-st leaf, denoted by An+1.

(b) If a branch point was selected, attach a new edge carrying the (n + 1)-st leaf
at the chosen vertex. Denote the new leaf by An+1.

(IV) Repeat from (II) with n 7→ n+ 1.

Set Ĩ := {k ≥ 2: Vk is created}, and define the limiting set of vertices at time ∞ as

Tα(∞) :=
⋃
n≥0

{An} ∪
⋃
k∈Ĩ

{Vk}.

Define the measure W (·) which assigns the total weight to sub-structures in Marchal’s
algorithm. It is easy to see that, regardless of tree shape, for all n ≥ 1, the total weight
of the tree is W (Tα(n)) = nα− 1. The distribution of the shape of the trees constructed
in Marchal’s algorithm was given in [40, Theorem 1]:

Proposition 2.6 Suppose t is a given leaf-labelled tree with n leaves and a root, where
n ≥ 2, then the tree shape of Tα(n) has distribution

P (Tα(n) = t) =

∏
v∈t pdeg(v)∏n−1
i=1 (iα− 1)

,

where p1 = 1, p2 = 0, and pk =
∣∣∣∏k−2

i=1 (α− i)
∣∣∣ for k ≥ 3.

In the limit, a subtlety of Marchal’s algorithm is that, almost surely, no two vertices
chosen from Tα(∞) are adjacent. Suppose u and v are two vertices incident to edge e at
time n0, then almost surely, we observe (countably) infinitely many branch points added
into the path between the end vertices of e, as Marchal’s algorithm progresses.

To turn the limiting object into an R-tree, we take the natural completion of Tα(∞)
by ‘filling in-between’ the countably many pairwise non-adjacent vertices. More precisely,
between two chosen points u, v ∈ Tα(n), the above entails that the graph distance between
them tends to infinity as n→∞. By rescaling this distance appropriately and by identi-
fying a suitable L2-bounded martingale, invoking the Martingale Convergence Theorem,
Marchal demonstrates the following limiting behaviour [40, Theorem 2].
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Proposition 2.7 For α∈(1, 2], let β :=1−1/α ∈ (0, 1/2]. For all u, v ∈ Tα(∞), the limit

d(u, v) = lim
n→∞

n−βdn(u, v)

exists a.s., where dn is the graph distance on Tα(n). Furthermore, the completion(
Tα(∞), d

)
of (Tα(∞), d) is an R-tree.

We may regard Tα(∞) as the scaling limit of Marchal’s algorithm as an R-tree. Combining
these observations, if (Tα(n))n≥1 is an R-tree representation of (Tα(n))n≥1, then the limit

Tα(n)

αnβ
→ Tα as n→∞ (5)

holds as a convergence of finite-dimensional distributions of reduced subtrees for some
random R-tree Tα. [34, Corollary 24] checks that Tα may be constructed on the same
probability space supporting (Tα(n))n≥1 with (5) holding in probability in the Gromov–
Hausdorff sense. We state an improved result by Curien and Haas [20, Theorem 5(iii)].

Proposition 2.8 Let µn denote the empirical mass measure on the leaves of Tα(n), let
dn be the graph distance on Tα(n), and let ρn be the root. Then(

Tα(n),
dn
αnβ

, ρn, µn

)
a.s.−→ (Tα, dα, ρα, µα) as n→∞,

in the Gromov–Hausdorff–Prokhorov topology, for some CRT (Tα, dα, ρα, µα).

Definition 2.9 (α-stable tree) We call (Tα, dα, ρα, µα) the α-stable tree, α ∈ (1, 2].

It is often useful to parametrize the α-stable tree by an index β := 1− 1/α ∈ (0, 1/2],
as in Proposition 2.7. We often rescale trees: distances by cβ and masses by c, as in(

Tα, cβdα, ρα, cµα
)
.

When α = 2, no weight is ever given to a vertex of T2(n), n ≥ 1, in the second step of
Marchal’s algorithm. In the scaling limit, this coheres with the fact that T2 is binary a.s..

Note that the tree (Tα, dα, ρα, µα) induces a distribution ςα on Tw. We call the distri-
bution ςα the law of the α-stable tree. Similarly, we will consider the distribution ςm

α of
(Tα, dα, ρα, xα) on Tm when xα ∼ µα is a marked element of Tα sampled from µα, which
we call the law of the marked α-stable tree.

At this juncture, it is instructive to introduce further developments in analogous con-
structions of α-stable trees, and more general trees, based on Marchal’s algorithm.

Marchal’s algorithm is a special case of Chen, Ford and Winkel’s alpha-gamma model
[17]. The alpha-gamma model allows further discrimination between edges adjacent to a
leaf (external edges) and the remaining internal edges.

The distribution of the sequence of tree shapes obtained in the line-breaking construc-
tion of the stable tree introduced by Goldschmidt and Haas is the same as that obtained by
Marchal’s algorithm [33, Proposition 3.7]. However, Goldschmidt and Haas’ constructions
focus on distributions of edge lengths rather than mass in an α-stable tree.

Recently, Rembart and Winkel introduced a two-colour line-breaking construction [48,
Algorithm 1.3] unifying aspects of the alpha-gamma model, and Goldschmidt and Haas’
line-breaking construction. It ascribes a notion of length to the weights at branch points of
Goldschmidt and Haas’ line-breaking algorithm by growing trees at these branch points.

Little emphasis has been placed on the recursive nature of Marchal’s algorithm per
se. In [20], Curien and Haas exploit this property to demonstrate a pruning procedure
to obtain a rescaled α′-stable tree from an α-stable tree, where 1 < α < α′ ≤ 2. They
identified sub-constructions within Marchal’s algorithm with parameter α that evolve as a
time-changed Marchal algorithm with parameter α′. We use a similar approach in Section
3 to find a recursive distribution equation where the law of the α-stable tree is a solution.
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2.3 Pólya urns and Chinese restaurant processes

We briefly recap the concepts of Pólya urns and Chinese restaurant processes.
Given β > 0 and θ > −β, a random variable L valued in [0,∞) has a generalised

Mittag–Leffler distribution with parameters (β, θ), denoted by L ∼ ML (β, θ), if it has
p-th moment

E [Lp] =
Γ(θ + 1)Γ (θ/β + 1 + p)

Γ(θ/β + 1)Γ (θ + βp+ 1)
, p ≥ 1. (6)

The Mittag–Leffler distribution is uniquely characterised by the moments (6), see e.g.
[46]. It was shown in [3, Lemma 11] that α times the distance between two uniformly
sampled points on an α-stable tree has a ML(β, β) distribution, where β = 1 − 1/α. As
the α-stable tree remains invariant under uniform re-rooting [35, Theorem 11], this is the
distribution of α times the distance between the root and a uniformly sampled point.

To analyse Marchal’s algorithm, we will also use the following well-known aggregation
property of the Dirichlet distribution.

Proposition 2.10 For n ≥ 2, let β1, . . . , βn > 0 and Y := (Y1, . . . , Yn) ∼ Dir (β1, . . . , βn).
Let 1 ≤ m ≤ n− 1. Then Y ′ := (

∑m
i=1 Yi, Ym+1, . . . , Yn) ∼ Dir (

∑m
i=1 βi, βm+1, . . . , βn).

Dirichlet and Mittag–Leffler distributions arise naturally in a variety of urn models,
see [46] and [37] respectively. For our purposes, we restrict attention to the following
specification of Pólya’s urn model.

Definition 2.11 (Generalised Pólya urn) Given K≥2 and ~γ = (γ1, γ2, . . . , γK) with
γ1, γ2, . . . , γK > 0, consider a Pólya urn scheme with K colours, initialisation ~γ and
step-size t > 0 evolving in discrete time. Represent the K colours by the set C :=
{1, 2, . . . ,K}. We say that a random variable X valued in C has distribution κ~γ if

P (X = j) = γj(
∑K

i=1 γi)
−1 for all j ∈ C. Generate a sequence of draws (X1, X2, . . .)

from C according to the following scheme:

(I) Set ~γ1 := ~γ, sample X1 from κ~γ1 .

(II) For n ≥ 1, set ~γn+1 := ~γn+t~eXn , where ~ej denotes the j-th standard Euclidean basis
vector of RK . Given X1, . . . , Xn, sample Xn+1 from κ~γn+1

.

For j ∈ C, denote the number of j-th coloured balls observed after n draws by

D
(n)
j :=

n∑
i=1

1(Xi = j),

and define the vector of relative frequencies of colours observed in the first n draws as(
P

(n)
1 , P

(n)
2 , . . . , P

(n)
K

)
:=

(
D

(n)
1

n
,
D

(n)
2

n
, . . . ,

D
(n)
K

n

)
.

The relative frequencies of colours observed are known to converge to an almost sure limit,
due to Blackwell and MacQueen [13].

Proposition 2.12 Given a sequence of draws (X1, X2, . . .) from the urn scheme in Defi-
nition 2.11, the relative frequencies in the draws satisfy(

P
(n)
1 , P

(n)
2 , . . . , P

(n)
K

)
a.s.−→ (P1, P2, . . . , PK) as n→∞,

where (P1, P2, . . . , PK) ∼ Dir (γ1/α, γ2/α, . . . , γK/α). Consequently, the proportions of
colours in the urn satisfy(

γ1 + tD
(n)
1∑K

i=1 γi + tn
,
γ2 + tD

(n)
2∑K

i=1 γi + tn
, . . . ,

γK + tD
(n)
K∑K

i=1 γi + tn

)
a.s.−→ (P1, P2, . . . , PK) as n→∞.
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A natural extension to the urn scheme introduced in Definition 2.11 is the two-parameter
Chinese restaurant process (CRP), see Pitman [45].

Definition 2.13 (Chinese restaurant process) Given β ∈ [0, 1] and θ > −β, the two-
parameter Chinese restaurant process with a (β, θ) seating plan, denoted by CRP (β, θ),
proceeds as follows. Label customers by n ≥ 1. Seat customer 1 at the first table. For
n ≥ 1, let Kn denote the number of tables occupied after customer n has been seated and
let Nj(n) denote the number of customers seated at the j-th table for j ∈ {1, . . . ,Kn}. At
the next arrival, conditional on (N1(n), . . . , Nj(n)), customer n+ 1

• sits at the j-th table with probability (Nj(n)− β) / (n+ θ) for j ∈ {1, . . . ,Kn},

• opens the (Kn + 1)-st table with the complementary probability (θ +Knβ) / (n+ θ).

For each n ≥ 1, the process at step n induces a partition Πn := (Πn,1, . . . ,Πn,Kn) of
{1, . . . , n} into blocks, given by the collection of customer labels at each occupied table,
with blocks ordered by least labels. This induces a partition-valued process (Πn, n ≥ 1).

As with Pólya urn schemes, the CRP also satisfies limit theorems associated with the
Dirichlet and Mittag–Leffler distributions, cf. [46, Theorem 3.2 and Theorem 3.8].

Proposition 2.14 Consider a Chinese restaurant process with parameters β ∈ (0, 1) and
θ > −β. Then the number of tables Kn at time n satisfies

n−βKn
a.s.−→ K∞ as n→∞,

where K∞ ∼ ML(β, θ). Furthermore, relative table sizes have almost sure limits(
N1(n)

n
,
N2(n)

n
, . . . ,

NKn(n)

n
, 0, 0, . . .

)
a.s.−→

(
W1,W 1W2,W 1W 2W3, . . .

)
as n→∞,

where Wj ∼ Beta (1− β, θ + jβ), j ≥ 1, are independent and W j := 1−Wj for all j ≥ 1.

The distribution of the vector (P1, P2, P3, . . .) :=
(
W1,W 1W2,W 1W 2W3, . . .

)
as de-

fined in Proposition 2.14 is a Griffiths–Engen–McCloskey distribution with parameters
(β, θ), denoted by GEM(β, θ). Ordering (Pi, i ≥ 1) in decreasing order yields a Poisson–
Dirichlet distribution with parameters (β, θ), for short PD(β, θ), i.e.(

P ↓i , i ≥ 1
)

:= (Pi, i ≥ 1)↓ ∼ PD (β, θ) .

2.4 Recursive distribution equations

Before we can introduce our specific recursive distribution equation (RDE) for the stable
tree, it is instructive to review RDEs in their full generality, as presented in [9, Section 2.1].
Denote our underlying probability space by (Ω,F ,P). Given two measurable spaces (S,FS)
and (Θ,FΘ), construct the product space

Θ∗ := Θ×
⋃

0≤m≤∞
Sm, (7)

where the union is disjoint over Sm, the space of S-valued sequences of lengths 0 ≤ m ≤ ∞,
and where S0 := {∆} is the singleton set and S∞ is constructed as a typical sequence space.

Equip Θ∗ with the product sigma-algebra. Let g : Θ∗ → S be a measurable map, and
define random variables (Si, i ≥ 0) ∈ S∞, (ξ,N) ∈ Θ× N := Θ× {0, 1, . . . ;∞} as follows.

(i) (ξ,N) ∼ ν, where ν is a probability measure on Θ× N.

(ii) Si ∼ η, i ≥ 0, i.i.d., where η is a probability measure on S.

(iii) (ξ,N) and (Si, i ≥ 0) are independent.
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Denote by P (S) the set of probability measures on (S,FS). Given the distribution ν on
Θ× N, we obtain a mapping

Φ: P(S)→ P(S), η 7→ Φ(η), (8)

where Φ(η) is the distribution of S := g(ξ,Si, 0 ≤ i ≤∗N), and where the notation ≤∗N
means ≤ N for N <∞ and <∞ for N =∞. This lends itself to a fixpoint perspective of
RDEs, where we wish to find a distribution of S such that

η = Φ(η) ⇐⇒ S d
= g(ξ,Si, 0 ≤ i ≤∗N) on S. (9)

In a recursive tree framework, the approach of (2.4) is extended recursively to Si, i ≥ 1,
and beyond. To this end, we will work with the Ulam–Harris-indexation

U :=
⋃
n≥0

Nn, where N := {0, 1, 2, . . .}.

Consider a sequence of i.i.d. Θ × N-valued random variables (ξu, Nu),u ∈ U. Fur-
thermore, suppose that there are random variables τu,u ∈ U, possibly on an extended
probability space, as follows.

(i) For all u ∈ U,
τu = g (ξu, τuj , 1 ≤ j ≤∗Nu) a.s.. (10)

(ii) The variables (τu,u ∈ Nn) are i.i.d. with some distribution ηn, n ≥ 1.

(iii) The variables (τu,u ∈ Nn) are independent of the variables (ξu, Nu,u ∈
⋃n
k=0 Nk).

In this setup, we may define a recursive tree framework as follows.

Definition 2.15 (Recursive tree framework) A pair ((ξu, Nu,u ∈ U), g) is called a
recursive tree framework if (ξu, Nu,u ∈ U) is an i.i.d. family of Θ × N-valued random
variables (ξu, Nu) ∼ ν,u ∈ U, and g : Θ∗ → T is a measurable map.

If we enrich an RTF with the random variables τu,u ∈ U, we obtain a so-called
recursive tree process (RTP). Sometimes, RTPs are only considered up to generation n,
that is, only for τu,u ∈

⋃n
k=0 Nk. We then speak of an RTP of depth n. Such finite-depth

RTPs can always be defined for any distribution ηn of τu,u ∈ Nn, and (10) for generations
n − 1, . . . , 0. RTPs of infinite depth do not necessarily exist in general. We refer to [9,
Section 2.3] for more details on RTFs and RTPs, and connections to Markov chains and
Markov transition kernels.

2.5 An independence criterion

To end the Preliminaries section, we introduce an elementary lemma, which will help us
verify certain required independences. We leave its proof to the reader.

Lemma 2.16 Let T be an a.s. finite stopping time with respect to a filtration (Fn)n≥1.
Suppose that X is a non-negative and bounded random variable satisfying, for each n ≥ 1,

E [X | FT ] = E [X | Fm] a.s.,

for all m ≥ n on {T = n}. Then E[X|FT ] = E[X|F∞] a.s. where F∞ = σ (Fn, n ≥ 1).

10



𝑉2

𝐴2

𝐴0

𝐴1

𝑒0 = 𝜏0
(0)

𝑉3

𝐴3

𝑒0 = 𝜏0
(1)

𝜏2
(1)

…

𝐓𝛼 2 𝐓𝛼 3 … 𝐓𝛼 9

𝜏1
(7)

𝜏0
(7)

𝜎(7)

𝜏3
(7)

𝑒4 = 𝜏4
(7)

𝜏2
(7)

Figure 3: Illustration of Marchal’s random growth algorithm and notation employed

3 An RDE for R-trees from Marchal’s algorithm

In this section, fix α ∈ (1, 2] and let β = 1 − 1/α ∈ (0, 1/2]. Unless ambiguity arises, we
suppress α hereafter. Note that, in Marchal’s algorithm, T(2) is deterministic, comprising
a Y-shape with three leaves A0, A1 and A2 and an internal vertex V2. Denote the edges
by e0 := JA0, V2K, e1 := JA1, V2K and e2 := JA2, V2K. The following heuristic, implicitly
employed in the proof of [20, Proposition 10], outlines the argument in this section.

The independent choice at each step of Marchal’s algorithm entails that we have inde-
pendent sub-constructions of Marchal’s algorithm with parameter α evolving along each
edge of T(2). This yields three independent copies of Tα, denoted by τ0, τ1 and τ2, subject
to rescaling depending on the eventual proportion of mass distributed to each tree. For
α ∈ (1, 2), the internal vertex V2 will give rise to a further countably infinite and indepen-
dent collection of copies of Tα a.s.. Denote this infinite collection by (τi, i ≥ 3), which is
independent of τ0, τ1 and τ2. We will rescale and concatenate our collection (τi, i ≥ 0) of
independent copies of Tα at V2 to get a copy of Tα. Denote the collection of scaling factors
in the limit by ξ = (ξi, i ≥ 0) and the concatenation operator by g. We obtain an RDE

Tα
d
= g (ξ, τi, i ≥ 0)

in the form (9). To be rigorous, we need to address the following questions.

1. What is the distribution of the limiting scaling factors ξ = (ξi, i ≥ 0)?

2. Are the random variables (τi, i ≥ 0) independent of ξ, as well as of each other?

3. How do we construct the concatenation operation in a measurable way?

3.1 The scaling factors ξ = (ξi, i ≥ 0)

For i ∈ {0, 1, 2} and n ≥ 0, define τ
(n)
i as the subtree of T(n + 2) cut at V2 containing

the edge ei. For example, we have τ
(0)
i = ei for each i ∈ {0, 1, 2}. Let Kn denote the set

of edges incident to V2 in T(n + 2) excluding {ei, i = 0, 1, 2}, and set Kn = |Kn|. For
Kn 6= ∅, Kn = {ej , j = 3, . . . ,Kn + 2}, ordered according to least leaf labels. Define σ(n)

as the remaining component of T(n + 2) cut at V2 excluding
⋃2
i=0 τ

(n)
i . If Kn = ∅, then

σ(n) = ∅. Otherwise, σ(n) =
⋃Kn+2
j=3 τ

(n)
j is a union of subtrees {τ (n)

j , j = 3, . . . ,Kn + 2}
growing along their respective edges in Kn. We illustrate this in Figure 3.

Denote the number of leaves in τ
(n)
i excluding V2 by Ni(n) for all i = 0, 1, . . . ,Kn + 2,

and define its inverse N−1
i (n) := inf{k ≥ 0: Ni(k) = n} as the first time k at which τ

(k)
i

has n leaves excluding V2, with the convention inf ∅ =∞.
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Regard V2 as a (weightless) root from the perspective of each element of {τ (n)
i , i =

1, . . . ,Kn + 2} and as a marked leaf of τ
(n)
0 . For each i = 1, . . . ,Kn + 2, mark the first leaf

created in τ
(n)
i by Marchal’s algorithm, that is, the other endpoint of ei which is not V2.

Recall that A0 is the root of τ
(n)
0 .

In the limit, denote by τ
(∞)
i the limiting set of vertices corresponding to the i-th

subtree. Denote its associated R-tree by τi, obtained by the completion of τ
(∞)
i in the

scaling limit as described in Section 2.2. Likewise, define σ(∞) and σ as the limiting set
of vertices and the R-tree associated with σ(n), respectively.

Recall that W (·) measures the total weight of a given sub-structure, e.g., for each

i ∈ {0, 1, 2}, W (τ
(0)
i ) = α − 1. The following result shows that the weight of a particular

subtree only depends on the number of leaves it has, and not on its shape.

Lemma 3.1 Regardless of its shape, the total weight of the i-th subtree is W (τ
(n)
i ) =

αNi(n)−1 for i = 0, 1, . . . ,Kn + 2 and n ≥ 0.

Proof. This follows simply by induction applied to each subtree. �

Proposition 3.2 We have the following limiting results for weights.

(i) For α = 2, Kn = 0 a.s. for all n ≥ 0. The relative weight split in Tα(n) has an
almost sure limit as n→∞ given byW

(
τ

(n)
0

)
2n+ 3

,
W
(
τ

(n)
1

)
2n+ 3

,
W
(
τ

(n)
2

)
2n+ 3

 a.s.−→ (X0, X1, X2)

where (X0, X1, X2) ∼ Dir (1/2, 1/2, 1/2).

(ii) For α ∈ (1, 2), Kn →∞ as n→∞ almost surely. The relative weight split in Tα(n)
has an almost sure limit as n→∞ given by W

(
τ

(n)
0

)
(n+2)α−1

,
W
(
τ

(n)
1

)
(n+2)α−1

,
W
(
τ

(n)
2

)
(n+2)α−1

,
W
(
σ(n)

)
+W ({V2})

(n+ 2)α− 1

 a.s.−→ (X0, X1, X2, X3) ,

(11)
where (X0, X1, X2, X3) ∼ Dir (β, β, β, 1− 2β). Within the last part, denote the even-
tual proportion of weight distributed to the subtree τi+2 by Pi for i ≥ 1. Then,

(Pi, i ≥ 1) ∼ GEM (1− β, 1− 2β) .

In particular, the subtrees τi, i ≥ 3, have a relative weights partition that follows a
PD(1− β, 1− 2β) distribution, when ranked in decreasing order.

Proof. We prove (ii). From Lemma 3.1, conditional on an edge or branch point in τ
(n)
i

being selected in the next step of Marchal’s algorithm, we increase the weight in τ
(n)
i by

α. It is easy to check that this also holds for σ(n) with one weighted copy of V2 included.
Hence, (

W
(
τ

(n)
0

)
,W

(
τ

(n)
1

)
,W

(
τ

(n)
2

)
,W

(
σ(n)

)
+W ({V2})

)
(12)

evolves precisely as the Pólya urn scheme in Definition 2.11 with K=4, initialisation vector
~γ = (α−1, α−1, α−1, 2−α) and step-size t=α. Therefore, (11) holds by Proposition 2.12.

Next, we focus on the subtrees within σ(n). The above implies that W
(
σ(n)

)
+

W ({V2})→∞ as n→∞ a.s.. So, a.s., we observe infinitely many leaves being added to
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(
σ(n), n ≥ 1

)
. We may then condition on the times where a leaf is added to

(
σ(n), n ≥ 1

)
,

say (qi, i ≥ 1), where 1 ≤ q1 < q2 < · · · < qn < qn+1 < · · · is an infinite sequence

a.s.. Conditional on the preceding event, the first leaf added creates τ
(q1)
3 . At each

r ∈ {qn, . . . , qn+1 − 1}, we have n leaves (not including V2) with Kqn subtrees whose

union is σ(r). For j = 3, . . . ,Kqn + 2, τ
(r)
j has Nj(qn) leaves (not including V2), and so has

total weight αNj(qn)− 1, by Lemma 3.1. Thus, as the total weight of V2 is 2 +Kqn − α,
the total weight of σ(r) and {V2} is αn+ (2− α). At the next arrival time qn+1, we add a

leaf to τ
(qn+1−1)
j with probability (αNj(qn)− 1) / (αn+ 2− α) and we create a new sub-

tree with probability (2 +Kqn − α) / (αn+ 2− α). Regarding the leaves (excluding V2)
as customers and each subtree as a table, this models a Chinese restaurant process with
parameters (1− β, 1− 2β), according to Definition 2.13. From Proposition 2.14, Kn →∞
as n → ∞ almost surely. Recall q1 < ∞ almost surely, so we may assume n ≥ q1. From
Proposition 2.14, we can identify the almost sure limiting proportion of leaves split within
subtrees of σ as GEM(1− β, 1− 2β) holding along the increasing subsequence (qi, i ≥ 1).
That is, (

N3(qn)

n
, . . . ,

NKqn+2(qn)

n
, 0, 0, . . .

)
a.s.−→ (Pi, i ≥ 1) as n→∞,

where (Pi, i ≥ 1) ∼ GEM(1 − β, 1 − 2β). Write Nσ(n) as the number of leaves in σ(n)

excluding V2. Noting that Nσ(n) > 0 for n ≥ q1, we may rephrase the above as(
N3(n)

Nσ(n)
, . . . ,

NKn+2(n)

Nσ(n)
, 0, 0, . . .

)
a.s.−→ (Pi, i ≥ 1) as n→∞. (13)

Using the relation W
(
σ(n)

)
+W ({V2}) = αNσ(n) + 2− α, and the aggregation property

of the Dirichlet distribution in Proposition 2.10 applied to (12), we get that

Nσ(n)

n

a.s.−→ X3 as n→∞, (14)

where X3 ∼ Beta(1− 2β, 3β). By the algebra of almost sure convergence,(
N3(n)

n
, . . . ,

NKn+2(n)

n
, 0, 0, . . .

)
a.s.−→ (X3Pi, i ≥ 1) as n→∞.

Therefore, for all j = 3, . . . ,Kn + 2 and n ≥ q1, as we have W
(
τ

(n)
j

)
= αNj(n) − 1, the

above implies that, jointly in j,

W
(
τ

(n)
j

)
(n+ 2)α− 1

=

Nj(n)
n − 1

αn
n+2
n −

1
αn

a.s.−→ X3Pj−2 as n→∞,

where X3 ∼ Beta(1 − 2β, 3β) and (Pi, i ≥ 1) ∼ GEM(1 − β, 1 − 2β). Thus, we have
obtained the almost sure limiting weight partition for the subtrees (τj , j ≥ 0). The proof
of (i) follows noting that σ(n) = ∅ for all n ≥ 1 almost surely when α = 2. �

We will establish the independence of (X0, X1, X2, X3) and (Pi, i ≥ 1) in Proposition
3.4 to fully specify the distribution of (ξj , j ≥ 0).

3.2 Independent copies of Marchal’s algorithm at the first branch point

The proof of the following result is inspired by [20, Lemma 8] in considering transition
times at which a leaf is added into a subtree. However, we extend the result from [20] by
considering transitions jointly over multiple subtrees. We restrict our considerations to
α ∈ (1, 2), i.e. the infinitary case. The result can easily be extended to the Brownian case
α = 2.
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Proposition 3.3 For n ≥ 1 and i ≥ 0, we have τ
(N−1

i (n))
i

d
= T(n). That is, at transition

times in which a leaf is added into the i-th subtree, it evolves as Marchal’s algorithm with
parameter α ∈ (1, 2) with initial edge ei. The sigma-field generated by(

τ
(N−1

i (n))
i , n ≥ 1

)
i≥0

is independent of the sigma-field generated by (Ni(n), n≥1, i≥0). Consequently, (τi, i≥0)
are independent. Furthermore, (τi, i ≥ 0) is independent of (Ni(n), n ≥ 1, i ≥ 0).

Proof. From Proposition 3.2, we have Kn →∞ a.s. as n→∞. In particular, for all i ≥ 0
and n ≥ 1, N−1

i (n) < ∞ a.s.. We assume this holds henceforth. It suffices to show the
independence of the sigma-fields generated by

(Ni(n), n ≥ 1, i ≥ 0) and

(
τ

(N−1
i (n))

i , n ≥ 1

)
0≤i≤m+2

,

respectively, where m ≥ 0 is arbitrary but fixed.
Consider a given time n ≥ N−1

m+2(1). Conditional on a leaf being added to the i-th sub-
tree for 0 ≤ i ≤ m+ 2, we have the dynamics of Marchal’s algorithm with parameter α by
the weight-leaf relation in Lemma 3.1. Likewise, the transition in the other components,
not including the i-th subtree for 0 ≤ i ≤ m+ 2, follows the correct conditional distribu-

tions of Marchal’s algorithm. This proves the distributional identity τ
(N−1

i (n))
i

d
= T(n) at

transition times in the i-th subtree for 0 ≤ i ≤ m+ 2.
Let M > 1 be arbitrary, but fixed, and denote the natural filtration of (Ni(n), i ≥ 0)n≥1

by (Fn)n≥1. Note that for any fixed n ≥ 1, (Ni(n), i ≥ 0) is almost surely a vector with

finitely many non-trivial entries. Define T := maxi=0,...,m+2N
−1
i (M), which is a stopping

time with respect to (Fn)n≥1. By assumption, T <∞ a.s.. Conditional on FT (which is the
same as conditioning on relative weights on subtrees until time T ), we have factorisation
of tree shape probabilities into tree shape probabilities for the respective subtrees cut at
V2. In particular, given FT , the tree shapes of(

τ
(N−1

i (n))
i , 1 ≤ n ≤M

)
0≤i≤m+2

are independent. Furthermore, on the event {T = t}, conditioning on the sigma-field
generated at a later time k ≥ t does not affect the tree shapes under consideration.

Hence, the hypotheses in Lemma 2.16 are fulfilled. Let t
(n)
i be some given leaf-labelled

trees with n leaves and a root. Then,

P
(
τ

(N−1
i (n))

i = t
(n)
i , 1 ≤ n ≤M, 0 ≤ i ≤ m+ 2

∣∣∣∣ F∞)
= P

(
τ

(N−1
i (n))

i = t
(n)
i , 1 ≤ n ≤M, 0 ≤ i ≤ m+ 2

∣∣∣∣ FT)
= P

(
τ

(N−1
i (M))

i = t
(M)
i , 0 ≤ i ≤ m+ 2

∣∣∣∣ FT) (15)

=

m+2∏
i=0

P
(
τ

(N−1
i (M))

i = t
(M)
i

∣∣∣∣ FT) (16)

=

m+2∏
i=0

P
(

T(M) = t
(M)
i

∣∣∣∣ FT) (17)

=
m+2∏
i=0

P
(
T(M) = t

(M)
i

)
, (18)
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where (15) holds since τ
(N−1

i (M))
i determines τ

(N−1
i (n))

i for all 1 ≤ n ≤ M , (16) holds by
Proposition 2.6, and (18) follows since there is no dependence on F∞ in evaluating (17)
and we are conditioning over an almost surely finite number of discrete random variables.
Furthermore, since the final expression does not depend on F∞, the sigma-field of(

τ
(N−1

i (n))
i , 1 ≤ n ≤M

)
0≤i≤m+2

is independent of F∞. Letting M → ∞, and recalling m ≥ 0 is arbitrary, the claimed
independence of the σ-fields follows.

As the collection (τi, i ≥ 0) is measurably constructed from (τ
(N−1

i (n))
i , n ≥ 1)i≥0, it

is independent of (Ni(n), n ≥ 1, i ≥ 0). Dropping the conditioning in (17), we get that(
τ

(N−1
i (n))

i , 1 ≤ n ≤ M
)
, 0 ≤ i ≤ m + 2, are independent. Thus, in the limit as M → ∞,(

τ
(N−1

i (n))
i , n ≥ 1

)
, 0 ≤ i ≤ m+ 2, are independent. As τi is measurably constructed from

(τ
(N−1

i (n))
i , n ≥ 1) for each 0 ≤ i ≤ m+2,

(
τi, 0 ≤ i ≤ m+2

)
are independent. Let m→∞

to conclude that (τi, i ≥ 0) are independent. �

Proposition 3.4 For α ∈ (1, 2), the random variables (X0, X1, X2, X3) and (Pi, i ≥ 1)
as defined in Proposition 3.2 are independent. In particular, this fully specifies their joint
distribution.

Proof. Recall that Nσ(n) denotes the number of leaves (excluding V2) in σ(n), and de-
fine N−1

σ (n) := inf{k ≥ 0: Nσ(k) = n}. We claim that the sigma-field generated by(
Nj

(
N−1
σ (n)

)
, n ≥ 1

)
j≥3

is independent of the sigma-field generated by(
N−1

0 (n), N−1
1 (n), N−1

2 (n), N−1
σ (n), n ≥ 1

)
.

Let (Fn)n≥1 denote the natural filtration of (N−1
0 (n), N−1

1 (n), N−1
2 (n), N−1

σ (n))n≥1. It
suffices to prove that the sigma-field generated by (Nj

(
N−1
σ (n)), n ≥ 1

)
3≤j≤m is inde-

pendent of F∞, where m ≥ 3 is arbitrary but fixed. By Proposition 3.2, almost surely,
N−1
σ (n) < ∞ for all n ≥ 1. For M ≥ 1 arbitrary but fixed, T := N−1

σ (M) is an al-
most surely finite stopping time with respect to (Fn)n≥1. Consider the random variables
(Nj(N

−1
σ (n)), 1 ≤ n ≤ M)3≤j≤m. On the event {T = t}, conditioning on the sigma-field

generated at a later time k ≥ t does not affect conditional expectations. Hence, by Lemma
2.16, for all non-negative integers lj(n),

P
(
Nj

(
N−1
σ (n)

)
= lj(n), 1 ≤ n ≤M, 3 ≤ j ≤ m

∣∣∣∣ F∞)
= P

(
Nj

(
N−1
σ (n)

)
= lj(n), 1 ≤ n ≤M, 3 ≤ j ≤ m

∣∣∣∣ FT)
= P

(
Nj

(
N−1
σ (n)

)
= lj(n), 1 ≤ n ≤M, 3 ≤ j ≤ m

)
.

The last equality follows, since conditional on a leaf being added to σ(n) at time n+ 1, the
process of adding leaves to each subtree within σ(n) is modelled by a CRP with parameters
(1−β, 1−2β), see Proposition 3.2. Furthermore, it does not depend on the times at which
the leaf is added. Since we are conditioning over an almost surely finite number of discrete
random variables, we may drop conditioning on FT . This implies that the sigma-field
generated by (

Nj

(
N−1
σ (n)

)
, 1 ≤ n ≤M

)
3≤j≤m
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is independent of F∞ for all M ≥ 1. Let M → ∞ to conclude that the sigma-field
generated by

(
Nj

(
N−1
σ (n)

)
, n ≥ 1

)
3≤j≤m is independent of F∞, as desired. Since we may

rewrite equation (14) to get

n

N−1
σ (n)

a.s.−→ X3 as n→∞,

we conclude that X3 is F∞-measurable. Likewise, X0, X1 and X2 are F∞-measurable.
From (13),

Ni+2

(
N−1
σ (n)

)
n

a.s.−→ Pi as n→∞,

for all i ≥ 1. So, (Pi, i ≥ 1) is measurable with respect to the sigma-field generated by(
Nj

(
N−1
σ (n)

)
, n ≥ 1

)
j≥3

. The desired result follows. �

We finally obtain the main result regarding the self-similarity of Marchal’s algorithm,
which proves the self-similarity property of α-stable trees when decomposed at the first
branch point.

Theorem 3.5 For any α ∈ (1, 2], the limiting trees (τi, i ≥ 0) in Marchal’s algorithm are
independent. Furthermore, they are independent of their scaling factors. For each subtree

τ
(n)
i , let d

(n)
i denote the graph distance and µ

(n)
i the empirical mass measure on its leaves.

(i) If α = 2, for each i ∈ {0, 1, 2}, we have the convergence(
τ

(n)
i ,

d
(n)
i

2n1/2
, µ

(n)
i

)
a.s.−→

(
τi, ξ

1/2
i d

(∞)
i , ξiµ

(∞)
i

)
as n→∞,

in the Gromov–Hausdorff–Prokhorov topology, where (τi, d
(∞)
i , µ

(∞)
i ), i ≥ 1, are i.i.d.

with (
τi, d

(∞)
i , µ

(∞)
i

)
d
= (T2, d2, µ2) , i = 0, 1, 2,

and (ξ0, ξ1, ξ2) ∼ Dir (1/2, 1/2, 1/2) is independent of (τ0, τ1, τ2).

(ii) If α ∈ (1, 2), for each i ≥ 0, we have the convergence(
τ

(n)
i ,

d
(n)
i

αnβ
, µ

(n)
i

)
a.s.−→

(
τi, ξ

β
i d

(∞)
i , ξiµ

(∞)
i

)
as n→∞,

in the Gromov–Hausdorff–Prokhorov topology, where (τi, d
(∞)
i , µ

(∞)
i ), i ≥ 1, are i.i.d.

with (
τi, d

(∞)
i , µ

(∞)
i

)
d
= (Tα, dα, µα) , i ≥ 0,

and ξi = Xi for i ∈ {0, 1, 2} and ξj+2 = X3Pj for j ≥ 1, with (X0, X1, X2, X3) ∼
Dir (β, β, β, 1− 2β) and (Pi, i ≥ 1)↓ ∼ PD(1− β, 1− 2β) independent.

Proof. The almost sure convergence in the rescaled subtrees arises by applying Proposition
2.8 and Proposition 3.2. The independence between the limiting subtrees comes imme-
diately from Theorem 3.3. The arguments in Lemma 3.1 and Proposition 3.2 show that
the limiting proportion of weights is measurably constructed from (Ni(n), n ≥ 1, i ≥ 0).
Hence, by Theorem 3.3, the limiting subtrees are independent of their scaling factors. The
distribution of (ξi, i ≥ 0) for α ∈ (1, 2) is fully specified by Proposition 3.4. �
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The results of Theorem 3.5 agree with similar decompositions of the BCRT at a branch
point in Aldous [8, Theorem 2], Albenque and Goldschmidt [4, Section 1.4], and Croydon
and Hambly [18, Lemma 6], where the branch point is uniquely determined by a uniformly
chosen point according to the mass measure within each of the three subtrees. We point
out that Albenque and Goldschmidt deal with an unrooted BCRT, while Croydon and
Hambly’s construction uses a doubly-marked rooted BCRT. Our construction thus far
does not require a notion of a mass measure (even though we have chosen to include the
mass measure in our statements), but rather a single marked point in each subtree.

3.3 Formal specification of the concatenation operation

After verifying that the subtrees (τi, i ≥ 0) are rescaled versions of Tα in the limit with the
required independences, the next step is to show that the concatenation operation induced
by Marchal’s algorithm is well-defined and measurable as an operation on Tm. To this
end, we adapt the general setup and terminology from [49]. Let

Ξ :=

{
(x0, x1, x2, x3pj , j≥1) : x0, x1, x2, x3≥0,

3∑
i=0

xi=1, p1≥p2≥· · ·≥0,
∞∑
j=1

pj =1

}
.

For notational convenience, we write ξi =

{
xi if i ∈ {0, 1, 2},
x3pi−2 otherwise.

Set Ξ∗ := Ξ × T∞m as in (7) and recall that Tm is the set of GHm-equivalence classes
of marked compact rooted R-trees. Note that in our case, N = inf{i ≥ 0: ξi+1 = 0} with
the convention inf ∅ = ∞, so that N is a function of ξ = (ξi, i ≥ 0) ∈ Ξ. Furthermore, in
the case of α-stable trees, recall that N = 2 or N = ∞ almost surely. Hence, we drop
dependence on N in our notation. For β ∈

(
0, 1

2

]
, equip Ξ∗ with the metric

dβ
(
(ξ, τi, i≥0) ,

(
ξ′, τ ′i , i≥0

))
:= sup

i≥0

(
|ξβi −ξ

′
i
β| ∨ dm

GH

(
τi, τ

′
i

)
∨ dm

GH

(
ξβi τi, ξ

′
i
β
τ ′i

))
, (19)

where ξ = (ξi, i ≥ 0) ∈ Ξ, ξ′ = (ξ′i, i ≥ 0) ∈ Ξ, and (τi, di, ρi, xi), (τ
′
i , d
′, ρ′i, x

′
i) are represen-

tatives of GHm-equivalence classes in Tm, with shorthand ξβi τi meaning that all distances

of τi are reduced by the factor ξβi . However, as dm
GH only depends on GHm-equivalence

classes, our metric dβ also only depends on GHm-equivalence classes. Hence, we may define
dβ on Ξ∗ and denote by τ any representative of the GHm-equivalence class of (τ, d, ρ, x).

Proposition 3.6 (Ξ∗, dβ) is a Polish metric space.

Proof. This can be proved following the lines of the proof of [49, Proposition 3.1]. �

We now formally define our concatenation operator. Let ξ ∈ Ξ and let (τi, di, ρi, xi) be
representatives of GHm-equivalence classes in Tm for i ≥ 0. Define the concatenated tree
(τ ′, d′, ρ′, x′) as follows.

1. Let τ̃ ′ :=
∐
i≥0 τi be the disjoint union of trees. Let ∼c be the equivalence relation

on τ̃ ′ in which ρi ∼c x0 for all i ≥ 1. Define τ ′ := τ̃ ′/ ∼c. Write ψc for the canonical
projection from τ̃ ′ onto τ ′.

2. Define d′ as the metric induced on τ ′ under ψc by the metric d̃′ on τ̃ ′ such that

d̃′(u, v) =


ξβi di(u, v) if u, v ∈ τi, i ≥ 0,

ξβ0 d0(u, x0) + ξβj dj(ρj , v) if u ∈ τ0 and v ∈ τj , j 6= 0,

ξβi di(u, ρi) + ξβ0 d0(x0, v) if u ∈ τi and v ∈ τ0, i 6= 0,

ξβi di(u, ρi) + ξβj dj(ρj , v) if u ∈ τi and v ∈ τj , i, j 6= 0.

(20)

3. Retain x′ = ψc (x1) as our marked point in τ ′ and set ρ′ = ψc (ρ0) as the root of τ ′.

We illustrate this construction in Figure 4.
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Figure 4: Construction of concatenated tree from 4 marked trees, rescaling is not shown;
extracted from simulations (original simulations courtesy of Igor Kortchemski).

By virtue of this construction, the GHm-equivalence class of (τ ′, d′, ρ′, x′) only depends
on the GHm-equivalence classes of (τi, di, ρi, xi) for i ≥ 0. Thus, it makes sense to define
Cβ ⊆ Ξ∗ as the set of elements κ = (ξ, τi, i ≥ 0) ∈ Ξ∗ such that the concatenated tree
(τ ′, d′, ρ′, x′) formed by any equivalence class representatives of ((τi, di, ρi, xi) , i ≥ 0) is
compact. Equip Tm and Ξ∗ with their respective Borel sigma-algebras, B(Tm) and B(Ξ∗).
The concatenation operator gβ : Ξ∗ → Tm is,

gβ(κ) =

{
(τ ′, d′, ρ′, x′) if κ ∈ Cβ,
({x′} , 0, x′, x′) otherwise,

(21)

where ({x′}, 0, x′, x′) denotes the equivalence class of a trivial one-point rooted tree.

Proposition 3.7 The map gβ : Ξ∗ → Tm is B(Ξ∗)-measurable.

Proof. The proof can be adapted from [49, Proposition 3.2]. �

3.4 First main result: the RDE satisfied by the stable tree

We now deduce our main theorem in this section.

Theorem 3.8 The marked α-stable tree (Tα, dα, µα, xα) with xα ∼ µα satisfies the RDE

Tα
d
= gβ (ξ, Ti, i ≥ 0) (22)

on Tm, where (Ti, i ≥ 0) is a sequence of independent copies of Tα, independent of ξ =
(X0, X1, X2, X3Pj , j ≥ 1) ∈ Ξ, and where the following holds.

• If α = 2, then ξj+2 = X3Pj = 0 almost surely for all j ≥ 1 and (X0, X1, X2) ∼
Dir (1/2, 1/2, 1/2).

• If α ∈ (1, 2), then (X0, X1, X2, X3) ∼ Dir (β, β, β, 1− 2β) and (Pj , j ≥ 1) ∼ PD(1−
β, 1− 2β), where (X0, X1, X2, X3) and (Pj , j ≥ 1) are independent.

In other words, the law of the marked α-stable tree ςm
α satisfies the fixpoint equation

η = Φβ (η)

on P(Tm), where Φβ : P (Tm) → P (Tm) is the mapping on P(Tm) induced by (22), and
where we recall that P(Tm) denotes the set of Borel probability measures on Tm.
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Proof. Recall that for the subtrees involved in the recursive application of Marchal’s
algorithm, we regarded V2 as a root and marked the first leaf in the i-th subtree for each
i ≥ 1. We regarded A0 as the root for the overall tree, and V2 as a marked leaf for the 0-th
subtree. Thus, our construction using Marchal’s algorithm agrees with the concatenation
operator gβ acting on the subtrees. Theorem 3.5 gives the required independences and the
distribution of ξ = (ξi, i ≥ 0). Proposition 3.7 ascertains the measurability of gβ. �

In general, the marked α-stable tree is not the only fixpoint of (22). Observe that if the
metrics di of (the representatives of) (τi, di, ρi, xi) ∈ Tm in (20) were multiplied by some
constant c > 0, then the concatenated tree will also have its metric d′ multiplied by c.
Furthermore, if the original concatenated tree were a marked compact rooted R-tree, then
so would the concatenated tree with metric multiplied by c. Thus, since (Tα, dα, ρα, xα) is
a distributional fixpoint of (22), so is (Tα, cdα, ρα, xα) for any c > 0.

Remark 3.9 There also exist solutions to RDE (22) with infinite 1/β-th height moment.
This can be shown by grafting mass-less length-y branches onto a stable tree with intensity
proportional to y−1−1/βdyµ(dx), see e.g. [14] and [4] for such constructions in the context
of related RDEs with finite concatenation operations – the arguments there are not affected
by the change of setting here. We will establish uniqueness of the solution to (22) up to
multiplication of distances by a constant, under suitable constraints on height moments.

4 Uniqueness and attraction for a general RDE on Tm

4.1 An RDE on T and associated constructions in Tw of [49]

In [49], we established a recursive construction method for CRTs by successively replacing
the atoms of a random string of beads, that is, a random interval [0, L] for some L > 0
equipped with a random discrete probability measure µ, with scaled independent copies
of itself. More general versions of the CRT construction using so-called generalised strings
were established to capture multifurcating self-similar CRTs. We briefly recap our con-
struction, and refer to [49] for more details.

Strings of beads can be represented in the form ([0, l], (xi)i∈I , (qi)i∈I) where l > 0
denotes the length of the interval, and xi ∈ [0, l], i ∈ I, are distinct and describe the
locations of the atoms with respective masses qi ≥ 0, i ∈ I,

∑
i∈I qi = 1, where I is some

countable index set. The concept of a string of beads can be generalised by allowing
for non-distinct xi’s. We call ([0, l], (xi)i∈I , (qi)i∈I) a generalised string. The following
theorem is a (slightly simplified) version of the main result in [49].

Theorem 4.1 Let β ∈ (0,∞) and p > 1/β. Consider a random generalised string ζ =

(Ť0, (X̌
(0)
i )i∈I , (Q̌

(0)
i )i∈I) with length L > 0 such that E[Lp] < ∞, and atom masses 0 ≤

Q̌
(0)
i < 1 a.s. for all i ∈ I and such that

∑
i∈I Q̌

(0)
i = 1 a.s.. For n ≥ 0, to obtain(

Ťn+1,
(
X̌

(n+1)
i

)
i∈I

,
(
Q̌

(n+1)
i

)
i∈I

)
conditionally given (Ťn, (X̌(n)

i )i∈I , (Q̌
(n)
i )i∈I), attach to each X̌

(n)
i ∈ Ťn an independent

isometric copy of ζ with metric rescaled by (Q̌
(n)
i )β and atom masses rescaled by Q̌

(n)
i .

Let µ̌n =
∑

i∈I Q̌
(n)
i δ

X̌i
(n) , n ≥ 0. Then there exists a random weighted R-tree (Ť , µ̌)

such that
lim
n→∞

(
Ťn, µ̌n

)
=
(
Ť , µ̌

)
a.s.

in the Gromov–Hausdorff–Prokhorov topology in Tw. Furthermore, E[ht(Ť )p] <∞ for all
p < p∗ := sup{p ≥ 1: E[Lp] <∞}.
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The convergence in Theorem 4.1 holds in particular in the Gromov–Hausdorff sense
when we omit mass measures. In fact, this construction is naturally carried out in the
Banach space `1(U), U :=

⋃
n≥0 Nn, which is a variant of Aldous’s `1(N) since U is count-

able. So embedded, the convergence holds with respect to the Hausdorff metric (or a
Hausdorff–Prokhorov metric) for compact subsets (equipped with a probability measure)
of `1(U), as a consequence of the arguments of [49]. In particular, the α-stable tree was
characterised as the limit in the case of a β-generalised string for β = 1− 1/α ∈ (0, 1/2],
that is, a generalised string of the form(

[0, L] , (Xi)i≥1 , (Pi)i≥1

)
where, for (Qm,m ≥ 1) ∼ PD(β, β) independent of i.i.d. (R

(m)
j , j ≥ 1) ∼ PD(1 − β,−β),

m ≥ 1, the atom sizes are given via

(Pi, i ≥ 1) =
(
QmR

(m)
j , j ≥ 1,m ≥ 1

)↓
,

and the atom locations are defined via i.i.d. Unif([0, 1])-variables (Um,m ≥ 1) and

L := lim
m→∞

mΓ(1− β)Qβm, Xi = LUm if Pi = QmR
(m)
j , i ≥ 1.

4.2 Second main result: uniqueness and attraction for the new RDE

We now turn to the uniqueness and attraction of the fixpoints in (22). By Theorem 3.8
and Remark 3.9, uniqueness will only hold up to multiplication by a constant and under
additional moment conditions on tree heights. As our setup works for more general ξ ∈ Ξ,
we will broaden our scope, and consider the RDE (22) in a less specific setting.

It will be useful to work in the framework of a recursive tree process, as defined
in Section 2.4. Let us consider a sequence of i.i.d. R-trees with one marked leaf with
distribution η on Tm, and an i.i.d. family of sequences of scaling factors (ξui, i ≥ 0),u ∈ U,
with some distribution ν on Ξ, where we recall the Ulam–Harris notation U =

⋃
n≥0 Nn.

For n ≥ 1, we would like to study the distribution Φn
β(η) of Tn := τ

(n)
∅ , where

τ
(n)
u := gβ

(
(ξui, i ≥ 0),

(
τ

(n)
ui , i ≥ 0

))
, u ∈ Nk, k = n, . . . , 1, (23)

for τ
(n)
ui ∼ η, i ≥ 0, u ∈ Nn, i.i.d.. Note that this setup induces a recursive tree process,

and, in particular, a recursive tree framework (((ξui, i ≥ 0),u ∈ U), gβ).
Furthermore, let P∞(Tm) ⊂ P(Tm) be defined as

P∞ (Tm) := {η ∈ P (Tm) : E [ht (T )p] <∞ for all p > 0 where (T , d, ρ, x) ∼ η} .

Our main result in this section is as follows.

Theorem 4.2 For any Ξ-valued random variable ξ=(ξi, i≥0) such that P(ξ0+ξ1<1)=1

and P(ξ0 > 0, ξ1 > 0) = 1, choose β ∈ (0, 1) such that E[ξβ0 + ξβ1 ] = 1. Then, for any
η ∈ P∞(Tm) with h := E[d(ρ, x)] for (T , d, ρ, x) ∼ η,

Φn
β (η)→ η∗h weakly as n→∞,

where η∗h is the unique fixpoint of Φβ in P∞(Tm) with E[d∗(ρ∗, x∗)]=h for (T ∗, d∗, ρ∗, x∗)∼
η∗h.
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Note that the function f : [0, 1]→ (0,∞), β 7→ E[ξβ0 + ξβ1 ] is continuous with f(0) = 2
and f(1) < 1 when P(ξ0 + ξ1 < 1) = 1. Hence, there is always some β ∈ (0, 1) such that
f(β) = 1 in the situation of Theorem 4.2.

The uniqueness and attractiveness of the marked α-stable tree in (22) is a direct
consequence of Theorem 4.2.

Corollary 4.3 Let α ∈ (1, 2] and set β := 1 − 1/α ∈ (0, 1/2]. Furthermore, let ξ =
(X0, X1, X2, X3Pj , j ≥ 1) for independent (X0, X1, X2, X3) ∼ Dir(β, β, β, 1 − 2β) and
(Pj , j ≥ 1) ∼ PD(1−β, 1−2β). Then the law ςm

α of the marked α-stable tree is the unique
fixpoint of Φβ on P∞(Tm) with E[d(ρ, x)] = αΓ(β)/Γ(2β) for (T , d, ρ, x) ∼ η, η ∈ P∞(Tm).
Furthermore, for any η ∈ P∞(Tm) with E[d(ρ, x)] = h for (T , d, ρ, x) ∼ η, we have

Φn
β (η)→ ςm

α,h weakly as n→∞,

where ςm
α,h denotes the distribution of the marked α-stable tree with distances scaled by

h/(αΓ(β)/Γ(2β)).

Proof. Apply Theorem 4.2 with the specific distribution for ξ, and β = 1− 1/α. Further-
more, recall from Theorem 3.8 that the marked α-stable tree is a fixpoint of the resulting
RDE, is well-known to have height moments of all orders (e.g. from its construction via
Theorem 4.1), and from Section 2.3 that the distance between the root and a uniformly
sampled leaf of the α-stable tree has distribution ML(β, β) scaled by α, which has mean
αΓ(β)/Γ(2β) by (6). �

To prove Theorem 4.2, we first focus on the case when η is supported on the space of
probability measures on trivial trees, that is, single branch trees with a root and exactly
one leaf (which is marked). We further require that the length of such a tree has moments
of orders p > 0. Specifically, we consider

Ttr
m := {(T , d, 0, y) ∈ Tm : T = J0, yK, y > 0} .

For most of the proof, we will work in the special case of Ttr
m-valued initial distributions:

Assumption (A): η∈P∞
(
Ttr

m

)
:=
{
η∈P

(
Ttr

m

)
: E[(ht(T ))p]<∞ for all p>0 where T ∼η

}
.

Under Assumption (A), we will show the convergence of the spine from the root to the
marked point in the RDE (Section 4.3), the convergence of subtrees spanned by leaves up
to recursion depth k (Section 4.4), the CRT limit as k → ∞ (Section 4.5) and establish
that the RDE is attractive, pulling threads together via a tightness argument (Section 4.6).
We finally strengthen this to lift Assumption (A) and complete the proof of Theorem 4.2.

For the remainder of this section, we write (Tn, n ≥ 0) for the sequence of trees con-

structed in (23) from τ
(n)
uj ∼ η,u ∈ Nn, j ≥ 0. We write Yuj := ht(τ

(n)
uj ), u ∈ U, j ≥ 0.

4.3 The spine from the root to the marked point in the RDE

We first study an Lp-bounded martingale arising from the fixpoint equation in Theorem
4.2, which tracks the length of the spine from the root to the marked point.

Lemma 4.4 Let ξ be a Ξ-valued random variable with P(ξ0 > 0, ξ1 > 0) = 1. Let β ∈ (0, 1]

such that E[ξβ0 + ξβ1 ] = 1, let (ξuj , j ≥ 0),u ∈ U, be i.i.d. with the same distribution as ξ,
and define

ξu := ξu1ξu1u2 · · · ξu1...un , u = u1 . . . un ∈ Nn, n ≥ 1. (24)

Then the process

Ln =
∑

u∈{0,1}n
ξ
β
u (25)

is a mean-1 martingale that converges a.s. and in Lp for all p ≥ 1.
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Proof. It is straightforward to show that (Ln, n ≥ 0) is a martingale with E[Ln] = 1 for
all n ≥ 1. So we focus on the Lp-boundedness. For p = 1, we have for all n ≥ 1,

E [Ln] =
∑

u∈{0,1}n
E
[
ξβu1

]
· · ·E

[
ξβu1...un

]
=
(
E
[
ξβ0

]
+ E

[
ξβ1

])n
= 1.

Inductively, if for all j ≤ p− 1 and n ≥ 1, we have E[Ljn] ≤ f(j), then for all n ≥ 1,

E [Lpn] =
∑

u(1),...,u(p)∈{0,1}n
E
[
ξ
β

u(1) · · · ξ
β

u(p)

]

=
∑

v∈{0,1}n
E
[
ξ
pβ
v

]
+

n−1∑
k=0

∑
v∈{0,1}k

E
[
ξ
pβ
v

] p−1∑
j=1

(
p

j

)
E
[
ξjβ0 ξ

(p−j)β
1

]

× E

 ∑
w(1),...,w(j)

∈{0,1}n−k−1

(
ξ
β

w(1) · · · ξ
β

w(j)

)!E

 ∑
w(j+1),...,w(p)

∈{0,1}n−k−1

(
ξ
β

w(j+1) · · · ξ
β

w(p)

) .
Specifically, we split the sum over u(1), . . . ,u(p) according to the number k of initial entries
that are common to all u(1), . . . ,u(p) and according to the number j of entries in the (k+1)-
st place of u(1), . . . ,u(p) that equal 0. For each k and j, there are

(
p
j

)
ways to choose which

j they are. By symmetry, the contribution is the same as if they are 1, . . . , j, so that we
write the sum as a sum over

u(1) = v0w(1), . . . ,u(j) = v0w(j),u(j+1) = v1w(j+1), . . . ,u(p) = v1w(p).

By the induction hypothesis, we can further bound E[Lpn] above by

n∑
k=0

∑
v∈{0,1}k

E
[
ξ
pβ
v

] p−1∑
j=1

(
p

j

)
f(j)f(p− j)

≤

p−1∑
j=1

(
p

j

)
f(j)f(p− j)

 1

1− E
[
ξpβ0 + ξpβ1

] =: f(p) <∞.

This completes the proof by the Martingale Convergence Theorem. �

4.4 Convergence of subtrees spanned by leaves up to depth k

For the following, it will be useful to represent the trees Tn := τ
(n)
∅ of (23) in such a way

that we can talk about “the subtree of Tn spanned by the leaves up to depth k”. Let us
introduce notation for these leaves under the Assumption (A): denote by Σn,u the endpoint

of the trivial tree τ
(n)
u when repeatedly rescaled and finally used to build Tn. Then the

leaves of Tn up to depth k, together with the branch points up to depth k, are given by
the set of Σn,u for u = u1 · · ·un ∈ Nn, with uk+1 = . . . = un = 1.

Proposition 4.5 Suppose Assumption (A) holds and Tn := τ
(n)
∅ in the setting of (23),

n ≥ 0. Let k ∈ N. For n ≥ k, let T kn be the subtree of Tn spanned by the root and the
leaves up to depth k. We consider Σn,11···1 as the respective marked point. Then there is
an increasing sequence of marked trees (T k, k ≥ 0) such that, for all k ≥ 0,

T kn → T k in probability as n→∞

in the marked Gromov–Hausdorff topology.
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Proof. For k = 0, T 0
n is a trivial one-branch tree with a root and a marked leaf, and total

length

L̃0
n =

∑
u∈{0,1}n

ξ
β
uYu.

Recall the martingale (Ln, n ≥ 1) from (25) and denote its limit by L∞. Let m := E[Y∅],
and note that,

E
[(
L̃0
n −mLn

)2
]

= E

 ∑
u∈{0,1}n

ξ
β
u (Yu −m)

2
=

∑
u∈{0,1}n

∑
v∈{0,1}n

E
[
ξ
β
uξ

β
v

]
E [(Yu −m) (Yv −m)]

=
∑

u∈{0,1}n
E
[
ξ

2β
u

]
E
[
(Yu −m)2

]
= Var (Y )

(
E
[
ξ2β

0 + ξ2β
1

])n
→ 0

as n → ∞, where we used the facts that Yu and Yv are independent for u 6= v, and
E[ξ2β

0 + ξ2β
1 ] < 1 as 0 < ξ0, ξ1 < 1 a.s.. Therefore, L̃0

n → L̃0
∞ := m · L∞ in L2 and almost

surely as n→∞.
Under Assumption (A), the Yu also have finite p-th moment for all p ≥ 3 and splitting p-

fold sums as in the proof of Lemma 4.4, it is straightforward to strengthen this convergence
to Lp-convergence.

Now, let k ≥ 1, and note that the shapes of T kn and Tk coincide for all n ≥ k. Let
L̃kn,u,u ∈ Nk, denote the lengths of the edges of T kn using obvious notation, i.e.

L̃kn,u :=
∑

v∈{0,1}n−k

ξ
β
uvYuv, u ∈ Nk.

Furthermore, let T k have the same shape and the same marked leaf as Tk with edge lengths
L̃k∞,u,u ∈ Nk, given by

L̃k∞,u = lim
t→∞

∑
v∈{0,1}t

ξ
β
uvYuv, u ∈ Nk,

which exists a.s. as a ξ
β
u-scaled copy of L̃0

∞, independent for u ∈ Nk.
Hence, for each k ≥ 0, the differences

∣∣∣L̃kn,u − L̃k∞,u∣∣∣, u ∈ Nk, are ξ
β
u-scaled independent

copies of |L̃0
n − L̃0

∞|. Therefore, for p ≥ 1/β, as every leaf of T kn or T k is at most 2k edges
from the root and from another leaf, by (4),

E
[(
dm

GH

(
T kn , T k

))p]
≤ 2pkE

[
max
u∈Nk

∣∣∣L̃kn,u − L̃k∞,u∣∣∣p] ≤ 2pk
∑
u∈Nk

E
[(∣∣∣L̃kn,u − L̃k∞,u∣∣∣)p]

= 2pk
∑
u∈Nk

E
[
ξ
pβ
u

]
E
[∣∣∣L̃0

n − L̃0
∞

∣∣∣p] .
Since

∑
u∈Nk E

[
ξ
pβ
u

]
<∞ for p ≥ 1/β and L̃0

n → L̃0
∞ in Lp as n→∞, we conclude that,

for any ε > 0,

lim
n→∞

P
(
dm

GH

(
T kn , T k

)
> ε
)
≤ lim

n→∞
ε−pE

[(
dm

GH

(
T kn , T k

))p]
= 0.

Hence, T kn → T k in probability in the marked Gromov–Hausdorff topology as n→∞. �
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Figure 5: Dyadic structure of limiting branch lengths L̃k∞,u = L̃k+1
∞,u0 + L̃k+1

∞,u1, for which

ξ
−β
u L̃k∞,u, u ∈ {0, 1}k are i.i.d. for each k ≥ 1, ordered in lexicographical order; atom

positions Xui are between fragments L̃n∞,u0 and L̃n∞,u1, u ∈ {0, 1}n, n ≥ 0.

4.5 The CRT limit of T k as k →∞

Next, we want to prove the convergence of T k as k →∞. To this end, we need to identify
a suitable candidate for the limit. We employ the recursive construction method for CRTs
as described in Section 4.1. Define a generalised string

ζ =
([

0, L̃0
∞

]
, (Xu)u∈U∗ , (Qu)u∈U∗

)
(26)

where U∗ :=
⋃
n≥0{0, 1}n × {2, 3, . . .}, L̃0

∞ is given above, and (Xu)u∈U∗ , (Qu)u∈U∗ are

defined by dyadically splitting L̃0 as follows. See Figure 5 for an illustration.

• Let Qi := ξi, i ≥ 2, and, for u = u1 . . . un ∈ U∗, define

Qu := ξu1ξu1u2 · · · ξu1u2...un = ξu1u2...un .

Note that 0 ≤ Qu < 1 a.s. for all u ∈ U∗,
∑

u∈U∗ Qu = 1 a.s., and E
[∑

u∈U∗ Q
pβ
u

]
<

1 for all p > 1/β.

• Define the locations (Xu)u∈U∗ of the atoms with respective masses (Qu)u∈U∗ by

Xi = lim
m→∞

∑
(0u2...um)∈{0}×{0,1}m−1

ξ
β
0u2...umY0u2...um , i ≥ 2,

and, for general u = (u1 . . . un) ∈ U∗,

Xu1...un = lim
m→∞


∑

(v1...vn)∈{0,1}n : (v1...vn)≺(u1...un)
(v1,...,vn−1,vn)6=(u1,...,un−1,1)

∑
vn+1...vn+m∈{0,1}m

ξ
β
v1...vn+m

Yv1...vn+m


where ≺ denotes the lexicographic order, that is,

(v1 . . . vn) ≺ (u1 . . . un) ⇐⇒ ∃t ≥ 1 such that ∀k < t : vk = uk and vt < ut.

Noting in particular that this specifies Xui = Xu2 for all i ≥ 2 and each u2 ∈ U∗, the
scaled lengths and dyadic splits to depth k = 3 are illustrated in Figure 5.

We now apply the recursive construction as outlined in Theorem 4.1 to the generalised
string ζ, which results in an R-tree T , whose distribution we denote by η∗.

Proposition 4.6 Let β ∈ (0, 1], and p > 1/β. Consider the generalised string ζ given by
(26). Apply the recursive construction described in Theorem 4.1 to construct a sequence
of random R-trees (T ∗n , n ≥ 0). Then T ∗n → T a.s. in the Gromov–Hausdorff topology for
some random compact R-tree T with

E [ht (T )p] <∞ for all p > 0.
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Proof. This is a direct application of Theorem 4.1. �

It will be convenient to refer to the root as ρ and the endpoints of the generalised
strings as Σu, u ∈ U. Specifically, we denote by Σ∅ the endpoint of T ∗0 . In the first
step of the construction performed in Proposition 4.6, we attach branches to all branch
points on the initial spine at once. The string has all the branch points Xu, u ∈ U∗ =⋃
j≥0{0, 1}j ×{2, 3, . . .} placed as in the n→∞ limit. In particular, we have Σu ∈ T ∗1 for

all u ∈ U∗ and for more general u ∈ U, we have Σu ∈ T ∗n if and only if u = u1 · · ·uj has
at most n entries ui ∈ {2, 3, . . .}, i.e. at least j − n entries ui ∈ {0, 1}.

In contrast, as (Tn, n ≥ 0) evolves, the branch points on the initial spine are created
successively, and distances change in each step as branches are replaced by two scaled
branches in each step. We will further couple the vectors (ξui, i ≥ 0), u ∈ U, of the con-
struction of (Tn, n ≥ 0), and the generalised strings ζv, v ∈ U. Specifically, we take L̃k∞,v
as the length of ζv and build ((Xv,u)u∈U∗ , (Qv,u)u∈U∗) from the appropriate subfamilies
of ((ξui, i ≥ 0),u ∈ U). We will not require precise notation for these subfamilies, but
we will exploit the coupling and the independence of these subfamilies for all v ∈ Nn,
n ≥ 0, which is a consequence of the branching property of the recursive tree framework
((ξui, i ≥ 0),u ∈ U).

Indeed, we can represent T like Tn, n ≥ 0, in `1(U) in such a way that the convergence
of Proposition 4.5 holds for the Hausdorff metric on compact subsets of `1(U). Then,
we have further a.s. convergence of Σn,u to limits that we denote by Σu, for all u ∈ U.
Then the trees T k are spanned by Σu, u ∈

⋃
0≤j≤k Nj , while T ∗n is spanned by Σu,

u = u(1)v1u
(2)v2 · · ·u(n)vnu

(n+1), u(1), . . . ,u(n+1) ∈
⋃
m≥0{0, 1}m, v1, . . . , vn ∈ N.

Lemma 4.7 Let (T k, k ≥ 0) be the sequence of trees from Proposition 4.5, and let
(T ∗n , n ≥ 0) be the sequence of trees from Proposition 4.6 with T ∗n → T a.s. as n → ∞.
Then

T k → T a.s. as k →∞
in the marked Gromov–Hausdorff topology.

Proof. Since the sequence of trees (T k, k ≥ 0) is increasing and embedded in T with the
same marked point, it remains to show that the almost sure limit of T k is the whole of T .

Let (Tuj , j ≥ 2), u ∈
⋃∞
t=0 Nk × {0, 1}t, denote the connected components of T \ T k,

k ≥ 0, where we write (Tu1...unj , j ≥ 2) for the subtrees of T \ T k rooted at the edge of Tk
of length L̃k∞,u1...uk , n ≥ k, using notation from Proposition 4.5. Exploiting the fact that

each Tuj is a ξuj scaled independent copy of T , we obtain for k ≥ 0 and p > 1/β,

E
[(
dm

GH

(
T k, T

))p]
≤ E

[(
max

u∈
⋃∞

t=0 Nk×{0,1}t,j≥2
ht (Tuj)

)p]
≤ E [(ht (T ))p]

∑
u∈

⋃∞
t=0 Nk×{0,1}t,j≥2

E
[
ξ
pβ
uj

]
≤ E [(ht (T ))p]

∑
u∈

⋃∞
t=0 Nk×{0,1}t

E
[
ξ
pβ
u

]

≤ E [(ht (T ))p]

E

∑
j≥0

ξpβj

kE[ ∞∑
t=0

(
ξpβ0 + ξpβ1

)t]
→ 0 as k→∞

as E [ht (T )p] <∞ and E
[∑

j≥0 ξ
pβ
j

]
< 1. Hence, for any ε > 0 and p > 1/β,

P
(
dm

GH

(
T k, T

)
> ε
)
≤ ε−pE

[(
dm

GH

(
T k, T

))p]
→ 0
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as k → ∞. Therefore, due to the embedding of (T k, k ≥ 0) into T , T k → T a.s. as
k →∞. �

4.6 Attraction of the RDE and the proof of Theorem 4.2

Next, we show that the supremum of the height moments of Tn is finite, employing the
recursive construction of CRTs for a generalised string defined in a similar manner as in
the discussion before Proposition 4.6.

Lemma 4.8 Under Assumption (A), the sequence of trees (Tn, n ≥ 0) satisfies

E
[
sup
n≥0

ht (Tn)p
]
<∞ for all p > 0. (27)

Proof. The idea of the proof is to construct a CRT T̂ whose height dominates ht(Tn) for
all n ≥ 0. Indeed, we apply the recursive construction of CRTs (cf. the construction of T )
to the generalised string ζ̂ obtained by modifying the definition of ζ in (26) by replacing
limm→∞ by supm≥0 in the definition of interval length and atom locations. In particular,

the length of the interval is given by supn≥0

∑
u∈{0,1}n ξ

β
uYu.

This ensures that each atom is placed at the furthest position away from the root
which appears in the course of the construction of Tn, n ≥ 0. Hence, all distances between
branch points, leaves and the root are larger than in any of the trees Tn, n ≥ 0.

Applying Theorem 4.1 to the generalised string ζ̂, we obtain a CRT T̂ which has finite
height moments of all orders. By the underlying coupling, ht(Tn) ≤ ht(T̂ ) for all n ≥ 0,
i.e., the claim follows. �

Corollary 4.9 Consider the sequences of trees (Tn, n ≥ 0) and (T kn , n ≥ k), k ≥ 0, where
we recall that, for n ≥ k, T kn is the subtree of Tn spanned by the root and the leaves up to
depth k. Then, for any ε > 0,

lim
k→∞

lim sup
n→∞

P
(
dm

GH

(
T kn , Tn

)
> ε
)

= 0. (28)

Proof. Let T kn,u\{ρkn,u},u ∈
⋃n−k−1
t=0 Nk×{0, 1}t×{2, 3, . . .}, denote the subtrees of Tn\T kn ,

n ≥ k + 1:
Tn \ T kn =

⋃
u∈

⋃n−k−1
t=0 Nk×{0,1}t×{2,3,...}

T kn,u \ {ρkn,u}.

Then, for any ε > 0 and p > 1/β,

P
(
dm

GH

(
T kn , Tn

)
> ε
)
≤ ε−pE

[
max

u∈
⋃n−k

t=0 Nk×{0,1}t×{2,3,...}
ht
(
T kn,u

)p]
≤ ε−p

∑
u∈

⋃n−k−1
t=0 Nk×{0,1}t×{2,3,...}

E
[
ξ
pβ
u

]
E
[
ht
(
Tn−|u|

)p]
.

By Lemma 4.8, it remains to show that

lim
k→∞

lim sup
n→∞

∑
u∈

⋃n−k−1
t=0 Nk×{0,1}t×{2,3,...}

E
[
ξ
pβ
u

]
= 0, (29)

First, note that the left-hand side of (29) is bounded above by

lim
k→∞

sup
n≥k+1

∑
u∈Nk

n−k−1∑
t=0

∑
v∈{0,1}t×{2,3,...}

E
[
ξ
pβ
uv

]
, (30)
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where we also slightly rewrote the expression. By the fact that (ξuj , j ≥ 0),u ∈ U, are
i.i.d., we have

E
[
ξ
pβ
uv

]
= E

[
ξ
pβ
u

]
E
[
ξ
pβ
v

]
≤ E

[
ξ
pβ
u

]
E
[
ξv
]
,

where we used ξv < 1 a.s. and pβ > 1 in the last inequality.
Furthermore, as

∑
j≥0 ξvj = 1,

n−k−1∑
t=0

∑
v∈{0,1}t×{2,3,...}

E
[
ξv
]
≤

n−k−1∑
t=0

(E [ξ0 + ξ1])t ≤
∞∑
t=0

(E [ξ0 + ξ1])t = (1− E [ξ0 + ξ1])−1

where we also used the i.i.d. property of the (ξvj , j ≥ 0), v ∈
⋃n−k−1
t=0 {0, 1}t, and

E [ξ0 + ξ1] < 1. Hence, (30) can be further bounded above by

(1− E [ξ0 + ξ1])−1 lim
k→∞

∑
u∈Nk

E
[
ξ
pβ
u

]
= (1− E [ξ0 + ξ1])−1 lim

k→∞

E

∑
i≥0

ξpβi

k

. (31)

As pβ > 1 and 0 ≤ ξi < 1 a.s. for all i ≥ 0, E
[∑

i≥0 ξ
pβ
i

]
< 1, and we conclude that

(31) is 0. �

We are now ready to prove our final result.

Corollary 4.10 Under Assumption (A), let (Tn, n ≥ 0) be as above, and let T be the tree
from Proposition 4.6. We have the convergence

Tn → T in probability as n→∞

in the marked Gromov–Hausdorff topology.

Proof. Let ε > 0, and use the triangle inequality twice to get, for n ∈ N and k ≤ n,

P(dm
GH(Tn, T ) > 3ε) ≤ P(dm

GH(Tn, T kn ) > ε) + P(dm
GH(T kn , T k) > ε) + P(dm

GH(T k, T ) > ε).

All three terms converge to 0 as n→∞, and then k →∞, cf. Proposition 4.5, Lemma
4.7 and Corollary 4.9. �

Theorem 4.2 is now a direct consequence of Corollary 4.10.

Proof of Theorem 4.2. Let η ∈ P∞(Tm) be a general distribution of a marked R-tree. For
(T0, d0, ρ0, x0) ∼ η, we define the induced distribution η◦ ∈ P∞(Ttr

m) as the distribution of
Jρ0, x0K. We construct coupled (Tn, n ≥ 0) and (T ◦n , n ≥ 0) from the same recursive tree
framework ((ξui, i ≥ 0),u ∈ U) and from coupled systems of i.i.d. η- and η◦-distributed
trees, according to (23), with T0 ∼ η and T ◦0 = Jρ0, x0K ∼ η◦. Then T0 \ T ◦0 consists of
subtrees of heights bounded by ht(T0). By construction, Tn \ T ◦n consists of subtrees of
heights bounded by the maximum of ξu-scaled independent copies of ht(T0). Hence,

E ((dm
GH(Tn, T ◦n ))p) ≤ E ((ht(T0))p)

E

∑
j≥0

ξpβj

n

→ 0,

as n → ∞. By Corollary 4.10, we have T ◦n → T and hence Tn → T in probability as
n→∞ in the marked Gromov–Hausdorff topology. Uniqueness follows from the attraction
property. �
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