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ABSTRACT

We present new families of goodness-of-fit tests of uniformity on a full-dimensional set W ⊂ Rd
based on statistics related to edge lengths of random geometric graphs. Asymptotic normality of these
statistics is proven under the null hypothesis as well as under fixed alternatives. The derived tests are
consistent and their behaviour for some contiguous alternatives can be controlled. A simulation study
suggests that the procedures can compete with or are better than established goodness-of-fit tests. We
show with a real data example that the new tests can detect non-uniformity of a small sample data set,
where most of the competitors fail.

1 Introduction

The analysis of point patterns in a given study area is of particular interest in a wide variety of fields, such as astronomy
(e.g. occurrence of high energetic events in a sky map), biology (e.g. locations of sightings of threatened species)
or geology (e.g. locations of raw materials). The concept of uniformity of the observations stands for the absence
of structure in the data. Thus, testing uniformity of random vectors is a natural starting point for serious statistical
inference involving any cluster analysis or multimodality assumption. To be specific, let n ∈ N and

Xn := {X1, . . . , Xn}

be the data set, where X1, . . . , Xn are independent identically distributed (i.i.d.) random vectors taking values in a
given measurable set W ⊂ Rd, d ≥ 1, of positive finite volume, called the observation window. Without loss of
generality we assume that Vol(W ) = 1. We want to test the null hypothesis

H0 : X ∼ U(W ) (1)

withX being an independent copy ofX1 and U(W ) denoting the uniform distribution onW against general alternatives.
This situation also arises in the investigation of pseudo random number generators, see e.g. [20, Section 3.3]. Testing if
i.i.d. random vectors in Rd follow a given absolutely continuous distribution is, by the Rosenblatt transformation, see
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Testing multivariate uniformity based on random geometric graphs

[29], theoretically equivalent to testing uniformity on the d-dimensional unit cube [0, 1]d, although this transformation
is hard to compute in many cases. The problem of testing uniformity has been investigated in classical papers in the
univariate case, see [25] for a survey and [4] for a recent article, and, hitherto far less studied, in the multivariate setting,
see [5, 6, 8, 13, 19, 23, 31, 32, 34], for which an empirical study was conducted in [27]. The cited methods include
classical goodness-of-fit testing approaches as the Kolmogorov-Smirnov test, see [19], nearest neighbour concepts,
see [13] and the references therein, the distances of data points to the boundary of the observation window, see [8],
or the volume of the largest ball that can be placed in the observation window and does not cover any data point, see
[6]. The related problem of testing for complete spatial randomness of a point pattern (i.e., the points are a realisation
of a homogeneous Poisson point process) is also of ongoing interest, see e.g. monographs like [2, 11] or the recent
publications [12, 16].

We approach the testing problem (1) by examining the local properties of the data by means of random graphs. Using
random graphs for testing uniformity is a known but not widely used concept, see [15, 21, 27]. Our new approach is to
consider statistics of the random geometric graph RGG(Xn, rn), rn > 0: It has the realisations of the random vectors
in Xn as vertices, and any two distinct vertices x, y ∈ Xn are connected by an edge if ‖x − y‖ ≤ rn, where ‖ · ‖
stands for the Euclidean norm. This random graph model was introduced by Gilbert for an underlying Poisson point
process in [14] and is thus also called Gilbert graph. For further details see [26] and the references cited therein. Figure
1 provides a visualisation of different point data and selected random geometric graphs. For definitions of the CLU and
CON alternatives we refer to Section 5.

Our test statistics are related to the edge lengths of RGG(Xn, rn) and are defined by

Ln(β) :=
1

2

∑
(x,y)∈X 2

n, 6=

1{‖x− y‖ ≤ rn}‖x− y‖β , β ∈ R.

Here
∑

(x,y)∈X 2
n,6=

stands for the sum over all pairs of distinct points of Xn (such sums are called U -statistics), and
1{·} is the indicator function. Notice that Ln(0) counts the number of edges and Ln(1) is the total edge length of
RGG(Xn, rn). These statistics differ from nearest neighbour methods, see e.g. [9, 13] and the references therein, as
such that they rely on all interpoint distances not exceeding rn, whereas nearest neighbour methods take only distances
between points and their k-nearest neighbours into account. In order to analyse point processes in spatial statistics,
one often studies Ripley’s K-function (see e.g. [11, 16] and the references therein). For β = 0, Ln(β) is - up to a
rescaling - an estimator of Ripley’s K-function at rn. While one usually considers Ripley’s K-function for a range of
arguments, we choose here only one value rn that depends on the sample size n. An extensive theory of properties and
the asymptotic behaviour of Ln(β) in the complete spatial randomness setting can be found in [28].

Based on the asymptotically standardised statistics Ln(β), we propose the test statistics

Te,n(β) :=

Ln(β)− 1
2n(n− 1)

∫
W 2 1{‖x− y‖ ≤ rn} ‖x− y‖β d(x, y)√

dκd

2(2β+d)nr
β+d/2
n

2

and

Ta,n(β) :=

Ln(β)− dκd

2(β+d) n(n− 1)rβ+dn√
dκd

2(2β+d)nr
β+d/2
n

2

,

where β > −d/2 and rejection of H0 will be for large values of Tj,n(β), j ∈ {e, a}. The indices e and a are
abbreviations for ’exact’ and ’asymptotic’, and they point out that Te,n(β) involves ELn(β), which can be difficult to
compute depending on the shape of the observation window W , while Ta,n(β) uses a simple asymptotic approximation
of ELn(β), see Theorem 2.1.

In order to derive distributional limit theorems for Ln(β), Te,n(β) and Ta,n(β), we apply a central limit theorem from
[18] for triangular schemes of U -statistics. For β = 0 the statistic Ln(β) was considered as application in [18]. Here,
we generalise these findings to β ∈ (−d/2,∞), which is technical for β ∈ (−d/2, 0), and present them in more detail.
Moreover, the focus of the present paper is on statistical tests based on Ln(β) and their properties, which even for β = 0
goes clearly beyond what was studied in [18]. In [34] some U -statistics based on interpoint distances are proposed as
test statistics for uniformity on the unit cube (beside two other statistics based on data depth and normal quantiles).
In contrast to Ln(β), these U -statistics take all interpoint distances into account and not only the small ones, whence
their kernels do not depend on n (i.e., the summand associated with two given points from the sample is the same for
all n ∈ N). The tests for multivariate uniformity studied in [5, 31] are also based on U -statistics with fixed kernels,
which are more involved to compute than the distances between the sample points. For U -statistics with fixed kernels as
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Testing multivariate uniformity based on random geometric graphs

Figure 1: Realisations of uniform data in W = [0, 1]2 (first row), the CON alternative (second row) and the CLU
alternative (third row). Point data (first column), RGG(Xn, 0.03) (second column) and RGG(Xn, 0.06) (third
column), n = 100.

considered in [5, 31, 34], the asymptotic behaviour is much easier to analyse than for Ln(β), where the kernels depend
on the parameters n and rn and their interplay.

Simulations on the d-dimensional unit cube indicate that the power of Tj,n(β), j ∈ {e, a}, against alternatives depends
on the parameters β and rn. We show for several parameters that they are serious competitors to time-honoured tests
and demonstrate the applicability of the new procedures by analysing the real dataset finpines. Clearly, we leave
open questions for further research, as e.g. to find an optimal (automatic) selection of the parameters.

This paper is organised as follows. In Section 2 we derive the theory for Ln(β) in a general setting, including formulae
for the mean and the variance as well as central limit theorems. The two families of test statistics Tj,n(β), j ∈ {e, a},
are discussed in Section 3, and their limiting behaviour is given under H0 and under fixed alternatives. The behaviour
for some contiguous alternatives is studied in Section 4. Section 5 provides a simulation study and a comparison to
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Testing multivariate uniformity based on random geometric graphs

existing methods. We finish the paper by applying the new tests to a real data set in Section 6, and with comments on
open problems and research perspectives in Section 7.

2 Properties of Ln(β)

Let Xn := {X1, . . . , Xn}, where n ≥ 2 and X1, . . . , Xn are i.i.d. random vectors distributed according to a density f ,
whose support is contained in a measurable set W ⊂ Rd of positive finite volume. In the following, we assume without
loss of generality that Vol(W ) = 1, i.e., W has volume one. For some of our results we need the additional assumption
that

lim sup
r→0

Vol({x ∈W : d(x, ∂W ) ≤ r})
r

<∞. (2)

Here, we use the notation d(x,A) := infy∈A ‖x − y‖ for x ∈ Rd and A ⊂ Rd. The assumption (2) requires that
the volume of the set of points in W that are in the r-neighbourhood of the boundary of W is at most of order r and
seems to be no significant restriction. For many sets W , for example all compact and convex W , the limit superior in
(2) equals the surface area of W . The expression in (2) is related to the so-called (outer) Minkowski content. For a
definition as well as some results on its finiteness we refer to [1].

Let (rn) be a sequence of positive real numbers such that rn → 0 as n → ∞. In the following Bd(x, r) stands for
the d-dimensional closed ball with centre x ∈ Rd and radius r > 0, and κd := πd/2/Γ(d/2 + 1) is the volume of the
d-dimensional unit ball Bd(0, 1). For p > 0 we denote by Lp(W ) the space of all measurable functions on W for
which the Lebesgue integral of the p-th power of the absolute value is finite. For the special case β = 0 the formulae of
the following theorem can also be found in [18, Equations (4.2) and (4.3)].

Theorem 2.1. For β > −d and all densities f ∈ L2(W ),

ELn(β) =
n(n− 1)

2

∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β f(x) f(y) d(x, y) (3)

and

lim
n→∞

ELn(β)

n2rβ+dn

=
dκd

2(β + d)

∫
W

f(x)2 dx. (4)

Theorem 2.1, which we prove in Appendix A.1, states exact formulae for the mean and easy to compute asymptotic
approximations under fairly general assumptions. The behaviour of ELn(β) under H0 in the next corollary is a direct
consequence. We write g ≡ h to indicate that two functions g, h : W → R are identical almost everywhere.

Corollary 2.2. If β > −d and f ≡ 1W , then

ELn(β) =
n(n− 1)

2

∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β d(x, y)

and

lim
n→∞

ELn(β)

n2rβ+dn

=
dκd

2(β + d)
.

Recall that the degree of a vertex in a graph is the number of edges emanating from it. The average degree D̄n of the
vertices in RGG(Xn, rn) is given by D̄n = 2Ln(0)/n. Thus, it follows from Theorem 2.1 that ED̄n is of the same
order as nrdn as n→∞. For the special choice of uniformity f ≡ 1W Corollary 2.2 implies

lim
n→∞

ED̄n

κdnrdn
= 1. (5)

In the next theorem we present exact and asymptotic formulae for the variance of Ln(β), which generalise the findings
from [18, Section 4] for β = 0. The proof of the theorem is provided in Appendix A.2.

Theorem 2.3. Let f ∈ L3(W ) and β > −d/2.

4
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(a) Then,

VarLn(β) =
n(n− 1)

2

∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖2β f(x) f(y) d(x, y)

+ n(n− 1)(n− 2)

∫
W

(∫
W

1{‖x− y‖ ≤ rn} ‖x− y‖β f(y) dy

)2

f(x) dx

− n(n− 1)(n− 3/2)

(∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β f(x) f(y) d(x, y)

)2

.

(6)

(b) For f 6≡ 1W ,

lim
n→∞

VarLn(β)

σ
(1)
β,fn

2r2β+dn + σ
(2)
β,fn

3r2β+2d
n

= 1, (7)

where
σ
(1)
β,f :=

dκd
2(2β + d)

∫
W

f(x)2 dx

and

σ
(2)
β,f :=

d2κ2d
(β + d)2

(∫
W

f(x)3 dx−
(∫

W

f(x)2 dx

)2)
.

(c) If f ≡ 1W , W satisfies (2) and nrd+1
n → 0 as n→∞, then

lim
n→∞

VarLn(β)

n2r2β+dn

=
dκd

2(2β + d)
. (8)

Notice that the orders of the two terms in the denominator in (7) differ by nrdn, which is the order of the expected
average degree. For σ(1)

β,f , σ
(2)
β,f > 0 this means that the first (second) term dominates if ED̄n → 0 (ED̄n → ∞) as

n→∞, while both terms contribute to the limit if ED̄n → c ∈ (0,∞) as n→∞. For all densities f ∈ L3(W ) we
have σ(1)

β,f > 0. The Cauchy-Schwarz inequality implies(∫
W

f(x)2 dx

)2

≤
∫
W

f(x)3 dx

∫
W

f(x) dx =

∫
W

f(x)3 dx

with equality if and only if f ≡ 1W . So σ(2)
β,f ≥ 0 with equality if and only if f ≡ 1W .

The formula (8) coincides with (7) for f ≡ 1W . Nevertheless we have to impose for (8) additional conditions on the
boundary of W and on the sequence (rn). They ensure that the sum of the second and the third term in (6) does not
have an asymptotic order that is less than n3r2β+2d

n but still larger than n2r2β+dn . The following example shows that
this can happen due to boundary effects (see also [18, Section 4]). For W = [0, 1], f ≡ 1W , β = 0 and rn < 1/2, we
have ∫ 1

0

(∫ 1

0

1{|x− y| ≤ rn} dy

)2

dx = 2

∫ rn

0

(rn + x)2 dx+ (1− 2rn)4r2n

=
2

3
(8r3n − r3n) + (1− 2rn)4r2n = 4r2n −

10

3
r3n

and ∫
[0,1]2

1{|x− y| ≤ rn} d(x, y) = 2

∫ rn

0

rn + x dx+ (1− 2rn)2rn

= 4r2n − r2n + (1− 2rn)2rn = 2rn − r2n.

Thus, the sum of the second and the third term in (6) equals

n(n− 1)(n− 2)

(
4r2n −

10

3
r3n − 4r2n + 4r3n − r4n

)
− 1

2
n(n− 1)(2rn − r2n)2.

If nr2n →∞ as n→∞, this is of a higher order than the first term in (6).
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Theorem 3.3 in [28] states asymptotic variances for the same statistics Ln(β) with an underlying homogeneous Poisson
point process of intensity n (i.e., f ≡ 1W and the number of points is Poisson-distributed with mean n). In contrast to
(8), these formulae show the same phase transition depending on the behaviour of nrdn as we have in (7) for f 6≡ 1W .

In the following we use the abbreviation

σβ,f,n :=

√
σ
(1)
β,fn

2r2β+dn + σ
(2)
β,fn

3r2β+2d
n ,

with σ(1)
β,f , σ

(2)
β,f as in Theorem 2.3 for β > −d/2 and n ∈ N. Moreover, we write D−→ for convergence in distribution

and Nm(µ,Σ) for an m-dimensional Gaussian random vector with mean vector µ ∈ Rm and positive semidefinite
covariance matrix Σ ∈ Rm×m. In the univariate case the index m is omitted.

Theorem 2.4. Let f ∈ L3(W ), β > −d/2 and assume that n2rdn → ∞ as n → ∞. If f 6≡ 1W or if f ≡ 1W , W
satisfies (2) and nrd+1

n → 0 as n→∞, then

Ln(β)− ELn(β)

σβ,f,n

D−→ N(0, 1) as n→∞.

The proof of Theorem 2.4 is provided in Appendix A.3. For β = 0 a central limit theorem as Theorem 2.4 is established
in [18, Section 4]; see also [33] and the references therein. In [26, Section 3.5] central limit theorems for subgraph
counts of random geometric graphs are derived, which include the number of edges Ln(0) as special case. Notice that
n2rdn →∞ as n→∞ means that the expected number of edges goes to infinity as n→∞ (see Theorem 2.1), which
is a reasonable assumption for a central limit theorem involving edge lengths. The additional assumptions for f ≡ 1W
are the same as in Theorem 2.3(c) and are used to ensure that the rescaled variances converge to one.

The following corollary concerning the behaviour under the null hypothesis is proven in Appendix A.4.

Corollary 2.5. Let β > −d/2, f ≡ 1W and assume that W satisfies (2).

(a) If n2rdn →∞ and nrd+1
n → 0 as n→∞, then

Ln(β)− n(n−1)
2

∫
W 2 1{‖x− y‖ ≤ rn} ‖x− y‖β d(x, y)√

dκd

2(2β+d)nr
β+d/2
n

D−→ N(0, 1) as n→∞.

(b) If n2rdn →∞ and n2rd+2
n → 0 as n→∞, then

Ln(β)− dκd

2(β+d) n(n− 1)rβ+dn√
dκd

2(2β+d)nr
β+d/2
n

D−→ N(0, 1) as n→∞.

It can be seen from Corollary 2.2 that in part (a) of the previous corollary Ln(β) is centred with its expectation, while
in (b) the asymptotic expectation is used. In the latter situation, the assumptions on (rn) are stricter. For the statistics
Ln(β) with respect to an underlying homogeneous Poisson point process (i.e. the case of complete spatial randomness)
central limit theorems are shown in [28, Section 5.1].

3 Testing for uniformity

Motivated by Corollary 2.5 we propose testing goodness-of-fit of H0 in (1) against general alternatives based on the
families of statistics

Te,n(β) =

Ln(β)− 1
2n(n− 1)

∫
W 2 1{‖x− y‖ ≤ rn} ‖x− y‖β d(x, y)√

dκd

2(2β+d)nr
β+d/2
n

2

(9)

and

Ta,n(β) =

Ln(β)− dκd

2(β+d) n(n− 1)rβ+dn√
dκd

2(2β+d)nr
β+d/2
n

2

, (10)
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depending on β > −d2 and rn ∈ (0,∞). The choice of the sequence (rn) is discussed in Section 5, where we introduce a
parameter k, see (12) and (13). Rejection of H0 will be for large values of Tj,n(β), j ∈ {a, e}. Empirical critical values
for W = [0, 1]d can be found in Tables 12 to 15 for dimensions d = 2, 3 and sample sizes n ∈ {50, 100, 200, 500}.
Notice that under H0 and some mild assumptions on (rn) and W the continuous mapping theorem and Corollary 2.5
yield

Tj,n(β)
D−→ χ2

1 as n→∞, j ∈ {a, e}, β > −d/2.
Here χ2

1 denotes a random variable having a chi-squared distribution with one degree of freedom. In the following
theorem we consider the asymptotic behaviour of Te,n(β) and Ta,n(β) under fixed alternatives. We write P−→ for
convergence in probability and prove the next theorem in Appendix A.5.

Theorem 3.1. Let β > −d/2 and f 6≡ 1W . If n2rdn →∞ as n→∞, then

Te,n(β)
P−→∞ and Ta,n(β)

P−→∞ as n→∞.

Theorem 3.1 yields consistency of Te,n(β) and Ta,n(β) against each fixed alternative f 6≡ 1W .

4 Behaviour under contiguous alternatives

Let g ∈ L3(W ) be such that g 6≡ 0 and
∫
W
g(x) dx = 0 and let (an) be a positive sequence such that an → 0 as

n→∞. In the following we always tacitly assume that 1 + ang(x) ≥ 0 for all x ∈ W and n ∈ N. This guarantees
that 1W + ang is a density. In the sequel we denote by T̃e,n(β) and T̃a,n(β) our test statistics in (9) and (10) computed
on n i.i.d. points X̃1, . . . , X̃n distributed according to the density 1W + ang (i.e., we have a triangular scheme).

Theorem 4.1. Let β > −d/2 and assume that W satisfies (2), that n2rdn → ∞, nrd+1
n → 0 and

min{nrd/2+1
n an, rn/an} → 0 as n→∞ and that, for r > 0,∫

W

1{d(x, ∂W ) ≤ r}|g(x)|dx ≤ CW,gr (11)

with some constant CW,g ∈ (0,∞). Then the following assertions hold:

(a) If nrd/2n a2n → γ ∈ [0,∞) as n→∞, then

T̃e,n(β)
D−→

(
Z +

√
dκd(2β + d)√

2(β + d)

∫
W

g(x)2 dx γ

)2

as n→∞

with Z ∼ N(0, 1).

(b) If nrd/2n a2n →∞ as n→∞, then

T̃e,n(β)
P−→∞ as n→∞.

(c) If, additionally, n2rd+2
n → 0 as n→∞, the statements of (a) and (b) also hold for T̃a,n(β).

The condition (11) requires that the fluctuations of g in an r-neighbourhood of the boundary of W are at most of order
r. Because we assume (2), this is always the case if g is bounded. The limiting random variable in Theorem 4.1(a)
follows a non-central chi-squared distribution with one degree of freedom. For nrd/2n a2n → 0 as n→∞ Theorem 4.1
implies that T̃e,n(β) and T̃a,n(β) behave exactly as Te,n(β) and Ta,n(β) under H0. As the following result shows one
can slightly modify Theorem 4.1 if g vanishes close to the boundary of W . By supp g, we denote the support of g, i.e.,
the set of all x ∈W such that g(x) 6= 0. For A,B ⊂ Rd let d(A,B) := infx∈A,y∈B ‖x− y‖.

Theorem 4.2. Let β > −d/2 and assume that d(supp g, ∂W ) > 0, that W satisfies (2) and that n2rdn → ∞ and
nrd+1
n → 0 as n→∞. Then, (a), (b) and (c) of Theorem 4.1 hold.

Theorem 4.1 and Theorem 4.2 are proven in Appendix A.6. Following these theorems, we conclude that under the
stated assumptions the tests based on T̃a,n(β) and T̃e,n(β) are able to detect alternatives which converge to the uniform
distribution at rate an. Moreover, the theorems could be the foundation of establishing local optimality of the tests by
applying the third Le Cam lemma, see Section 5.2 of [22] for a short review of the needed methodology.

7
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5 Simulation

In this section we compare the finite-sample power performance of the test statistics Te,n(β) and Ta,n(β), β > −d/2,
n ∈ N, with that of some competitors. Since the d-dimensional hypercube [0, 1]d is the mostly used observation
window, we restrict our simulation study to this case with d ∈ {2, 3}. Particular interest will be given to the influence
on the finite-sample power of β and rn in dependence of the chosen alternatives. In each scenario, we consider the
sample sizes n ∈ {50, 100, 200, 500} and set the nominal level of significance to 0.05. Since the test statistics depend
on the parameter β and the choice of rn and the empirical finite sample quantile is in some cases far away from
the quantile χ2

1,0.95 ≈ 3.8415 of the limiting distribution, we simulated critical values for Te,n(β) and Ta,n(β) with
100 000 replications, see Tables 12 to 15. Each stated empirical power of the tests in Tables 5 to 9 is based on 10 000
replications and the asterisk ∗ denotes a rejection rate of 100%.

Since there is a vast variety of ways to choose the parameters β and rn, we chose the parameter configurations to fit the
limiting regimes of Corollary 2.5 as well as the following additional property: From (5) we know that the expectation
of the average degree D̄n behaves as κdnrdn for n→∞ under H0. This observation motivates the following choices of
the radius rn for Te,n(β), namely

rn =

(
k

nκd

) 1
d

, k ∈ {1, . . . , 10, 15, 20, 25}, (12)

which satisfies n2rdn → ∞ and nrd+1
n → 0 as n → ∞ and ensures ED̄n → k as n → ∞ under H0. For the test

statistic Ta,n(β) the additional condition n2rd+2
n → 0 as n→∞ has to be fulfilled, so we choose

rn =

(
k

n
3
2κd

) 1
d

, k ∈ {1, . . . , 10, 15, 20, 25}, (13)

to guarantee this additional assumption for d ∈ {2, 3}. In this case we have ED̄n → 0 as n→∞, which for d = 2 is
always the case if n2rd+2

n → 0 as n→∞.

The expected value ELn(β) depends on the observation window W as well as on the dimension d ≥ 2. The following
lemma provides exact formulae of ELn(β) for each of the cases simulated and is proved in Appendix A.7.

Lemma 5.1. Assume β > −d and f ≡ 1W .

(a) If d = 2, W = [0, 1]2 and rn ≤ 1, then

ELn(β) =
n(n− 1)

2

(
2π

β + 2
rβ+2
n − 8

β + 3
rβ+3
n +

2

β + 4
rβ+4
n

)
.

(b) If d = 3, W = [0, 1]3 and rn ≤ 1, then

ELn(β) =
n(n− 1)

2

(
4π

β + 3
rβ+3
n − 6π

β + 4
rβ+4
n +

8

β + 5
rβ+5
n − 1

β + 6
rβ+6
n

)
.

As competitors to the new test statistics we consider the distance to boundary test (DB-test), see [8], the maximal
spacing test (MS-test), see [6, 17], the nearest neighbour type test (NN -test) of [13] as well as the Bickel-Rosenblatt
test (BR-test) presented in [32]. We follow the descriptions of the DB- and MS-tests given in [13].

For the NN -test we consider the family of statistics

NN
(β)
n,J :=

∑
x∈Xn

ξ
(β)
n,J(x,Xn)

in dependence of β ∈ (0,∞), where J is the number of nearest neighbours, with x(k) being the k-nearest neighbour of
x ∈Xn and

ξ
(β)
n,J(x,Xn) :=

J∑
k=1

(κd‖n1/d(x− x(k))‖d)β .

To avoid boundary problems in the computation of the NN -test, we used the same toroid metric in the simulation as in
[13]. Since rejection rates depend crucially on the power β and the number of neighbours J taken into account, we
chose different values for β and J for the two alternatives where the choice was motivated by Table 2 in [13]. Notice

8
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n\h 0.1 0.25 0.5 1
50 9113.028 827.3781 72.70593 0.01799183
100 17048.245 1616.5611 144.16370 0.01799641
200 32839.801 3186.1990 286.73272 0.01795072
500 80073.212 7876.7591 713.74621 0.01787482

Table 1: Critical values of the BR-statistic BR2
n(h)

that this test is consistent, but one has to be careful to choose the correct rejection region, which depends on the choice
of β.

As a further competitor we consider the fixed bandwidth BR-test on the unit cube, studied in [32]. The corresponding
test statistic is

BR2
n(h) = −I2,1n (h) + I2,2n (h) + Vh(0) + n(Vh ? U ? U)(0),

with

I2,1n (h) = 2

n∑
i=1

(Vh ? U)(Xi) and I2,2n (h) =
2

n

∑
1≤i<j≤n

Vh(Xi −Xj),

where h > 0 is a fixed bandwidth. For the sake of completeness we restate the following abbreviations, see [32].
The convolution product operator is denoted by ?, U = 1[0,1]d is the density of the uniform distribution over the unit
hypercube [0, 1]d and for any function g we define g(x) := g(−x) and gh(x) := g

(
x
h

)
/hd with h > 0. Furthermore,

we set V := K ?K, where K is a product kernel on Rd, that is, K(u) =
∏d
i=1 k(ui), u = (u1, . . . , ud) ∈ Rd with a

kernel k on R (so k is bounded and integrable). Using the arguments and techniques in [32], direct calculations for
d = 2 and k(x) = 1√

2π
exp

(
−x

2

2

)
, x ∈ R, being the standard Gaussian density function, give for h > 0,

I2,1n (h) = 2

n∑
i=1

(
Φ

(
Xi,1 − 1√

2h

)
− Φ

(
Xi,1√

2h

))(
Φ

(
Xi,2 − 1√

2h

)
− Φ

(
Xi,2√

2h

))
,

I2,2n (h) =
1

2πnh4

∑
1≤i<j≤n

exp

(
− (Xi,1 −Xj,1)2

4h2

)
exp

(
− (Xi,2 −Xj,2)2

4h2

)

and

Vh(0) =
1

4πh4
, n(Vh ? U ? U)(0) =

4n

πh2

[√
π

(
Φ

(
1√
2h

)
− 1

2

)
+ h

(
exp

(
− 1

4h2

)
− 1

)]2
,

where Φ is the standard Gaussian distribution function and Xi,j denotes the j-th component of the random vector Xi,
with i ∈ {1, . . . , n} and j ∈ {1, 2}.

The BR-test rejects the null hypothesis for large values of BR2
n(h). Notice that the asymptotic distribution of BR2

n(h)
is known, see [32], but not in a closed form. Hence we simulated critical values of BR2

n(h) for h ∈ {0.1, 0.25, 0.5, 1},
which can be found in Table 1.

Following the studies in [7, 13], we simulated a contamination and a clustering model as alternatives to the uniform
distribution. In addition, we considered an alternative consisting of a single point source within uniformly distributed
points. The contamination alternative (CON) is given by the mixture

(1− q1 − q2)U([0, 1]d) + q1Nd(c1, σ
2
1Id) + q2Nd(c2, σ

2
2Id),

under the condition that all simulated points are located in [0, 1]d. Here, Id ∈ Rd×d denotes the identity matrix of order
d. The chosen parameters are given in Table 2, where Φ−1(p), p ∈ (0, 1), denotes the p-quantile of a standard Gaussian
distribution. See Figure 1, second row, for a realisation of this model, where the normally distributed contamination
points are filled points and filled squares, respectively.

The clustering alternative (CLU) is motivated by a fixed number of data points version of a Matérn cluster process,
see Section 12.3 in [2], and is designed to destroy the independence. One first chooses a radius rclu and simulates n

5

random points with the uniform distribution U([−rclu, 1 + rclu]d), that act as centres of clusters. These points will not
be part of the final sample. In a second step, one generates 5 points around each centre in a ball with radius rclu. These
points are generated independently of each other and follow uniform distributions on the mentioned balls. If a point

9
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falls outside [0, 1]d, it is replaced by a point that follows a U([0, 1]d) distribution. In the following we set rclu = 0.1
and a realisation of this model can be found in Figure 1, third row. The clustering alternative is not included in the
framework of our theoretical results since the points are, by construction, not independent. Nevertheless it is interesting
to see how the test statistics behave for such alternatives, which were also considered in the simulation study in [8].

For the single point source alternative (SPS), we simulate a large number of uniformly distributed points and disturb
them with a few points from a single source. In detail, on average 95% of the points are uniformly distributed on [0, 1]d.
The remaining 5% of the points are derived from a Nd(c, σ2Id) distribution under the condition that all simulated points
are located in [0, 1]d. Here, the parameters are given by c = (0.5, . . . , 0.5) ∈ Rd and σ = 0.01. This alternative is
designed to emphasise the dependency of the statistics on the parameter β.

We now present the simulation results for d = 2. Table 5 exhibits the empirical percentage of rejection of the competing
procedures under discussion. An asterisk stands for power of 100%, and in each row the best performing procedures
have been highlighted using boldface ciphers. Clearly, BR2

n(0.1) and NN (0.5)
n,15 dominate the other procedures for

the CON-alternative, but as noted in [13] the performance of NN (0.5)
n,J might even increase for bigger values of J .

Comparison with Te,n(β) for β = −0.5 (see Table 6) shows that the presented new methods are for sample sizes of
n = 100, 200, 500 as good as and for n = 50 nearly as good as the best competitor BR2

n(0.1). As one can witness
throughout the Tables 6 and 7, Te,n(β) dominates Ta,n(β) for small sample sizes, while the power is similar to the best
competitors. In case of the CLU alternative Te,n(β) gives the overall highest performance for β = −0.5 over small
sample sizes of n = 50, 100, 200, while the only procedure that is better for n = 500 is again NN (0.5)

n,15 . Notice that the
asymptotic version Ta,n(β) might even achieve higher performance if one considers bigger radii, since it attains the
highest rates for the biggest values of k. A closer look at these tables reveals the dependency of the new tests on the
choice of β and k. Interestingly, the highest performance is given for both alternatives and Tj,n(β), j ∈ {a, e}, for the
choice of β = −0.5. The best choice of k obviously depends on the sample size. The dependency of the test statistics
on the parameter β becomes even clearer in the Tables 10 and 11, which contain the empirical rejection rates under the
SPS alternative. Here, the best choice is obviously β = −0.5. One explanation for this behaviour could be that for
β = −0.5 very small distances between the data points are taken more into account. Under the SPS alternative, some of
the data points actually are very close to each other. Thus in case β = −0.5 the presented test statistics seem to be
particularly suitable to detect a single point source between uniformly distributed points.

Observe that the simulation results for d = 3 in Tables 8 and 9 show higher rejection rates for Tj,n(β) than in the
bivariate setting. Since the other methods were too time consuming to implement or to simulate we restrict the
comparison to the DB-test. As can be seen in Table 8 the new tests dominate the DB-method for β = −0.5 and nearly
for every value of k.

6 Real data example: Finnish Pines

We apply our methods to the data set finpines included in the R package spatstat, see [3], which presents the
locations of 126 pine saplings in a Finnish forest, the locations are given in metres (to six significant digits). In order to
compute small sample sizes, i.e. n = 50 and n = 100, we restricted the data set to two specific observation windows
W , see Figure 2. We test the hypothesis H0 in (1), i.e. if the points are uniformly distributed in W , and apply the new
methods as well as all presented tests from Section 5. Results are reported as empirical p-values (based on 10 000
replications) for all procedures and are found for the tests Te,n and Ta,n in Table 3 as well as for the competing tests in
Table 4. Interestingly, in the first example (n = 50) the distance to boundary test, the maximal spacings test, the nearest
neighbour tests and the Bickel-Rosenblatt tests uniformly fail to reject the hypothesis of uniformity on a 5% level,
whereas Ta rejects the hypothesis for k ≤ 10 and β = −0.5 as well as for k = 1 and β ∈ {0, 1}. In the second example
(n = 100), again most of the competitors fail to reject H0 on a 5% level, with exception of the nearest neighbour
tests, which show an empirical p-value of 0. Impressively, Te,n as well as Ta,n reject H0 for β = −0.5 for every
k ∈ {1, . . . , 10, 15, 20, 25}, showing for the negative exponent the overall best power. The nearest neighbour tests also
show a similar behaviour, which is not very surprising due to the related concepts of both procedures.

d q1 q2 c1 c2 σ1 σ2
2 0.135 0.24 (0.25, 0.25) (0.7, 0.7) 0.15 · Φ−1(

√
0.9) 0.2 · Φ−1(

√
0.9)

3 0.135 0.24 (0.25, 0.25, 0.25) (0.7, 0.7, 0.7) 0.15 · Φ−1( 3
√

0.9) 0.2 · Φ−1( 3
√

0.9)
Table 2: Parameter configuration of the CON-alternatives

10



Testing multivariate uniformity based on random geometric graphs

−4 −2 0 2 4

−
8

−
6

−
4

−
2

0
2

−4 −2 0 2 4

−
8

−
6

−
4

−
2

0
2

Figure 2: Selection of n = 50 (left) and n = 100 (right) data points in the data set finpines

n β\k 1 2 3 4 5 6 7 8 9 10 15 20 25

Te,n

50

−0.5 0.9 2.5 12.3 34.0 59.5 89.3 60.4 72.5 78.5 69.3 51.8 50.5 38.5
0 13.9 33.2 95.4 61.6 35.6 8.9 4.5 8.9 14.0 11.8 11.6 16.4 12.5
1 46.7 78.8 52.5 20.1 10.1 1.7 0.9 3.6 8.0 7.3 8.9 18.4 13.0
5 67.7 95.1 46.6 15.3 9.2 0.8 0.7 16.3 39.0 29.0 14.5 55.0 20.6

100

−0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.2
0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 4.5 9.9 28.1 68.5 87.2
1 0.0 0.0 0.1 0.1 1.4 8.6 22.0 91.3 49.5 35.9 51.4 30.7 31.9
5 5.5 1.1 59.3 9.7 70.7 73.4 47.4 4.5 0.9 1.4 59.8 25.3 35.3

Ta,n

50

−0.5 0.1 0.5 0.9 0.4 0.5 2.6 1.2 5.5 1.4 2.8 22.5 70.3 86.8
0 0.3 11.3 26.1 5.2 10.9 52.1 27.7 72.8 28.0 45.5 100 50.5 53.2
1 1.1 92.9 91.8 18.9 38.5 79.2 69.5 63.4 57.0 84.2 56.6 23.5 22.5
5 6.9 17.6 64.0 1.0 31.7 37.6 82.7 24.2 43.0 95.1 33.0 14.0 23.2

100

−0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
5 0.0 0.1 3.9 0.0 0.1 0.5 0.0 0.0 0.9 13.0 5.2 9.7 40.6

Table 3: Empirical p-values for Te and Ta for the subsets of size n of the finpines data set

7 Conclusions and open problems

We have theoretically investigated statistics related to the edge length of the random geometric graph of a point pattern
in an observation window under fairly general assumptions. From these findings, we introduced two new families of
consistent goodness-of-fit tests of uniformity based on random geometric graphs. As the simulation section shows,
the presented methods are serious competitors to existing methods, even dominating them for right choices of the
parameters β and rn (or k). Clearly, a natural question is to find (data dependent) best choices of them. Another obvious
extension of the presented methods would be to find tests of uniformity on (lower dimensional) manifolds, including
special cases of directional statistics as the circle or the sphere (for existing methods see Chapter 6 of either [22] or
[24]). Section 4 invites to further investigate in view of concepts of locally optimal tests. Since the approach is fairly
general, an extension would be testing the fit of X1, . . . , Xn to some parametric family {f(·, ϑ) : ϑ ∈ Θ} of densities
for a specific parameter space Θ (eventually the procedures would use a suitable estimator ϑ̂n of ϑ). In view of the
special interest in the case of unknown support of the data, see [6, 7], we indicate that the definition of Ta,n(β) is not
dependent on the shape of the underlying observation window and therefore is applicable in this setting (as long as the
observation window has volume one).
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n BR2
n(0.1) BR2

n(0.25) BR2
n(0.5) BR2

n(1) NN
(0.5)
n,1 NN

(0.5)
n,15 DB MS

50 88.8 95.4 97.1 66.0 5.7 45.7 29.9 67.2
100 8.6 93.2 95.1 34.6 0.1 0.0 31.2 65.3

Table 4: Empirical p-values for the competing tests for the subsets of size n of the finpines data set
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Appendix A Proofs

A.1 Proof of Thoerem 2.1

Proof: Equation (3) follows from

ELn(β) =
n(n− 1)

2
E1{‖X − Y ‖ ≤ rn}‖X − Y ‖β ,

where X and Y are independent random vectors distributed according to the density f . Notice that

E1{‖X − Y ‖ ≤ rn}‖X − Y ‖β =

∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β f(x)f(y) d(x, y)

≤
∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β f(x)2 d(x, y)

≤ dκd
β + d

rβ+dn

∫
W

f(x)2 dx,

where we used the inequality of arithmetic and geometric means and spherical coordinates. This yields

lim sup
n→∞

ELn(β)

n2rβ+dn

≤ dκd
2(β + d)

∫
W

f(x)2 dx. (14)

For C > 0 we use the shorthand notation fC(x) := min{f(x), C} for x ∈W and fC(x) := 0 for x /∈W . It follows
from Lemma B.1 that, for any C > 0,

lim
n→∞

1

rβ+dn

∫
Bd(x,rn)

‖x− y‖βfC(y) dy =
dκd
β + d

fC(x)

for almost all x ∈W . Now the dominated convergence theorem yields

lim
n→∞

1

rβ+dn

∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β fC(x)fC(y) d(x, y) =
dκd
β + d

∫
W

fC(x)2 dx.

Together with ∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β f(x)f(y) d(x, y)

≥
∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β fC(x)fC(y) d(x, y)

13
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we obtain

lim inf
n→∞

ELn(β)

n2rβ+dn

≥ dκd
2(β + d)

∫
W

fC(x)2 dx.

Now letting C →∞ and the monotone convergence theorem yield

lim inf
n→∞

ELn(β)

n2rβ+dn

≥ dκd
2(β + d)

∫
W

f(x)2 dx.

Combining this with (14) proves (4). �

A.2 Proof of Theorem 2.3

Proof: A straightforward computation shows that

ELn(β)2 =
n(n− 1)

2
E1{‖X1 −X2‖ ≤ rn}‖X1 −X2‖2β

+ n(n− 1)(n− 2)E1{‖X1 −X2‖, ‖X1 −X3‖ ≤ rn}‖X1 −X2‖β‖X1 −X3‖β

+
n(n− 1)(n− 2)(n− 3)

4
E1{‖X1 −X2‖, ‖X3 −X4‖ ≤ rn}‖X1 −X2‖β‖X3 −X4‖β .

Here, X1, . . . , X4 are independent random vectors with density f . Combining this with (3) yields (6).

Observe that the asymptotic behaviour of the first and the third term in (6) follows immediately from Theorem 2.1. By
the inequality of arithmetic and geometric means and spherical coordinates, we obtain

1

r2β+2d
n

∫
W

(∫
W

1{‖x− y‖ ≤ rn} ‖x− y‖β f(y) dy

)2

f(x) dx

≤ 1

3r2β+2d
n

∫
W 3

1{‖x1 − x2‖, ‖x1 − x3‖ ≤ rn}‖x1 − x2‖β‖x1 − x3‖β

(f(x1)3 + f(x2)3 + f(x3)3) d(x1, x2, x3)

≤ d2κ2d
(β + d)2

∫
W

f(x)3 dx.

(15)

On the other hand, Lemma B.1 and the dominated convergence theorem imply

lim
n→∞

1

r2β+2d
n

∫
W

(∫
W

1{‖x− y‖ ≤ rn} ‖x− y‖β fC(y) dy

)2

fC(x) dx =
d2κ2d

(β + d)2

∫
W

fC(x)3 dx

for each C > 0. Recall that fC(x) = min{f(x), C} for x ∈W . Now letting C →∞ and the monotone convergence
theorem yield

lim inf
n→∞

1

r2β+2d
n

∫
W

(∫
W

1{‖x− y‖ ≤ rn} ‖x− y‖β f(y) dy

)2

f(x) dx ≥ d2κ2d
(β + d)2

∫
W

f(x)3 dx.

This, together with (15) and the observation that σ(1)
β,f , σ

(2)
β,f > 0, completes the proof of (7).

For the proof of (8) we define W−rn := {x ∈W : d(x, ∂W ) ≥ rn}. Now straightforward computations yield

d2κ2d
(β + d)2

r2β+2d
n Vol(W−rn) ≤

∫
W

(∫
W

1{‖x− y‖ ≤ rn}‖x− y‖β dy

)2

dx ≤ d2κ2d
(β + d)2

r2β+2d
n Vol(W )

and
d2κ2d

(β + d)2
r2β+2d
n Vol(W−rn)2 ≤

(∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖β d(x, y)

)2

≤ d2κ2d
(β + d)2

r2β+2d
n Vol(W )2.

It follows from (2) that there exists a constant CW ∈ (0,∞) such that
0 ≤ Vol(W )−Vol(W−rn) ≤ Vol({x ∈W : d(x, ∂W ) ≤ rn}) ≤ CW rn. (16)

Together with Vol(W ) = 1 this means that the absolute value of the sum of the second and the third term in (6) can be
bounded by

3d2κ2d
(β + d)2

CWn
3r2β+2d+1
n +

d2κ2d
2(β + d)2

n2r2β+2d
n .

Together with the asymptotic order of the first term in (6), which is as in the proof of (7), this proves (8). �
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A.3 Proof of Theorem 2.4

We prepare the proof of Theorem 2.4 by several lemmas, which are formulated for the following more general setting,
required later: We assume that the underlying points of Xn are distributed according to some density fn ∈ L3(W ) and
that fn(x)→ f(x) as n→∞ for almost all x ∈W .

For n ∈ N we define
Wfn := {(x,m) ∈W × [0,∞) : m ≤ fn(x)}

and let X̂1, . . . , X̂n be independent and uniformly distributed points in Wfn . We denote the collection of these points
by X̂n. For a point x̂ ∈ Wfn we often use the decomposition x̂ = (x,m) with x ∈ W and m ∈ [0, fn(x)]. Observe
that the first components of X̂1, . . . , X̂n are distributed according to the density fn in W . For β ∈ R we define

L̂n(β) :=
1

2

∑
((x1,m1),(x2,m2))∈X̂ 2

n, 6=

1{‖x1 − x2‖ ≤ rn} ‖x1 − x2‖β . (17)

If fn = f , L̂n(β) has the same distribution as Ln(β). For M > 0 and a ≥ 0 we define

L̂n,M (β) :=
1

2

∑
((x1,m1),(x2,m2))∈X̂ 2

n,6=

1{m1,m2 ≤M}1{‖x1 − x2‖ ≤ rn} ‖x1 − x2‖β (18)

and

L̂n,a,M (β) :=
1

2

∑
((x1,m1),(x2,m2))∈X̂ 2

n, 6=

1{m1,m2 ≤M}1{n−2/da ≤ ‖x1 − x2‖ ≤ rn} ‖x1 − x2‖β .

Moreover, we use the abbreviations fn,M (x) := min{fn(x),M} and fM (x) := min{f(x),M} for x ∈W .

Lemma A.1. Let β > −d/2, M ≥ 1, a > 0 and assume that n2rdn → ∞ as n → ∞ and that
limn→∞Var L̂n,M (β)/σ2

β,fM ,n = 1. Then,

lim
n→∞

E
(
L̂n,M (β)− EL̂n,M (β)

σβ,fM ,n
− L̂n,a,M (β)− EL̂n,a,M (β)

σβ,fM ,n

)2

= 0 (19)

and

lim
n→∞

Var L̂n,a,M (β)

σ2
β,fM ,n

= 1. (20)

Proof: Throughout the proof we assume that n is so large that n−2/da < rn, which is no restriction since n2rdn →∞
as n→∞. By definition, we have that

L̂n,M (β)− L̂n,a,M (β) =
1

2

∑
((x1,m1),(x2,m2))∈X̂ 2

n,6=

1{m1,m2 ≤M}1{‖x1 − x2‖ < n−2/da} ‖x1 − x2‖β .

Now a similar computation as in the proof of Theorem 2.3(a) yields that

Var(L̂n,M (β)− L̂n,a,M (β)) ≤ I1 + I2

with

I1 :=
n2

2

∫
W 2

1{‖x− y‖ ≤ n−2/da}‖x− y‖2βfn,M (x)fn,M (y) d(x, y)

I2 := n3
∫
W

(∫
W

1{‖x− y‖ ≤ n−2/da}‖x− y‖βfn,M (y) dy

)2

fn,M (x) dx.

Note that I1 and I2 correspond to the first two terms in (6), whereas the third term in (6) was omitted since it is
non-positive. Now short computations show that

I1
σ2
β,fM ,n

≤ dκdM
2

2(2β + d)

n2n−2−4β/da2β+d

σ
(1)
β,fM

n2r2β+dn

=
dκdM

2a2β+d

2(2β + d)σ
(1)
β,fM

1

(n2rdn)2β/d+1

15
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and
I2

σ2
β,fM ,n

≤ d2κ2dM
3

(β + d)2
n3n−4−4β/da2β+2d

σ
(1)
β,fM

n2r2β+dn

=
d2κ2dM

3a2β+2d

(β + d)2σ
(1)
β,fM

1

n(n2rdn)2β/d+1
.

Since n2rdn → ∞ as n → ∞ and 2β/d + 1 > 0, this provides (19). Now (20) follows from combining (19) and
limn→∞Var L̂n,M (β)/σ2

β,fM ,n = 1. �

Lemma A.2. Let β > −d/2, M ≥ 1, a > 0 and assume that n2rdn → ∞ as n → ∞ and that
limn→∞Var L̂n,M (β)/σ2

β,fM ,n = 1. Then,

L̂n,a,M (β)− EL̂n,a,M (β)

σβ,fM ,n

D−→ N(0, 1) as n→∞ (21)

and
L̂n,M (β)− EL̂n,M (β)

σβ,fM ,n

D−→ N(0, 1) as n→∞. (22)

Proof: From (20) we know that limn→∞Var L̂n,a,M (β)/σ2
β,fM ,n = 1. If β ≥ 0, then

lim
n→∞

sup(x,mx),(y,my)∈Wfn
1{mx,my ≤M}1{n−2/da ≤ ‖x− y‖ ≤ rn}‖x− y‖β

nr
β+d/2
n

≤ lim
n→∞

rβn

nr
β+d/2
n

= lim
n→∞

1√
n2rdn

= 0,

while for β ∈ (−d/2, 0),

lim
n→∞

sup(x,mx),(y,my)∈Wfn
1{mx,my ≤M}1{n−2/da ≤ ‖x− y‖ ≤ rn}‖x− y‖β

nr
β+d/2
n

≤ lim
n→∞

n−2β/daβ

nr
β+d/2
n

= lim
n→∞

aβ

(n2rdn)1/2+β/d
= 0.

Denoting by (X
(n)
1 ,m

X
(n)
1

) an uniformly distributed point in Wfn , we obtain

lim
n→∞

n sup(x,m)∈Wfn
E1{m,m

X
(n)
1
≤M}1{n−2/da ≤ ‖x−X(n)

1 ‖ ≤ rn}‖x−X
(n)
1 ‖β

nr
β+d/2
n

= lim
n→∞

1

r
β+d/2
n

sup
x∈W

∫
W

1{n−2/da ≤ ‖x− y‖ ≤ rn} ‖x− y‖β fn,M (y) dy

≤ lim
n→∞

dκdM

β + d

rβ+dn

r
β+d/2
n

= lim
n→∞

dκdM

β + d
rd/2n = 0.

Thus, (21) follows from Theorem C.1. Combining the L2-covergence in (19) with (21) yields (22). �

In the following we use the abbreviation fn,M (x) := max{fn(x)−M, 0} for x ∈W and M ≥ 0.

Lemma A.3. For n ∈ N, β > −d/2 and M ≥ 1,

E
(
L̂n(β)− EL̂n(β)

σβ,f,n
− L̂n,M (β)− EL̂n,M (β)

σβ,f,n

)2

≤ dκd
2β + d

n2r2β+dn

σ2
β,f,n

∫
W

fn,M (x)2 +Mfn,M (x) dx

+
18d2κ2d

(β + d)2
n3r2β+2d

n

σ2
β,f,n

∫
W

M2fn,M (x) +Mfn,M (x)2 + fn,M (x)3 dx.

16
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Proof: By definition we have

L̂n(β)− L̂n,M (β) =
1

2

∑
((x,mx),(y,my))∈X̂ 2

n, 6=

1{mx > M or my > M}1{‖x− y‖ ≤ rn}‖x− y‖β .

From similar arguments as in the proofs of Theorem 2.3(a) and Lemma A.1, it follows that

Var(L̂n(β)− L̂n,M (β)) ≤ I1 + I2

with

I1 :=
n2

2

∫
W 2

fn

1{m1 > M or m2 > M}1{‖x1 − x2‖ ≤ rn} ‖x1 − x2‖2β d((x1,m1), (x2,m2))

I2 := n3
∫
W 3

fn

1{m1 > M or m2 > M}1{m1 > M or m3 > M}1{‖x1 − x2‖ ≤ rn}

× 1{‖x1 − x3‖ ≤ rn} ‖x1 − x2‖β ‖x1 − x3‖β d((x1,m1), (x2,m2), (x3,m3)).

For I1 we obtain the bound

I1 ≤ n2
∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖2β fn,M (x) (fn,M (y) +M) d(x, y)

≤ n2
∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖2β (fn,M (x)2 +Mfn,M (x)) d(x, y)

≤ dκd
2β + d

n2r2β+dn

∫
W

fn,M (x)2 +Mfn,M (x) dx.

Because of

1{m1 > M or m2 > M}1{m1 > M or m3 > M} ≤ 1{m1 > M}+ 1{m2 > M,m3 > M},
we have

I2 ≤ n3
∫
W 3

1{‖x1 − x2‖ ≤ rn}1{‖x1 − x3‖ ≤ rn} ‖x1 − x2‖β ‖x1 − x3‖β

× (fn,M (x1) fn(x2) fn(x3) + fn(x1) fn,M (x2) fn,M (x3)) d(x1, x2, x3).

Using that fn(x) ≤ fn,M (x) +M for x ∈ Rd, we obtain

fn,M (x1) fn(x2) fn(x3) + fn(x1) fn,M (x2) fn,M (x3) ≤ 6 max
k,i∈{1,2,3}

M3−kfn,M (xi)
k.

This implies

I2 ≤
18d2κ2d

(β + d)2
n3r2β+2d

n

∫
W

M2fn,M (x) +Mfn,M (x)2 + fn,M (x)3 dx,

which completes the proof. �

We recall that fM (x) := min{f(x),M} for x ∈W and M ≥ 0.

Lemma A.4. Let β > −d/2, M ≥ 1 and fn = f , n ∈ N. If f 6≡ 1W or if f ≡ 1W , W satisfies (2) and nrd+1
n → 0 as

n→∞, then

lim
n→∞

Var L̂n,M (β)

σ2
β,fM ,n

= 1.

Proof: For M ≥ 1 and f ≡ 1W , fM ≡ 1W and the statement is the same as Theorem 2.3(c) because L̂n,M (β) follows
the same distribution as Ln(β). For f 6≡ 1W one can show as in the proof of Theorem 2.3(a) that

Var L̂n,M (β) =
n(n− 1)

2

∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖2β fM (x) fM (y) d(x, y)

+ n(n− 1)(n− 2)

∫
W

(∫
W

1{‖x− y‖ ≤ rn} ‖x− y‖β fM (y) dy

)2

fM (x) dx

− n(n− 1)(n− 3/2)

(∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β fM (x) fM (y) d(x, y)

)2

.

17
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Now the assertion can be proved as Theorem 2.3(b). �

Proof of Theorem 2.4: We consider the same setting as in the previous lemmas with fn = f for n ∈ N so that Ln(β)

has the same distribution as L̂n(β), which we study throughout this proof. For f ≡ 1W the assertion follows from (22)
in Lemma A.2 because, for M ≥ 1, L̂n(β) has the same distribution as L̂n,M (β), σβ,fM ,n = σβ,f,n and Lemma A.4
guarantees that the variance condition in Lemma A.2 is satisfied. So we assume f 6≡ 1W in the sequel.

Let h : R→ R be a bounded Lipschitz function whose Lipschitz constant is at most one and let ε > 0. In the following
we show

lim sup
n→∞

∣∣∣∣∣Eh
(
L̂n(β)− EL̂n(β)

σβ,f,n

)
− Eh(N(0, 1))

∣∣∣∣∣ ≤ ε, (23)

which yields the assertion.

For M ≥ 1 the triangle inequality implies∣∣∣∣∣Eh
(
L̂n(β)− EL̂n(β)

σβ,f,n

)
− Eh(N(0, 1))

∣∣∣∣∣
≤

∣∣∣∣∣Eh
(
L̂n(β)− EL̂n(β)

σβ,f,n

)
− Eh

(
L̂n,M (β)− EL̂n,M (β)

σβ,f,n

)∣∣∣∣∣
+

∣∣∣∣∣Eh
(
L̂n,M (β)− EL̂n,M (β)

σβ,f,n

)
− Eh

(
L̂n,M (β)− EL̂n,M (β)

σβ,fM ,n

)∣∣∣∣∣
+

∣∣∣∣∣Eh
(
L̂n,M (β)− EL̂n,M (β)

σβ,fM ,n

)
− Eh(N(0, 1))

∣∣∣∣∣
=: R1,n,M +R2,n,M +R3,n,M .

(24)

It follows from Lemma A.2 (notice that the variance condition is satisfied because of Lemma A.4) that R3,n,M vanishes
for any M ≥ 1 as n→∞. The Lipschitz property of h, the Cauchy-Schwarz inequality and Lemma A.3 imply that

R2
1,n,M ≤ E

(
L̂n(β)− EL̂n(β)

σβ,f,n
− L̂n,M (β)− EL̂n,M (β)

σβ,f,n

)2

≤ dκd
2β + d

n2r2β+dn

σ2
β,f,n

∫
W

fM (x)2 +MfM (x) dx

+
18d2κ2d

(β + d)2
n3r2β+2d

n

σ2
β,f,n

∫
W

M2fM (x) +MfM (x)2 + fM (x)3 dx.

Here the terms depending on n can be bounded by some constants. The dominated convergence theorem with the upper
bounds 2f2 and 3f3 leads to

lim
M→∞

∫
W

fM (x)2 +MfM (x) dx = 0

and
lim
M→∞

∫
W

M2fM (x) +MfM (x)2 + fM (x)3 dx = 0.

Hence, there exists an M1 ≥ 1 such that lim supn→∞R1,n,M ≤ ε/2 for M > M1.

A short computation using the Lipschitz continuity of h and the Cauchy-Schwarz inequality shows that

R2,n,M ≤
∣∣∣∣σβ,fM ,n

σβ,f,n
− 1

∣∣∣∣ E∣∣∣∣ L̂n,M (β)− EL̂n,M (β)

σβ,fM ,n

∣∣∣∣ ≤ ∣∣∣∣σβ,fM ,n

σβ,f,n
− 1

∣∣∣∣
√

Var L̂n,M (β)

σβ,fM ,n
.

By the monotone convergence theorem and the assumption f 6≡ 1W , we have σ(1)
β,fM

→ σ
(1)
β,f > 0 and σ(2)

β,fM
→ σ

(2)
β,f >

0 as M →∞. Together with the definitions of σβ,fM ,n and σβ,f,n this implies that there exists an M2 ≥ 1 such that

lim sup
n→∞

∣∣∣∣σβ,fM ,n

σβ,f,n
− 1

∣∣∣∣ ≤ ε

2

for M > M2. Since, by Lemma A.4, limn→∞

√
Var L̂n,M (β)/σβ,fM ,n = 1, we obtain lim supn→∞R2,n,M ≤ ε/2

for M > M2. Thus, choosing M > max{M1,M2} in (24) and letting n→∞ yields (23) and completes the proof.�
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A.4 Proof of Corollary 2.5

Proof of Corollary 2.5: Part (a) is an immediate consequence of Theorem 2.4, (3) and the definition of σβ,f,n. For the
proof of (b) recall that W−rn = {x ∈W : d(x, ∂W ) ≥ rn}. It follows from (3) that

dκd
2(β + d)

Vol(W−rn)n(n− 1)rβ+dn ≤ ELn(β) ≤ dκd
2(β + d)

Vol(W )n(n− 1)rβ+dn .

Together with (16), which is valid because we assume (2), and Vol(W ) = 1 this yields

|ELn(β)− dκd
2(β + d)

n(n− 1)rβ+dn | ≤ dκd
2(β + d)

CWn
2rβ+d+1
n

so that

lim
n→∞

|ELn(β)− dκd

2(β+d)n(n− 1)rβ+dn |√
dκd

2(2β+d)nr
β+d/2
n

≤ lim
n→∞

√
dκd(2β + d)√

2(β + d)
CWnr

d/2+1
n = 0. (25)

Hence, the assertion of (b) follows from (a). �

A.5 Proof of Theorem 3.1

Proof: Throughout this proof we denote the terms that are squared in (9) and (10) by Le,n(β) and La,n(β), respectively.
In the following we will show that

Lj,n(β)
P−→∞ as n→∞ (26)

for j ∈ {a, e}, which implies the assertion.

Let M ≥ 1 and fn := f for n ∈ N. Recall the definitions of L̂n(β) and L̂n,M (β) from (17) and (18). Since L̂n(β) and
Ln(β) have the same distribution, we can assume without loss of generality that they are identical. All pairs of points
that contribute to L̂n,M (β) also contribute to L̂n(β) so that L̂n,M (β) ≤ L̂n(β). This implies that, for j ∈ {e, a},

Lj,n(β) ≥ L̂n,M (β)− EL̂n,M (β)√
dκd

2(2β+d)nr
β+d/2
n

+
EL̂n,M (β)−mn,j(β)√

dκd

2(2β+d)nr
β+d/2
n

=: S1,n + S2,j,n

with

mn,e(β) =
n(n− 1)

2

∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β d(x, y)

and
mn,a(β) =

dκd
2(β + d)

n(n− 1)rβ+dn .

Using the same arguments as in the proof of Theorem 2.1, one can show that

lim
n→∞

EL̂n,M (β)

n2rβ+dn

= lim
n→∞

n(n− 1)

2n2rβ+dn

∫
W 2

1{‖x− y‖ ≤ rn} ‖x− y‖β fM (x) fM (y) d(x, y)

=
dκd

2(β + d)

∫
W

fM (x)2 dx.

By the Cauchy-Schwarz inequality, we have∫
W

1 dx = 1 =

∫
W

f(x) dx <

√∫
W

f(x)2 dx

√∫
W

1 dx =

√∫
W

f(x)2 dx

since f 6≡ 1W . Together with the monotone convergence theorem this implies that we can choose M ≥ 1 such that

lim
n→∞

EL̂n,M (β)

n2rβ+dn

≥ dκd
2(β + d)

(1 + ε)

for some ε ∈ (0,∞). Since, by Theorem 2.1,

lim
n→∞

mn,j(β)

n2rβ+dn

=
dκd

2(β + d)
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for j ∈ {e, a}, this shows that S2,e,n and S2,a,n behave at least as
√
dκd(2β+d)√
2(β+d)

εnr
d/2
n as n→∞. From the Chebyshev

inequality and Lemma A.4 it follows that

lim
n→∞

P
(
|S1,n| ≥

√
dκd(2β + d)

2
√

2(β + d)
εnrd/2n

)
≤ lim
n→∞

Var L̂n,M (β)
dκd

2(2β+d)
dκd(2β+d)
8(β+d)2 n2r2β+dn ε2n2rdn

=
16(β + d)2

(dκd)2ε2
lim
n→∞

σ
(1)
β,fM

n2r2β+dn + σ
(2)
β,fM

n3r2β+2d
n

n4r2β+2d
n

=
16(β + d)2

(dκd)2ε2
lim
n→∞

σ
(1)
β,fM

n2rdn
+
σ
(2)
β,fM

n
= 0,

which implies (26) for j ∈ {a, e}. �

A.6 Proofs of Theorem 4.1 and Theorem 4.2

We prepare the proofs of Theorem 4.1 and Theorem 4.2 with several lemmas. By L̃n(β) we denote the statistic Ln(β)

with respect to i.i.d. points X̃1, . . . , X̃n distributed according to the density 1 + ang, while Ln(β) is with respect to n
i.i.d. points uniformly distributed in W .

Lemma A.5. Assume that W and g satisfy (11) and let n ≥ 2. Then, for any β > −d,∣∣∣∣EL̃n(β)− ELn(β)− n(n− 1)a2n
2

∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖βg(x)g(y) d(x, y)

∣∣∣∣
≤ dκdCW,g

β + d
n2rβ+d+1

n an.

(27)

Moreover, for any β > −d/2,∣∣Var L̃n(β)−VarLn(β)
∣∣ ≤ C(n2r2β+dn an(an + rn) + n3r2β+2d

n an(an + rn + a2n + a3n + a2nrn)
)

(28)

with some constant C ∈ (0,∞) depending on β, d, CW,g and g.

Proof: It follows from (3) in Theorem 2.1 that

EL̃n(β)− ELn(β) =
n(n− 1)a2n

2

∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖βg(x)g(y) d(x, y)

+ n(n− 1)an

∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖βg(x) d(x, y).

(29)

We have ∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖βg(x) d(x, y)

=
dκdr

β+d
n

β + d

∫
W

g(x) dx

+

∫
W

1{d(x, ∂W ) ≤ rn}
(∫

W

1{‖x− y‖ ≤ rn}‖x− y‖2 dy − dκdr
β+d
n

β + d

)
g(x) dx.

Here, the first term is zero since
∫
W
g(x) dx = 0. By (11), the absolute value of the second term can be bounded by

dκd
β + d

rβ+dn

∫
W

1{d(x, ∂W ) ≤ rn}|g(x)|dx ≤ dκdCW,g
β + d

rβ+d+1
n ,

which proves (27).
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From Theorem 2.3(a) we can deduce

Var L̃n(β)−VarLn(β) = EL̃n(2β)− ELn(2β)

+ n(n− 1)(n− 2)

∫
W 3

1{‖x− y1‖, ‖x− y2‖ ≤ rn}‖x− y1‖β‖x− y2‖β

×
(
an(2g(y1) + g(x)) + a2n(g(y1)g(y2) + 2g(y1)g(x))

+ a3ng(y1)g(y2)g(x)
)

d(y1, y2, x)

− 4n− 6

n(n− 1)
(EL̃n(β)− ELn(β))(EL̃n(β) + ELn(β))

=: R̄1,n + R̄2,n − R̄3,n.

It follows from

n(n− 1)a2n
2

∣∣∣∣ ∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖2βg(x)g(y) d(x, y)

∣∣∣∣ ≤ dκd
2(2β + d)

∫
W

g(x)2 dx n2r2β+dn a2n

and (27) that

|R̄1,n| ≤
dκd

2(2β + d)

∫
W

g(x)2 dx n2r2β+dn a2n +
dκdCW,g
2β + d

n2r2β+d+1
n an.

From

EL̃n(β) + ELn(β) ≤ dκd
2(β + d)

(
1 +

∫
W

(1 + ang(x))2 dx

)
n2rβ+dn

=
dκd

2(β + d)

(
2 + a2n

∫
W

g(x)2 dx

)
n2rβ+dn ,

n(n− 1)a2n
2

∣∣∣∣ ∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖βg(x)g(y) d(x, y)

∣∣∣∣ ≤ dκd
2(β + d)

∫
W

g(x)2 dx n2rβ+dn a2n

and (27) we conclude

|R̄3,n| ≤ C3
1

n
(n2rβ+dn a2n + n2rβ+d+1

n an)(1 + a2n)n2rβ+dn

≤ C3n
3r2β+2d
n an(an + rn + a3n + a2nrn)

with some constant C3 ∈ (0,∞) depending on β, d, CW,g and g.

By similar arguments as for the second term in (29), one obtains

n3
∣∣∣∣ ∫
W 3

1{‖x− y1‖, ‖x− y2‖ ≤ rn}‖x− y1‖β‖x− y2‖βan
(
2g(y1) + g(x)

)
d(y1, y2, x)

∣∣∣∣
≤ 6d2κ2dCW,g

(β + d)2
n3r2β+2d+1

n an.

Moreover, one can show the inequality

n3
∣∣∣∣ ∫
W 3

1{‖x− y1‖, ‖x− y2‖ ≤ rn}‖x− y1‖β‖x− y2‖β

×
(
a2n(g(y1)g(y2) + 2g(y1)g(x)) + a3ng(y1)g(y2)g(x)

)
d(y1, y2, x)

∣∣∣∣
≤ 3d2κ2d

(β + d)2

∫
W

g(x)2 dx n3r2β+2d
n a2n +

d2κ2d
(β + d)2

∫
W

|g(x)|3 dx n3r2β+2d
n a3n.

Summarising, it follows that
|R̄2,n| ≤ C2n

3r2β+2d
n an(rn + an + a2n)

with some constant C2 ∈ (0,∞) depending on β, d, CW,g and g. Combining the estimates for R̄1,n, R̄2,n and R̄3,n

completes the proof of (28). �
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Lemma A.6. Let β > −d/2 and assume that the observation window W satisfies (2), that n2rdn → ∞ and
max{nrd+1

n , nrdna
3
n} → 0 as n→∞ and that

lim
n→∞

Var L̃n(β)−VarLn(β)

n2r2β+dn

= 0. (30)

Then,
L̃n(β)− EL̃n(β)√

dκd

2(2β+d)nr
β+d/2
n

D−→ N(0, 1) as n→∞.

We prepare the proof of Lemma A.6 with the following inequality.

Lemma A.7. For p, q > 0, v ∈ Lp+q(W ) and a > 0,∫
W

max{v(x)− a, 0}p dx ≤ 1

aq

∫
W

|v(x)|p+q dx.

Proof: We have that∫
W

|v(x)|p+q dx ≥
∫
W

1{v(x) ≥ a}(v(x)− a)paq dx = aq
∫
W

max{v(x)− a, 0}p dx,

which is the desired inequality. �

Proof of Lemma A.6: In the following we consider the framework from the Lemmas A.1, A.2 and A.3 with f ≡ 1W and
fn := 1W + ang, n ∈ N. Then, L̃n(β) has the same distribution as L̂n(β). For the latter we will prove convergence to
N(0, 1) after an appropriate rescaling.

It follows from (30) and Theorem 2.3(c) that

lim
n→∞

Var L̂n(β)

σ2
β,f,n

= lim
n→∞

Var L̃n(β)−VarLn(β)

σ2
β,f,n

+ lim
n→∞

VarLn(β)

σ2
β,f,n

= 1. (31)

For the rest of this proof we choose M = 2. Lemma A.3 yields

E
(
L̂n(β)− EL̂n(β)

σβ,f,n
− L̂n,M (β)− EL̂n,M (β)

σβ,f,n

)2

≤ dκd
2β + d

n2r2β+dn

σ2
β,f,n

∫
W

fn,M (x)2 +Mfn,M (x) dx

+
18d2κ2d

(β + d)2
n3r2β+2d

n

σ2
β,f,n

∫
W

M2fn,M (x) +Mfn,M (x)2 + fn,M (x)3 dx.

(32)

It follows from Lemma A.7 (with p = 1, q = 2 and p = 2, q = 1, respectively) that∫
W

fn,M (x) dx = an

∫
W

max{g(x)− 1/an, 0}dx ≤ a3n
∫
W

|g(x)|3 dx

and ∫
W

fn,M (x)2 dx = a2n

∫
W

max{g(x)− 1/an, 0}2 dx ≤ a3n
∫
W

|g(x)|3 dx.

Moreover, we have ∫
W

fn,M (x)3 dx = a3n

∫
W

max{g(x)− 1/an, 0}3 dx ≤ a3n
∫
W

|g(x)|3 dx.

Since σ2
β,f,n = σ

(1)
β,fn

2r2β+dn , the right-hand side of (32) is at most of order

n2r2β+dn

σ2
β,f,n

a3n +
n3r2β+2d

n

σ2
β,f,n

a3n =
1 + nrdn

σ
(1)
β,f

a3n,
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which vanishes as n→∞. This means that

lim
n→∞

E
(
L̂n(β)− EL̂n(β)

σβ,f,n
− L̂n,M (β)− EL̂n,M (β)

σβ,f,n

)2

= 0. (33)

Together with (31) we see that

lim
n→∞

Var L̂n,M (β)

σ2
β,f,n

= 1. (34)

It follows from Lemma A.2, where the variance condition is satisfied because of (34) and σ2
β,f,n = σ2

β,fM ,n, that

L̂n,M (β)− EL̂n,M (β)

σβ,f,n

D−→ N(0, 1) as n→∞.

Because of the L2-convergence in (33) this yields

L̂n(β)− EL̂n(β)

σβ,f,n

D−→ N(0, 1) as n→∞,

which completes the proof. �

Proof of Theorem 4.1: By Lemma A.5 we have that

EL̃n(β)− ELn(β)√
dκd

2(2β+d)nr
β+d/2
n

= Tn +Rn (35)

with

Tn :=

√
2β + d√
2dκd

(n− 1)a2n

r
β+d/2
n

∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖βg(x)g(y) d(x, y)

and a remainder term Rn satisfying

|Rn| ≤
CW,g

√
2dκd(2β + d)

β + d
nrd/2+1
n an. (36)

As in the proof of Theorem 2.1 one can show that

lim
n→∞

Tn

nr
d/2
n a2n

=

√
dκd(2β + d)√

2(β + d)

∫
W

g(x)2 dx. (37)

For γ = 0 one obtains limn→∞ Tn = 0 and limn→∞Rn = 0. The latter follows from the assumption
min{nrd/2+1

n an, rn/an} → 0 as n → ∞, whence, by (36), Rn vanishes directly or is of a lower order than Tn
and, thus, also vanishes.

For γ > 0 or nrd/2n a2n → ∞ as n → ∞, we have that limn→∞ rn/an = 0. Indeed, if there was a subse-
quence (nm) such that rnm

/anm
≥ c for some c > 0, we would have nmr

d/2+1
nm anm

≥ cnmr
d/2
nm a

2
nm

. Then
min{nmrd/2+1

nm anm
, rnm

/anm
} would not converge to 0 as m → ∞, which is a contradiction. Because of (36) and

(37) it follows from limn→∞ rn/an = 0 that limn→∞Rn/Tn = 0, whence Tn is the leading summand in (35).

Assume that nrd/2n a2n → γ ∈ [0,∞) as n→∞. By (28), we have

lim
n→∞

|Var L̃n(β)−VarLn(β)|
n2r2β+dn

≤ C lim
n→∞

an(an + rn) + nrdnan(an + rn + a2n + a3n + a2nrn) = 0,

where we also used that an, rn, nrd+1
n → 0 as n→∞. Now Lemma A.6 implies

L̃n(β)− EL̃n(β)√
dκd

2(2β+d)nr
β+d/2
n

D−→ N(0, 1) as n→∞.

This together with (35) and the above analysis of the asymptotic behaviour of Tn and Rn yields

L̃n(β)− ELn(β)√
dκd

2(2β+d)nr
β+d/2
n

D−→ N

(√
dκd(2β + d)√

2(β + d)

∫
W

g(x)2 dx γ, 1

)
as n→∞.
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Now (a) follows from the continuous mapping theorem.

Next we show part (b). It follows from (28) that

Var L̃n(β)

(n2rβ+dn a2n)2
≤ C an(an + rn) + nrdnan(an + rn + a2n + a3n + a2nrn)

(nr
d/2
n a2n)2

+
VarLn(β)

(n2rβ+dn a2n)2
.

The first term on the right-hand side vanishes as n → ∞ since an, rn, nrd+1
n → 0 and nrd/2n a2n → ∞ as n → ∞.

Because VarLn(β) behaves as n2r2β+dn by Theorem 2.3(c), the second term is of order 1/(nr
d/2
n a2n)2 and converges

to zero as n→∞. We thus have

lim
n→∞

Var L̃n(β)

(n2rβ+dn a2n)2
= 0 and

L̃n(β)− EL̃n(β)

n2rβ+dn a2n

P−→ 0 as n→∞.

Together with the fact that Tn is the dominating term in (35) and (37), this means that

L̃n(β)− ELn(β)√
dκd

2(2β+d)n
2rβ+dn a2n

P−→
√
dκd(2β + d)√

2(β + d)

∫
W

g(x)2 dx as n→∞.

Because of nrd/2n a2n →∞ as n→∞ this implies

L̃n(β)− ELn(β)√
dκd

2(2β+d)nr
β+d/2
n

P−→∞ as n→∞,

which proves part (b).

Part (c) follows from (25) in the proof of Corollary 2.5. �

Proof of Theorem 4.2: Without loss of generality we can assume that rn < d(supp g, ∂W ) for each n. Consequently,
the assumption (11) is satisfied with CW,g = 0 for r = rn. Now the proof of Theorem 4.1 works without the additional
assumption that min{nrd/2+1

n an, rn/an} → 0 as n→∞ because Rn = 0. �

A.7 Proof of Lemma 5.1

Proof: Let d ∈ {2, 3}, W = [0, 1]d and rn ≤ 1. We apply Corollary 2.2 to obtain

ELn(β) =
n(n− 1)

2

∫
W 2

1{‖x− y‖ ≤ rn}‖x− y‖β d(x, y)

=
n(n− 1)

2

∫
Bd(0,rn)

‖y‖β
∫
Rd

1{x ∈W, x− y ∈W} dxdy

=
n(n− 1)

2

∫
Bd(0,rn)

‖y‖β Vol(W ∩ (W + y)) dy

=
n(n− 1)

2

∫
Bd(0,rn)

‖y‖β
d∏
j=1

(1− |yj |) dy,

with y = (y1, . . . , yd) ∈ Rd. The formulae in (a) and (b) follow now from a longer calculation with polar coordinates.
�

Appendix B A consequence of Lebesgue’s differentiation theorem

Lemma B.1. Let g : Rd → R be a measurable function with ‖g‖∞ := supy∈Rd |g(y)| <∞ and let β > −d. Then, for
almost all x ∈ Rd,

lim
r→0

1

rβ+d

∫
Bd(x,r)

‖x− y‖β g(y) dy =
dκd
β + d

g(x).
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Proof: We choose p > 1 subject to pβ > −d. Then for any x ∈ Rd and r > 0,∣∣∣∣ 1

rβ+d

∫
Bd(x,r)

‖x− y‖βg(y) dy − dκd
β + d

g(x)

∣∣∣∣
≤ 1

rd

∫
Bd(x,r)

‖y − x‖β

rβ
|g(y)− g(x)|dy

≤
(

1

rd

∫
Bd(x,r)

‖y − x‖pβ

rpβ
dy

)1/p(
1

rd

∫
Bd(x,r)

|g(y)− g(x)|p/(p−1) dy

)(p−1)/p

=

(
dκd
pβ + d

)1/p(
1

rd

∫
Bd(x,r)

|g(y)− g(x)|p/(p−1) dy

)(p−1)/p

,

where we have used the Hölder inequality in the second last step. By Lebesgue’s differentiation theorem (see, for
example, [30, Theorem 8.8]), we have

lim
r→∞

1

rd

∫
Bd(x,r)

|g(y)− g(x)|dy = 0

for almost all x ∈ Rd. Since |g(y)− g(x)|p/(p−1) ≤
(
2‖g‖∞

)1/(p−1)|g(y)− g(x)|, we have

lim
r→∞

1

rd

∫
Bd(x,r)

|g(y)− g(x)|p/(p−1) dy = 0

for almost all x ∈ Rd. Together with the above inequalities this proves the statement. �

Appendix C A central limit theorem for a triangular scheme of U -statistics

In the following we provide a central limit theorem for second-order U -statistics of a triangular scheme of random
vectors, which is a slight generalisation of [18, Theorem 2.1].

For each n ∈ N let Y (n)
1 , . . . , Y

(n)
n be i.i.d. random vectors in Rd, whose distribution may depend on n. We use the

shorthand notation Yn = {Y (n)
1 , . . . , Y

(n)
n }, n ∈ N, in the sequel. For n ∈ N let hn : Rd × Rd → R be a bounded,

symmetric and measurable function and let

Sn :=
1

2

∑
(y1,y2)∈Y 2

n,6=

hn(y1, y2).

The random variables Sn, n ∈ N, are so-called second order U -statistics. The following theorem provides a sufficient
criterion for the convergence of (Sn), after rescaling, to a standard Gaussian random variable.

Theorem C.1. Let Sn, n ∈ N, be as above. Assume that VarSn > 0 for all n ∈ N and let σn > 0, n ∈ N, be such that
limn→∞VarSn/σ

2
n = 1. If

lim
n→∞

1

σn
sup

y1,y2∈Rd

|hn(y1, y2)| = 0 and lim
n→∞

n

σn
sup
y∈Rd

E|hn(y, Y
(n)
1 )| = 0,

then
Sn − ESn

σn

D−→ N (0, 1) as n→∞.

Proof: In the special case that (Y
(n)
i )1≤i≤n<∞ are identically distributed, this is a slightly re-written version of [18,

Theorem 2.1]. Otherwise, there are measurable maps Tn : [0, 1]→ Rd, n ∈ N, such that Y (n)
i , i ∈ {1, . . . , n}, has the

same distribution as Tn(U), where U is a uniformly distributed random variable on [0, 1] (see, for example, the proof of
Theorem 29.6 in [10]). For n ∈ N define h̃n : [0, 1]2 3 (u1, u2) 7→ hn(Tn(u1), Tn(u2)) and let Un := {U1, . . . , Un},
where U1, . . . , Un are independent and uniformly distributed on [0, 1]. Then, Sn has the same distribution as

S̃n :=
1

2

∑
(u1,u2)∈U2

n 6=

h̃n(u1, u2).

Since the assumptions of the theorem are satisfied for the U -statistics (Sn), they must also hold for the U -statistics
(S̃n). As the underlying random variables of (S̃n) are identically distributed, we are in the previously discussed special
case for which the central limit theorem holds. This completes the proof. �
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Alt. n BR2
n(0.1) BR2

n(0.25) BR2
n(0.5) BR2

n(1) NN
(0.5)
n,1 NN

(0.5)
n,15 DB MS

CON

50 74 40 33 6 16 66 31 6
100 96 66 56 9 19 90 58 14
200 * 91 83 14 25 98 89 25
500 * * 99 36 41 * * 41

CLU

50 80 34 31 42 78 67 28 36
100 73 30 27 41 74 82 28 48
200 61 26 24 41 58 90 28 52
500 45 23 22 41 32 96 29 47

H0

50 5 5 5 5 5 5 4 2
100 5 5 5 5 5 5 5 3
200 5 5 5 5 4 5 5 4
500 5 5 5 5 4 5 5 5

Table 5: Empirical rejection rates of the different competitors (d = 2)
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Alt. β n\k 1 2 3 4 5 6 7 8 9 10 15 20 25

CON

−0.5

50 39 54 61 66 69 71 72 72 72 72 67 60 51
100 59 77 85 90 92 94 95 95 96 96 96 96 95
200 82 95 98 99 99 * * * * * * * *
500 99 * * * * * * * * * * * *

CLU

50 95 97 97 96 94 91 88 86 83 80 68 59 53
100 91 96 97 97 97 96 95 94 93 92 82 73 65
200 81 92 95 96 96 96 96 96 96 95 91 86 79
500 59 77 85 89 91 92 93 94 94 94 94 92 90

H0

50 5 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 6 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5

CON

0

50 41 57 64 68 70 71 71 71 71 69 59 45 34
100 64 80 88 91 93 94 95 96 96 96 96 94 92
200 85 96 99 * * * * * * * * * *
500 * * * * * * * * * * * * *

CLU

50 95 96 95 91 87 81 75 68 64 59 43 35 31
100 92 96 96 96 95 93 92 89 86 82 64 51 43
200 83 92 94 96 95 95 95 94 93 92 84 74 63
500 61 80 86 89 91 92 93 93 93 93 91 88 84

H0

50 4 6 5 5 5 5 5 5 5 5 5 5 5
100 5 5 6 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 4 5 5 5 5 5 5 5

CON

1

50 40 53 59 63 64 64 64 63 61 58 40 25 16
100 60 77 85 89 91 93 94 94 94 94 93 89 82
200 83 96 98 99 99 * * * * * * * *
500 * * * * * * * * * * * * *

CLU

50 91 91 86 78 67 56 47 41 37 34 29 28 29
100 88 92 92 91 88 85 80 74 68 63 40 32 29
200 79 88 91 91 91 90 89 88 86 83 69 54 42
500 56 75 81 85 87 88 89 89 89 89 85 79 73

H0

50 5 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 6 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 4 5 5 5 5 5 4 5

CON

5

50 29 38 43 45 44 43 41 38 35 31 15 8 8
100 44 61 71 77 80 81 83 83 84 83 77 64 45
200 65 86 93 96 97 98 99 99 99 99 99 99 99
500 97 * * * * * * * * * * * *

CLU

50 72 68 56 42 30 24 24 24 25 27 29 30 30
100 69 75 73 69 62 55 48 41 35 30 25 26 27
200 57 69 73 74 72 70 68 65 61 57 39 29 26
500 36 53 61 65 69 70 71 71 71 71 65 57 50

H0

50 5 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 6: Empirical rejection rates for Te in case d = 2 and rn =
(

k
nκd

) 1
d

, see (12)
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Alt. β n\k 1 2 3 4 5 6 7 8 9 10 15 20 25

CON

−0.5

50 16 18 22 25 27 30 31 33 34 35 36 35 32
100 17 22 27 32 36 40 43 46 48 50 57 60 61
200 18 26 34 41 45 51 56 60 63 66 77 82 85
500 24 36 47 56 64 71 76 80 83 86 94 97 99

CLU

50 65 79 85 89 91 92 93 93 93 93 92 88 83
100 41 55 66 72 77 81 83 85 87 87 89 90 88
200 22 31 38 45 50 55 59 62 65 68 75 78 80
500 11 14 17 20 22 25 26 29 30 32 40 46 50

H0

50 5 5 5 5 5 5 5 5 4 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5

CON

0

50 11 15 23 29 27 32 34 32 34 36 36 32 27
100 15 20 28 33 37 41 43 46 47 49 57 59 60
200 16 27 33 43 50 56 61 64 68 71 78 82 86
500 27 39 51 60 67 75 79 83 85 88 95 98 99

CLU

50 59 76 86 91 90 92 93 92 92 92 89 81 71
100 38 53 66 74 78 81 83 84 85 85 88 87 84
200 20 31 37 47 54 59 63 66 68 70 75 77 78
500 12 14 18 21 23 27 28 31 31 34 41 46 51

H0

50 3 3 4 5 3 4 5 5 6 7 4 4 4
100 4 3 5 5 6 5 4 5 5 5 5 6 5
200 5 6 4 5 4 5 5 5 5 5 5 5 5
500 7 6 4 6 5 6 5 6 5 5 5 5 5

CON

1

50 17 19 21 24 27 29 30 30 30 30 29 24 20
100 17 22 27 32 35 39 41 44 46 48 52 53 53
200 18 26 33 40 46 51 55 59 62 65 75 79 83
500 24 36 47 55 63 70 75 79 82 85 93 97 98

CLU

50 63 75 81 84 85 86 86 86 85 84 76 63 48
100 39 54 63 69 73 76 78 80 81 81 81 79 74
200 21 30 37 43 48 52 56 59 61 63 69 70 70
500 11 13 16 19 22 23 25 27 28 30 37 41 43

H0

50 8 5 5 5 5 5 5 5 5 5 5 5 5
100 6 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5

CON

5

50 13 15 17 18 20 22 21 22 21 21 19 14 10
100 15 17 20 22 25 27 29 31 33 34 37 38 37
200 16 19 23 27 32 36 39 41 44 47 56 61 65
500 18 24 31 38 43 49 54 58 63 65 78 86 90

CLU

50 45 57 61 64 65 65 65 64 62 60 46 30 18
100 30 38 44 48 52 55 57 58 60 60 58 54 48
200 17 22 25 29 32 35 37 39 41 43 47 47 47
500 10 11 12 14 15 16 17 18 19 19 23 25 25

H0

50 5 5 5 5 5 5 5 5 5 5 5 5 5
100 6 5 5 6 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 7: Empirical rejection rates for Ta in case d = 2 and rn =
(

k

n
3
2 κd

) 1
d

, see (13)
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Alt. β n\k 1 2 3 4 5 6 7 8 9 10 15 20 25 DB

CON

−0.5

50 92 95 96 96 96 96 95 95 94 93 88 82 75 59
100 * * * * * * * * * * * * * 89
200 * * * * * * * * * * * * * *
500 * * * * * * * * * * * * * *

CLU

50 * 99 98 96 94 92 89 86 83 80 67 58 52 22
100 * * * * 99 98 97 96 94 92 81 71 62 22
200 * * * * * * * 99 99 99 93 85 77 22
500 * * * * * * * * * * * 98 94 23

H0

50 5 5 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5 4
200 5 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5 5

CON

0

50 92 95 96 95 95 95 94 92 91 90 80 66 54
100 * * * * * * * * * * * * 99
200 * * * * * * * * * * * * *
500 * * * * * * * * * * * * *

CLU

50 99 97 92 84 77 70 64 58 54 50 38 32 30
100 * * 99 98 95 90 85 80 75 70 53 43 36
200 * * * * * 99 98 96 94 91 75 61 51
500 * * * * * * * * * * 97 89 79

H0

50 5 5 5 4 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 4 5 5 5 5 5 5 5 5 5
500 5 5 5 5 6 5 5 5 5 5 5 5 5

CON

1

50 91 94 94 93 92 90 88 84 81 78 54 35 23
100 99 * * * * * * * * * 99 97 92
200 * * * * * * * * * * * * *
500 * * * * * * * * * * * * *

CLU

50 98 83 60 47 39 34 31 29 29 28 26 26 25
100 * 99 94 80 68 57 49 43 39 36 28 26 25
200 * * * 99 97 91 83 75 68 61 41 32 29
500 * * * * * * * 99 99 98 82 62 48

H0

50 5 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 6 5 5 5 5 5 5 5 5

CON

5

50 82 84 82 78 72 65 57 49 43 35 14 8 8
100 98 99 99 99 * 99 99 98 98 97 86 63 40
200 * * * * * * * * * * * * *
500 * * * * * * * * * * * * *

CLU

50 75 24 23 24 25 25 25 26 26 27 27 27 27
100 98 75 39 25 24 24 24 23 24 24 25 25 25
200 * 99 91 73 53 38 30 27 24 24 24 24 25
500 * * * 99 98 96 91 84 75 66 33 25 23

H0

50 5 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 8: Empirical rejection rates for Te in case d = 3 and rn =
(

k
nκd

) 1
d

, see (12)
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Testing multivariate uniformity based on random geometric graphs

Alt. β n\k 1 2 3 4 5 6 7 8 9 10 15 20 25 DB

CON

−0.5

50 58 69 74 77 78 78 78 78 77 76 69 61 51 59
100 74 86 91 94 95 96 96 97 97 97 97 96 95 89
200 86 96 99 99 * * * * * * * * * *
500 97 * * * * * * * * * * * * *

CLU

50 99 * * 99 99 99 99 98 98 97 89 76 58 22
100 99 * * * * * * * * * 99 98 95 22
200 97 * * * * * * * * * * * * 22
500 74 91 96 98 99 99 99 * * * * * * 23

H0

50 3 5 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5 4
200 5 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5 5

CON

0

50 62 72 75 76 76 78 77 75 74 72 66 54 42
100 70 88 91 94 95 96 96 97 97 96 96 95 94
200 85 96 99 * * * * * * * * * *
500 98 * * * * * * * * * * * *

CLU

50 99 * 99 99 99 99 98 97 95 93 73 45 26
100 99 * * * * * * * * * 99 94 84
200 96 * * * * * * * * * * * 99
500 76 91 96 98 99 99 99 * * * * * *

H0

50 4 4 3 6 3 8 4 6 3 3 7 6 6
100 3 8 3 7 5 7 6 7 5 6 5 4 6
200 5 6 4 5 6 3 6 4 6 5 4 4 5
500 7 6 5 5 7 6 5 6 5 5 6 5 4

CON

1

50 57 67 71 73 73 73 72 70 69 67 54 40 26
100 72 85 90 93 94 95 95 96 96 95 95 93 91
200 85 96 98 99 * * * * * * * * *
500 97 * * * * * * * * * * * *

CLU

50 99 99 99 98 97 96 93 88 81 72 29 12 6
100 99 * * * * * * 99 99 99 94 75 48
200 96 99 * * * * * * * * * 99 96
500 72 89 94 97 98 99 99 99 99 99 * 99 99

H0

50 7 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 4 5 5 5 5

CON

5

50 50 55 59 60 60 59 57 54 52 48 30 16 7
100 61 75 81 85 87 88 89 89 89 89 87 82 76
200 74 90 95 97 98 99 99 99 99 * * * *
500 90 99 * * * * * * * * * * *

CLU

50 96 96 93 89 79 66 49 34 22 15 9 14 18
100 95 97 98 98 97 96 95 93 90 85 50 18 5
200 86 95 97 98 98 98 98 98 98 97 93 83 66
500 55 74 82 87 90 92 93 94 94 95 94 93 89

H0

50 5 5 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 9: Empirical rejection rates for Ta in case d = 3 and rn =
(

k

n
3
2 κd

) 1
d

, see (13)
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Testing multivariate uniformity based on random geometric graphs

d β n\k 1 2 3 4 5 6 7 8 9 10 15 20 25

2

−0.5
50 26 23 21 20 19 19 19 18 18 18 18 18 18

100 51 45 42 40 38 37 35 34 33 32 30 28 28
200 86 83 80 77 75 73 72 70 68 67 61 56 52
500 * * * * * * * * * 99 99 98 97

0

50 15 13 12 11 11 11 11 11 11 11 12 12 13
100 40 29 26 22 19 18 17 17 16 15 15 15 16
200 81 70 62 57 50 46 43 40 37 36 29 26 23
500 * * * 99 99 98 97 96 95 94 86 79 72

1

50 8 7 8 8 8 8 9 9 9 10 11 11 12
100 19 12 11 11 10 10 10 10 10 10 11 12 12
200 64 37 25 20 18 16 16 15 15 15 14 14 13
500 * 99 96 89 80 71 63 56 51 46 33 27 25

5

50 6 7 7 8 7 9 8 9 9 10 10 10 10
100 8 8 8 9 8 9 9 9 9 9 11 12 13
200 20 10 9 10 11 10 12 12 12 11 12 13 13
500 97 71 36 22 18 16 16 17 16 17 17 17 17

3

−0.5
50 34 30 28 26 25 24 24 24 24 23 23 24 25

100 67 60 55 52 50 48 46 44 44 43 40 38 36
200 95 92 30 88 86 84 83 81 80 79 71 67 64
500 * * * * * * * * * * * 99 99

0

50 16 14 14 12 14 14 14 14 15 15 16 17 18
100 43 31 27 26 24 23 22 23 22 22 22 22 23
200 85 74 65 59 55 51 48 46 44 41 37 35 33
500 * * * 99 99 98 97 96 95 94 88 82 77

1

50 8 9 10 9 10 11 12 12 13 13 14 15 17
100 13 12 12 12 12 13 13 14 14 15 16 17 19
200 34 23 20 18 18 17 18 18 18 18 20 21 22
500 98 85 69 59 52 47 43 41 39 37 34 33 32

5

50 7 8 9 9 10 11 12 12 12 12 13 16 18
100 9 10 10 11 11 12 13 13 14 14 16 17 19
200 11 13 13 13 14 14 15 15 15 16 18 20 22
500 18 19 19 20 22 21 22 21 22 22 24 25 27

Table 10: Empirical rejection rates for Te under the SPS-alternative with rn =
(

k
nκd

) 1
d

, see (12)
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Testing multivariate uniformity based on random geometric graphs

d β n\k 1 2 3 4 5 6 7 8 9 10 15 20 25

2

−0.5
50 34 30 28 26 24 22 21 20 19 18 14 11 8

100 56 58 58 56 54 53 51 49 47 46 39 33 28
200 75 83 86 87 88 88 88 88 87 87 83 80 76
500 93 98 99 99 99 * * * * * * * *

0

50 26 21 20 19 14 13 13 11 10 10 6 5 4
100 53 54 53 50 47 43 39 35 32 30 22 16 11
200 74 83 85 87 87 87 87 86 85 83 76 67 59
500 95 98 99 99 * * * * * * * * *

1

50 27 16 11 9 8 7 7 6 6 6 6 5 5
100 52 49 44 37 31 25 21 18 15 13 8 6 5
200 74 81 82 82 82 80 78 76 73 69 52 36 24
500 93 98 99 99 99 99 * * * * * * 99

5

50 13 8 6 6 6 6 7 6 6 6 6 6 6
100 39 30 21 14 11 9 7 7 7 7 7 8 7
200 62 67 67 64 60 55 48 41 36 31 13 7 7
500 84 93 96 97 98 98 98 98 98 98 98 96 93

3

−0.5
50 46 39 34 29 25 23 20 18 16 14 9 5 4

100 82 75 71 66 62 59 55 52 49 45 33 23 16
200 99 98 97 97 96 95 94 93 92 91 84 76 69
500 * * * * * * * * * * * * *

0

50 36 24 17 14 9 11 7 7 5 4 4 3 3
100 71 64 52 47 38 34 27 24 20 17 8 4 3
200 98 97 95 93 90 87 84 80 78 74 55 39 27
500 * * * * * * * * * * * * 99

1

50 14 8 6 6 5 5 5 5 5 5 5 5 4
100 51 29 18 13 10 7 6 6 5 5 4 4 4
200 96 89 78 67 56 46 37 31 24 20 7 3 3
500 * * * * * * * * * * 97 88 73

5

50 6 6 6 6 6 6 6 6 6 6 5 5 5
100 9 7 8 8 8 7 8 7 7 7 7 6 6
200 67 23 10 9 8 9 8 9 9 9 9 8 8
500 * * 99 97 91 79 63 47 33 23 9 8 9

Table 11: Empirical rejection rates for Ta under the SPS-alternative with rn =
(

k

n
3
2 κd

) 1
d

, see (13)
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Testing multivariate uniformity based on random geometric graphs
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