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ABSTRACT

We present new families of goodness-of-fit tests of uniformity on a full-dimensional set W C R¢
based on statistics related to edge lengths of random geometric graphs. Asymptotic normality of these
statistics is proven under the null hypothesis as well as under fixed alternatives. The derived tests are
consistent and their behaviour for some contiguous alternatives can be controlled. A simulation study
suggests that the procedures can compete with or are better than established goodness-of-fit tests. We
show with a real data example that the new tests can detect non-uniformity of a small sample data set,
where most of the competitors fail.

1 Introduction

The analysis of point patterns in a given study area is of particular interest in a wide variety of fields, such as astronomy
(e.g. occurrence of high energetic events in a sky map), biology (e.g. locations of sightings of threatened species)
or geology (e.g. locations of raw materials). The concept of uniformity of the observations stands for the absence
of structure in the data. Thus, testing uniformity of random vectors is a natural starting point for serious statistical
inference involving any cluster analysis or multimodality assumption. To be specific, let n € N and

%‘n = {Xl,...,Xn}

be the data set, where X1, ..., X,, are independent identically distributed (i.i.d.) random vectors taking values in a
given measurable set W C R4, d > 1, of positive finite volume, called the observation window. Without loss of
generality we assume that Vol(W) = 1. We want to test the null hypothesis

Hy: X ~UW) (1)

with X being an independent copy of X and U/ (W) denoting the uniform distribution on W against general alternatives.
This situation also arises in the investigation of pseudo random number generators, see e.g. [20, Section 3.3]. Testing if
i.i.d. random vectors in R follow a given absolutely continuous distribution is, by the Rosenblatt transformation, see
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[29], theoretically equivalent to testing uniformity on the d-dimensional unit cube [0, 1]%, although this transformation
is hard to compute in many cases. The problem of testing uniformity has been investigated in classical papers in the
univariate case, see [25] for a survey and [4] for a recent article, and, hitherto far less studied, in the multivariate setting,
see [5116} 18, 13119} 23], 1311, 32} 134], for which an empirical study was conducted in [27]. The cited methods include
classical goodness-of-fit testing approaches as the Kolmogorov-Smirnov test, see [19], nearest neighbour concepts,
see [13]] and the references therein, the distances of data points to the boundary of the observation window, see [8]],
or the volume of the largest ball that can be placed in the observation window and does not cover any data point, see
[6]]. The related problem of testing for complete spatial randomness of a point pattern (i.e., the points are a realisation
of a homogeneous Poisson point process) is also of ongoing interest, see e.g. monographs like [2,[11] or the recent
publications [12}[16].

We approach the testing problem (T]) by examining the local properties of the data by means of random graphs. Using
random graphs for testing uniformity is a known but not widely used concept, see [15} 21} 27]. Our new approach is to
consider statistics of the random geometric graph RGG(Z,,, ), ™ > 0: It has the realisations of the random vectors
in %, as vertices, and any two distinct vertices z,y € 2, are connected by an edge if ||z — y|| < r,, where || - ||
stands for the Euclidean norm. This random graph model was introduced by Gilbert for an underlying Poisson point
process in [14] and is thus also called Gilbert graph. For further details see [26] and the references cited therein. Figure
[ provides a visualisation of different point data and selected random geometric graphs. For definitions of the CLU and
CON alternatives we refer to Section

Our test statistics are related to the edge lengths of RGG(.%,,, r,,) and are defined by

La(B) = 5 Yo Ylz—yll <radlle—yl®, BeR.

2
(mgy)e'%”,;é

Here Z(I DeX? stands for the sum over all pairs of distinct points of .2, (such sums are called U-statistics), and

1{-} is the indicator function. Notice that L,,(0) counts the number of edges and L, (1) is the total edge length of
RGG(Z,, ). These statistics differ from nearest neighbour methods, see e.g. [9,[13] and the references therein, as
such that they rely on all interpoint distances not exceeding .,,, whereas nearest neighbour methods take only distances
between points and their k-nearest neighbours into account. In order to analyse point processes in spatial statistics,
one often studies Ripley’s K -function (see e.g. [11[16] and the references therein). For § = 0, L,,(3) is - up to a
rescaling - an estimator of Ripley’s K -function at r,,. While one usually considers Ripley’s K -function for a range of
arguments, we choose here only one value r,, that depends on the sample size n. An extensive theory of properties and
the asymptotic behaviour of L., () in the complete spatial randomness setting can be found in [28].

Based on the asymptotically standardised statistics L,,(3), we propose the test statistics
2
L (B) — gn(n — 1) [y Hllw — yll < ra}llo —yll” d(z,y)

d B+d/2
s

and
L.(B) — % n(n — 1)rs+d

d B+d/2
2(2;id) nrn

where 8 > —d/2 and rejection of Hy will be for large values of T; ,(8), j € {e,a}. The indices e and a are
abbreviations for “exact’ and "asymptotic’, and they point out that T, ,,(/3) involves EL,, (53), which can be difficult to
compute depending on the shape of the observation window W, while T, ,, () uses a simple asymptotic approximation
of EL,,(5), see Theorem|2.1

In order to derive distributional limit theorems for L., (8), T¢ . (83) and T, ,,(3), we apply a central limit theorem from
[18] for triangular schemes of U-statistics. For 8 = 0 the statistic L,,(5) was considered as application in [[18]. Here,
we generalise these findings to 5 € (—d/2, 00), which is technical for 5 € (—d/2,0), and present them in more detail.
Moreover, the focus of the present paper is on statistical tests based on L,,(3) and their properties, which even for 5 = 0
goes clearly beyond what was studied in [[18]]. In [34] some U-statistics based on interpoint distances are proposed as
test statistics for uniformity on the unit cube (beside two other statistics based on data depth and normal quantiles).
In contrast to L,,(3), these U-statistics take all interpoint distances into account and not only the small ones, whence
their kernels do not depend on n (i.e., the summand associated with two given points from the sample is the same for
all n € N). The tests for multivariate uniformity studied in [5,[31]] are also based on U -statistics with fixed kernels,
which are more involved to compute than the distances between the sample points. For U-statistics with fixed kernels as
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Figure 1: Realisations of uniform data in W = [0, 1]? (first row), the CON alternative (second row) and the CLU
alternative (third row). Point data (first column), RGG(Z,,,0.03) (second column) and RGG(%,,0.06) (third
column), n = 100.

considered in [5 [31] [34], the asymptotic behaviour is much easier to analyse than for L, (), where the kernels depend
on the parameters n and r,, and their interplay.

Simulations on the d-dimensional unit cube indicate that the power of T} ,,(3), j € {e, a}, against alternatives depends
on the parameters 3 and r,,. We show for several parameters that they are serious competitors to time-honoured tests
and demonstrate the applicability of the new procedures by analysing the real dataset finpines. Clearly, we leave
open questions for further research, as e.g. to find an optimal (automatic) selection of the parameters.

This paper is organised as follows. In Section [2| we derive the theory for L,,(3) in a general setting, including formulae
for the mean and the variance as well as central limit theorems. The two families of test statistics T} ,(5), j € {e,a},
are discussed in Section [3] and their limiting behaviour is given under Hj, and under fixed alternatives. The behaviour
for some contiguous alternatives is studied in Section[d] Section [5]provides a simulation study and a comparison to



Testing multivariate uniformity based on random geometric graphs

existing methods. We finish the paper by applying the new tests to a real data set in Section [6] and with comments on
open problems and research perspectives in Section

2 Properties of L, (3)

Let 25, :={X1,...,X,}, where n > 2 and X3, ..., X,, are i.i.d. random vectors distributed according to a density f,
whose support is contained in a measurable set W C R? of positive finite volume. In the following, we assume without
loss of generality that Vol(W') = 1, i.e., W has volume one. For some of our results we need the additional assumption
that

: <
Jim sup Vol({x € W : d(z,0W) < r}) -

r—0 T

0. 2

Here, we use the notation d(x, A) := infyc4 ||z — y|| for z € R? and A C R?. The assumption (2) requires that
the volume of the set of points in W that are in the r-neighbourhood of the boundary of W is at most of order  and
seems to be no significant restriction. For many sets W, for example all compact and convex W, the limit superior in
(2) equals the surface area of W. The expression in (2) is related to the so-called (outer) Minkowski content. For a
definition as well as some results on its finiteness we refer to [[1].

Let (r,,) be a sequence of positive real numbers such that 7, — 0 as n — co. In the following B%(z,r) stands for
the d-dimensional closed ball with centre = € R and radius » > 0, and 4 := 7%2/T'(d/2 + 1) is the volume of the
d-dimensional unit ball B4(0,1). For p > 0 we denote by LP(W) the space of all measurable functions on W for
which the Lebesgue integral of the p-th power of the absolute value is finite. For the special case 5 = 0 the formulae of
the following theorem can also be found in [18| Equations (4.2) and (4.3)].

Theorem 2.1. For 3 > —d and all densities f € L*(W),

5L, = " [ e = ol < bl ol 1(0) S0 o) ®
and
. EL,(B)  dra
A B T 3B+ d) /W f(2)? dz. @)

Theorem[2.1] which we prove in Appendix[A.T] states exact formulae for the mean and easy to compute asymptotic
approximations under fairly general assumptions. The behaviour of EL,, (/3) under Hy in the next corollary is a direct
consequence. We write g = h to indicate that two functions g, h : W — R are identical almost everywhere.

Corollary 2.2. If 5 > —d and f = 1y, then

BL,(5) = "5 [ 1l =yl <)o - ol o)

and

lim EL,L(ﬂ) _ dﬁd
n—00 TLQT‘»,ﬁLer 2(5 + d) ’

Recall that the degree of a vertex in a graph is the number of edges emanating from it. The average degree D,, of the
vertices in RGG(2;,,7,) is given by D,, = 2L,,(0)/n. Thus, it follows from Theorem2.1|that ED,, is of the same
order as nr¢ as n — oo. For the special choice of uniformity f = 1y Corollary implies

n
. ED,

lim ]

n—o0 Kanro

=1. ®)

In the next theorem we present exact and asymptotic formulae for the variance of L,,(3), which generalise the findings
from [18} Section 4] for 5 = 0. The proof of the theorem is provided in Appendix

Theorem 2.3. Let f € L3(W) and 3 > —d/2.
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(a) Then,

VarLo() = " [ 1l =l < ) e = ol 1) £ dGo)
=02 [ ([ 1oyl <rdle -l s @) f@)as @
2
“ntn =0 =3/2( [ 1le =l < md o =l £(0) S0 aGe) )

(b) For f # 1w,

. Var L, (3)
lim =1, (N
oo él}nz 2ﬁ+d+oé2}n 28+2d
where
@ .
T8t T 2ﬁ+d / J
and

d2
Jé%}: ﬂ—fj (/f dx—(/f dx) )

(c) If f = 1w, W satisfies @I) and m‘d+1 — 0asn — oo, then

lim Var L,(8)  dkg
n—oo n2riﬂ+d - 2(28 + d)'

®)

Notice that the orders of the two terms in the denominator in differ by nrd, which is the order of the expected
average degree. For 01(31}, O’I(QQ} > ( this means that the first (second) term dominates if ED,, — 0 (ED,, — o) as
n — 0o, while both terms contribute to the limit if ED,, — ¢ € (0, 00) as n — coc. For all densities f € L3(W) we

have 01(31’} > (. The Cauchy-Schwarz inequality implies

(/Wf <x>2dx)2 < [ @t [ gade= [ g

with equality if and only if f = 1y. So 0} > 0 with equality if and only if f = Lyy.

The formula (8) coincides with (7)) for f = 1. Nevertheless we have to impose for (§) additional conditions on the
boundary of W and on the sequence (r,,). They ensure that the sum of the second and the third term in (€) does not

have an asymptotic order that is less than n?r2%+24 but still larger than n272%+4, The following example shows that
this can happen due to boundary effects (see also [18] Section 4]). For W = [0,1], f = 1w, 8 =0and r, < 1/2, we

have
1 1 2 ™
/ </ 1{|x — y| Srn}dy> dx:2/ (rp + )% da + (1 — 21, )4r2
0 0 0

2 10
= 5(87";?’1 —r3) (1= 2r,)4r2 = 4r2 — Erg

n

and

/[0 . |z —y| <rp}d(z,y) = 2/0 rn+axde+ (1 —2r,)2r,

=472 — 72 4+ (1 —2r,)2r, = 2r, — 2.
Thus, the sum of the second and the third term in (6] equals

o _ 10 ri 1 22

n(n—1)(n —2) (4r2 — Ern —dr2 + 47} = gnln = 1)(2r, —1)%

If nr2 — oo as n — oo, this is of a higher order than the first term in (6).
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Theorem 3.3 in [28] states asymptotic variances for the same statistics L, () with an underlying homogeneous Poisson
point process of intensity n (i.e., f = 1y and the number of points is Poisson-distributed with mean n). In contrast to
(), these formulae show the same phase transition depending on the behaviour of nrd as we have in (7) for f # 1y .

In the following we use the abbreviation

26+d

0B,fn = \/Uél,}n%n + gé%}n3r7215+2d

)

with orl(Bl)f, 022} as in Theoremfor B > —d/2 and n € N. Moreover, we write L5 for convergence in distribution

and Ny, (u, X) for an m-dimensional Gaussian random vector with mean vector ;1 € R™ and positive semidefinite
covariance matrix 3 € R™>"™_ In the univariate case the index m is omitted.

Theorem 2.4. Let f € L*(W), B > —d/2 and assume that n*r® — oo asn — oo. If f # Ly orif f = 1w, W
satisfies @]) and nrfll“‘l — 0asn — oo, then

Ln(B) —ELn(8) »

— N(0,1) as n — oo.
08,fmn

The proof of Theorem [2.4]is provided in Appendix For 8 = 0 a central limit theorem as Theorem 2.4]is established
in [[18] Section 4]; see also [33] and the references therein. In [26, Section 3.5] central limit theorems for subgraph
counts of random geometric graphs are derived, which include the number of edges L,,(0) as special case. Notice that
n?rd — 0o as n — oo means that the expected number of edges goes to infinity as n — oo (see Theorem , which
is a reasonable assumption for a central limit theorem involving edge lengths. The additional assumptions for f = 1y
are the same as in Theorem [2.3{c) and are used to ensure that the rescaled variances converge to one.

The following corollary concerning the behaviour under the null hypothesis is proven in Appendix

Corollary 2.5. Let 8 > —d/2, f = 1w and assume that W satisfies @)

2,.d d+1
(a) Ifn*r;, — ocoandnry™ — 0asn — oo, then

LalB) = 2550 [ 1w — yll < v} e — 9l () o

dk, B+d/2
seara) M

N(0,1) as n— oo.

(b) Ifn?rd — oo and n*rd*t2 — 0 asn — oo, then

Lu(B) — gt n(n — 1)+

d B+d/2
2(251@ NTn

i>N(0,1) as n— oo.

It can be seen from Corollary that in part (a) of the previous corollary L, (/3) is centred with its expectation, while
in (b) the asymptotic expectation is used. In the latter situation, the assumptions on (r,,) are stricter. For the statistics
L,,(8) with respect to an underlying homogeneous Poisson point process (i.e. the case of complete spatial randomness)
central limit theorems are shown in [28, Section 5.1].

3 Testing for uniformity

Motivated by Corollary 2.5 we propose testing goodness-of-fit of Hy in (I]) against general alternatives based on the
families of statistics

2
Ln(B) = 5n(n — 1) [y Hllw —yll < ra} o -yl d(z,y)

Ten(B) = 9
’ dr B+d/2
pIeT T ROl
and
o (B8 — st nln - D 0
a,n(ﬂ) - dl{d 5+d/2 k) ( )
2028+a) Tn
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depending on 8 > —% and r,, € (0, 00). The choice of the sequence (r,) is discussed in Section , where we introduce a
parameter k, see @]) and (I3). Rejection of H, will be for large values of T} ,,(3), j € {a, e}. Empirical critical values

for W = [0,1]% can be found in Tables.to.for dimensions d = 2,3 and sample sizes n € {50, 100, 200, 500}.
Notice that under H and some mild assumptions on (r,,) and W the continuous mapping theorem and Corollary
yield

T;n(8) N X3 as n—oo, j€E{ae}l,B>—d/2.
Here x? denotes a random variable having a chi-squared distribution with one degree of freedom. In the following
theorem we consider the asymptotic behaviour of T ,,(5) and T, ,,(3) under fixed alternatives. We write 5 for
convergence in probability and prove the next theorem in Appendix [A.5]

Theorem 3.1. Let 3 > —d/2 and f # 1w. If n*rd — oo asn — oo, then

Ten(B) 00 and Tun(B) Lo as n— oo

Theoremyields consistency of T, ,,(3) and Ty, ,, () against each fixed alternative f 2 1y .

4 Behaviour under contiguous alternatives

Let g € L*(W) be such that g # 0 and [}, g(2) dz = 0 and let (a,) be a positive sequence such that a, — 0 as
n — oo. In the following we always tacitly assume that 1 + a,g(x ) > 0 forall z € W and n € N. This guarantees
that 1y + a,,g is a density. In the sequel we denote by Te,n(ﬁ) and T, n(B) our test statistics in () and (I0) computed
on n i.i.d. points X Tyeo- ,)~(n distributed according to the density 1y + a,g (i.e., we have a triangular scheme).

Theorem 4.1.Let 3 > —d/2 and assume that W satisfies @), that n*r? — oo, nrit! — 0 and

d/2+1 Qp,Tn/an} — 0 as n — oo and that, for r > 0,

/ 1{d(z,0W) < r}g(z)|dz < Cw 47 (11)
w

with some constant Cyy,4 € (0, 00). Then the following assertions hold:

min{nry

(a) Ifnrz/Qa,QL — v € [0,00) as n — oo, then

2
Te,n(ﬁ) — < dﬁd 2ﬁ+d / 2dz ’y) as mn— oo

V2(8 + d)
with Z ~ N (0, 1).

(b) Ifm"d/2 2 5 00 asn — oo, then

Ten(B) Lo as n— .

(c) If. additionally, n? ‘”2 — 0 asn — oo, the statements of (a) and (b) also hold for fam(,ﬂ).

The condition (TT)) requires that the fluctuations of ¢ in an r-neighbourhood of the boundary of W are at most of order
r. Because we assume (2), this is always the case if g is bounded. The limiting random variable in Theorem a)
follows a non-central chi-squared distribution with one degree of freedom. For m";i/ Qa% —0asn — oo Theor
implies that ﬁ »(B) and fa n(B) behave exactly as T, ,,(3) and T, ,,(5) under Hy. As the following result shows one
can slightly modify Theorem@]ﬁ g vanishes close to the boundary of . By supp g, we denote the support of g, i.e.,

the set of all z € W such that g(z) # 0. For A, B C R?let d(A, B) := infyea yen ||z — vl

Theorem 4.2. Let 3 > —d/2 and assume that d(supp g,0W) > 0, that W satisfies @) and that n?r& — oo and
nrdtt — 0asn — oc. Then, (a), (b) and (c) of Theorem[d.1| hold.

Theorem [4.1] and Theorem [.2] are proven in Appendix [A.6] Following these theorems, we conclude that under the
stated assumptions the tests based on Ty, ,,(5) and T, ,,(3) are able to detect alternatives which converge to the uniform
distribution at rate a,,. Moreover, the theorems could be the foundation of establishing local optimality of the tests by
applying the third Le Cam lemma, see Section 5.2 of [22] for a short review of the needed methodology.
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5 Simulation

In this section we compare the finite-sample power performance of the test statistics 7. ,,(3) and Ty, ,,(8), 8 > —d/2,
n € N, with that of some competitors. Since the d-dimensional hypercube [0, 1]¢ is the mostly used observation
window, we restrict our simulation study to this case with d € {2, 3}. Particular interest will be given to the influence
on the finite-sample power of 3 and r,, in dependence of the chosen alternatives. In each scenario, we consider the
sample sizes n € {50,100, 200, 500} and set the nominal level of significance to 0.05. Since the test statistics depend
on the parameter B and the choice of r,, and the empirical finite sample quantile is in some cases far away from
the quantile x7 ; o5 ~ 3.8415 of the limiting distribution, we simulated critical values for Tt ,,(3) and T, ,,(3) with
100 000 replications, see Tables[T2] to[T3} Each stated empirical power of the tests in Tables[5|to[J]is based on 10 000
replications and the asterisk * denotes a rejection rate of 100%.

Since there is a vast variety of ways to choose the parameters 5 and r,,, we chose the parameter configurations to fit the
limiting regimes of Corollary [2.5]as well as the following additional property: From (3)) we know that the expectation
of the average degree D,, behaves as rgnrd for n — oo under Hy. This observation motivates the following choices of
the radius r,, for T¢ ,,(3), namely
1
k

d

rp = () , ke{l,...,10,15,20,25}, 12)
nKkq

which satisfies n? 1" — o0 and nrd+1 — 0 as n — oo and ensures ED,, — k as n — oo under Hy. For the test

statistic T}, ,(3) the additional condition n?rd+2 — 0 .as n — oo has to be fulfilled, so we choose

1
k d
rn:( . ) . ke{l,...,10,15,20,25}, (13)

n2Kq

to guarantee this additional assumption for d € {2, 3}. In this case we have ED,, — 0 as n — oo, which for d = 2 is
always the case if n2r4t2 — 0 as n — oo.

The expected value EL,,(3) depends on the observation window W as well as on the dimension d > 2. The following
lemma provides exact formulae of EL,,(/3) for each of the cases simulated and is proved in Appendix

Lemma 5.1. Assume 8 > —d and f = 1y .

(a) Ifd =2, W =[0,1]? and r,, < 1, then

~n(n—1) [ 2« B2 8 P 2 B+

(b) Ifd =3, W = [0,1]> and r,, < 1, then

n(n—1) ( 4m 6m 8 1
EL,(B) = —~ B+3 _ B+4 PB5 B+6 )

As competitors to the new test statistics we consider the distance to boundary test (D B-test), see [8]], the maximal
spacing test (M S-test), see [0, [17]], the nearest neighbour type test (/N N-test) of [13] as well as the Bickel-Rosenblatt
test (B R-test) presented in [[32]]. We follow the descriptions of the D B- and M S-tests given in [13].

For the N N-test we consider the family of statistics

NN = 3 2 (@, 2,)
TEXn

in dependence of 8 € (0, c0), where J is the number of nearest neighbours, with x(¥) being the k-nearest neighbour of
r € %, and
J
&0 @, 20) =Y (ralln (@ — 2 M)||)°.
k=1
To avoid boundary problems in the computation of the N N-test, we used the same toroid metric in the simulation as in
[13]]. Since rejection rates depend crucially on the power 8 and the number of neighbours J taken into account, we
chose different values for 5 and J for the two alternatives where the choice was motivated by Table 2 in [13]]. Notice
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n\h | 0.1 0.25 0.5 1

50 | 9113.028  827.3781  72.70593  0.01799183
100 | 17048.245 1616.5611 144.16370 0.01799641
200 | 32839.801 3186.1990 286.73272 0.01795072
500 | 80073.212 7876.7591 713.74621 0.01787482

Table 1: Critical values of the B R-statistic BR2 (h)

that this test is consistent, but one has to be careful to choose the correct rejection region, which depends on the choice
of 3.
As a further competitor we consider the fixed bandwidth B R-test on the unit cube, studied in [32]. The corresponding

test statistic is -
BR?(h) = —I*Y(h) 4+ I2%(h) + Vi, (0) + n(V3, « U » U)(0),

with
- 2
»'(h) =2 Vi, x U)(X; d I*22%(h) == Vi(X; — X
w(h) ;:1( nxU)(X;) and I5°(h) ”1<i§<7<n h( i)

where i > 0 is a fixed bandwidth. For the sake of completeness we restate the following abbreviations, see [32]].
The convolution product operator is denoted by *, U = 1(g 1ja is the density of the uniform distribution over the unit

hypercube [0, 1]% and for any function g we define g(z) := g(—x) and g;,(z) := g (§) /h* with h > 0. Furthermore,

we set V := K « K, where K is a product kernel on RY, that is, K (u) = Hle E(ui), u = (uq,...,uq) € R witha
kernel k£ on R (so k is bounded and integrable). Using the arguments and techniques in [32]], direct calculations for

d=2and k(z) = \/% exp (—”;—2), x € R, being the standard Gaussian density function, give for 2 > 0,

a5 (o () () 6 (5 +(32))

1 (Xi1— Xj1)? (Xi2 — Xj2)°
B = g 3 e (e (gt

1<i<j<n

and

1 — in 1 1 1 2
Vh(0) = —— VixUxU)0) = — P — ) —= h — -1
0 = e 0T 00 = 55 VA (2 () = 5 ) (o (-2 1)
where ® is the standard Gaussian distribution function and X; ; denotes the j-th component of the random vector X;,
withi € {1,...,n}and j € {1,2}.

The BR-test rejects the null hypothesis for large values of BR2 (k). Notice that the asymptotic distribution of BR2 (h)
is known, see 32, but not in a closed form. Hence we simulated critical values of BR2 (k) for h € {0.1,0.25,0.5,1},
which can be found in Table[T}

Following the studies in [7,|13]], we simulated a contamination and a clustering model as alternatives to the uniform
distribution. In addition, we considered an alternative consisting of a single point source within uniformly distributed
points. The contamination alternative (CON) is given by the mixture

(1—q1 — @)U([0,1]%) + 1 Nu(c1, 07 1) + 2 Na(c2, 031a),

under the condition that all simulated points are located in [0, 1]¢. Here, I; € R%*? denotes the identity matrix of order
d. The chosen parameters are given in Table where ®~1(p), p € (0,1), denotes the p-quantile of a standard Gaussian
distribution. See Figure[l| second row, for a realisation of this model, where the normally distributed contamination
points are filled points and filled squares, respectively.

The clustering alternative (CLU) is motivated by a fixed number of data points version of a Matérn cluster process,
see Section 12.3 in [2], and is designed to destroy the independence. One first chooses a radius r¢j, and simulates ¢
random points with the uniform distribution U ([—7¢, 1 + 7cu]?), that act as centres of clusters. These points will not
be part of the final sample. In a second step, one generates 5 points around each centre in a ball with radius r¢,. These
points are generated independently of each other and follow uniform distributions on the mentioned balls. If a point



Testing multivariate uniformity based on random geometric graphs

falls outside [0, 1]¢, it is replaced by a point that follows a 2/ ([0, 1]¢) distribution. In the following we set ¢y = 0.1
and a realisation of this model can be found in Figure|l} third row. The clustering alternative is not included in the
framework of our theoretical results since the points are, by construction, not independent. Nevertheless it is interesting
to see how the test statistics behave for such alternatives, which were also considered in the simulation study in [8].

For the single point source alternative (SPS), we simulate a large number of uniformly distributed points and disturb
them with a few points from a single source. In detail, on average 95% of the points are uniformly distributed on [0, 1]¢.
The remaining 5% of the points are derived from a Ny4(c, 021,) distribution under the condition that all simulated points
are located in [0, 1]¢. Here, the parameters are given by ¢ = (0.5,...,0.5) € R? and o = 0.01. This alternative is
designed to emphasise the dependency of the statistics on the parameter 3.

We now present the simulation results for d = 2. Table[5]exhibits the empirical percentage of rejection of the competing
procedures under discussion. An asterisk stands for power of 100%, and in each row the best performing procedures

have been highlighted using boldface ciphers. Clearly, BR?(0.1) and N Né?i? dominate the other procedures for

the CON-alternative, but as noted in [13]] the performance of N fof) might even increase for bigger values of J.
Comparison with T, ,,(53) for 5 = —0.5 (see Table@) shows that the presented new methods are for sample sizes of
n = 100, 200, 500 as good as and for n = 50 nearly as good as the best competitor BR2(0.1). As one can witness
throughout the Tables [6|and([7} T ,,(3) dominates T, ,, (/) for small sample sizes, while the power is similar to the best
competitors. In case of the CLU alternative T ,,(/5) gives the overall highest performance for 5 = —0.5 over small

sample sizes of n = 50, 100, 200, while the only procedure that is better for n = 500 is again N Nfl?f?. Notice that the

asymptotic version T, ,, () might even achieve higher performance if one considers bigger radii, since it attains the
highest rates for the biggest values of k. A closer look at these tables reveals the dependency of the new tests on the
choice of £ and k. Interestingly, the highest performance is given for both alternatives and T ,,(53), j € {a, e}, for the
choice of 3 = —0.5. The best choice of k obviously depends on the sample size. The dependency of the test statistics
on the parameter 3 becomes even clearer in the Tables[I0]and [LT} which contain the empirical rejection rates under the
SPS alternative. Here, the best choice is obviously 5 = —0.5. One explanation for this behaviour could be that for
B = —0.5 very small distances between the data points are taken more into account. Under the SPS alternative, some of
the data points actually are very close to each other. Thus in case 5 = —0.5 the presented test statistics seem to be
particularly suitable to detect a single point source between uniformly distributed points.

Observe that the simulation results for d = 3 in Tables [§| and E] show higher rejection rates for T} ,,(3) than in the
bivariate setting. Since the other methods were too time consuming to implement or to simulate we restrict the
comparison to the D B-test. As can be seen in Table [8]the new tests dominate the D B-method for 5 = —0.5 and nearly
for every value of k.

6 Real data example: Finnish Pines

We apply our methods to the data set finpines included in the R package spatstat, see [3l], which presents the
locations of 126 pine saplings in a Finnish forest, the locations are given in metres (to six significant digits). In order to
compute small sample sizes, i.e. n = 50 and n = 100, we restricted the data set to two specific observation windows
W, see Figure[2] We test the hypothesis Hy in (I), i.e. if the points are uniformly distributed in 1, and apply the new
methods as well as all presented tests from Section[5} Results are reported as empirical p-values (based on 10 000
replications) for all procedures and are found for the tests T ,, and T, ,, in Table [3]as well as for the competing tests in
Table ] Interestingly, in the first example (n = 50) the distance to boundary test, the maximal spacings test, the nearest
neighbour tests and the Bickel-Rosenblatt tests uniformly fail to reject the hypothesis of uniformity on a 5% level,
whereas T, rejects the hypothesis for £ < 10 and 5 = —0.5 as well as for k = 1 and 8 € {0, 1}. In the second example
(n = 100), again most of the competitors fail to reject Hy on a 5% level, with exception of the nearest neighbour
tests, which show an empirical p-value of 0. Impressively, T ,, as well as T, ,, reject Hy for 3 = —0.5 for every
ke {1,...,10,15,20,25}, showing for the negative exponent the overall best power. The nearest neighbour tests also
show a similar behaviour, which is not very surprising due to the related concepts of both procedures.

dll ¢ | ¢ | i | C2 | 01 | g2

2 ] 0.135 | 0.24 (0.25,0.25) (0.7,0.7) 0.15 - ®71(+/0.9) | 0.2-9~1(,/0.9)

3] 0.135 | 0.24 | (0.25,0.25,0.25) | (0.7,0.7,0.7) | 0.15-®~1(+/0.9) | 0.2- ®~1(+/0.9)
Table 2: Parameter configuration of the CON-alternatives

10



Testing multivariate uniformity based on random geometric graphs

N — O o) o [e] ° ° N O v O - °
" ° ° “ ¢ °
[ o ° [
S oo . ] OO%OQ’ o q o oo . ] °% N
© ® b 59 000 © © ° b e® ®oe @
oo LY . @ o oo LY .
> ) ° ° [ ] () ° L) ° ° [ ] [ ]
Y ° e Y . oo
oo L4 oo D
o [ ] ° o [ ]
o
° o0 [ o0
¥ . . © ¥ e ® o . *
° Y . Y
[ ] . ‘%’ [ ] o é
O [ ]
¢4  §  0° o4 ol o4 | & et & °
° o o oo® % ° PR | o
& o & Cog & o & Cog
® 4 o © o ® 4 o ©
| | | | | | | | |
-4 -2 0 2 4 -4 -2 2 4
Figure 2: Selection of n = 50 (left) and n = 100 (right) data points in the data set finpines
n B\k 1 2 3 4 5 6 7 8 9 10 15 20 25
—-0.5 | 09 25 123 340 595 893 604 725 785 693 518 505 385
50 0 13.9 332 954 616 356 89 4.5 89 140 11.8 11.6 164 125
1 46.7 788 525 20.1 10.1 1.7 0.9 3.6 8.0 7.3 89 184 13.0
T 5 67.7 951 46.6 153 9.2 0.8 0.7 163 390 290 145 550 20.6
en —-0.5 ] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.2
100 0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 4.5 99 281 685 872
1 0.0 0.0 0.1 0.1 1.4 86 220 913 495 359 514 307 319
5 5.5 1.1 593 97 707 734 474 45 0.9 1.4 598 253 353
—0.5 | 0.1 0.5 0.9 0.4 0.5 2.6 1.2 5.5 1.4 2.8 225 703 86.8
50 0 0.3 11.3 261 52 109 521 277 728 280 455 100 505 532
1 1.1 929 918 189 385 792 695 634 570 842 566 235 225
T 5 69 176 640 1.0 31.7 37.6 827 242 430 951 330 140 232
“n —-0.5 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
5 0.0 0.1 39 0.0 0.1 0.5 0.0 0.0 09 130 52 9.7 40.6

Table 3: Empirical p-values for T, and T}, for the subsets of size n of the finpines data set

7 Conclusions and open problems

We have theoretically investigated statistics related to the edge length of the random geometric graph of a point pattern
in an observation window under fairly general assumptions. From these findings, we introduced two new families of
consistent goodness-of-fit tests of uniformity based on random geometric graphs. As the simulation section shows,
the presented methods are serious competitors to existing methods, even dominating them for right choices of the
parameters 3 and r,, (or k). Clearly, a natural question is to find (data dependent) best choices of them. Another obvious
extension of the presented methods would be to find tests of uniformity on (lower dimensional) manifolds, including
special cases of directional statistics as the circle or the sphere (for existing methods see Chapter 6 of either [22] or
[24]). Section[]invites to further investigate in view of concepts of locally optimal tests. Since the approach is fairly
general, an extension would be testing the fit of X1, ..., X,, to some parametric family {f(-,9) : ¥ € ©} of densities
for a specific parameter space © (eventually the procedures would use a suitable estimator ¢,, of ). In view of the
special interest in the case of unknown support of the data, see [6l [7]], we indicate that the definition of T, ,,(3) is not
dependent on the shape of the underlying observation window and therefore is applicable in this setting (as long as the
observation window has volume one).

11
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n | BR2(0.1) BR2(0.25) BRZ2(0.5) BR2(1) | NN N~NNO2 DB MS

50 88.8 95.4 97.1 66.0 5.7 45.7 299 67.2

100 8.6 93.2 95.1 34.6 0.1 0.0 312 653
Table 4: Empirical p-values for the competing tests for the subsets of size n of the finpines data set
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Appendix A Proofs

A.1 Proof of Thoerem 2.1]

Proof: Equation (3) follows from

EL,(8) = n(n2— 1

where X and Y are independent random vectors distributed according to the density f. Notice that

EL{|X - Y[ <r}|X - Y7 = /WZ Hllz —yll <ralllz —yll® f2)f(y) d(z,y)

)
EL{|X - Y] <r}|X - Y7,

< / 1{[lz = yll < ra}llz— vl f(2)? d(z,y)

dkq /3+d/ f
7ﬁ+d "n

where we used the inequality of arithmetic and geometric means and spherical coordinates. This yields
. EL(8) /
lim su < 14
n—>oopnr+d_2ﬁ+d Us (14
For C' > 0 we use the shorthand notation fo(z) := min{f(z),C} forx € W and fo(z) := 0 for x ¢ W. It follows
from Lemma [B.1|that, for any C' > 0,
1
tin g [ e ulles) dy =

n—oo 7ﬁ+d

dl-ﬁd
B+d

fe(z)

L5Tn

for almost all x € . Now the dominated convergence theorem yields

1 d
s [ el < bl =l fel@) et ae) = 574 [ eloPan

Together with

|tz =yl < e =l f@ 1w (.
> [ Ao =yl < radla ol fe@ fel) day)
W2
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we obtain

EL.(B) o
it S > e e e
Now letting C' — oo and the monotone convergence theorem yleld
EL, (ﬁ
li f
mint > o [ G
Combining this with (T4) proves @). O

A.2 Proof of Theorem

Proof: A straightforward computation shows that

EL,(8)? = n(n—1

JEL{1X, — Xa|l < ra} X1 — XolP?

+n(n = 1)(n — QEL{|X1 — Xall, X1 — Xal < r}|Xs — Xal? [ X1 — Xs])?
—1(n—-2)(n—3

 nn =Dl =2 =)

Here, X1, ..., X, are independent random vectors with density f. Combining this with (3) yields (6).

E1{|| X1 — X, || X5 — Xu| < ro}| X1 — Xo|| %1 X5 — Xa||P.

Observe that the asymptotic behaviour of the first and the third term in (&) follows immediately from Theorem[2.1] By
the inequality of arithmetic and geometric means and spherical coordinates, we obtain

Tzflﬁd /W (/W e =yl <ra}lle—yl® fv) dy)2 f(a)dz

1
< W/ {||zy — a2, [lzr — a3l < o}l — 2|2y — 23|
Tn w3

(f(z1) + f(22)® + f(23)°) d(21, 22, x3)

< G [ 1

On the other hand, Lemma [B-T|and the dominated convergence theorem imply

15)

1 2 d2
dn e [ ([ e =l < n o=l fet)an) felw)de = 570 [ feta as

for each C' > 0. Recall that fo(z) = min{f(z),C} for x € W. Now letting C' — oo and the monotone convergence
theorem yield

1 ’ g
it e [ ([ e =ul < nd e -l s ) sorae = GH [ g

This, together with (T3) and the observation that 0[(31}, 0[(32} > 0, completes the proof of (7).

For the proof of () we define W_,. :={z € W : d(z,0W) > r, }. Now straightforward computations yield

2,2 2
P 2"“dV01(W_7-n)S/ (/ 1{||x—y||9n}||x—y|ﬁdy> dxﬁdia?f“d%l(w)
w \Jw (B+d)

B+dz™"
and
i s yg 2 < (/ 1{|lz — il < radllz — y)® Ao ))2 < a_ama o)y,
Grap VW < ([ eyl <ol den) ) < G
It follows from (2) that there exists a constant Cyy € (0, c0) such that
0 < Vol(W) —Vol(W_,. ) < Vol{z € W : d(z,0W) <r,}) < Cwry. (16)

Together with Vol(IW) = 1 this means that the absolute value of the sum of the second and the third term in (6)) can be
bounded by

3d2’€d Cyn® 26+2d+1 n d? “3 2 28+2d
(B8 +d)? 2(8 +d)?
Together with the asymptotic order of the first term in (6)), which is as in the proof of (7)), this proves (8). O
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A.3  Proof of Theorem 2.4

We prepare the proof of Theorem [2.4] by several lemmas, which are formulated for the following more general setting,
required later: We assume that the underlying points of .2, are distributed according to some density f,, € L3(W) and
that f,,(z) — f(z) asn — oo for almost all x € W.

For n € N we define
Wy, :=={(z,m) e W x [0,00) : m < fp(x)}

and let X Tyevos )A(n be independent and uniformly distributed points in W, . We denote the collection of these points

by Z,,. For a point & € Wy, we often use the decomposition & = (z, m) with x € W and m € [0, f,,(x)]. Observe
that the first components of X1, ..., X,, are distributed according to the density f,, in W. For § € R we define

~ 1
Lo(B) =5 > 1{[ler — 2o < ra}llwr — 22 (17)

((Ilvml)ﬁ(ﬂﬂz,mz))eﬂf,ﬂz#

If f, = f, En(ﬁ) has the same distribution as L,, (). For M > 0 and a > 0 we define

~ 1
Lnm(B) =5 > {mi,my < M}1{|jz1 — 2| < 7} [l21 — 22| (18)
(@1,m1),(w2,m2))€Z?
and
- 1
Lnan(B) =5 > 1{my,me < MY 1{n" %% < ||z; — 25| < rp} |z — 22|,
((ml,ml),(zg,mg))eﬁ#

n,

Moreover, we use the abbreviations f,, as(z) := min{f,(z), M} and fp(x) := min{f(x), M} forz € W.

Lemma Al.Let 8 > —d/2, M > 1, a > 0 and assume that nQTfL — o0 as n — oo and that
lim,,_,oc Var L7L7]u(6)/0'%’fM’n = 1. Then,

L ~EL L ~EL, 2
lim E( n,M (B3) nM(B)  Ln,am(B) L,a,M(ﬁ)> ~0 (19)
nTreo 08, fr,m 08,fr,m
and R
Var Ly,
lim M -1 (20)
" T8

Proof: Throughout the proof we assume that 7 is so large that n~2/%a < r,,, which is no restriction since n?r¢ — oo

as n — oo. By definition, we have that

~ -~ 1 -
Lust(8) ~ Bnarr(6) = 2 L, may < MY{ler — 22| < n=2/4a} oy — )
((x1,77l1)7(x27m2))63/{:/27¢

Now a similar computation as in the proof of Theorem 2.3|a) yields that

Var(zn,M(ﬂ) - 2V:n,a,M(B)) S Il + I2
with

2
im0 [l =yl < 0 e = ol oan (0) e () )
w2

2
I =0 /W ( /W 1{lz - yll < =240}l — gl fure (v) dy) Furr () da.

Note that I; and I5 correspond to the first two terms in (€), whereas the third term in (6) was omitted since it is
non-positive. Now short computations show that
I drgM? n2p=2-4B/dg28+d drgM?2a?P+d 1

< =
T228+d) o) n2e2t 208 1 a)ell)  (nPri)P/d

2
98, far,m
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and
Iy d253M3 nd3n—4—48/d 26+2d B d2H§M3a2ﬁ+2d 1
2 — 2 1 - 1 2,d\28/d+1"
g BHd? o n2e3P (g p a2l n(nlrg)2o/er

Since n?rd — oo as n — oo and 23/d + 1 > 0, this provides (I9). Now (20) follows from combining (T9) and

lim,,_, o Var EmM(ﬁ)/U?%,fM,n =1.

O

Lemma A2.Let 5 > —d/2, M > 1, a > 0 and assume that n2rfll — o0 as n — oo and that

lim,,_so Var Zn,M(ﬁ)/U;me = 1. Then,

7 —EL,
n,a,M(ﬂ) l,avM(ﬂ) ﬂ> N(0,1) as n— oo
JB’fM/n’

and ~ -
Ly (B) — ELy a(5) D,

08,fm,m

N(0,1) as n— oo.

Proof: From (20) we know that lim,,_, -, Var Zn,a,M(ﬁ)/U%me =1.If 8 > 0, then

SUP (2 m. ) (y.my)ewy, HMamy < MIL{n"a <l —y| < ro}lle -yl

lim

n—o0 nr£+d/2
:

< lim = lim —— =0

T n—oo TL’I’E+d/2 n—00 nQTg ’

while for § € (—d/2,0),

SUP (s ) (ymy ) Wy, MMy my < MPn" 0 <z —y|| < ra}lle -yl

i
ns00 IETTR
~28/dgp 8
n a a
<lim ———% = lim ———7%—~- =0.

i

n—oo nrﬁ""d/Q n— 00 (nQ'rg)l/Q‘Fﬁ/d

Denoting by (X 1(n), m (»)) an uniformly distributed point in W, , we obtain
1

L S mewy, EL{m iy € MY~ < [lo - XpV | < v e - X3P
1m

d/2
n—00 nr5+ /

. 1 —2/d B
= . <|lz—yll < -
Jim. e S L e sl =yl < bl =yl fo.ar (y) dy

drgM Tngd . drgM /2
< lim ————— = lim T =0.
n—oo B+ d ?"£+d/2 n—soo B4+d "

Thus, 1) follows from Theorem|[C.1} Combining the L?-covergence in (T9) with 1) yields 22).
In the following we use the abbreviation f,, 5/ () := max{ f,(z) — M,0} forz € W and M > 0.

Lemma A3.Forn €N, 8> —d/2and M > 1,

E(Enw) ~ELy(8) _ Luau(8) = ELnu(8) ) ’
9B.fn 98.fn

< dkq n%?ﬁ*‘d/
T 28+d of g, Jw
18d%k?% n3r2f+2d - _ , = .

RF AT aele) + M s 0 + T s (0P

f’rL,M(‘/I’.)2 + M?n,M(x) dz

16
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Proof: By definition we have

~ - 1
Ln(B) = Lpm(B) = 3 Z 1{my > M ormy > M} 1{|lz —y|| < rn}|lz - y”ﬁ
((@ma),(ymy))EZ?

From similar arguments as in the proofs of Theorem [2.3[a) and Lemmal[A-T] it follows that

Var(L,(8) — Lnm(8)) < I + I
with

n2

[1 = ? R 1{m1 > M or mo > M} 1{”.’1)1 — -’172“ S Tn} ||LU1 - x2||2/6 d((wlaml)a (x27m2))
w
f’ﬂ
I = n3/ 1my > Mormy > M} 1{my > M orms > M} 1{|x1 — s]| < o}
WS
f’rL
x 1{||lw1 — @sl| < ro}llar — z2l? [lor — 3]’ d((21,ma), (w2, ma), (z3,m3)).
For I; we obtain the bound

n<nt [ a{le =yl < rdlle =9 Fosi(e) (Faaslo) + M) dla)

< /W2 {1z — yll < ra} o — yl2% (Foas (@) + MF, (@) d(a, )

d/-ﬁd — —
< mHQTiEM /W St @)+ Mf, y(2)da.

Because of
1{my > Mormg > M}1{my > Mormz > M} <1{my > M} + 1{ma > M, ms > M},

we have

I < ng/ oy — wol| < r} fflar — sl < v} flar — 22| (|21 — 3]
w3

X ([ (@1) fo(@2) ful®s) + fr(21) fro e (22) o (23)) (21, 22, 23).
Using that f,,(z) < f, (x) + M for 2 € R?, we obtain

Frna(@1) fal@2) fol@s) + ful21) fo ae(@2) Foa(23) <6 max M3FF (@)
,ic{1,2,3}

This implies
18d°K3 3 25424 27 7 2 F 3
I, < (ﬂ+d)2n Ty WM Joar@) +MFf, 0 (2)° + fr 0 (2)” da,

which completes the proof. ]
We recall that f;(z) := min{f(z), M} forx € W and M > 0.
Lemma Ad. Let 3 > —d/2, M > 1and f, = f,n € N. If f # Ly orif f = Ly, W satisfies @) and nrd*t! — 0 as

n — oo, then

Var Ly, 1 (8)

98, farn

lim

n—oo

=1

Proof: For M > 1 and f = 1y, f)r = 1w and the statement is the same as Theorem ¢) because Zn wm(3) follows
the same distribution as L., (). For f # 1y one can show as in the proof of Theorem a) that

VarZan(9) = "0 [ 3o =l < vl =l ) el o)
et =02 [ ([ 1=yl < o=l fut) ) fute)as

2
~ntn =0 =3/2( [ 10—l < rdllo =l fue) ful) ) )

17
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Now the assertion can be proved as Theorem [2.3|b). O

Proof of Theorem ' We consider the same setting as in the previous lemmas with f,, = f for n € N so that L,,(53)
has the same distribution as En(ﬁ ), which we study throughout this proof. For f = 1y the assertion follows from (22))
in Lemmabecause, for M > 1, En(ﬁ) has the same distribution as ZnM(ﬂ) 08, frn = 0B, fn and Lemma
guarantees that the variance condition in Lemma[A.2]is satisfied. So we assume f # 1y in the sequel.

Let h : R — R be a bounded Lipschitz function whose Lipschitz constant is at most one and let € > 0. In the following

we show N N
L —EL,
lim sup Eh(M> _ER(N(0,1))| <, (23)
n—00 03,fn
which yields the assertion.
For M > 1 the triangle inequality implies
L.(8) —EL
03,fn
g Eh(an) - ELn(B)> e (Ln,M(ﬂ) - ELn,Mu&)) ‘
08,fn 08,fn
08,fmn 08,frm

+

L, —EL,
]Eh< M (B) M (B)
OB, fnmom
= Ripm+ Ropp + Ra -

It follows from Lemma@ (notice that the variance condition is satisfied because of Lemma@) that R3 ,, s vanishes
for any M > 1 as n — oo. The Lipschitz property of h, the Cauchy-Schwarz inequality and Lemma[A3]imply that

R . < E<Zn(5) —EL,(8)  Laum(B) — JEZ,L,M(5)>2
)1y - 03, fn 08, fn
dikg n2r2ftd / _ ) -
< —t— | Fu(@)?+ Mfy(z)da
28+d Ug’f’n W
18d2K2 nir2p+2d _ _ B
(5+d)d2 o8 /W M2 fap(@) + MFap(2)* + Far(2)® da.
s J T

Here the terms depending on n can be bounded by some constants. The dominated convergence theorem with the upper
bounds 22 and 33 leads to

> —ER(N(0,1))

M —o0

lim /W Fau(@)?+Mfy(z)dz =0

and

lim / M2F 3 () + MFy(2)2 + Fap () da = 0.
M—oc0 w
Hence, there exists an M7 > 1 such that lim sup,,_, o R1nm < &/2 for M > M.

A short computation using the Lipschitz continuity of i and the Cauchy-Schwarz inequality shows that

98,fmn 1‘ E‘ Lo (B) —ELn,m(B) ‘ <
08,fn OB, frm | 98t OB, frr,m
(1) 1) ©) 2

By the monotone convergence theorem and the assumption f # 1y, we have o B OB > Oand oy e O8>
0 as M — oo. Together with the definitions of og_¢,, » and o, s, this implies that there exists an M> > 1 such that

Var Ly, (8
RQ,n,M < Z6:fam - 1‘ ( )

o-Bxfl\lyn -1
0B.fmn

for M > M. Since, by Lemma lim, o 1/ Var Zn’M(ﬂ)/O'ﬁ’fM’n =1, we obtain limsup,,_, ., Ron,pm < €/2
for M > Ms. Thus, choosing M > max{M;, M>} in 24) and letting n — oo yields (23) and completes the proof.[]

. €
lim sup < 3

n—oo

18
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A4  Proof of Corollary 2.5

Proof of Corollary 2.3} Part (a) is an immediate consequence of Theorem (3) and the definition of o, s ,,. For the
proof of (b) recall that W_,,, = {& € W : d(x,0W) > r,,}. It follows from (3) that

dkg drkgq

—— Vol(W_.. nn—1r6+d<ELn < — _Vol(W)n(n — 1)rP+e.
st VolV=rn(n = it S BLL(9) < 5 Vol(Wn(n — 1)r]
Together with (T6), which is valid because we assume (2), and Vol(WW) = 1 this yields
dkq dkq
EL, e 1P <« T o 2 Btdtl
so that J sid
EL,(8) — 575<~n(n — 1)ry dra(2 d
im () z(ﬁ”) (ﬂ+d/2 "] < lim \/';;d( 5; )Cwnrﬁ/2+1 — 0. (25)
n— 00 K n—oo
z(zﬁid) NTn (5 +d)

Hence, the assertion of (b) follows from (a). O

A.5 Proof of Theorem 3.1l
Proof: Throughout this proof we denote the terms that are squared in () and (T0) by L. ,,(3) and L, ,, (), respectively.
In the following we will show that

Ljn(B) —r 00 as n— o0 (26)
for j € {a, e}, which implies the assertion.

Let M > 1and f, := f for n € N. Recall the definitions of L, (3) and Ly, x;(j) from (T7) and (T8). Since L, (3) and
L,,(8) have the same distribution, we can assume without loss of generality that they are identical. All pairs of points

that contribute to En,M(ﬁ) also contribute to L, (3) so that ZnM(ﬂ) < L,(B). This implies that, for j € {e, a},

_ Lont(B) —ELna(B)  ELyar(B8) — mn;(5)

Ljn(B) > =:S1.n+ 520
’ dk B+d/2 dk B+d/2 ’ e
3@p ) 3eata) "V
with ( 0
n(n —
Min.e(B) = T/ Hllz =yl <ra}llz — gl d(z,y)
W2
and p
_ Kd B+d
Mn.a = ———n(n—1)ri™"%
o8) = st =1)
Using the same arguments as in the proof of Theorem 2.1] one can show that
_ EL,u(B) . n(n—1) B
—n M\ S _ < _
Jim St = Jim 2 [ Ml < rad eyl () ) dGry)
d&d / 2
= — far(z)* de.
25+ d) Sy 1)

By the Cauchy-Schwarz inequality, we have

[ ras—1— [ soyas < ¢ /Wf<x>2dz¢ [ rae- ¢ [ st

since f # 1y . Together with the monotone convergence theorem this implies that we can choose M > 1 such that

. EL, m(B) drg
1 d >
o 1 n2rltd T 2(8+d)

for some € € (0, 00). Since, by Theorem [2.1]

(I+¢)

lim Min.; (5) = drq
n—oo p2pBtd 2(8 + d)
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vV dra(28+d) d/2

for j € {e,a}, this shows that Ss . ,, and S5 , ,, behave at least as enry’ ~ asn — oo. From the Chebyshev

V2(B+d)
inequality and Lemma[A-]it follows that
drq(2B +d L,
lim ]ID(Sl,n 2 Vdra25 1 d) )5”7”2/2) < Hm —- dnﬁ;d%(ﬂz;m 2,2pd
A 2V2AB+d) " sagta sgraE TR €Ty
(1) dy 5(2) d
_ 16 d)* N T % Y
(drg)2e? noroo 2Bt
1) (2)
_ 168+ d)? L s TBdu
(dkq)?e? n—oo n2rd n ’
which implies (26) for j € {a, e}. O

A.6 Proofs of Theorem d.1land Theorem

We prepare the proofs of Theorem and Theorem with several lemmas. By En( B) we denote the statistic L,,(3)

with respect to i.i.d. points X1, ..., X, distributed according to the density 1 + a,,g, while L, () is with respect to n
i.i.d. points uniformly distributed in .

Lemma A.5. Assume that W and g satisfy (1) and let n > 2. Then, for any 3 > —d,

~ — 1a?
EL,(9) - BLu(8) - "5 [ (e~ yl < r)le - ol alela) d(e.y)
(27
dcaCw,g - Btd+1,

Moreover, for any > —d/2,
| Var Zn(ﬁ) — Var Ln(ﬁ)’ < C(nzriﬁ"’dan(an + 1rn) + 0322, (4, + 7 4 a2+ ad + airn)) (28)
with some constant C € (0, 00) depending on 3, d, Cyw,4 and g.

Proof: Tt follows from (3) in Theorem 2] that

M2 [ agle ol < md e - ylP(e)g) dGo.o)

+n(n—1ay, /W2 Hllz = yll < ra}llz — yll”g(2) d(x, ).

(29)

‘We have
/W2 |z —yll < ru}llz —yllPg(z) d(z,y)

dndrferd/
=—"n" g(x)dz
Brd ) (z)

n /Wl{d@c,aW) < m}( /Wl{nx—yn <}l — gl dy -

+d
drgr?

M)g(x) de.

Here, the first term is zero since || W g(z) dz = 0. By (TI), the absolute value of the second term can be bounded by

dlﬁ;d
B+d

drqC
rﬁ-&-d/ 1{d(z,0W) < r,}g(z)|dz < %rﬁ‘*d“?
w

which proves (27).
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From Theorem [2.3(a) we can deduce
Var L,,(8) — Var Ly, (8) = EL,(28) — ELy(28)
+n(n—1)(n-2) /W3 Wz = wills llz = yoll < rudllz = will®llz — yol 7
x (an(29(y1) + 9(x)) + az (9(y1)g(y2) + 29(y1)9(x))
+ang(y1)g(y2)9(x)) d(y1, ya, @)
- =5 (BL.(8) ~ EL, () (EL(5) + BL,(5))
= Ryp+ Rop — B3

It follows from

n(n —1a; 26 dtiq / 2 g 2 204d, 2
e S 12 _ull < _ e
5 /WQ llz =yl < ratllz —yl*"g(z)g(y) d(z, y)| < 525 +d) g(x)”da n"r;" ay,
and (27) that
dkdq 2 2ﬁ+d o, kiCwyg o 2B8+d+1
Rl < gy [ o) dunirisdad + Gaiaypivinig,
From
~ d/id ( / 2 > 2 B+d
EL,, +EL, < —(1+ 14+ ang(z))”dz |n*ry
(3)+BL.(5) < g (14 [ 1+ aagle)
dkg
= 2+a;, / x)? dx> TLQTngd,
<5+d>< w
n(n —1)a? dkg
SN m 1 —yll < —yll? 2 2 .B+d 2
5 /WQ {llz = yll < ra}lle —yll”g(x)g(y) d(z, y)‘ < 2(5+d)/ g(x)” dz n’r;, " ay
and (27) we conclude

_ 1
|R3,n| < 035( 2 [5+d 2 2in rﬁ+d+1 )(1+ai)n2rﬁ+d
< Csn®rP 2, (4, + rp + a2 4 d2ry,)
with some constant C's € (0, c0) depending on 3, d, Cyy, 4 and g.

By similar arguments as for the second term in (29), one obtains

n3

/W Hllz =l |z — g2l < radlle = w1l — y2)%an (20(y1) + 9(2)) d(y1, y2, 2)

< 6> “dCW,q n3r2,8+2d+1
T (B+d? "

Moreover, one can show the inequality

n3

/Ws Hllz = wll, 1z = yoll < radlle = 2] 7llz — yoll?

x (a3 (9(y1)g(y2) + 29(y1)g(x)) + ajg(y1)g(y2)g(x)) d(y1, ya, )
3d2"53 3,.28+2d 2 &? Hd 3 3.28+2d 3
SW/Wg()dxn + ﬁ-f'd / lg(x)]? da nr2PT2dg3

Summarising, it follows that
|Ron| < Con®r2P2dg, (1, + a, + a2)

with some constant Cy € (0, c0) depending on f3, d, Cyy,4 and g. Combining the estimates for Ry ,,, R, and R3.,
completes the proof of (28). O
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Lemma A.6. Ler > —d/2 and assume that the observation window W satisfies (]ZD, that n?r% — oo and

n
max{nr&*l nria3} — 0asn — co and that

lim Var L,, () — Var L, (B)

n— 00 RQT%B+d

=0. (30)

Then, B B
Ln(ﬁ) _ELn(ﬁ) D

— N(0,1) as n— oc.
dka B+d/2
nr
\/ 2@pra) V'

We prepare the proof of Lemma [A.6] with the following inequality.

Lemma A.7. For p,q > 0, v € LPT4(W) and a > 0,
1
/ max{v(z) — a,0}’ dz < —/ |v(x)|PT da.
w at Jw
Proof: We have that

v(x)|PTdx v(x at(v(z) —a)Pa?dx = af max{v(z) — a,0}” dz
| @ptras > [ 1o > aho@) —ayatde = ot [ max{o(e) - 0.0 da.

which is the desired inequality. |

Proof of LemmalA.6} Tn the following we consider the framework from the Lemmas[A.T} [A.2]and [A.3|with f = 1y and

fn := 1w 4 ang. n € N. Then, L, (3) has the same distribution as L, (3). For the latter we will prove convergence to
N(0, 1) after an appropriate rescaling.

It follows from (30) and Theorem [2.3]c) that

Var L, Var L,(8) — Var Ly, Var L,
tim Y Ln(B) g, VarLn(B) = VarLu(B) |y, VarLn(B) _ 31)
n—oo G,B,f,n n— 00 O’ﬁ,f,’ﬂ n—oo O.B,f,n
For the rest of this proof we choose M = 2. Lemma[A3]yields
E(En(ﬁ) — Ein(6> _ En,M(ﬁ) — Ezn,M(6>>2
08,fmn 03, fn
dkg n2r2f8+d/ — ) _
—n— wm (@) +Mf, o (x)de 32
T 28+d o3, Wf,M() fon (@) (32)

18d%kg nPraf+2d 2F 7 2,7 3
* (ﬂ + d)2 O—%Jm /W M fn,M(.’E) + Mfm]\/[(.'l?) + fn,]W(x) dx.

It follows from Lemma[A77)(with p = 1, ¢ = 2 and p = 2, ¢ = 1, respectively) that

/W Foar(x)de = a, /W max{g(z) — 1/a,,0}dz < a? /W lg(2)]? da

[ Fan?do=a [ max(gle) - 1/an 01 do <al [ Jgfa)fde.
w w w

Moreover, we have
/ ?mM(:c)?’ dz = ai/ max{g(z) — 1/a,,0}>dz < ai/ lg(z)|? dz.
w w w

Since 03 ;,, = Ug{}n%?f”, the right-hand side of (32) is at most of order

n2r2btd o pdp28t2d B L+nrd
n

2 T T
(o
B,fn Op.f

n )

2
98,f.m
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which vanishes as n — oo. This means that

L,.(8) —EL, L, ~EL, 2
nTreo 98,fn 08,fn
Together with (3T)) we see that
Var L,
n—oo 0'6 fin
It follows from Lemma where the variance condition is satisfied because of (34) and 0’;237 fn = 0[237 Far.mo that
L, —EL,
m(5) . (F) RN N(0,1) as n — oo.
08,fn
Because of the L?-convergence in (33) this yields
Zn - Ein
Ln(B) = ELn(8) EN N(0,1) as n — oo,
08,fn
which completes the proof. O
Proof of Theorem[#.I} By Lemmal[A.5] we have that
EL,(3) — EL,
de ﬁ+d/2
228+d) V'
with 3 ( a2
V28+d(n—1)a
T, = n ||z — vy < ru Mz —yl|Pg(z d(z,
drg B /W2 {llz =yl < ru}lle —yll”g(x)g(y) d(z,y)
and a remainder term R,, satisfying
Cw.g\/2dKq(28 + d)
R, < J m“d/2+1an 36
As in the proof of Theorem 2.T|one can show that
Tn \ /d 26+ d)
i, — 7 = ”d ot / (37)
For v = 0 one obtains lim,, ;oo 7, = 0 and hmnHOO Rn = 0. The latter follows from the assumption

min{nry / + Un,Tn/an} — 0 as n — oo, whence, by (36), R, vanishes directly or is of a lower order than T},

and, thus, also vanishes.
For v > 0 or m“g/ 2a$b — o0 as m — oo, we have that lim,_, . r,/a, = 0. Indeed, if there was a subse-

quence (n.,) such that r, _/ay,, > c for some ¢ > 0, we would have nmrd/ + ap,, > cnmrfl/ 22 Then

m My
. d/2+1 _—
mm{nmrn{” + an,, s Tn,, /an,, } Would not converge to 0 as m — oo, which is a contradiction. Because of (36) and

([@7) it follows from lim,, ;. 7 /@y, = O that lim,, o R,, /Ty, = 0, whence T}, is the leading summand in (33).

Assume that nri/ 2a2 — € [0,00) as n — co. By (@8), we have

i VarLa(8) — Var Ly ()]

n—oo n2r2ﬁ+d

< C lim ap(an +ry) + nrian(an + 7, + ai + afl + airn) =0,
n— o0

where we also used that a,,, 7, m"d“ — 0 asn — oco. Now Lemmaimplies

— N(0,1) as n — oco.
dkq B+d/2
2(28+4d)

This together with (33)) and the above analysis of the asymptotic behaviour of 7}, and R,, yields

L.(8) —EL,(8 Y <,/d@2ﬂ+d/

2(26+d)

dxv,) as n — oQ.
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Now (a) follows from the continuous mapping theorem.
Next we show part (b). It follows from (28)) that

Var Zn(ﬁ) Ca"(a" +70) +nrlay(a, +rn 4+ a2 +ad +air,) Var L, (5)

(n2riT a2y = (s a3 )2 (e a2

a/2 2

d+1 a? — coasn — oo.

The first term on the right-hand side vanishes as n — oo since a,,, 7,,nr, "~ — 0 and nry,

Because Var L,,(3) behaves as n?r26+4 by Theorem c), the second term is of order 1/ (m“n/ 2a%) and converges
to zero as n — co. We thus have

Varzn(ﬁ) —0 and w

P
——— — 0 as n—oo.
n—oo (p2phT4q2)2 n2rBtdg2

Together with the fact that T, is the dominating term in (33) and (37)), this means that

Ln(B) —EL,( \/dmd (26 +d) /

; B+d 0 as m — oo.
B tay % vV2(B+
Because of nr/ 2a% — 00 as n — oo this implies
I —
n(8) ~ ELu(5) Lo as n— oo,
de 6+d/2

228+d) V"
which proves part (b).
Part (c) follows from (25) in the proof of Corollary [2.5] O

Proof of Theorem 4.2 Without loss of generality we can assume that r,, < d(supp g, 9W) for each n. Consequently,
the assumption (T1) is satisfied with Cyy,, = 0 for r = r,,. Now the proof of Theorem 4. T works without the additional

d/2+1

assumption that min{nry Gp,Tn/an} — 0asn — oo because R,, = 0. a

A.7 Proof of Lemmal[5.1]
Proof: Letd € {2,3}, W = [0,1]¢ and ,, < 1. We apply Corollaryto obtain
n(n—1
5L,(8) = " [ gyl < radle ol aGen
W2
-1
S0 [ aew o —yewydray
2 BA(0,r,) R4

-1
SRD eI A 7 +) dy
2 Jeuor)

n(n—1) d

B
= Yy | | 1 —ly;]) dy,
2 ‘/Bd(o,rn) H || ( | ]|)

j=1

withy = (y1,...,Y4) € R?. The formulae in (a) and (b) follow now from a longer calculation with polar coordinates.

Appendix B A consequence of Lebesgue’s differentiation theorem

Lemma B.1. Let g : R? — R be a measurable function with ||g||o := sup,cga |9(y)| < co and let § > —d. Then, for

almost all x € R4,
d/id

B+d

1
lim /ﬂ e — yl® g(y) dy = 2L g(a).
B (a,)

r—0 rB+d

\T
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Proof: We choose p > 1 subject to p3 > —d. Then for any € R% and r > 0,
1 drg

—yll? dy —
e [ =l o)y )

1 Iy — I
= WZEg(y) — g()|d
i [ T ) gy

1 / |y — z||”? )1/1)( 1 / ) (»=1)/p
<= e dy -~ 9(y) — g(@)P/P~V dy
(rd B (z,r) rph rd Bd(ac,r)| ( (@)l

dkg 1/17( 1 / /1) >(191)/17
= e —_ . d y
<pﬁ + d> S - lg(y) — g(z)] Yy

where we have used the Holder inequality in the second last step. By Lebesgue’s differentiation theorem (see, for
example, [30, Theorem 8.8]), we have

IN

. 1
Jim 5 /Bdw) l9(y) = g(x)[dy =0
for almost all z € RZ Since [g(y) — g(x)[”/ PV < (2]lglloc) /" |g(y) — g(x)], we have
1
tim = [ o)~ gl D dy =0
r—oo T Bi(z,r)
for almost all z € R?. Together with the above inequalities this proves the statement. ]

Appendix C A central limit theorem for a triangular scheme of U-statistics

In the following we provide a central limit theorem for second-order U-statistics of a triangular scheme of random
vectors, which is a slight generalisation of [[18, Theorem 2.1].

For each n € N let Yl("), . ,Y,Sn) be i.i.d. random vectors in R?, whose distribution may depend on n. We use the

shorthand notation %}, = {Yl(n)7 ... ,Y,f")}, n € N, in the sequel. For n € N let h,, : R? x R? — R be a bounded,
symmetric and measurable function and let

1
Sy = 5 Z hn(ylay2)-
(ylvyz)E@f#
The random variables S;,, n € N, are so-called second order U-statistics. The following theorem provides a sufficient
criterion for the convergence of (.5, ), after rescaling, to a standard Gaussian random variable.

Theorem C.1. Let S,,, n € N, be as above. Assume that Var S,, > 0 for alln € N and let o, > 0, n € N, be such that
lim,, o, Var S, /o2 = 1. If

1 n
lim — sup |hn(y1,92) =0 and lim —~ sup Elh,(y, ;") =0,

n—oo Op y1,y2 ERE n—o0 Oy, yERd

then s _ES
2n = 2n PUN(0,1) as m— oo
On

Proof: In the special case that (}/i(n))lgign@o are identically distributed, this is a slightly re-written version of [[L8,
Theorem 2.1]. Otherwise, there are measurable maps 7T}, : [0, 1] — R, n € N, such that Y;("), i €{1,...,n}, has the
same distribution as T}, (U), where U is a uniformly distributed random variable on [0, 1] (see, for example, the proof of
Theorem 29.6 in [[10]). For n € N define h,, : [0,1]2 > (uy, us) > hp (T (ur), Tn(us)) and letU,, := {Uy,...,Uy,},
where Uy, . .., U, are independent and uniformly distributed on [0, 1]. Then, S,, has the same distribution as

~ 1 .
Sn = 5 Z hn(ul,u2).
(u1,u2)€Z/{fL¢

Since the assumptions of the theorem are satisfied for the U-statistics (Sy,), they must also hold for the U-statistics

(Sy). As the underlying random variables of (.S,,) are identically distributed, we are in the previously discussed special
case for which the central limit theorem holds. This completes the proof. |
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Testing multivariate uniformity based on random geometric graphs

Al | n | BR2(0.1) BR2(0.25) BR2(0.5) BR:(1) | NN NNOP DB Ms
50 74 40 33 6 16 66 37 6
con | 100 9% 66 56 9 19 90 58 14
200 * 91 83 14 25 98 89 25
500 * * 99 36 41 * £ 4]
50 80 34 31 ) 78 67 28 36
cLu | 100 73 30 27 41 74 82 28 48
200 61 26 24 41 58 90 28 52
500 45 23 2 41 32 9% 29 47
50 5 5 5 5 5 5 )
. | 100 5 5 5 5 5 5 5 03
o 1 200 5 5 5 5 4 5 5 4
500 5 5 5 5 4 5 5 5

Table 5: Empirical rejection rates of the different competitors (d = 2)
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Testing multivariate uniformity based on random geometric graphs

Alt. 154 n\k 1 2 3 4 5 6 7 8 9 10 15 20 25
50 {39 54 61 66 69 71 72 72 72 72 67 60 51

CON 100 [ 59 77 8 90 92 94 95 95 96 96 96 96 95
200 | 82 95 98 99 99 * * * * * * * *

50 |95 97 97 9 94 91 88 8 83 80 68 59 53

CcLU | —05 100 [ 91 9 97 97 97 9 95 94 93 92 82 73 65
’ 200 | 81 92 95 9 96 96 96 96 96 95 91 86 79
500 | 59 77 85 8 91 92 93 94 94 94 94 92 90

50 5 5 5 5 5 5 5 5 5 5 5 5 5

o 100 | 5 5 5 5 5 5 5 5 5 5 5 6 5
200 | 5 5 5 5 5 5 5 5 5 5 5 5 5

500 | 5 5 5 5 5 5 5 5 5 5 5 5 5

50 |41 57 64 68 70 71 71 71 71 69 59 45 34

CON 100 | 64 80 88 91 93 94 95 96 96 96 96 94 92
50 {9 9% 95 91 87 81 75 68 64 59 43 35 31

CLU 0 100 [ 92 96 96 9 95 93 92 8 8 82 64 51 43
200 | 83 92 94 96 95 95 95 94 93 92 84 74 63

500 | 61 8 8 8 91 92 93 93 93 93 91 88 &4

50 4 6 5 5 5 5 5 5 5 5 5 5 5

Ho 100 | 5 5 6 5 5 5 5 5 5 5 5 5 5
200 | 5 5 5 5 5 5 5 5 5 5 5 5 5

500 | 5 5 5 5 5 4 5 5 5 5 5 5 5

50 |40 53 59 63 64 64 64 63 61 58 40 25 16

CON 100 [ 60 77 8 89 91 93 94 94 94 94 93 89 82
200 | 83 96 98 99 99 * * * * * * * *

50 {91 91 86 78 67 56 47 41 37 34 29 28 29

CLU 1 100 [ 88 92 92 91 88 8 80 74 68 63 40 32 29
200 | 79 88 91 91 91 90 89 88 8 83 69 54 42

500 | 56 75 81 8 87 8 89 8 88 8 & 719 73

50 5 5 5 5 5 5 5 5 5 5 5 5 5

Ho 100 | 5 5 5 5 5 5 6 5 5 5 5 5 5
200 | 5 5 5 5 5 5 5 5 5 5 5 5 5

500 | 5 5 5 5 5 4 5 5 5 5 5 4 5

50 |29 38 43 45 44 43 41 38 35 31 15 8 8

CON 100 | 44 61 71 77 80 81 83 83 84 83 77 64 45
200 | 65 8 93 96 97 98 99 99 99 99 99 99 99

50 | 72 68 56 42 30 24 24 24 25 27 29 30 30

CLU 5 100 | 69 75 73 69 62 55 48 41 35 30 25 26 27
200 | 57 69 73 74 72 70 68 65 61 57 39 29 26

500 |36 53 61 65 69 70 71 71 71 71 65 57 50

50 5 5 5 5 5 5 5 5 5 5 5 5 5

H, 100 | 5 5 5 5 5 5 5 5 5 5 5 5 5
200 | 5 5 5 5 5 5 5 5 5 5 5 5 5

500 | 5 5 5 5 5 5 5 5 5 5 5 5 5

1
Table 6: Empirical rejection rates for T, in case d = 2 and r,, = (n—’;d) ‘. see (™)
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Testing multivariate uniformity based on random geometric graphs

Alt. B n\k | 1 2 3 4 5 6 7 8 9 10 15 20 25
50 |16 18 22 25 27 30 31 33 34 35 36 35 32
CON 100 | 17 22 27 32 36 40 43 46 48 50 57 60 61
200 | 18 26 34 41 45 51 56 60 63 66 77 82 85
500 | 24 36 47 56 64 71 76 80 8 8 94 97 99
50 [ 65 79 8 8 91 92 93 93 93 93 92 88 83
CLU | —05 100 | 41 55 66 72 77 81 83 8 87 87 8 90 88
200 | 22 31 38 45 50 55 59 62 65 68 75 78 80
500 | 11 14 17 20 22 25 26 29 30 32 40 46 50
50 5 5 5 5 5 5 5 5 4 5 5 5 5
H, 100 | 5 5 5 5 5 5 5 5 5 5 5 5 5
200 | 5 5 5 5 5 5 5 5 5 5 5 5 5
500 | 5 5 5 5 5 5 5 5 5 5 5 5 5
50 |11 15 23 29 27 32 34 32 34 36 36 32 27
CON 100 | 15 20 28 33 37 41 43 46 47 49 57 59 60
200 | 16 27 33 43 50 56 61 64 68 71 78 82 86
500 | 27 39 51 60 67 75 79 83 8 8 95 98 99
50 |59 76 8 91 90 92 93 92 92 92 8§ 81 71
CLU 0 100 [ 38 53 66 74 78 81 83 84 8 8 88 87 84
200 | 20 31 37 47 54 59 63 66 68 70 75 T7 78
500 | 12 14 18 21 23 27 28 31 31 34 41 46 51
50 3 3 4 5 3 4 5 5 6 7 4 4 4
Ho 100 | 4 3 5 5 6 5 4 5 5 5 5 6 5
200 | 5 6 4 5 4 5 5 5 5 5 5 5 5
500 | 7 6 4 6 5 6 5 6 5 5 5 5 5
50 |17 19 21 24 27 29 30 30 30 30 29 24 20
CON 100 | 17 22 27 32 35 39 41 44 46 48 52 53 53
200 | 18 26 33 40 46 51 55 59 62 65 75 19 83
500 | 24 36 47 55 63 70 75 79 82 8 93 97 98
50 |63 75 81 84 85 86 8 8 8 84 76 63 48
CLU I 100 {39 54 63 69 73 76 78 80 81 81 81 79 74
200 | 21 30 37 43 48 52 56 59 61 63 69 70 70
500 | 11 13 16 19 22 23 25 27 28 30 37 41 43
50 8 5 5 5 5 5 5 5 5 5 5 5 5
o 100 | 6 5 5 5 5 5 5 5 5 5 5 5 5
200 | 5 5 5 5 5 5 5 5 5 5 5 5 5
500 | 5 5 5 5 5 5 5 5 5 5 5 5 5
50 |13 15 17 18 20 22 21 22 21 21 19 14 10
CON 100 {15 17 20 22 25 27 29 31 33 34 37 38 37
200 | 16 19 23 27 32 36 39 41 44 47 56 61 65
500 | 18 24 31 38 43 49 54 58 63 65 78 86 90
50 [ 45 57 61 64 65 65 65 64 62 60 46 30 18
CLU 5 100 | 30 38 44 48 52 55 57 58 60 60 58 54 48
200 | 17 22 25 29 32 35 37 39 41 43 47 47 47
500 |10 11 12 14 15 16 17 18 19 19 23 25 25
50 5 5 5 5 5 5 5 5 5 5 5 5 5
Ho 100 | 6 5 5 6 5 5 5 5 5 5 5 5 5
200 | 5 5 5 5 5 5 5 5 5 5 5 5 5
500 | 5 5 5 5 5 5 5 5 5 5 5 5 5
1
d
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Testing multivariate uniformity based on random geometric graphs

Alt. 8 n\k 1 2 3 4 5 6 7 8 9 10 15 20 25 | DB
50 92 95 96 96 96 96 95 95 94 93 88 82 T5 | 59
50 ¥ 99 98 96 94 92 89 8 83 80 67 58 52| 22
CLU | —05 100 * * * * 9 98 97 96 94 92 81 71 62| 22
’ 200 * * * * * * * 99 99 99 93 85 T7 | 22
50 5 5 5 5 5 5 5 5 5 5 5 5 5 5
H, 100 5 5 5 5 5 5 5 5 5 5 5 5 5 4
200 5 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5 5
50 92 95 96 95 95 95 94 92 91 90 80 66 54
50 99 97 92 84 77 70 64 58 54 50 38 32 30
CLU 0 100 * * 99 98 95 90 8 80 75 70 53 43 36
200 * * * * * 99 98 96 94 91 75 61 51
50 5 5 5 4 5 5 5 5 5 5 5 5 5
H, 100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 4 5 5 5 5 5 5 5 5 5
500 5 5 5 5 6 5 5 5 5 5 5 5 5
50 91 94 94 93 92 90 88 84 81 78 54 35 23
50 98 83 60 47 39 34 31 29 29 28 26 26 25
CLU 1 100 # 099 94 80 68 57 49 43 39 36 28 26 25
200 * * * 99 97 91 83 75 68 61 41 32 29
500 * * * * * * * 99 99 98 82 62 48
50 5 5 5 5 5 5 5 5 5 5 5 5 5
Ho 100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 6 5 5 5 5 5 5 5 5
50 82 84 82 78 72 65 57 49 43 35 14 8 8
CON 100 | 98 99 99 99 * 99 99 98 98 97 86 63 40
50 75 24 23 24 25 25 25 26 26 27 27 27 27
CLU 5 100 | 98 75 39 25 24 24 24 23 24 24 25 25 25
200 *# 99 91 73 53 38 30 27 24 24 24 24 25
500 * * * 99 98 96 91 84 75 66 33 25 23
50 5 5 5 5 5 5 5 5 5 5 5 5 5
Ho 100 5 5 5 5 5 5 5 5 5 5 5 5 5
200 5 5 5 5 5 5 5 5 5 5 5 5 5
500 5 5 5 5 5 5 5 5 5 5 5 5 5
1
Table 8: Empirical rejection rates for 7, in case d = 3 and r,, = (ﬂi d) d , see @])
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Testing multivariate uniformity based on random geometric graphs

Alt. B n\k | 1 2 3 4 5 6 7 8 9 10 15 20 25| DB
50 |58 69 74 77 78 78 718 78 77 76 69 61 51 | 59
CON 100 | 74 8 91 94 95 9 96 97 97 97 97 96 95| 89
200 | 86 96 99 99 ¥ * * * * * * * * *
50 [ 99 * * 99 99 99 99 98 98 97 8 76 58 | 22
500 | 74 91 96 98 99 99 99 * * * * * * 23
50 3 5 5 5 5 5 5 5 5 5 5 5 5 5
H 100 | 5 5 5 5 5 5 5 5 5 5 5 5 5 4
0 20005 5 5 5 5 5 5 5 5 5 5 5 5|5
500 | S 5 5 5 5 5 5 5 5 5 5 5 5 5
50 |62 72 75 76 76 78 77 75 T4 T2 66 54 42
CON 100 | 70 88 91 94 95 96 96 97 97 96 96 95 94
50 {99 * 99 99 99 99 98 97 95 93 73 45 26
* % k * % % % % k
CLU| 0 | 300 06 = « + s« + = « s+ = = * o
500 | 76 91 96 98 99 99 99 * * * * * *
50 4 4 3 6 3 8 4 6 3 3 7 6 6
H 100 | 3 8 3 7 5 7 6 7 5 6 5 4 6
0 20005 6 4 5 6 3 6 4 6 5 4 4 5
500 | 7 6 5 5 7 6 5 6 5 5 6 5 4
50 [ 57 67 71 73 73 73 72 70 69 67 54 40 26
CON 100 | 72 8 90 93 94 95 95 96 96 95 95 93 91
200 | 8 96 98 99 * * * * * * * * *
50 {99 99 99 98 97 96 93 8 81 72 29 12 6
CLU | 100 | 99  * * * * * ¥ 09 99 99 94 75 48
200 | 96 99 * * * * * * * * * 99 96
500 | 72 89 94 97 98 99 99 99 99 99 * 99 99
50 7 5 5 5 5 5 5 5 5 5 5 5 5
o 100 | 5 5 5 5 5 5 5 5 5 5 5 5 5
200 | S 5 5 5 5 5 5 5 5 5 5 5 5
500 | 5 5 5 5 5 5 5 5 4 5 5 5 5
50 [ 50 55 59 60 60 59 57 54 52 48 30 16 7
CON 100 | 61 75 81 8 87 8 8 8 8 8 87 82 76
200 | 74 90 95 97 98 99 99 99 99 * * * *
50 {96 9 93 8 79 66 49 34 22 15 9 14 18
CLU 5 100 | 95 97 98 98 97 9 95 93 90 8 50 18 5
200 | 86 95 97 98 98 98 98 98 98 97 93 83 66
500 |55 74 82 87 90 92 93 94 94 95 94 93 89
50 5 5 5 5 5 5 5 5 5 5 5 5 5
o 100 | 5 5 5 5 5 5 5 5 5 5 5 5 5
200 | 5 5 5 5 5 5 5 5 5 5 5 5 5
500 | 5 5 5 5 5 5 5 5 5 5 5 5 5
1
Table 9: Empirical rejection rates for T, in case d = 3 and 1, = ( %’“ ) ‘ see (M)
n2Kqg
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Testing multivariate uniformity based on random geometric graphs

d B8 n\k | 1 2 3 4 5 6 7 8 9 10 15 20 25
50 {26 23 21 20 19 19 19 18 18 18 18 18 18
05 100 | 51 45 42 40 38 37 35 34 33 32 30 28 28
’ 200 | 86 83 80 77 75 73 72 70 68 67 61 56 52
500 | * * * * * * * * * 99 99 98 97
50 |15 13 12 11 11 11 11 11 11 11 12 12 13
0 100 | 40 29 26 22 19 18 17 17 16 15 15 15 16
200 | 81 70 62 57 50 46 43 40 37 36 29 26 23
9 500 | * * * 99 99 98 97 96 95 94 86 79 72
50 8 7 8 8 8 8 9 9 9 10 11 11 12
1 100 |19 12 11 11 10 10 10 10 10 10 11 12 12
200 | 64 37 25 20 18 16 16 15 15 15 14 14 13
500 * 99 9 8 8 71 63 56 51 46 33 27 25
50 6 7 7 8 7 9 8 9 9 10 10 10 10
5 100 | 8 8 8 9 & 9 9 9 9 9 11 12 13
20020 10 9 10 11 10 12 12 12 11 12 13 13
500 |97 71 36 22 18 16 16 17 16 17 17 17 17
50 [ 34 30 28 26 25 24 24 24 24 23 23 24 25
0.5 100 | 67 60 55 52 50 48 46 44 44 43 40 38 36
' 200 |95 92 30 8 8 84 83 81 8 79 T1 67 64
50 |16 14 14 12 14 14 14 14 15 15 16 17 18
0 100 | 43 31 27 26 24 23 22 23 22 22 22 22 23
200 | 88 74 65 59 55 51 48 46 44 41 37 35 33
3 500 | * * ¥ 99 99 98 97 96 95 94 88 82 77
50 8 9 10 9 10 11 12 12 13 13 14 15 17
1 100 | 13 12 12 12 12 13 13 14 14 15 16 17 19
200 | 34 23 20 18 18 17 18 18 18 18 20 21 22
500 |98 85 69 59 52 47 43 41 39 37 34 33 32
50 7 8 9 9 10 11 12 12 12 12 13 16 18
5 1009 10 10 11 11 12 13 13 14 14 16 17 19
200 |11 13 13 13 14 14 15 15 15 16 18 20 22
500 |18 19 19 20 22 21 22 21 22 22 24 25 27
1
Table 10: Empirical rejection rates for T, under the SPS-alternative with r,, = (nﬁ d) ‘. see (1W)
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Testing multivariate uniformity based on random geometric graphs

d B8 n\k | 1 2 3 4 5 6 7 8 9 10 15 20 25
50 |34 30 28 26 24 22 21 20 19 18 14 11 8
0.5 100 | 56 58 58 56 54 53 51 49 47 46 39 33 28
' 200 | 75 83 8 87 88 88 88 8 87 87 83 80 76
500 |93 98 99 99 99 * * * * * * * *
50 |26 21 20 19 14 13 13 11 10 10 6 5 4
0 100 | 53 54 53 50 47 43 39 35 32 30 22 16 11
200 | 74 83 8 87 87 87 8 8 8 8 76 67 59
9 500 | 95 98 99 99 * * * * * * * * *
50 |27 16 11 9 8 7 7 6 6 6 6 5 5
1 100 | 52 49 44 37 31 25 21 18 15 13 8 6 5
200 | 74 81 8 82 8 80 78 76 73 69 52 36 24
500 |93 98 99 99 99 99 * * * * * * 99
50 |13 8 6 6 6 6 7 6 6 6 6 6 6
5 100 | 39 30 21 14 11 9 7 7 7 7 7 8 7
200 | 62 67 67 64 60 55 48 41 36 31 13 7 7
500 | 84 93 96 97 98 98 98 98 98 98 98 96 93
50 |46 39 34 29 25 23 20 18 16 14 9 5 4
05 100 | 82 75 71 66 62 59 55 52 49 45 33 23 16
’ 200 199 98 97 97 96 95 94 93 92 91 &4 76 69
50 |36 24 17 14 9 11 7 7 5 4 4 3 3
0 100 | 71 64 52 47 38 34 27 24 20 17 8 4 3
200 |98 97 95 93 90 &7 84 80 78 74 55 39 27
3 50 | 14 8 6 6 5 5 5 5 5 5 5 5 4
1 100 | 51 29 18 13 10 7 6 6 5 5 4 4 4
200 | 96 8 78 67 56 46 37 31 24 20 7 3 3
50 6 6 6 6 6 6 6 6 6 6 5 5 5
5 100 | 9 7 8 8 8 7 8 7 7 7 7 6 6
200 | 67 23 10 9 8 9 8 9 9 9 9 8 8
500 | * * 99 97 91 79 63 47 33 23 9 8 9
1
Table 11: Empirical rejection rates for T, under the SPS-alternative with r,, = ( %’“ ) ‘ see (1K)
n2Kqg
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Testing multivariate uniformity based on random geometric graphs
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Testing multivariate uniformity based on random geometric graphs
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Testing multivariate uniformity based on random geometric graphs
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Testing multivariate uniformity based on random geometric graphs
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