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We prove upper and lower bounds for the spectral condition number of rectan-
gular Vandermonde matrices with nodes on the complex unit circle. The nodes
are “off the grid”, pairs of nodes nearly collide, and the studied condition num-
ber grows linearly with the inverse separation distance. Such growth rates are
known in greater generality if all nodes collide or for groups of colliding nodes.
For pairs of nodes, we provide reasonable sharp constants that are independent of
the number of nodes as long as non-colliding nodes are well-separated.
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1. Introduction

Vandermonde matrices with complex nodes appear in polynomial interpolation problems and
many other fields of mathematics, see e.g. the introduction of [2] and its references. In this
paper, we are interested in rectangular Vandermonde matrices with nodes on the complex
unit circle and with a large polynomial degree. These matrices generalize the classical discrete
Fourier matrices to non-equispaced nodes and the involved polynomial degree is also called
bandwidth. The condition number of those matrices has recently become important in the
context of stability analysis of super-resolution algorithms like Prony’s method [6, 13], the
matrix pencil method [12, 17], the ESPRIT algorithm [20, 19], and the MUSIC algorithm
[21, 16]. If the nodes of such a Vandermonde matrix are all well-separated, with minimal
separation distance greater than the inverse bandwidth, bounds on the condition number are
established for example in [5, 14, 17, 2].

If nodes are nearly-colliding, i.e. their distance is smaller than the inverse bandwidth, the
behavior of the condition number is not yet fully understood. The seminal paper [9] coined
the term (inverse) super-resolution factor for the product of the bandwidth and the separation
distance of the nodes. For M nodes on a grid, the results in [9, 7] imply that the condition
number grows like the super-resolution factor raised to the power of M −1 if all nodes nearly
collide. More recently, the practically relevant situation of groups of nearly-colliding nodes was
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studied in [18, 1, 15, 3]. In different setups and oversimplifying a bit, all of these refinements
are able to replace the exponent M − 1 by the smaller number m− 1, where m denotes the
number of nodes that are in the largest group of nearly-colliding nodes. The authors of [18, 1]
focus on quite specific quantities in an optimization approach and in the so-called Prony
mapping, respectively. In contrast, the condition number or the relevant smallest singular
value of Vandermonde matrices with “off the grid” nodes on the unit circle is studied in [15, 3].
While [3] provided the exponent m− 1 for the first time, the proof technique leads to quite
pessimistic constants and more restrictively asks all nodes (including the well-separated ones)
to be within a tiny arc of the unit circle. More recently, the second version of [15] provided
a quite general framework and reasonable sharp constants, but involves a technical condition
which prevents the separation distance from going to zero for a fixed number of nodes and a
fixed bandwidth.

Here we present upper and lower bounds for the condition number of Vandermonde matrices
with pairs of nearly-colliding nodes, i.e., the special case m = 2. We achieve the expected
linear order and all constants are reasonable sharp and absolute. In contrast to the more
general quoted results [3, 15], the nodes can be placed on the full unit circle and the separation
distance is allowed to approach zero. Our mild technical conditions, which seem to be artifacts
of our proof technique, are i) a logarithmic growth in the separation distance of the well-
separated nodes, ii) a uniformity condition that colliding nodes behave similarly, and iii) an
a-priori upper bound on the separation distance of the colliding nodes.

The outline of this paper is as follows: Section 2 fixes the notation, recalls results for the
case of well-separated nodes, and provides lower bounds for the condition number. In Section
3, we establish upper bounds for nodes that are well-separated from each other except for
one pair of nodes that is nearly-colliding. Section 4 goes one step further and studies the
more general case where an arbitrary number of pairs of nodes nearly collide. Theoretical
and numerical comparison with [3, 15] can be found at the end of Section 4 and in Section 5,
respectively.

2. Preliminaries

Let T := {z ∈ C : |z| = 1} be the complex torus and nodes {z1, . . . , zM} ⊂ T be parametrized
by zj = e−2πitj , j = 1 . . . ,M , such that t1 < · · · < tM ∈ [0, 1). We fix a degree n ∈ N so that
N := 2n + 1 > M and set up the rectangular Vandermonde matrix

A :=
(
zkj
)
j=1,...,M
|k|≤n

=



z−n
1 · · · z−1

1 1 z11 · · · zn1
...

...
...

z−n
M · · · z−1

M 1 z1M · · · znM


 ∈ C

M×N . (2.1)

The Dirichlet kernel Dn : R → R is given by

Dn(t) :=
n∑

k=−n

e2πikt =

{
N, t ∈ Z,
sin(Nπt)
sin(πt) , otherwise,

(2.2)

so that

K := AA∗ =
(
Dn (ti − tj)

)M
i,j=1

∈ R
M×M .
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The matrix K is symmetric positive definite and the spectral condition number

cond(A) :=
σmax(A)

σmin(A)
=
√
‖K‖ ‖K−1‖

is finite since all nodes are distinct (here and throughout the paper ‖K‖ := sup{‖Kx‖ :
‖x‖ = 1} with ‖x‖2 :=

∑
k |xk|2). On the other hand, if two nodes are equal, then two rows

of A are the same and by continuity the condition number diverges if two nodes collide. The
(wrap around) distance of two nodes is given by

|tj − tℓ|T := min
r∈Z

|tj − tℓ + r| .

and we introduce the normalized separation distance of the node set as

τ := N min
j 6=ℓ

|tj − tℓ|T .

We call the case τ = 1 critical separation, i.e. minj 6=ℓ |tj − tℓ|T = 1
N , and the cases τ ≤ 1 and

τ > 1 nearly-colliding and well-separated, respectively. Figure 2.1 illustrates the situation for
4 nodes on the unit circle. The parameter ρmin describes a minimum separation distance of
involved non-colliding nodes assumed in the Theorems.

1ρmin
N
2

1
ρmin

N
2

τ1,2

τ3,4

(a) Theorem 3.6

τmax
1 ρmin

N
2

τmax

1

ρmin

N
2

τ1,2

τ3,4

(b) Theorem 4.7

1 ρmin
N
2

1

ρmin

N
2

τ1,2

τ3,4

(c) Theorem 4.9

Figure 2.1: Sketch of four-node configurations, t1 < t2 < t3 < t4 ∈ [0, 1), t1 = 0, t3 = 1/2,
N large enough, τ1,2 := N |t1 − t2|T, τ3,4 := N |t3 − t4|T. dotted: Theorem can
be applied, filled: well-separated, lined: 3 nearly-colliding nodes, empty areas: at
most 2 nearly-coll. nodes, but not covered by results.

A reasonable result for well-separated nodes is as follows.

Theorem 2.1 ([17, 2]). Let A be a Vandermonde matrix as in (2.1) with τ > 1, then

N

(
1− 1

τ

)
≤ 2

σmin(A) ≤ N ≤ 2
σmax(A) ≤ N

(
1 +

1

τ

)
.

In particular, we have

cond(A)2 ≤ 1 +
2

τ − 1

and this implies ‖K‖ ≤ N + N/τ and
∥∥K−1

∥∥ =
∥∥A†∥∥2 ≤ (N − N/τ)−1, where A† :=

A∗(AA∗)−1 denotes the Moore-Penrose pseudo inverse of A.
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We note in passing, that the above lower bound on the smallest singular value is an im-
provement of [17] by [2] and that [17] and [8] allow to replace 1

τ in the upper and the lower
bound by 1

τ − 1
N , respectively. Moreover, we have the following lower bound on the condition

number. This already shows that the upper bound for well-separated nodes is quite sharp
and provides the benchmark for nearly-colliding nodes.

Theorem 2.2 (Lower bound). Let A be a Vandermonde matrix as in (2.1), then

2
σmin(A) ≤ N − |Dn(τ/N)| ≤ N ≤ N + |Dn(τ/N)| ≤ 2

σmax(A).

In particular, we have

cond(A)2 ≥ 1 +
2

πτ − 1

for τ ∈ N+ 1
2 , uniformly in N and almost matching the above upper bound.

For nearly-colliding nodes, we have

cond(A)2 ≥ 12

π2τ2
− 1 ≥ 1

τ2

for τ ≤
√

12/π2 − 1 ≈ 0.46 and cond(A) ≥
√
6/πτ ≈ 0.77/τ for all τ ≤ 1.

Proof. Without loss of generality, let t2− t1 = τ/N and consider the upper left 2× 2-block in

K =

(
C ∗
∗ ∗

)
, C :=

(
Dn (0) Dn (τ/N)

Dn (τ/N) Dn (0)

)
.

We apply Lemma A.5, get

cond(A)2 =
λmax(K)

λmin(K)
≥ λmax(C)

λmin(C)
=

Dn (0) + |Dn (τ/N)|
Dn (0)− |Dn (τ/N)| = 1 +

2 |Dn (τ/N)|
N − |Dn (τ/N)| ,

and Lemma A.1 yields the assertion.

3. Nodes with one nearly-colliding pair

Definition 3.1. Let M ≥ 2 and 0 = t1 < · · · < tM ∈ [0, 1) such that

|t1 − t2|T =
τ

N
, 0 < τ ≤ 1,

|tj − tℓ|T ≥ ρ

N
, j 6= ℓ, ℓ ≥ 3, 1 < ρ < ∞,

then {t1, . . . , tM} is called a set of nodes with one nearly-colliding pair, see Figure 3.1 for
an illustration. Due to periodicity, the choice t1 = 0 and |t1 − t2|T = τ

N is without loss of
generality.

Now, we estimate an upper bound on the condition number of the Hermitian matrix K by
bounding ‖K‖ directly and applying Lemma A.4 to K−1 before bounding

∥∥K−1
∥∥. For that,

we introduce some notation for abbreviation.
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•

0 = t1
•
t2

τ
N

•
t3

ρ
N

•
t4

ρ
N

•
t5

ρ
N

ρ
N

Figure 3.1: Example of a node set with M = 5 satisfying Def. 3.1.

Definition 3.2. We define a1 :=
(
zk1
)
|k|≤n

∈ C
1×N and A2 :=

(
zkj
)
j=2,...,M
|k|≤n

∈ C
(M−1)×N so

that with

a1a
∗
1 = N, K2 := A2A

∗
2 and b := A2a

∗
1 =




Dn(τ/N)
Dn(t3)

...
Dn(tM )


 , (3.1)

we have the partitioning

A =

(
a1
A2

)
and K =

(
N b∗

b K2

)
, (3.2)

where A2 is a Vandermonde matrix with nodes that are at least ρ
N separated.

Lemma 3.3. Under the conditions of Definition 3.1 and for ρ ≥ 6, we have

‖K‖ ≤ 2.3N.

Proof. The key idea is to see the set of nodes as a union of two well-separated subsets and use
the existing bounds for these. In contrast to the next chapter, here, one of the sets only consist
of a single node. We start by noting that Theorem 2.1 and (3.1) yield ‖b‖2 ≤ ‖a1‖2 ‖A2‖2 =
N ‖K2‖. Together with the decomposition (3.2), the triangle inequality, Lemma A.6, and
Theorem 2.1, we obtain

‖K‖ ≤
∥∥∥∥
(
N 0
0 K2

)∥∥∥∥+
∥∥∥∥
(
0 b∗

b 0

)∥∥∥∥ ≤ ‖K2‖+ ‖b‖ ≤ N

(
ρ+ 1

ρ
+

√
ρ+ 1

ρ

)
.

Lemma 3.4. Under the conditions of Definition 3.1 and with b as in (3.1), we have

b = K2e1 + r,

where e1 ∈ R
(M−1) denotes the first unit vector and

‖r‖2 ≤ (N −Dn (τ/N))2 +N2τ2
(

π4

12ρ2
+

1.21π

ρ3
+

π4

180ρ4

)
.

Proof. The vector b can be approximated by the first column of K2 in the sense that

b =




Dn (τ/N)
Dn (t3)

...
Dn (tM)


 =




Dn (0)
Dn (t3 − τ/N)

...
Dn (tM − τ/N)


+




r1
...

rM−1


 .
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We have |r1| = N −Dn (τ/N) and for j = 2, . . . ,M − 1 the mean value theorem yields

|rj| = |Dn (tj+1)−Dn (tj+1 − τ/N)| =
∣∣D′

n (ξj)
∣∣ τ
N

, ξj ∈ (
∣∣∣tj+1 −

τ

N

∣∣∣
T

, |tj+1|T).

Note that, in the worst case, half of the nodes can be as close as possible (under the assumed
separation condition) to t2 not only on its right but also on its left. Hence, for j = 2, . . . ,

⌈
M
2

⌉
,

ξj ≥ (j−1)ρ
N and Lemma A.1 lead to

|rj| ≤ N

(
π

2N |ξj|
+

1

2N2 |ξj |2

)
τ ≤ N

(
π

2(j − 1)ρ
+

1

2(j − 1)2ρ2

)
τ.

Thus, for all nodes, we get

M−1∑

j=2

|rj |2 ≤ 2

⌈M/2⌉∑

j=2

|rj |2 ≤ N2τ2




π2

2ρ2

∞∑

j=1

1

j2

︸ ︷︷ ︸
=π2

6

+
π

ρ3

∞∑

j=1

1

j3

︸ ︷︷ ︸
≤1.21

+
1

2ρ4

∞∑

j=1

1

j4

︸ ︷︷ ︸
=π4

90




.

Lemma 3.5. Under the conditions of Definition 3.1 and for ρ ≥ 5, we have

∥∥K−1
∥∥ ≤ C(ρ)

Nτ2
,

where

C(ρ) =

(
2ρ− 1

ρ− 1
+

√
ρ

ρ− 1

)[
2− ρ

ρ− 1

(
1 +

π4

12ρ2
+

1.21π

ρ3
+

π4

180ρ4

)]−1

.

Proof. We consider K decomposed as in (3.2) and apply Lemma A.4 with respect to K2 to
obtain

K−1 =

(
I 0

−K−1
2 b I

)(
(N − b∗K−1

2 b)−1 0

0 K−1
2

)(
I −b∗K−1

2

0 I

)

and thus,
∥∥K−1

∥∥ ≤
∥∥∥∥
(

I 0

−K−1
2 b I

)∥∥∥∥
2

max
{∥∥K−1

2

∥∥ ,
∥∥∥
(
N − b∗K−1

2 b
)−1
∥∥∥
}
.

First of all, we establish an upper bound for the norm of the triangular matrix. Equation
(3.1) and Theorem 2.1 imply

∥∥K−1
2 b
∥∥ =

∥∥(A2A
∗
2)

−1A2a
∗
1

∥∥ ≤
∥∥∥A†

2

∥∥∥ ‖a1‖ ≤
√

ρ

ρ− 1
.

Together with Lemma A.6, we obtain

∥∥∥∥
(

I 0

−K−1
2 b I

)∥∥∥∥
2

≤ 1 +
∥∥K−1

2 b
∥∥+

∥∥K−1
2 b
∥∥2 ≤ 2ρ− 1

ρ− 1
+

√
ρ

ρ− 1
. (3.3)
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The next step is to bound (N − b∗K−1
2 b)−1. Lemma 3.4 yields

b∗K−1
2 b = (K2e1 + r)∗K−1

2 (K2e1 + r) = 2Dn(τ/N)−Dn(0) + r∗K−1
2 r.

Applying the second part of Lemma 3.4, Lemma A.1, and Theorem 2.1 yields

N − b∗K−1
2 b ≥2 (N −Dn(τ/N))− ‖r‖2

∥∥K−1
2

∥∥

≥ (N −Dn(τ/N))
(
2− (N −Dn(τ/N))

∥∥K−1
2

∥∥)−
∥∥K−1

2

∥∥
M−1∑

j=2

|rj|2

≥Nτ2
(
2−N

∥∥K−1
2

∥∥)− ‖K−1
2 ‖N2τ2

(
π4

12ρ2
+

1.21π

ρ3
+

π4

180ρ4

)

≥Nτ2
[
2− ρ

ρ− 1

(
1 +

π4

12ρ2
+

1.21π

ρ3
+

π4

180ρ4

)]
.

For ρ ≥ 5, the most inner bracketed term takes values in (1, 1.4) such that the square bracketed
term is positive. Forming the reciprocal gives the result, since Theorem 2.1 also implies

N
∥∥K−1

2

∥∥ ≤ ρ

ρ− 1
≤ ρ− 1

ρ− 2
≤
[
2− ρ

ρ− 1
(1 + . . .)

]−1

. (3.4)

Theorem 3.6 (Upper bound). Under the conditions of Definition 3.1 with ρ ≥ ρmin = 6, we
have

cond(A) ≤ 4

τ
.

Proof. The bound follows from Lemmata 3.3 and 3.5 with C(ρ) ≤ C(6) ≤ 6.5.

5 6 7 8 9 10
4

5

6

7

8

9

10

11

Figure 3.2: C(ρ) in Lem. 3.5.

Lower and upper bounds in Theorems 2.2 and 3.6 yield

1

τ
≤ cond(A) ≤ 4

τ

for τ ≤ 0.46 and 6 ≤ ρ. The condition on ρ implies that
for specific configurations of M nodes, our result becomes
effective as early as N ≈ 6M - this is in contrast to the
results [3, 15], where N has to be much larger.

Remark 3.7 (Constants). Some comments regarding what
is lost during our proof:

i) The constant in Lemma 3.3 is a numerical value for all ρ ≥ 6, indeed the proof is
valid for all values ρ > 1. The case M = 2 shows that Lemmata 3.3 and 3.4 are
reasonable sharp since in this case ‖K‖ = N +Dn(τ/N) ≥ N(2 − π2τ2/6) and ‖r‖ =
N −Dn(τ/N) ≥ N(2− τ2), see Lemma A.1 for the two inequalities.

ii) In Lemma 3.5, the constant C(ρ) is monotone decreasing in ρ, see also Figure 3.2. It
is bounded below by 3 which is due to the relatively crude norm estimate on the block
triangular factors in the Schur complement decomposition. Note that the left hand side

in (3.3) is bounded from below by 1 +
∥∥K−1

2 b
∥∥2. An additional minor improvement on

C(ρ) and on the range of admissible values for ρ can be achieved when applying Lemma
A.1 to two factors simultaneously.
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Remark 3.8 (Generalizations and limitations). In principle, the suggested Schur complement
technique can be generalized to more than two nodes colliding and also to the multivariate case:

i) Let M ≥ 3 and 0 = t1 < · · · < tM ∈ [0, 1) be such that {t1, t2, t3} nearly-collide and
decompose

K =

(
K1 B∗

B K2

)
, K1 =

(
N Dn (t1 − t2)

Dn (t1 − t2) N

)
, K2 =

(
Dn (ti − tj)

)M
i,j=3

.

While it is clear that the Schur complement K1 − B∗K−1
2 B is strictly positive definite,

establishing a lower bound on its smallest singular value similar to the proofs of Lemmata
3.4 and 3.5 seems considerably harder. Already the linear approximation in Lemma 3.4
then needs to be replaced by a higher order approximation for the matrix B.

ii) Consider the bivariate case and the Vandermonde matrix

A =
(
zγj
)
j=1,...,M
‖γ‖

∞
≤n

∈ C
M×N2

,

where zj = (xj , yj) = (e−2πiuj , e−2πivj ) ∈ T
2, γ = (α, β) ∈ Z

2 is a multi-index, and

zγj := xαj ·y
β
j . The distance of the nodes tj = (uj , vj) ∈ [0, 1)2 is measured by |tj − tℓ|T :=

minr∈Z2 ‖tj − tℓ + r‖∞ and we consider the situation as in Definitions 3.1 and 3.2 with
K = AA∗. Lemma 3.4 can be proven using the bivariate mean value theorem to get
|rj | ≤ Nτπ/ |ξj |T, j = 2, 3, . . . ,M , and the packing argument [14, Lem. 4.5] to get

‖r‖2 ≤ (N2 −Dn(u2)Dn(v2))
2 +

12π2N4τ2

(ρ− 1)2

(
1 + log

⌈√
M/6

⌉)
.

We need additional assumptions for Lemma 3.5 to work since results for general well
separated nodes, cf. [13], seem to be too weak. If the nodes t2, . . . , tM are a subset of
equispaced nodes in T

2, then [14, Cor. 4.11] yields
∥∥K−1

2

∥∥ ≤ (N − N/ρ)−2. Together
with M ≥ 4 and ρ ≥ 4 + 2 logM , this yields

∥∥K−1
∥∥ ≤ 20/N2τ2.

4. Pairs of nearly-colliding nodes

We now study the situation in which the Vandermonde matrix comes from pairs of nearly-
colliding nodes.

Definition 4.1. Let n ∈ N, N = 2n+1, c ≥ 1 and let t1 < · · · < tM ⊂ [0, 1) for M ≥ 4 even
such that

τ

N
≤
∣∣∣tj − tj+M

2

∣∣∣
T

≤ cτ

N
, j = 1, . . . ,

M

2
, 0 < cτ ≤ 1,

ρ

N
≤ |tj − tℓ|T , j < ℓ, ℓ 6= j +

M

2
, 1 < ρ < ∞,

then {t1, . . . , tM} is called a set of nodes with pairs of nearly-colliding nodes, see Fig-
ure 4.1 for an illustration. The constant c measures the uniformity of the colliding nodes.
For subsequent use, we additionally introduce the following wrap around distance of indices
|j − ℓ|′ := minr∈Z

∣∣j − ℓ+ rM
2

∣∣ with respect to M
2 .

8
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•
t1

•
t5

τ
N

ρ
N

•
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•
t6

τ
N

ρ
N

•
t3

•
t7

cτ
N ρ

N

•
t4

•
t8

τ
N

ρ
N

Figure 4.1: Example of a node set with M = 8 satisfying Def. 4.1.

Definition 4.2. We define

A1 :=
(
zkj
)
j=1,...,M/2

|k|≤n

∈ C
(M/2)×N and A2 :=

(
zkj
)
j=M/2+1,...,M

|k|≤n

∈ C
(M/2)×N

so that with K1 := A1A
∗
1, K2 := A2A

∗
2 and B := A2A

∗
1 we have the partitioning

A =

(
A1

A2

)
, K =

(
K1 B∗

B K2

)
. (4.1)

Note that under the assumptions in Definition 4.1 the Vandermonde matrices A1 and A2 are
each corresponding to nodes that are at least ρ/N -separated.

The proof technique we use is analogous to the one we used in the case of two nearly-
colliding nodes. The difference is that we have a matrix K1 instead of a scalar and the block
B is a matrix instead of a vector. Subsequently, Lemma 4.3 establishes an upper bound on
‖K‖ and Lemmata 4.4, 4.5, and 4.6 establish an upper bound on

∥∥K−1
∥∥.

Lemma 4.3. Under the conditions of Definition 4.1, we have

‖K‖ ≤ 2N · ρ+ 1

ρ
.

Proof. Similar to Lemma 3.3, we start by noting that ‖B‖2 ≤ ‖K1‖ ‖K2‖. Together with the
decomposition (4.1), the triangle inequality, Lemma A.6, and Theorem 2.1, this leads to

‖K‖ ≤
∥∥∥∥
(
K1 0
0 K2

)∥∥∥∥+
∥∥∥∥
(
0 B∗

B 0

)∥∥∥∥

≤ max {‖K1‖ , ‖K2‖}+
√

‖K1‖ ‖K2‖ ≤ 2N · ρ+ 1

ρ
.

Lemma 4.4. Under the conditions of Definition 4.1, R1 := B −K1 fulfills

‖R1‖ ≤ N −Dn (cτ/N) +Ncτ

(
π(log

⌊
M
4

⌋
+ 1)

ρ
+

π2

6ρ2

)
.

Proof. The Dirichlet kernel Dn is monotone decreasing on [0, 1/N ]. Hence, for the diagonal
entries we obtain

|(R1)jj| =
∣∣∣Dn

(
tj − tj+M

2

)
−N

∣∣∣ = N −Dn

(
tj − tj+M

2

)
≤ N −Dn (cτ/N) .

9



The off diagonal entries are bounded by the mean value theorem and Lemma A.1 as

|(R1)jℓ| =
∣∣∣Dn (tj − tℓ)−Dn

(
tj+M

2

− tℓ

)∣∣∣

≤
∣∣D′

n (ξjℓ)
∣∣ cτ
N

≤ Ncτ

(
π

2Nξjℓ
+

1

2N2ξ2jℓ

)
,

where
(∣∣∣tj+M

2

− tℓ

∣∣∣
T

, |tj − tℓ|T
)
∋ ξjℓ ≥ |j − ℓ|′ ρ/N implies

|(R1)jℓ| ≤ Ncτ

(
π

2ρ |j − ℓ|′ +
1

2ρ2(|j − ℓ|′)2

)
=: (R̃1)jℓ

for j, ℓ = 1, . . . , M2 , j 6= ℓ. Additionally, we set (R̃1)jj := N − Dn (cτ/N). We bound the

spectral norm of R1 by the one of the real symmetric matrix R̃1 using Lemma A.2 and proceed
by

‖R1‖ ≤
∥∥∥R̃1

∥∥∥ ≤
∥∥∥R̃1

∥∥∥
∞

≤ N −Dn (cτ/N) + 2Ncτ

⌊M
4
⌋∑

j=1

(
π

2jρ
+

1

2j2ρ2

)
,

from which the assertion follows.

Lemma 4.5. Under the conditions of Definition 4.1, R1 = B −K1 and R2 := B −K2 fulfill

‖2NI +R∗
1 +R2‖ ≤ 2Dn (τ/N) + c2τ2N

(
π2(log⌊M4 ⌋+ 1)

ρ
+

π3

3ρ2
+

2.42

ρ3

)
.

Proof. First, note that

(R∗
1 +R2)jℓ = Dn

(
tj+M

2

− tℓ

)
+Dn

(
tj − tℓ+M

2

)
−Dn

(
tj+M

2

− tℓ+M
2

)
−Dn (tj − tℓ) .

Monotonicity of the Dirichlet kernel Dn on t ∈ [0, 1/N ] gives

|(2NI +R∗
1 +R2)jj| = 2

∣∣∣Dn

(
tj+M

2

− tj

)∣∣∣ ≤ 2Dn (τ/N)

for j = ℓ. For each fixed off diagonal entry j 6= ℓ, the matrix 2NI has no contribution. We
write the node tj+M/2 as a perturbation of tj by hj := tj+M/2 − tj and expand the Dirichlet

kernel by its Taylor polynomial of degree 2 in the point ĥ := tj − tℓ +
hj−hℓ

2 . Using

Dn(h) = Dn(ĥ) +Dn(ĥ)(h− ĥ) +
D′′

n(ξ)

2
(h− ĥ)2

for some ξ ∈ [ĥ, h]∪ [h, ĥ], the constant term as well as the linear term cancel out and we get

Dn(tj + hj − tℓ) +Dn(tj − tℓ − hℓ)−Dn(tj + hj − tℓ − hℓ)−Dn(tj − tℓ)

=
1

8

(
D′′

n(ξ1)(hj + hℓ)
2 +D′′

n(ξ2)(hj + hℓ)
2 +D′′

n(ξ3)(hj − hℓ)
2 +D′′

n(ξ4)(hj − hℓ)
2
)
.

Lemma A.1 and ξ1, . . . , ξ4 ≥ |j − ℓ|′ ρ/N imply

|(R∗
1 +R2)jℓ| ≤

N3

4

(
π2

2 |j − ℓ|′ ρ
+

π

(|j − ℓ|′)2ρ2
+

1

(|j − ℓ|′)3ρ3
)

10



·
(
(hj + hℓ)

2 + (hj − hℓ)
2
)

and hence by hj, hℓ ≤ cτ/N

|(2NI +R∗
1 +R2)jℓ| ≤ Nc2τ2

(
π2

2 |j − ℓ|′ ρ
+

π

|j − ℓ|′2 ρ2
+

1

|j − ℓ|′3 ρ3

)
.

The matrix 2NI +R∗
1 +R2 is real symmetric so that

‖2NI +R∗
1 +R2‖ ≤ ‖2NI +R∗

1 +R2‖∞

≤ 2Dn (τ/N) + 2

⌊M
4
⌋∑

j=1

Nc2τ2
(

π2

2jρ
+

π

j2ρ2
+

1

j3ρ3

)

≤ 2Dn (τ/N) + 2c2τ2N

(
π2(log⌊M4 ⌋+ 1)

2ρ
+

π3

6ρ2
+

1.21

ρ3

)

and therefore the result holds.

Lemma 4.6. Under the conditions of Definition 4.1 with τ ≤ 1/2 and ρ ≥ 2, such that

C̃(τ, ρ, c,M) := 2− c2π2(log⌊M4 ⌋+ 1)

ρ
− c2π3

3ρ2
− 2.42c2

ρ3

− ρ

(ρ− 1)

(
c2π2

6
τ +

cπ(log⌊M4 ⌋+ 1)

ρ
+

cπ2

6ρ2

)2

is positive, we have
∥∥K−1

∥∥ ≤ C(τ, ρ, c,M)

Nτ2
,

where

C(τ, ρ, c,M) :=

(
2ρ

ρ− 1
+

√
ρ+ 1

ρ− 1

)
/C̃(τ, ρ, c,M).

Figure 4.2 visualizes the values of the constant C̃(τ, ρ, c,M) with respect to ρ and τ . Please
note that i) increasing the constant c by a factor

√
2 has to be compensated approximately by

halving τ and doubling ρ and ii) increasing the number of nodes M from 4 to 64 has to be
compensated approximately by tripling ρ.

Figure 4.2: Values of C̃(τ, ρ, c,M) in Lemma 4.6 depending on τ and ρ for different M and c.
Negative values are set to zero.
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Proof. We proceed analogously to Lemma 3.5 and apply Lemma A.4 to the matrix K decom-
posed as in (4.1) and obtain

‖K−1‖ ≤ max{‖K−1
1 ‖, ‖(K2 −BK−1

1 B∗)−1‖}
∥∥∥∥
(

I 0

−BK−1
1 I

)∥∥∥∥
2

. (4.2)

Definition 4.2 and Theorem 2.1 yield

∥∥BK−1
1

∥∥ ≤ ‖A2‖
∥∥∥A†

1

∥∥∥ ≤
√

ρ+ 1

ρ− 1
,

together with Lemma A.6, we obtain

∥∥∥∥
(

I 0

−BK−1
1 I

)∥∥∥∥
2

≤ 1 +
∥∥BK−1

1

∥∥+
∥∥BK−1

1

∥∥2 ≤ 2ρ

ρ− 1
+

√
ρ+ 1

ρ− 1
.

Now, we estimate
∥∥(K2 −BK−1

1 B∗)−1
∥∥, which is done by the following steps:

i) First, note that I −A†
1A1 is an orthogonal projector and thus Theorem 2.1 implies

∥∥K2 −BK−1
1 B∗∥∥ ≤ ‖A2‖

∥∥∥I −A†
1A1

∥∥∥ ‖A∗
2‖ ≤ ‖A2‖2 < 2N.

We apply Lemma A.3 with η = 2N , use the identities R1 = B −K1 and R2 = B −K2,
apply the triangular inequality, and the sub-multiplicativity of the matrix norm to get

∥∥(K2 −BK−1
1 B∗)−1

∥∥ ≤ 1

2N −
∥∥2NI −K2 +BK−1

1 B∗
∥∥

≤ 1

2N − ‖2NI +R∗
1 +R2‖ − ‖R1‖2

∥∥K−1
1

∥∥ .
(4.3)

ii) Lemma 4.5 leads to

2N − ‖2NI +R∗
1 +R2‖ ≥ 2(N −Dn (τ/N))

− c2τ2N

(
π2(log⌊M4 ⌋+ 1)

ρ
+

π3

3ρ2
+

2.42

ρ3

)
.

iii) We apply Theorem 2.1 and Lemma 4.4 to get

‖R1‖2
∥∥K−1

1

∥∥ ≤ ρ

N(ρ− 1)

[
N −Dn (cτ/N) +Ncτ

(
π(log

⌊
M
4

⌋
+ 1)

ρ
+

π2

6ρ2

)]2
.

iv) We use the estimates for the Dirichlet kernel N − Dn (τ/N) ≥ Nτ2 in ii) and N −
Dn (cτ/N) ≤ N π2

6 c2τ2 in iii), see Lemma A.1, and insert this in (4.3) to get finally

∥∥(K2 −BK−1
1 B∗)−1

∥∥ ≤ 1

Nτ2

[
2− c2π2(log⌊M4 ⌋+ 1)

ρ
− c2π3

3ρ2
− 2.42c2

ρ3

− ρ

(ρ− 1)

(
c2π2

6
τ +

cπ(log⌊M4 ⌋+ 1)

ρ
+

cπ2

6ρ2

)2 ]−1

.
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This upper bound also bounds the maximum in (4.2) since for all τ ≤ 1/2 and ρ ≥ 2
together with Theorem 2.1

∥∥K−1
1

∥∥ ≤ 2

N
≤ 1

2Nτ2
≤ 1

Nτ2
[2− · · · ]−1.

Theorem 4.7 (Upper bound). Under the conditions of Definition 4.1 with M ≥ 4, τ ≤
τmax = 1

4c2 and ρ ≥ ρmin = 10c2(log⌊M4 ⌋+ 1), we have

cond(A) ≤ 5

τ
.

Proof. In Lemma 4.6 the constant C(τ, ρ, c,M) is monotone increasing in τ and monotone
decreasing in ρ. Hence, after plugging in the bounds for τ and ρ in our assumptions, it
is easy to see that the constant C( 1

4c2
, 10c2(log⌊M4 ⌋ + 1), c,M) is monotone decreasing in

c and M , respectively. Therefore, we get C(τ, ρ, c,M) ≤ C(1/4, 10, 1, 4) ≤ 11.3, so that∥∥K−1
∥∥ ≤ 11.3N−1τ−2. Together with the bound ‖K‖ ≤ 22N/10 = 2.2N from Lemma 4.3,

we obtain the result.

If each pair of nearly-colliding nodes has the same separation distance, i.e. c = 1, we can
improve the upper bound in the sense that restrictions on τ except for τ ≤ 1 can be dropped.
In order to obtain the same constant, we have to increase the restrictions on ρ slightly.

Lemma 4.8. Under the conditions of Definition 4.1 with c = 1, such that

C̃(ρ,M) := 2− π2(log⌊M4 ⌋+ 1)

ρ
− π3

3ρ2
− 2.42

ρ3

− ρ

ρ− 1
− 2π(log⌊M4 ⌋+ 1)

(ρ− 1)
− π2

3ρ(ρ− 1)

− π2(log⌊M4 ⌋+ 1)2

ρ(ρ− 1)
− π3(log⌊M4 ⌋+ 1)

3ρ2(ρ− 1)
− π4

36ρ3(ρ− 1)

is positive, we have
∥∥K−1

∥∥ ≤ C(ρ,M)

Nτ2
,

where C(ρ,M) :=
(

2ρ
ρ−1 +

√
ρ+1
ρ−1

)
/C̃(ρ,M).

Proof. The proof is analogous to that of Lemma 4.6, the only difference is in step iv). Setting
c = 1 in ii) and iii), expanding the squared bracket in iii) and inserting this into (4.3) leads
to

∥∥(K2 −BK−1
1 B∗)−1

∥∥ ≤
[
2 (N −Dn (τ/N))

−Nτ2

(
π2(log⌊M4 ⌋+ 1)

ρ
+

π3

3ρ2
+

2.42

ρ3

)
− ρ

N(ρ− 1)
(N −Dn (τ/N))2

− ρ

ρ− 1
2τ (N −Dn (τ/N))

(
π(log⌊M4 ⌋+ 1)

ρ
+

π2

6ρ2

)
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−Nτ2
ρ

ρ− 1

(
π2(log⌊M4 ⌋+ 1)2

ρ2
+

π3(log⌊M4 ⌋+ 1)

3ρ3
+

π4

36ρ4

)]−1

.

In three summands, we can factor out N −Dn (τ/N) and use the estimate N −Dn (τ/N) ≥
Nτ2. Additionally, in the third summand we use the rough bound N −Dn (τ/N) ≤ N and in
the fourth τ ≤ 1. The same argument as in (3.4) shows that this also bounds the maximum
in (4.2) and we get the result.

Theorem 4.9 (Upper bound). Under the conditions of Definition 4.1 with c = 1, ρ ≥ ρmin =
25(log⌊M4 ⌋+ 1), we have

cond(A) <
5

τ
.

Proof. Direct inspection gives monotonicity of C(ρ,M) with respect to ρ and also the estimate
C(25(log⌊M/4⌋+ 1),M) ≤ C(25, 4) ≤ 12. Hence

∥∥K−1
∥∥ ≤ 12N−1τ−2 and together with the

bound ‖K‖ ≤ 52N/25 from Lemma 4.3 we obtain the result.

Remark 4.10. Due to Lemma A.5, the upper bound from Theorem 4.7 remains valid if nodes
are removed. Moreover, note that σmin and σmax are monotone increasing with N and thus,
condition number estimates for an even number N follow.

Lower and upper bounds in Theorems 2.2 and 4.7 yield

1

τ
≤ cond(A) ≤ 5

τ
,

and we believe that the lower bound is quite close to what actually happens. The absolute
constant 5 in the upper bound follows from our proof and can be compared to the more general
results from [3, 15]. Their constants grow with the total number of nodes, in [3, Cor. 1.1] quite
strongly like CMM and in [15, Thm. 1 ineq. (2.3), Thm 2 ineq. (2.7), and ineq. (2.8)] still
like C

√
M , which seems artificial. Moreover, we would like to discuss the a-priori conditions

on the parameter N , ρ, and τ .

i) Our condition

ρ ≥ 10c2(log ⌊M/4⌋ + 1)

implies that for specific configurations of M nodes, our result becomes effective as early
as N ≈ CM logM - this is in contrast to the results [3, 15], where N and ρ has to be
much larger. In [3, Cor. 1.1, left ineq. (10)], the conditions N ≥ 4M3 and ρ ≥ 2M are
imposed. In [15, Thm. 1, ineq. (2.2), Thm 2, ineq. (2.5)] and with minor simplifications,
the conditions N ≥ M2 and

ρ ≥
{
C1

(
M
τ

)1/4
, with C1 ≈ 42,

C2

(
M
τ

)1/2
, with C2 ≈ 63,

(4.4)

are imposed.

ii) Our condition

τ ≤ 1

4c2

14



can be compared to the weaker condition, cf. [3, Cor. 1.1, right ineq. (10)],

τ ≤ M

2c
.

Both conditions artificially involve the uniformity constant c. Except for the special
cases in Theorems 3.6 and 4.9, this prevents us from letting τ → 1. In contrast, [15,
Thm. 1, Thm. 2] places no upper bound except τ ≤ 1. However, note that condition
(4.4) is an a-priori lower bound on τ which prevents τ → 0 already for moderate fixed
M , but this limitation becomes weaker for larger N .

Remark 4.11. (Recent other techniques) The manuscript [8] considers pairs of nearly-
colliding nodes and seems to weaken the assumptions considerably and might even give stronger
bounds on the smallest singular value. The taken approach differs completely from ours and
the ones in [3, 15], but rather generalizes the construction of [17] to pairs of nearly-colliding
nodes and subsets of them.

As mentioned in the introduction, the second version of [15] provides a quite general frame-
work, which can also be applied to our setting. The developed robust duality approach links
the smallest singular value to the norm of an almost interpolating trigonometric polynomial
and the interpolation error. The established lower bound on the smallest singular value and
the condition on the separation ρ depend on the number of nodes M and the node separation
τ , such that for a fixed node set, pair nodes cannot become arbitrarily close to each other.
Besides our generalization to the multivariate case in [?], the mentioned dependence on M
was dropped and the dependence on τ could be weakened considerably.

In [4] a QR-decomposition technique is used to establish bounds on all singular values of
Vandermonde matrices with nearly-colliding nodes. Adapted to the case of pairs of nearly-
colliding nodes, we obtain the following. Let t1 < t2 ≪ t3 < t4, N = 2n + 1, and ν :=
N(t3− t2), and partition A∗ = (A∗

1 A
∗
2) with QR-decompositions A∗

1 = Q1R1 and A∗
2 = Q2R2,

then direct computations (avoiding a so-called limit basis) yield

‖Q∗
1Q2‖F ≤ 116

ν
.

Now let M ≥ 4 even and A as in Definition 4.1. With respect to the nearly-colliding
pairs, partition A∗ = (A∗

1 A∗
2 . . . A∗

M/2) with QR-decompositions A∗
j = QjRj and Q :=

(Q1 Q2 . . . QM/2), and let ρ ≥ 27
23 · 232(log

⌊
M
4

⌋
+ 1), then Lemma A.6 yields

|1− λr(Q
∗Q)| ≤ max

j

M/2∑

ℓ=1

‖Q∗
jQℓ‖F ≤ 2

⌊M/4⌋∑

ℓ=1

116

ℓρ
≤ 232(log

⌊
M
4

⌋
+ 1)

ρ
≤ 23

27
, r = 1, . . . ,M.

The Courant-Fisher min-max theorem [11, Thm. 4.2.6] and Weyl’s perturbation theorem [11,
Thm. 4.3.1] yield

cond(A) ≤ cond(Q) ·max
j

cond(Aj) ≤
5

τ
.

Directly following [4] for the case of pairwise nearly-colliding nodes yields |(Q∗Q)j,k| ≤ 150/ρ+
1079τ , for all j 6= k. Due to the uniformity of that bound and the additional summand in τ ,
the parameter ρ needs to grow at least linear in M .
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5. Numerical Examples

All computations were carried out using MATLAB R2019b. As a test for the bounds in the
case of one pair of nearly-colliding nodes, we use the following configuration. Let the number
of nodes M = 20 and M = 200 be fixed, respectively. Moreover, we choose N = 1+12(M−1)
which ensures that all nodes fit on the unit interval. We choose τ ∈

[
10−11, 1

]
logarithmically

uniformly at random and ρ3, . . . , ρM ∈ [6, 12] uniformly at random. Then, we set the nodes
t1 < · · · < tM ∈ [0, 1) such that t1 = 0, t2 = τ/N and for j = 3, . . . ,M , |tj − tj−1| = ρj/N .
Afterwards, the condition number of the corresponding Vandermonde matrix is computed.
This procedure is repeated 100 times and the results are presented in Figure 5.1 (left).

10 -10 10 -8 10 -6 10 -4 10 -2 10 0
10 0

10 2

10 4

10 6

10 8

10 10

10 12

10 -10 10 -8 10 -6 10 -4 10 -2 10 0
10 0

10 2

10 4

10 6

10 8

10 10

10 12

Figure 5.1: Numerical experiments for bounds on the condition number, lower bounds from
Th. 2.2; Left: One nearly-colliding pair, upper bound from Thm. 3.6; Right: Pairs
of nearly-colliding nodes, upper bound from Thm. 4.7.

For pairs of nearly-colliding nodes, we use the following configuration. Let the number
of nodes M = 20 and M = 200 be fixed, respectively. Moreover, we choose the parameter
c = 2 and τmax and ρmin as in Theorem 4.7. To ensure that all nodes fit on the unit interval,
we choose N as the smallest odd integer bigger than (cτmax + 2ρmin)M/2. Then, we choose
τ ∈

[
10−11, 1

]
logarithmically uniformly at random and set the nodes t1 < · · · < tM ∈ [0, 1)

such that t1 = 0, t2 = τ/N and for j = 3, . . . ,M , |tj − tj−1| = ρj/N if j is odd or |tj − tj−1| =
τj/N if j is even, where τj ∈ [τ, cτ ] and ρj ∈ [ρmin, 2ρmin] are picked uniformly at random,
respectively. Afterwards, the condition number of the corresponding Vandermonde matrix is
computed. This procedure is repeated 100 times and the results are presented in Figure 5.1
(right). Note that Theorem 4.7 makes the restriction τ ≤ τmax = 1

4 , which seems to be an
artifact of our proof technique.

In order to compare Theorem 4.7 with the results from [3, Cor. 1.1], we need to satisfy
the assumptions of both results. We take M = 3 nodes with two nodes nearly-colliding, i.e.
t1 = 0, t1 = τ/N and t2 = t1 + ρ/N . The assumptions in [3, Cor. 1.1] make it necessary
that the nodes lie on an interval of length 1

2M2 = 1
18 . We choose the parameter c = 1,

ρmin = 12, and N = 1001. Then, we pick τ ∈
[
10−11, 1

]
logarithmically uniformly at random

and ρ ∈
[
ρmin,

N
2M2 − τ

]
uniformly at random. Afterwards the inverse of the smallest singular

value (norm of Moore-Penrose pseudo inverse) of the corresponding Vandermonde matrix is
computed. This procedure is repeated 100 times and the results normalized by τ

√
N are
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Figure 5.2: Upper bounds for
∥∥A†∥∥; Left: Comparison of Thm. 4.7 with [3, Cor. 1.1]; Right:

Comparison of Thm. 4.7 with [15, Thm. 2].

presented in Figure 5.2 (left). From [3, Cor. 1.1], we get

∥∥∥A†
∥∥∥ ≤ 2(2π)M−1M2M−1

π
· N

√
N

(N − 1)
√
N − 1

· 1

τ
√
N

≈ 6116 · 1

τ
√
N

for τ ≤ 1, whereas Theorem 4.7 provides
∥∥A†∥∥ ≤

√
11.3 · 1

τ
√
N

≈ 3.4 · 1
τ
√
N

for τ ≤ 1
4 .

In order to compare our results with the ones from the second version of [15, Thm. 1,
Thm. 2], we set the parameter N = 215 + 1, c = 1 and M = 4 and M = 20, respectively. All
pairs of nodes are placed uniformly, such that tj =

2j−2
M and tj+M/2 = tj+

τ
N for j = 1, . . . , M2 ,

where τ is picked logarithmically uniformly at random from [10−11, 1]. Afterwards, the inverse
of the smallest singular value (norm of Moore-Penrose pseudo inverse) of the corresponding
Vandermonde matrix is computed. This procedure is repeated 100 times and the results
normalized by τ

√
N are presented in Figure 5.2 (right). Note that [15, Thm. 1, ineq. (2.2),

Thm. 2, ineq. (2.5)] restricts

τ ≥ 202M25N3

ρ2(N − 1)3
≈
{
1.9 · 10−4,

2.4 · 10−2, τ ≥ 104210MN5

ρ4π(N − 1)5
≈
{
1.8 · 10−10, M = 4,

5.6 · 10−7, M = 20,

respectively, where we used the uniform bound ρ < 2N
M . The results are shown in Figure 5.2

(right) by proper lines [15, Thm. 2, ineq. (2.5)] and by broken lines [15, Thm. 1, ineq. (2.2)].
In both cases and with minor corrections, the resulting estimate is

∥∥∥A†
∥∥∥ ≤ 20

√
2

19

(
1− π2

12

)−1/2
N − 1

2

⌊
N − 1

2

⌋−1 4

π

√
M

√
N√

N − 1
· 1

τ
√
N

≈
{
9 · 1

τ
√
N
, M = 4,

20.1 · 1
τ
√
N
, M = 20,

whereas Theorem 4.7 provides again
∥∥A†∥∥ ≤ 3.4 · 1

τ
√
N

for τ ≤ 1
4 . We note that our bound

remains valid for c > 1 but the restriction on τ becomes more severe.
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6. Summary

We proved upper and lower bounds for the spectral condition number of rectangular Van-
dermonde matrices with nodes on the complex unit circle. If pairs of nodes nearly-collide,
the studied condition number grows linearly with the inverse separation distance. In contrast
to the more general results [3, 15], we provide reasonable sharp and absolute constants but
have to admit that our technique most likely will not generalize to more than two nodes
nearly-colliding. Note that our easy to achieve lower bound seems to capture the situation
more accurately than the upper bound. We posed mild technical conditions in our proofs,
which cannot be confirmed to be necessary numerically. While [3] provided the right growth
order for the first time, some of the imposed conditions are very restrictive and the involved
constants are quite pessimistic. The second version of [15] provided a quite general frame-
work and presented decent results with only a mild artificial growth of the condition number
with respect to the number of nodes. Moreover, a technical condition there prevents the
separation distance from going to zero for a fixed number of nodes and a fixed bandwidth.
We believe that both problems can be fixed at least partially and thus [15] seems to be a
good framework for understanding clustered node configurations. Recently, the manuscript
[8] came to our attention - it considers pairs of nearly-colliding nodes and seems to weaken
the assumptions considerably and might even give stronger bounds on the smallest singular
value. The taken approach differs completely from ours and the ones in [3, 15], but rather
generalizes the construction of [17] to pairs of nearly-colliding nodes.
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A. Appendix

The following technical results are used within the proofs of our main results.

Lemma A.1. Let n ∈ N, N = 2n + 1, then the Dirichlet kernel (2.2) is bounded by

N − π2

6
N3t2 ≤ Dn(t) ≤ N −N3t2, 0 ≤ |t| ≤ 1

N
.

Furthermore, the Dirichlet kernel and its first two derivatives are bounded by

|Dn (t)| ≤
1

2 |t| ,

∣∣D′
n (t)

∣∣ ≤ N2

(
π

2N |t| +
1

2N2|t|2
)
,

∣∣D′′
n (t)

∣∣ ≤ N3

(
π2

2N |t| +
π

N2|t|2 +
1

N3|t|3
)

for 0 < |t| ≤ 1/2.

Proof. Due to symmetry, it suffices to prove all bounds for t > 0 and we use the explicit
expression of the Dirichlet kernel in (2.2). The lower bound on Dn (t) can be derived from
the inequalities x − x3/6 ≤ sin(x) ≤ x, that hold for all x ∈ [0, π]. The left inequality with
x = Nπt and the right inequality with x = πt lead to

sin(Nπt) ≥
(
N − π2

6
N3t2

)
πt ≥

(
N − π2

6
N3t2

)
sin(πt).

The upper bound on Dn (t) can be derived from the inequality cos(αx) ≤ cos(x) that holds
for all x ∈ [0, π/2] and α > 1 such that αx ∈ [0, π/2]. Integrating this inequality, choosing
α = N/2 and x = πt, and applying the double angle formula yields

sin(Nπt)

2 cos(N2 πt)
= sin

(
N

2
πt

)
≤ N

2
sin(πt).

Reordering the inequality and applying that cos(x) ≤ 1− 4x2/π2 for all x ∈ [0, π/2] yields

sin(Nπt)

sin(πt)
≤ N cos(

N

2
πt) ≤ N(1−N2t2).

Finally, the remaining bounds on the absolute values can be proven by calculating the first and
second derivatives and using sin(x) ≥ 2x/π and cot x ≤ 1/x that hold for all x ∈ (0, π/2].

Lemma A.2. Let M,M̃ ∈ C
m×n with |Mkℓ| ≤ M̃kℓ for all k = 1, . . . ,m, ℓ = 1, . . . , n, then

‖M‖ ≤
∥∥∥M̃

∥∥∥ .

Proof. We directly show the result by

‖M‖2 = max
‖x‖=1

‖Mx‖2 = max
‖x‖=1

m∑

k=1

∣∣∣∣∣

n∑

ℓ=1

Mkℓxℓ

∣∣∣∣∣

2

≤ max
‖x‖=1

m∑

k=1

(
n∑

ℓ=1

|Mkℓ| |xℓ|
)2
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≤ max
‖x‖=1

m∑

k=1

(
n∑

ℓ=1

M̃kℓ |xℓ|
)2

= max
‖x‖=1

m∑

k=1

(
n∑

ℓ=1

M̃kℓxℓ

)2

=
∥∥∥M̃

∥∥∥
2
.

Note that similar estimates can be found for the Frobenius norm in [11, p. 520].

Lemma A.3 (Neumann expansion). Let M ∈ C
n×n Hermitian and positive definite. Let

η ∈ R be a parameter satisfying η > ‖M‖, then

‖M−1‖ ≤ 1

η − ‖ηI −M‖ .

Proof. Applying the Neumann series to the matrix I − η−1M yields

∥∥M−1
∥∥ =

1

η

∥∥∥∥∥

∞∑

k=0

(
I − 1

η
M

)k
∥∥∥∥∥ ≤ 1

η

1

1−
∥∥∥I − 1

ηM
∥∥∥
=

1

η − ‖ηI −M‖ .

Lemma A.4 (Schur complement, cf. [11, eq. (0.8.5.3)]). Let n1, n2 ∈ N and the matrix M
∈ C

(n1+n2)×(n1+n2) be a 2× 2 block matrix of the form

M =

(
M1 M2

M3 M4

)
,M1 ∈ C

n1×n1 ,M4 ∈ C
n2×n2 ,

with M1 being invertible. Then the Schur complement decomposition is given by

M =

(
In1

0

−M3M
−1
1 In2

)−1(
M1 0

0 M4 −M3M
−1
1 M2

)(
In1

−M−1
1 M2

0 In2

)−1

.

The block [M/M1] := M4 −M3M
−1
1 M2 is called Schur complement of M1 in M .

Lemma A.5 (Cauchy interlacing theorem for eigenvalues, cf. [11, Thm. (4.3.28)]). Let M ∈
C
n×n be a Hermitian complex matrix, such that

M =

(
M1 M2

M∗
2 M3

)
, M1 ∈ C

m×m,M2 ∈ C
m×(n−m),M3 ∈ C

(n−m)×(n−m).

Let the eigenvalues of M and M1 be ordered in non-decreasing order, then

λi(M) ≤ λi(M1) ≤ λi+n−m(M), i = 1, . . . ,m.

Lemma A.6 (Block Gerschgorin theorem, cf. [11, 6.1.P17] or [10, Thm. 5]). Let M ∈ C
nm×nm

be an m×m block matrix with blocks Mik ∈ C
n×n. Let the diagonal blocks Mii be normal and

denote λ
(i)
1 , . . . , λ

(i)
n their eigenvalues, respectively. Then the eigenvalues of M are included

in the set
n⋃

i=1

m⋃

j=1

{z ∈ C : |z − λ
(i)
j | ≤

∑

k 6=i

‖Mik‖}.

In particular, we have for M ∈ C
m×n the inequalities

∥∥∥∥
(

0 M∗

M 0

)∥∥∥∥ ≤ ‖M‖ and

∥∥∥∥
(

I 0
M I

)∥∥∥∥
2

≤ 1 + ‖M‖+ ‖M‖2 .

21


	1 Introduction
	2 Preliminaries
	3 Nodes with one nearly-colliding pair
	4 Pairs of nearly-colliding nodes
	5 Numerical Examples
	6 Summary
	References
	A Appendix

