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Abstract

We study new classes of convex bodies and star bodies with unusual properties. First we define the
class of reciprocal bodies, which may be viewed as convex bodies of the form “1/K”. The map K 7→ K′

sending a body to its reciprocal is a duality on the class of reciprocal bodies, and we study its properties.
To connect this new map with the classic polarity we use another construction, associating to each

convex body K a star body which we call its flower and denote by K♣. The mapping K 7→ K♣ is
a bijection between the class Kn

0 of convex bodies and the class Fn of flowers. Even though flowers
are in general not convex, their study is very useful to the study of convex geometry. For example, we
show that the polarity map ◦ : Kn

0 → Kn
0 decomposes into two separate bijections: First our flower map

♣ : Kn
0 → Fn, followed by a slight modification Φ of the spherical inversion which maps Fn back to Kn

0 .
Each of these maps has its own properties, which combine to create the various properties of the polarity
map.

We study the various relations between the four maps ′, ◦, ♣ and Φ and use these relations to derive
some of their properties. For example, we show that a convex body K is a reciprocal body if and only if
its flower K♣ is convex.

We show that the class Fn has a very rich structure, and is closed under many operations, including
the Minkowski addition. This structure has corollaries for the other maps which we study. For example,
we show that if K and T are reciprocal bodies so is their “harmonic sum” (K◦ + T ◦)◦. We also show

that the volume
∣∣∣(∑i λiKi

)♣∣∣∣ is a homogeneous polynomial in the λi’s, whose coefficients can be called

“♣-type mixed volumes”. These mixed volumes satisfy natural geometric inequalities, such as an elliptic
Alexandrov-Fenchel inequality. More geometric inequalities are also derived.

1 Introduction

In this paper we study new classes of convex bodies and star bodies in Rn with some unusual properties.
We will provide precise definitions below, but let us first describe the general program of what will follow.

One of our new classes, “reciprocal” bodies, may be viewed as bodies of the form “ 1
K ” for a convex body K.

They appear as the image of a new “quasi-duality” operation on the class Kn0 of convex bodies. We denote
this new map by K 7→ K ′. This operation reverses order (with respect to inclusions) and has the property
K ′′′ = K ′. Hence the map ′ is indeed a duality on its image.

This new operation is connected to the classical operation of polarity ◦ : K 7→ K◦ via another construction,
which we call simply the “flower” of a body K and denote by ♣ : K 7→ K♣. We provide the definition of K♣

in Definition 3 below, but an equivalent description which sheds light on the ”flower” nomenclature is

K♣ =
⋃{

B

(
x

2
,
|x|
2

)
: x ∈ K

}
(see Proposition 19). Here B(y, r) is the Euclidean ball with center y ∈ Rn and radius r ≥ 0. In other words,
K♣ is the union of all balls passing through the origin having diameter [0, x] with x ∈ K.
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In general, K♣ is a star body which is not necessarily convex. The flower of a convex body was previously
studied for very different reasons in the field of stochastic geometry – see Remark 7. We show that our new
map ′ is precisely K ′ =

(
K♣

)◦
. We also show that K belongs to the image of ′, i.e. K is a reciprocal body,

if and only if K♣ is convex. This means that such reciprocal bodies are in some sense “more convex” than
other convex bodies, and can also be thought of as “doubly convex” bodies.

Interestingly, the flower map ♣ is also connected to the n-dimensional spherical inversion Φ when applied
to star bodies (Φ is defined by applying the pointwise map I(x) = x

|x|2 and taking set complement – see

Definition 11). We describe the class of convex bodies on which Φ preserves convexity.

The method of study of these questions looks novel and some of the results are not intuitive. Just as an
example, we show that if Φ(A) and Φ(B) are convex (for some star bodies A and B) then Φ(A+B) is convex
as well, where A+B is the Minkowski addition (see Corollary 37).

The family Fn of flowers should play a central role in the study of convexity. It has a very rich structure.
For example, it is closed under the Minkowski addition, and is also preserved by orthogonal projections and
sections. “Flower mixed volumes” also exist and, perhaps most interestingly, we have a decomposition of the
classical polarity operation as

Kn0
♣−→ Fn Φ−→ Kn0 .

Here the maps ♣ and Φ are 1-1 and onto, and we have ◦ = Φ♣ in the sense that K◦ = Φ
(
K♣

)
for all

K ∈ Kn0 .

The class of reciprocal bodies also looks interesting. No polytope belongs to this class, and no centrally
symmetric ellipsoids (besides Euclidean balls centered at 0). At the same time this class is clearly important,
as seen from its properties and the fact that it coincides with the “doubly convex” bodies. We provide several
2-dimensional pictures to help create some intuition about this class of reciprocal bodies and about the class
of flowers.

To make the above claims more precise, let us now give some basic definitions and fix our notation. The
reader may consult [12] for more information. By a convex body in Rn we mean a set K ⊆ Rn which is closed
and convex. We will always assume further that 0 ∈ K, but we do not assume that K is compact or has
non-empty interior. We denote the set of all such bodies by Kn0 . The support function of K is the function
hK : Sn−1 → [0,∞] defined by hK(θ) = supx∈K 〈x, θ〉. Here Sn−1 = {θ ∈ Rn : |θ| = 1} is the unit Euclidean
sphere, and 〈·, ·〉 is the standard scalar product on Rn. The function hK uniquely defines the body K.

The Minkowski sum of two convex bodies is defined by

K + T = {x+ y : x ∈ K, y ∈ T}

(the closure is not needed if K or T is compact). The homothety operation is defined by λK = {λx : x ∈ K}.
These operations are related to the support function by the identity hλK+T = λhK + hT .

We say that A ⊆ Rn is a star set if A is non-empty and x ∈ A implies that λx ∈ A for all 0 ≤ λ ≤ 1. The
radial function rA : Sn−1 → [0,∞] of A is defined by rA(θ) = sup {λ ≥ 0 : λθ ∈ A}. For us, a star body is
simply a star set which is radially closed, in the sense that rA(θ)θ ∈ A for all directions θ ∈ Sn−1 satisfying
rA(θ) <∞. For such bodies rA uniquely defines A.

The polarity map ◦ : Kn0 → Kn0 maps every body K to its polar

K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ K} . (1.1)

It follows that hK = 1
rK◦

. The polarity map is a duality in the following sense:

• It is order reversing: If K ⊆ T then K◦ ⊇ T ◦.

• It is an involution: K◦◦ = K for all K ∈ Kn0 (if A is only a star body, then A◦◦ is the closed convex
hull of A).
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Figure 1.1: convex bodies (solid) and their reciprocals (dashed)

In fact, it was proved in [1] that the polarity map is essentially the only duality on Kn0 . Similar results on
different classes of convex bodies were proved earlier in [5] and [3].

The structure of a set equipped with a duality relation is common in mathematics. A basic example is the
set [0,∞] equipped with the inversion x 7→ x−1 (we set of course 0−1 = ∞ and ∞−1 = 0). Following this
analogy, one may think of K◦ as a certain inverse “K−1”. This point of view can indeed be useful – see for
example [10] and [7].

However, in recent works ([8], [9]), the authors discussed the application of functions such as x 7→ xα

(0 ≤ α ≤ 1) and x 7→ log x to convex bodies. Applying the same idea to the inversion x 7→ 1
x , we obtain a

new notion of the reciprocal body “K−1” . Recall that given a function g : Sn−1 → [0,∞], its Alexandrov
body, or Wulff shape, is defined by

A [g] =
{
x ∈ Rn : 〈x, θ〉 ≤ g(θ) for all θ ∈ Sn−1

}
.

In other words, A [g] is the biggest convex body such that hA[g] ≤ g. In particular, for every convex body K
we have K = A [hK ]. We may now define:

Definition 1. Given K ∈ Kn0 , the reciprocal body K ′ ∈ Kn0 is defined by K ′ = A
[

1
hK

]
.

More explicitly, we have

K ′ =
⋂

θ∈Sn−1

H−
(
θ, hK(θ)−1

)
,

where H−(θ, c) = {x ∈ Rn : 〈x, θ〉 ≤ c} .

The idea of constructing new interesting convex bodies as Alexandrov bodies is not new. As one important
recent example, Böröczky, Lutwak, Yang and Zhang consider in [2] the body A

[
h1−λ
K hλL

]
, which they call

the λ-logarithmic mean of K and L.

Figure 1.1 depicts some simple convex bodies in R2 and their reciprocal. Some basic properties of the
reciprocal map K 7→ K ′ are immediate from the definition:

Proposition 2. For all K,T ∈ Kn0 we have:

1. K ′ ⊆ K◦, with an equality if and only if K is a Euclidean ball.

2. If K ⊇ T then K ′ ⊆ T ′.

3. K ′′ ⊇ K.
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4. K ′′′ = K ′.

Proof. For (1), note that for every θ ∈ Sn−1 we have 1 = 〈θ, θ〉 ≤ hK(θ)hK◦(θ). Hence K◦ = A [hK◦ ] ≥
A
[

1
hK

]
= K ′. An equality K ′ = K◦ implies that hK◦ = 1

hK
, or equivalently rK = 1

hK◦
= hK . This implies

that K is a ball.

Property (2) is obvious from the definition.

For property (3), we know that hK′ ≤ 1
hK

so K ′′ = A
[

1
hK′

]
≥ A [hK ] = K.

Finally, (4) is a formal consequence of (2) and (3): We know that K ′′ ⊇ K, so K ′′′ ⊆ K ′. On the other hand
applying (3) to K ′ gives K ′′′ ⊇ K ′.

Let us write

Rn = {K ′ : K ∈ Kn0 } .

Note that properties (2) and (4) above imply that ′ is a duality on the class Rn. Also note that K ∈ Rn if
and only if K ′′ = K.

Our next goal is to give an alternative description of the reciprocal body K ′. Towards this goal we define:

Definition 3. 1. For a convex body K ∈ Kn0 we denote by K♣ the star body with radial function
rK♣ = hK .

2. We say that a star body A ⊆ Rn is a flower if A =
⋃
x∈C B

(
x
2 ,
|x|
2

)
, where C ⊆ Rn is some closed set.

The class of all flowers in Rn is denoted by Fn.

The two parts of the definition are related by the following:

Theorem 4. For every K ∈ Kn0 we have K♣ ∈ Fn. Moreover, the map ♣ : Kn0 → Fn is one to one and onto.

Equivalently, every flower A is of the form A = K♣ for a unique K ∈ Kn0 ; We have A =
⋃
x∈K B

(
x
2 ,
|x|
2

)
,

and we simply say that A is the flower of K.

This theorem is a combination of Proposition 17(2), Proposition 19, and Remark 21.

As we will see flowers play an important role in connecting the reciprocity map to the polarity map. Note
that in general K♣ is not convex. Figure 1.2 depicts the flowers of some convex bodies in R2. Another
example that will be important in the sequel is the following:

Example 5. For x ∈ Rn write [0, x] = {λx : 0 ≤ λ ≤ 1}. Also denote the Euclidean ball with center x and

radius r > 0 by B(x, r), and write Bx = B
(
x
2 ,
|x|
2

)
. Then [0, x]♣ = Bx. Indeed, a direct computation gives

h[0,x](θ) = rBx
(θ) = max {〈x, θ〉 , 0} .

The identity [0, x]♣ = Bx is also a classical theorem in geometry sometimes referred to as Thales’s theorem:
If an interval [a, b] ⊆ Rn is a diameter of a ball B, then ∂B is precisely the set of points y such that
]ayb = 90◦.

The polarity map, the reciprocal map and the flower are all related via the following formula:

Proposition 6. For every K ∈ Kn0 we have
(
K♣

)◦
= K ′.

Note that even though in general K♣ /∈ Kn0 , we may still compute its polar using (1.1).
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Figure 1.2: convex bodies (solid) and their flowers (dashed)

Proof. By definition x ∈
(
K♣

)◦
if and only if 〈x, y〉 ≤ 1 for all y ∈ K♣. It is obviously enough to check this

for y ∈ ∂K♣, i.e. y = rK♣(θ)θ = hK(θ)θ for some θ ∈ Sn−1.

Hence x ∈
(
K♣

)◦
if and only if for all θ ∈ Sn−1 we have 〈x, hK(θ)θ〉 ≤ 1, or 〈x, θ〉 ≤ 1

hK(θ) . This means that

x ∈ A
[

1
hK

]
= K ′.

Remark 7. The flower of a convex body was studied in stochastic geometry under the name “Voronoi Flower”
(see e.g. [13]). The reason for the name is the following relation to Voronoi tessellations: For a discrete set
of points P ⊆ Rn, consider the (open) Voronoi cell

Z = {x ∈ Rn : |x− 0| < |x− y| for all y ∈ P} .

Then for any convex body K we have Z ⊇ K if and only if P ∩
(
2K♣

)
= ∅. It follows that if for example P

is chosen according to a homogeneous Poisson point process, then the probability that Z ⊇ K is computable
from the volume of K♣.

In Section 2 we discuss basic properties of the flower map ♣ and prove representation formulas for both K♣

and K ′. We also study the pre-images of a body K ∈ Rn under the reciprocity map. Since ′ is not a duality
on all of Kn0 , the set of pre-images

{A ∈ Kn0 : A′ = K}

may in general contain more than one body. We study this set, and prove the following results:

Theorem 8. 1. If K ∈ Rn is a smooth convex body then K = A′ for a unique A ∈ Kn0 .

2. For a general K ∈ Rn, the set {A ∈ Kn0 : A′ = K} is a convex subset of Kn0 .

The main goal of Section 3 is to prove the following theorem, characterizing the class Rn of reciprocal bodies:

Theorem 9. K ∈ Rn if and only if K♣ is convex.

As a corollary we obtain:

Corollary 10. For every K ∈ Rn and every subspace E ⊆ Rn one has (ProjE K)
′

= ProjE K
′, where ProjE

denotes the orthogonal projection onto E.

We will prove Theorem 9 by connecting the various maps we constructed so far with another duality on the
class of star-bodies:

Definition 11. 1. Let I : Rn \ {0} → Rn \ {0} denote the spherical inversion I(x) = x
|x|2 .

5



2. Given a star body A, we denote by Φ(A) the star body with radial function rΦ(A) = 1
rA

.

The map A 7→ Φ(A) is obviously a duality on the class of star bodies. It is sometimes called star duality
and denoted by A∗ (see [11]), but we will prefer the notation Φ(A). Note that Φ is “essentially the same” as
the pointwise map I in the sense that ∂Φ(A) = I (∂A), but I maps the interior of A to the exterior of Φ(A)
and vice versa. Here by the boundary ∂A of a star body A we mean

∂A =
{
rA(θ)θ : θ ∈ Sn−1 such that 0 < rA(θ) <∞

}
.

One interesting relation between Φ and our previous definitions is the following (see Propositions 28(2) and
33):

Theorem 12. Φ is a bijection between Kn0 and Fn. Moreover, the polarity map decomposes as

◦ : Kn0
♣−→ Fn Φ−→ Kn0 ,

in the sense that Φ
(
K♣

)
= K◦ for all K ∈ Kn0 .

In Section 4 we use the results of Section 3 to further study the class of flowers, with applications to the
study of reciprocity and the map Φ. First we understand when the map Φ preserves convexity. By Theorem
12, as Φ is an involution, we know that Φ(A) is convex if and only if A is a flower. When A is in addition
convex, we have:

Theorem 13. If K ∈ Kn0 then Φ(K) is convex if and only if K◦ ∈ Rn.

(See Proposition 33). We then show that the class Fn has a lot of structure:

Theorem 14. Fix A,B ∈ Fn and a linear subspace E ⊆ Rn. Then A + B and convA are flowers in Rn,
and A ∩ E and ProjE A are flowers in E.

(See Propositions 35, 39 and 40). As corollaries we obtain:

Corollary 15. 1. If K,T ∈ Rn then (K◦ + T ◦)
◦ ∈ Rn.

2. If K,T are convex bodies then Φ (Φ(K) + Φ(T )) is also convex.

As another corollary we construct a new addition ⊕ on Kn0 such that the class Rn is closed under ⊕.
Moreover, when restricted to Rn, this new addition has all properties one may expect: it is associative,
commutative and monotone, it has {0} as an identity element, and it satisfies λK ⊕ µK = (λ+ µ)K.

The final Section 5 is devoted to the study of inequalities. We begin by showing that the maps ♣,Φ and
′ are all convex in appropriate senses. We also study the functional K 7→

∣∣K♣∣∣, where |·| denotes the
volume. We prove results that are analogous to Minkowski’s theorem of polynomiality of volume and to the
Alexandrov-Fenchel inequality:

Theorem 16. Fix K1,K2, . . . ,Km ∈ Kn0 . Then∣∣∣(λ1K1 + λ2K2 + · · ·+ λmKm)
♣
∣∣∣ =

m∑
i1,i2,...,in=1

V ♣(Ki1 ,Ki2 , . . . ,Kin) · λi1λi2 · · ·λin ,

where the coefficients are given by

V ♣(K1,K2, . . . ,Kn) = |Bn2 | ·
∫
Sn−1

hK1(θ)hK2(θ) · · ·hKn(θ)dσ(θ)

(Here Bn2 denotes the unit Euclidean ball). Moreover, for every K1,K2, . . . ,Kn ∈ Kn0 we have

V ♣(K1,K2,K3, . . . ,Kn)2 ≤ V ♣ (K1,K1,K3, . . .Kn) · V ♣ (K2,K2,K3, . . . ,Kn) .

These results and their proofs are similar in spirit to the dual Brunn–Minkowski theory which was developed
by Lutwak in [6]. We also prove a Kubota type formula for the new ♣-quermassintegrals, and use it to
compare them with the classical definition.
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2 Properties of reciprocity and flowers

We begin this section with some basic properties of flowers:

Proposition 17. 1. For every K ∈ Kn0 we have K♣ ⊇ K, with equality if and only if K is an Euclidean
ball.

2. If K♣ = T♣ for K,T ∈ Kn0 then K = T .

3. Let {Ki}i∈I be a family of convex bodies. Then
(
conv

(⋃
i∈I Ki

))♣
=
⋃
i∈I K

♣
i .

4. For every K ∈ Kn0 and every subspace E ⊆ Rn we have (ProjE K)
♣

= K♣ ∩ E (where the ♣ on the
left hand side is taken inside the subspace E).

Proof. For (1) we have rK♣ = hK ≥ rK . The equality case is the same as in Proposition 2(1).

(2) is obvious since hK uniquely defines K. For (3), write A = conv
(⋃

i∈I Ki

)
and B =

⋃
i∈I K

♣
i . Then

rA♣ = hA = max
i∈I

hKi
= max

i∈I
rK♣i

= rB ,

so A♣ = B.

Finally, for (4), since both bodies are inside E its enough to check that their radial functions coincide in E.
But if θ ∈ Sn−1 ∩ E then

r(ProjE K)♣(θ) = hProjE K(θ) = hK(θ) = rK♣(θ) = rK♣∩E(θ),

proving the claim.

We will also need the following computation:

Lemma 18. Let Bx = B
(
x
2 ,
|x|
2

)
be the ball with center x

2 and radius |x|2 . Let Px be the paraboloid,

Px =

{
y ∈ Rn : 〈y, x〉 ≤ 1− 1

4
|x|2 |Projx⊥y|

2

}
,

where Projx⊥ denotes the orthogonal projection to the hyperplane orthogonal to x. Then B◦x = Px.

Proof. It is enough to prove the result for x = en = (0, 0, . . . , 0, 1). Indeed, we can a write x = λ · u(en) for
some orthogonal matrix u and some λ > 0, and then

(Bx)
◦

= (λ · u (Ben))
◦

=
1

λ
· u
(
B◦en

)
=

1

λ
· u (Pen) = Px.

Write a general point y ∈ Rn as y = (z, t) ∈ Rn−1 × R. Since Bx = [0, x]♣ we know that

rBen
(z, t) = h[0,en](z, t) = max {t, 0} .
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Hence we have

hBen
(z, t) = max

θ∈Sn−1
〈(z, t), rK(θ)θ〉 = max

(u,s)∈Sn−1
〈(z, t), (u, s)〉max {s, 0}

= max
(u,s)∈Rn−1×R

(
〈z, u〉+ ts

|u|2 + s2
·max {s, 0}

)
.

It is obviously enough to maximize over s > 0, and by homogeneity we may take s = 1. It is also clear that
the maximum is attained when u = r · z|z| for some r. Therefore

hBen
(z, t) = max

r

(
r |z|+ t

r2 + 1

)
.

We see that (z, t) ∈ B◦en if and only if for all r we have r|z|+t
r2+1 ≤ 1, or r2 − |z| r + 1 − t ≥ 0. This happens

exactly when |z|2 − 4(1− t) ≤ 0, or t ≤ 1− |z|
2

4 . Hence B◦en = Pen like we wanted.

Hence we obtain the following descriptions of K♣ and K ′:

Proposition 19. For every K ∈ Kn0 we have K♣ =
⋃
x∈K Bx, and K ′ =

⋂
x∈K Px.

Proof. Since K = conv
(⋃

x∈K [0, x]
)
, Proposition 17(3) implies that K♣ =

⋃
x∈K Bx. Hence

K ′ =
(
K♣

)◦
=
⋂
x∈K

B◦x =
⋂
x∈K

Px.

Remark 20. If K is compact, the same proof shows that it is enough to consider only x ∈ ∂K. In fact we
can do a bit more: recall that x ∈ ∂K is an extremal point for K if any representation x = (1 − λ)y + λz
for 0 < λ < 1 and y, z ∈ K implies that y = z = x. Denote the set of extremal points by Ext(K).

By the Krein–Milman theorem1 we have K = conv
(⋃

x∈Ext(K)[0, x]
)

, so K♣ =
⋃
x∈Ext(K)Bx and K ′ =⋂

x∈Ext(K) Px. In particular if K is a polytope then K♣ is the union of finitely many balls and K ′ is the
intersection of finitely many paraboloids.

Remark 21. The formulas of Proposition 19 can be used to define K♣ and K ′ for non-convex sets (say

compact). However, it turns out that under such definitions we have K♣ = (convK)
♣

and K ′ = (convK)
′
,

so essentially nothing new is gained. To see that K♣ = (convK)
♣

note that by the remark above

(convK)
♣

=
⋃

x∈Ext(convK)

Bx ⊆
⋃
x∈K

Bx = K♣.

Let us now give one application of Proposition 19. We say that K ∈ Kn0 is smooth if K is compact, 0 ∈ intK,
and at every point x ∈ ∂K there exists a unique supporting hyperplane to K. We say that K ∈ Kn0 is strictly
convex if K is compact, 0 ∈ intK and Ext(K) = ∂K. It is a standard fact in convexity that K is smooth if
and only if its polar K◦ is strictly convex.

Theorem 22. Assume K ∈ Kn0 is compact and 0 ∈ intK. Then K ′ is strictly convex.

1In the finite dimensional case the Krein–Milman theorem was first proved by Minkowski. See [12] and in particular the first
note of Section 1.4.
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Ideologically, the theorem follows from the fact that for every 0 < r < R <∞ the family

{Px ∩B(0, R) : r < |x| < R}

is “uniformly convex”, i.e. has a uniform lower bound on its modulus of convexity. It then follows that an
arbitrary intersection of such bodies will be strictly convex as well. In particular, since for R > 0 large enough
we have K ′ =

⋂
x∈∂K (Px ∩B(0, R)), it follows that K ′ is strictly convex. Since filling in the computational

details is tedious and not very illuminating, we will omit the formal proof.

Instead, let us now fix a reciprocal bodyK ∈ Rn, and discuss the class of“pre-reciprocals”{A ∈ Kn0 : A′ = K}.
It is obvious that such a pre-reciprocals are in general not unique. For example, if A /∈ Rn then A and A′′

are two different pre-reciprocals of A′.

However, sometimes it is true that the pre-reciprocal is unique:

Proposition 23. Let K be a smooth convex body. Then there exists at most one body A such that A′ = K.

Proof. Assume A′ = B′ = K. Then
(
A♣
)◦

=
(
B♣
)◦

= K, which implies that conv
(
A♣
)

= conv
(
B♣
)

= K◦.

Since conv
(
A♣
)

= K◦ we have A♣ ⊇ Ext(K◦). Since K is smooth its polar is strictly convex, so A♣ ⊇ ∂K◦.
But A♣ is a star body, so we must have A♣ = K◦. Similarly B♣ = K◦, and since A♣ = B♣ we conclude
that A = B.

When K is not smooth it may have many pre-reciprocals, but something can still be said: The set
D(K) = {A ∈ Kn0 : A′ = K} is a convex subset on Kn0 .

Theorem 24. 1. Fix K ∈ Kn0 such that 0 ∈ intK. If A,B ∈ D(K) then λA + (1− λ)B ∈ D(K) for all
0 ≤ λ ≤ 1.

2. If K ∈ Kn0 and D(K) 6= ∅ then K ′ is the largest body in D(K).

For the proof we need the following lemma:

Lemma 25. Let X,Y ⊆ Rn be compact sets such that convX = conv Y = T . Then conv (X ∩ Y ) =
conv (X ∪ Y ) = T .

Proof. For the union this is trivial: On the one conv (X ∪ Y ) ⊇ convX = T . On the other hand X ∪ Y ⊆ T
and T is convex, so conv (X ∪ Y ) ⊆ T .

For the intersection, the inclusion conv (X ∩ Y ) ⊆ T is again obvious. Conversely, since convX = conv Y =
T it follows that X,Y ⊇ Ext(T ), so X ∩ Y ⊇ ExtT . It follows from the Krein--Milman theorem that
conv (X ∩ Y ) ⊇ conv (ExtT ) = T .

Proof of Theorem 24. For (1), fix A,B ∈ D(K). Since A′ = B′ = K we have conv
(
A♣
)

= conv
(
B♣
)

= K◦.

Write C = λA+ (1− λ)B. We have

rC♣ = hC = λhA + (1− λ)hB ≤ max {hA, hB} = max {rA♣ , rB♣} = rA♣∪B♣ .

Hence C♣ ⊆ A♣ ∪B♣, and similarly C♣ ⊇ A♣ ∩B♣. It follows that

K◦ = conv
(
A♣ ∩B♣

)
⊆ convC♣ ⊆ conv

(
A♣ ∪B♣

)
= K◦,

so C ′ =
(
C♣
)◦

= K◦◦ = K.

For (2), D(K) 6= ∅ exactly means that K ∈ Rn, so K ′′ = K and K ′ ∈ D(K). For any other A ∈ D(K) we
have A ⊆ A′′ = K ′ so K ′ is indeed the largest body in D(K).
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Note that Theorem 24 gives us a partition of the family of compact convex bodies in Rn into convex sub-
families, where A and B belong to the same sub-family if and only if A′ = B′.

We conclude this section by turning our attention to Theorem 9. For the full proof we will need some new
ideas, presented in the next section. But the ideas we developed so far suffice to give a simple geometric
proof of the theorem in some cases. We find it worthwhile, as the proof of Section 3 is not intuitive, and the
following proof shows why convexity of K♣ plays a role. Let us show the following:

Proposition 26. Assume that K ∈ Rn is smooth. Then K♣ is convex.

Proof. Assume by contradiction thatK♣ is not convex. Then we can choose a point x ∈ ∂K♣∩int
(
convK♣

)
.

Write x̂ = x
|x| . Since

hK (x̂) = rK♣ (x̂) = |x| ,

we conclude that the hyperplane Hx = {z : 〈z − x, x〉 = 0} is a supporting hyperplane for K. Fix a point
y ∈ ∂K ∩Hx.

Since y ∈ K we know that [0, y] ⊆ K, so By = [0, y]♣ ⊆ K♣. We claim that By ∩ ∂K♣ = {x}. Indeed, by
elementary geometry (see Example 5) we know that w ∈ ∂By if and only if ]0wy = 90◦, i.e. 〈w, y − w〉 = 0.
This is also easy to check algebraically. Since y ∈ Hx we know that 〈y − x, x〉 = 0, so x ∈ By.

Conversely, if w ∈ By ∩ ∂K♣ then y ∈ Hw = {z : 〈z − w,w〉 = 0}. Again since w ∈ ∂K♣ we conclude that
Hw is a supporting hyperplane for K. Since Hx and Hw are two supporting hyperplanes passing through y,
and since K is smooth, we must have Hx = Hw, so x = w. This proves the claim.

It follows in particular that By ⊆ int
(
convK♣

)
. Since By is compact and int

(
convK♣

)
is open, it follows

that Bz ⊆ int
(
convK♣

)
for all z close enough to y. In particular one may take z = (1 + ε)y for a small

enough ε > 0. Since y ∈ ∂K, z /∈ K.

Define P = conv (K, z) = conv (K ∪ [0, z]). Then

P♣ = K♣ ∪ [0, z]♣ = K♣ ∪Bz ⊆ conv
(
K♣

)
.

Hence conv
(
P♣
)

= conv
(
K♣

)
, so P ′ = K ′. But then K ′′ = P ′′ ⊇ P ) K, so K /∈ Rn.

3 The spherical inversion and a proof of Theorem 9

The main goal of this section is to prove Theorem 9: K ∈ Rn if and only if K♣ is convex. For the proof we
will use the maps I and Φ from Definition 3. We will use also the following well-known property of I:

Fact 27. Let A ⊆ Rn be a sphere or a hyperplane. Then I (A) is a hyperplane if 0 ∈ A , and a sphere if
0 /∈ A.

It follows that if B is any ball such that 0 ∈ B, then Φ(B) is either a ball (if 0 ∈ intB) or a half-space (if
0 ∈ ∂B).

Since in this section we will compose many operations, it will be more convenient to write them in function
notation, where composition is denoted by juxtaposition. For example, by ◦Φ♣K we mean

(
Φ
(
K♣

))◦
.

In particular ◦◦ = conv, the (closed) convex hull operation. We have the following relations between the
different maps:

Proposition 28. If K ∈ Kn0 then

1. ◦♣K = K ′.

2. Φ♣K = ◦K.
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3. Φ ◦K = ♣K.

4. ♣ ◦K = ΦK.

5. (◦K)
′

= ◦ΦK.

Proof. Identity (1) is the same as Proposition 6.

For (2) we compare radial functions:

rΦ♣K =
1

r♣K
=

1

hK
= r◦K .

(3) follows from (2) by applying Φ to both sides.

For (4) we applying (3) to ◦K instead of K and obtain

♣ ◦K = Φ ◦ ◦K = ΦK.

(5) is obtained from (4) by taking polar of both sides and applying (1).

Note that Proposition 28(2) provides a decomposition of the classical duality to a “global” part (the flower)
and an “essentially pointwise” part (the map Φ). Also note that the identities (2) and (3) actually hold for
all star bodies, since ♣A = ♣ convA and ◦A = ◦ convA. The convexity of K is crucial however for identity
(4), and for general star bodies we only have ♣ ◦A = Φ convA.

We will also need to know the following construction and its properties, which may be of independent interest:

Definition 29. The spherical inner hull of a convex body K is defined by

InnSK =
⋃
{B(x, |x|) : B(x, |x|) ⊆ K} .

Proposition 30. Fix K ∈ Kn0 . Then

1. We have the identity
InnSK = Φ conv ΦK = Φ ◦ ◦ΦK (3.1)

2. InnSK ∈ Kn0 . In other words, (3.1) always defines a convex subset of K.

3. InnSK is the largest star body A ⊆ K such that Φ(A) is convex. In particular InnSK = K if and only
if Φ(K) is convex.

Proof. For (1) we should prove that Φ conv ΦK = InnSK, or equivalently that conv ΦK = Φ InnSK. Since
Φ is a duality on star bodies we have

Φ InnSK =
⋂
{ΦB(x, |x|) : ΦB(x, |x|) ⊇ ΦK} .

Since {B(x, |x|) : x ∈ Rn} is exactly the family of all balls having 0 on their boundary, {ΦB(x, |x|) : x ∈ Rn}
is the family of all affine half-spaces with 0 in their interior. Hence

Φ InnSK =
⋂{

H :
H is a half-space
0 ∈ intH and H ⊇ ΦK

}
= conv ΦK

which is what we wanted to prove.
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To show (2), fix x, y ∈ InnSK and 0 < λ < 1. We have x ∈ B(a, |a|) ⊆ K and y ∈ B(b, |b|) ⊆ K for some
a, b ∈ Rn. Hence

(1− λ)x+ λy ∈ (1− λ)B(a, |a|) + λB(b, |b|)
= B ((1− λ) a+ λb, (1− λ) |a|+ λ |b|) ⊆ K.

Consider the ball B = B ((1− λ) a+ λb, (1− λ) |a|+ λ |b|). Obviously 0 ∈ B. We know that ΦB is either a
ball or a half-space. In particular it is convex, so InnSB = Φ conv ΦB = ΦΦB = B. Hence (1− λ)x+ λy ∈
InnSB and we can find c ∈ Rn such that

(1− λ)x+ λy ∈ B(c, |c|) ⊆ B ⊆ K.

It follows that (1− λ)x+ λy ∈ InnSK and the proof of (2) is complete.

Finally we prove (3). The inequality InnSK ⊆ K is obvious from the definition. Since

Φ (InnSK) = ΦΦ conv ΦK = conv ΦK,

we see that Φ (InnSK) is convex. Next, we fix a star body A ⊆ K such that Φ(A) is convex. Then
Φ(A) ⊇ Φ(K), and since Φ(A) is convex it follows that Φ (A) ⊇ conv Φ (K) . Hence

A = ΦΦA ⊆ Φ conv ΦK = InnSK,

which is what we wanted to prove.

Now we can finally prove Theorem 9:

Proof of Theorem 9. We start with the easy implication which does not require Proposition 30: Assume ♣K
is convex. Then by Proposition 28(4) we have ♣ ◦ ♣K = Φ♣K. Hence

K ′′ = ◦♣ ◦ ♣K = ◦Φ♣K = ◦ ◦K = K,

so K ∈ Rn.

Conversely, assume that K ∈ Rn. Then K ′′ = K, meaning that ◦♣ ◦ ♣K = K. As ♣ = Φ◦ we have
◦Φ ◦ ◦Φ ◦K = K. Applying ♣ to both sides we get ♣ ◦ Φ ◦ ◦Φ ◦K = ♣K.

Since ◦K ∈ Kn0 , Proposition 30 implies that Φ ◦ ◦Φ ◦K ∈ Kn0 . Hence by Proposition 28(4) we have

♣ ◦ Φ ◦ ◦Φ ◦K = ΦΦ ◦ ◦Φ ◦K = ◦ ◦ Φ ◦K = ◦ ◦ ♣K.

We showed that ♣K = ◦ ◦ ♣K = conv (♣K), so ♣K is convex.

As a corollary of the theorem we have the following result about projections:

Proposition 31. Fix K ∈ Rn and a subspace E ⊆ Rn. Then (ProjE K)
′

= ProjE K
′.

The reciprocity on the left hand side is taken of course inside the subspace E. This identity should be
compared with the standard identity

ProjE K
◦ = (K ∩ E)

◦
(3.2)

which holds for the polarity map.

Proof. Since K ∈ Rn we know that K♣ is convex. By Proposition 17(4) and (3.2) we have

(ProjE K)
′

=
(

(ProjE K)
♣
)◦

=
(
K♣ ∩ E

)◦
= ProjE

(
K♣

)◦
= ProjE K

′.
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Remark 32. Note that we only claimed the identity for reciprocal bodies. In fact, if (ProjE K)
′

= ProjE K
′

for all 1-dimensional subspaces E, then K ∈ Rn. To see this, note K ′′ ∈ Rn and K ′ = K ′′′, so by Proposition
31 we have

(ProjE K)
′

= ProjE K
′ = ProjE K

′′′ = (ProjE K
′′)
′
.

Since every 1-dimensional convex body is a reciprocal body we deduce that ProjE K = ProjE K
′′ for all

1-dimensional subspaces E, so K = K ′′ ∈ Rn.

4 Structures on the class of flowers and applications

In general, the map Φ does not preserve convexity. We begin this section by understanding when Φ(A) is
convex:

Proposition 33. Let A be a star body. Then Φ(A) is convex if and only if A is a flower.

Furthermore, the following are equivalent for a convex body K ∈ Kn0 :

1. Φ(K) is convex.

2. K◦ ∈ Rn.

3. InnSK = K.

Proof. For the first statement, note that if A = T♣ is a flower then Φ(A) = Φ
(
T♣
)

= T ◦ is convex (see

Proposition 28(2)). Conversely, Assume Φ(A) = T is convex. Then Φ(A) = T = Φ
(

(T ◦)
♣
)

, so A = (T ◦)
♣

is a flower.

For the second statement, the equivalence between (1) and (2) is exactly Theorem 9: K◦ ∈ Rn if and only

if (K◦)
♣

= Φ(K) is convex. The equivalence between (1) and (3) was part of Proposition 30.

Of course, since Φ is an involution, the first half of Proposition 33 means that the image Φ (Kn0 ) is exactly
the class of flowers. As for the second half, there are examples of convex bodies K ∈ Rn such that K◦ /∈ Rn,
so these are indeed different classes of convex bodies.

We will now use Proposition 33 to study some structures on the class of flowers. Recall that the radial sum
A+̃B of two star bodies A and B is given by rA+̃B = rA + rB . It is immediate that if A and B are flowers

then so is A+̃B, and in fact
K♣+̃T♣ = (K + T )♣. (4.1)

It is less obvious that the class of flowers is also closed under the Minkowski addition:

Proposition 34. Let B be any Euclidean ball with 0 ∈ B. Then B is a flower.

Proof. We saw already that Φ (B) is always convex. Proposition 33 finishes the proof.

Theorem 35. Assume A and B are two flowers (which are not necessarily convex). Then A+ B is also a
flower, where + is the usual Minkowski sum.

Proof. Write A = K♣ and B = T♣ for K,T ∈ Kn0 . By Proposition 19 we have

A =
⋃
x∈K

Bx and B =
⋃
y∈T

By.
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Hence

A+B =
⋃
x∈K
y∈T

(Bx +By) =
⋃
x∈K
y∈T

B

(
x+ y

2
,
|x|+ |y|

2

)
.

Since 0 ∈ B
(
x+y

2 , |x|+|y|2

)
the previous proposition implies that every such ball is a flower. Since A + B is

a union of such balls, the claim follows (see Proposition 17(3)).

Remark 36. Equation (4.1) shows that the radial sum of flowers corresponds to the Minkowski sum of
convex bodies. Similarly, Theorem 35 implies that the Minkowski sum of flowers corresponds to an addition
of convex bodies, defined implicitly by

K♣ + T♣ = (K ⊕ T )
♣
. (4.2)

The addition ⊕ is associative, commutative, monotone and has {0} as its identity element. However, in
general it does not satisfy K ⊕K = 2K, and in fact K ⊕K is usually not homothetic to K. The identity
K ⊕K = 2K does hold if K is a reciprocal body. Moreover, if K,T ∈ Rn then by Theorem 9 K♣ and T♣

are convex, so (K ⊕ T )
♣

is convex and K ⊕ T ∈ Rn as well. In other words, Rn is closed under ⊕.

Theorem 35 can be equivalently stated in the language of the map Φ:

Corollary 37. Let A and B be star bodies such that Φ(A), Φ(B) are convex. Then Φ(A+B) is convex as
well.

There is also a similar statement for reciprocal bodies:

Proposition 38. If K,T ∈ Rn then (K◦ + T ◦)
◦ ∈ Rn.

Proof. Write A = K ′ and B = T ′. Then K = K ′′ = A′ =
(
A♣
)◦

. Since A is a reciprocal body A♣ is convex,

so K◦ =
(
A♣
)◦◦

= A♣. In the same way we have T ◦ = B♣. Hence K◦ and T ◦ are both flowers, so by the
previous Proposition K◦ + T ◦ is a flower. If we write K◦ + T ◦ = C♣ then (K◦ + T ◦)

◦
= C ′ ∈ Rn.

A similar phenomenon holds regarding sections and projections. If A ⊆ Rn is a flower and E is a subspace of
Rn then we already saw in Proposition 17(4) that A∩E is a flower in E, and in fact (ProjE K)

♣
= K♣ ∩E.

It is less clear, but still true, that ProjE A is a flower as well:

Proposition 39. If A ⊆ Rn is a flower and E is a subspace of Rn, then ProjE A is a flower in E.

Proof. If A = K♣ then A =
⋃
x∈K Bx, and then

ProjE A =
⋃
x∈K

ProjE Bx.

Each projection ProjE Bx is a Euclidean ball in E that contains the origin, so by Proposition 34 is a flower.
It follows that ProjE A is a flower as well.

The last operation we would like to mention which preserves the class of flowers is the convex hull:

Proposition 40. If A ⊆ Rn is a flower so is conv (A), and in fact conv
(
K♣

)
= (K ′′)

♣
.

Proof. Using the notation of Section 3 we have (K ′′)
♣

= ♣ ◦ ♣ ◦ ♣K. Since ◦♣K = K ′ is obviously a
reciprocal body, Theorem 9 implies that ♣ ◦ ♣K is convex. Hence by Proposition 28 parts (4) and (2) we
have

(K ′′)
♣

= ♣ ◦ (♣ ◦ ♣K) = Φ♣ ◦ ♣K = ◦ ◦ ♣K = conv
(
K♣

)
.
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More structure on the class of flowers can be obtained by transferring known results about the class Kn0 of
convex bodies. First let us define the “inverse flower” operation:

Definition 41. The core of a flower A is defined by

A−♣ = {x ∈ Rn : Bx ⊆ A} .

In a recent paper ([14]) Zong defined the core of a convex body T to be the Alexandrov body A [rT ]. This
is equivalent to our definition, though we apply it to flowers and not to convex bodies. The core operation
−♣ is indeed the inverse operation to ♣: For every K ∈ Kn0 we have(

K♣
)−♣

=
{
x ∈ Rn : [0, x]♣ ⊆ K♣

}
= {x ∈ Rn : [0, x] ⊆ K} = K.

Equivalently, for every flower A the set K = A−♣ is a convex body and K♣ = A.

We already referred in the introduction to a characterization of the polarity from [1]. Essentially the same
result can also be formulated in terms of order-preserving transformations. We say that a map T : Kn0 → Kn0
is order-preserving if A ⊆ B if and only if T (A) ⊆ T (B). Then the theorem states that the only order-
preserving bijections T : Kn0 → Kn0 are the (pointwise) linear maps. From here we deduce:

Proposition 42. Let T : Fn → Fn be an order-preserving bijection on the class of flowers. Then there

exists an invertible linear map u : Rn → Rn such that T (A) =
(
uA−♣

)♣
.

Proof. Define S : Kn0 → Kn0 by S(K) =
(
T
(
K♣

))−♣
. Then S is easily seen to be an order preserving bijection

on the class Kn0 . Hence by the above-mentioned result from [1] there exists a linear map u : Rn → Rn such

that S(K) = uK. It follows that T (A) =
(
uA−♣

)♣
like we wanted.

Note that even though S in the proof above is linear, the map T is in general not even a pointwise map. In
fact, it can be quite complicated – it does not preserve convexity for example.

With the same proof one may also characterize all dualities on flowers, i.e. all order-reversing involutions:

Proposition 43. Let T : Fn → Fn be an order-reversing involution on the class of flowers. Then there

exists an invertible symmetric linear map u : Rn → Rn such that T (A) =
((
uA−♣

)◦)♣
.

We conclude this section with a nice example. Let B be any Euclidean ball with 0 ∈ B. By Proposition 34 we
know that B = K♣ for some body K. What is K? It turns out that K is an ellipsoid. As (uK)♣ = u

(
K♣

)
for every orthogonal matrix u, the body K is clearly a body of revolution. Hence the problem is actually
2-dimensional and we may assume that n = 2.

Up to rotation, every ellipse has the form

E =

{
(x− x0)2

a2
+

(y − y0)
2

b2
≤ 1

}
⊆ R2

for a > b > 0. Recall that (x0, y0) is the center of the ellipse. If we write c =
√
a2 − b2 then p1 = (x0 + c, y0)

and p2 = (x0 − c, y0) are the foci of E, and

E =
{
q ∈ R2 : |q − p1|+ |q − p2| = 2a

}
.

The number e =
√

1− b2

a2 is the eccentricity of e. Obviously every ellipse in R2 is uniquely determined by

its center, its eccentricity and one of its focus points. We then have:
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Proposition 44. Let E ⊆ R2 be an ellipse with center at p ∈ R2, one focus point at 0 and eccentricity e.
Then:

1. E♣ is a ball with center p and radius |p|e .

2. E′ is an ellipse with center p̃ = − e2

1−e2 ·
p
|p|2 , a focus point at 0 and eccentricity e.

Proof. By rotating and scaling it is enough to assume that the center of the ellipse is at p = (1, 0). We then
have

E =

{
(x, y) :

(x− 1)2

a2
+

y2

a2 − 1
≤ 1

}
,

where a = 1
e > 1. To prove (1), consider the centered ellipse Ẽ = E − p. For such ellipses it is well-known

that hẼ(x, y) =
√
a2x2 + (a2 − 1)y2, and then

hE(x, y) = hẼ(x, y) + h{(1,0)}(x, y) =
√
a2x2 + (a2 − 1)y2 + x

(note that we consider hẼ and hE not as functions on Sn−1, but as 1-homogeneous functions defined on all
of Rn). Therefore

E♣ =

{
(x, y) : |(x, y)| ≤ rE♣

(
(x, y)

|(x, y)|

)}
=
{

(x, y) : hE(x, y) ≥ |(x, y)|2
}

=
{

(x, y) :
√
a2x2 + (a2 − 1)y2 + x ≥ x2 + y2

}
=
{

(x, y) : (x− 1)
2

+ y2 ≤ a2
}
,

where the last equality follows from simple algebraic manipulations. We see that E♣ is indeed a ball with

center p = (1, 0) and radius |p|e = a.

To prove (2), recall that E′ =
(
E♣
)◦

. Like before, if B̃ = B ((0, 0), a) is the centered ball then

hE♣(x, y) = hB̃(x, y) + h{(1,0)}(x, y) = a
√
x2 + y2 + x.

Hence

E′ =
(
E♣
)◦

= {(x, y) : hE♣(x, y) ≤ 1}

=
{

(x, y) : a
√
x2 + y2 + x ≤ 1

}
.

Again, some algebraic manipulations will give us the (unpleasant) canonical form

E′ =

(x, y) :

(
x+ 1

a2−1

)2

(
a

a2−1

)2 +
y2

1
a2−1

≤ 1

 .

Hence the center of E′ is indeed at
(
− 1
a2−1 , 0

)
=
(
− e2

1−e2 , 0
)

= − e2

1−e2 ·
p
|p|2 . The distance from the center

to the foci is √(
a

a2 − 1

)2

− 1

a2 − 1
=

1

a2 − 1
=

e2

1− e2
,

so one of the focus points is indeed the origin. Finally, the eccentricity of E′ is indeed√√√√√1−
1

a2−1(
a

a2−1

)2 =
1

a
= e.
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This proposition also gives a nice example of the addition ⊕ defined in (4.2): For every x1, x2, . . . , xm ∈ Rn
the body

⊕m
i=1[0, xi] is an ellipsoid. Indeed, we have(

m⊕
i=1

[0, xi]

)♣
=

m∑
i=1

[0, xi]
♣ =

m∑
i=1

Bxi

which is a non-centered Euclidean ball, so by the last computation
⊕m

i=1[0, xi] is an ellipsoid of revolution
with one focus point at 0.

5 Geometric Inequalities

In this final section we discuss several inequalities involving flowers and reciprocal bodies. We begin by
showing that the various operations constructed in this paper are convex maps. A theorem of Firey ([4])
implies that the polarity map ◦ : Kn0 → Kn0 is convex: For every K,T ∈ Kn0 and every 0 ≤ λ ≤ 1 one has

((1− λ)K + λT )
◦ ⊆ (1− λ)K◦ + λT ◦.

We then have:

Theorem 45. The map ♣ : Kn0 → Fn is convex. The map Φ is convex when applied to arbitrary star bodies.

Proof. For any two star bodies A and B we have rA+B ≥ rA + rB . Hence for K,T ∈ Kn0 and 0 ≤ λ ≤ 1 we
have

r((1−λ)K+λT )♣ = h(1−λ)K+λT = (1− λ)hK + λhT

= (1− λ)rK♣ + λrT♣ ≤ r(1−λ)K♣+λT♣ .

It follows that ((1− λ)K + λT )
♣ ⊆ (1− λ)K♣ + λT♣ so ♣ is convex.

For the convexity of Φ fix star bodies A and B and 0 ≤ λ ≤ 1, and note that

rΦ((1−λ)A+λB) =
1

r(1−λ)A+λB
≤ 1

(1− λ)rA + λrB

(∗)
≤ 1− λ

rA
+

λ

rB

= (1− λ)rΦ(A) + λrΦ(B) ≤ r(1−λ)Φ(A)+λΦ(B),

where the inequality (∗) is the convexity of the map x 7→ 1
x on (0,∞).

Convexity of the reciprocal map is more delicate. For general convex bodies K,T ∈ Kn0 the inequality

((1− λ)K + λT )
′ ⊆ (1− λ)K ′ + λT ′

is false. It becomes true if we further assume that K and T are reciprocal bodies: If K ∈ Rn then K♣ is
convex, which means that 1

r
K♣

= 1
hK

is the support function of a convex body. Hence hK′ = hA[1/hK ] = 1
hK

and similarly hT ′ = 1
hT

. Therefore we indeed have

h((1−λ)K+λT )′ ≤
1

h(1−λ)K+λT
=

1

(1− λ)hK + λhT
≤ 1− λ

hK
+

λ

hT

= (1− λ)hK′ + λhT ′ = h(1−λ)K′+λT ′ .

However, one cannot really say that ′ is a convex map on Rn in the standard sense, since the class Rn is not
closed with respect to the Minkowski addition. In Equation (4.2) of the previous section we defined a new
addition ⊕ which does preserve the class Rn, and the following holds:
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Proposition 46. The reciprocal map ′ : Rn → Rn is convex with respect to the addition ⊕.

Proof. For every K,T ∈ Rn we have

hK⊕T = r(K⊕T )♣ = rK♣+T♣ ≥ rK♣ + rT♣ = hK + hT = hK+T ,

so K ⊕ T ⊇ K + T . Hence by the convexity of ◦ we have

((1− λ)K ⊕ λT )
′

=
[
((1− λ)K ⊕ λT )

♣
]◦

=
(
(1− λ)K♣ + λT♣

)◦
⊆ (1− λ)

(
K♣

)◦
+ λ

(
T♣
)◦ ⊆ (1− λ)K ′ ⊕ λT ′.

We now turn our attention to numerical inequalities involving flowers. To each body K we can associate
a new numerical parameter which is

∣∣K♣∣∣, the volume of the flower of K. For example, it was explained
in Remark 7 why this volume is important in stochastic geometry. We then have the following reverse
Brunn-Minkowski inequality:

Proposition 47. For every K,T ∈ Kn0 one has
∣∣∣(K + T )

♣
∣∣∣ 1n ≤ ∣∣K♣∣∣ 1n +

∣∣T♣∣∣ 1n .

Proof. Recall that for every star body A in Rn we may integrate by polar coordinates and deduce that
|A| = |Bn2 | ·

∫
Sn−1 rA(θ)ndσ(θ). Here σ denotes the uniform probability measure on the sphere. It follows

that for every K ∈ Kn0 we have ∣∣K♣∣∣ = |Bn2 | ·
∫
Sn−1

hK(θ)ndσ(θ). (5.1)

In other words,
∣∣K♣∣∣ 1n is proportional to ‖hK‖Ln(Sn−1), where Ln(Sn−1) is the relevant Lp space. Therefore

the required inequality is nothing more than Minkowski’s inequality (the triangle inequality for Lp-norms,
in our case for p = n).

Similarly, we have an analogue of Minkowski’s theorem on the polynomiality of volume. Recall that for every
fixed convex bodies K1,K2, . . . ,Km we have

|λ1K1 + λ2K2 + · · ·+ λmKm| =
m∑

i1,i2,...,in=1

V (Ki1 ,Ki2 , . . . ,Kin) · λi1λi2 · · ·λin ,

Where we take the coefficients V (Ki1 ,Ki2 , . . . ,Kin) to be symmetric with respect to a permutation of the
arguments. The number V (K1,K2, . . . ,Kn) is called the mixed volume of K1,K2, . . . ,Kn and is fundamental
to convex geometry. We then have:

Proposition 48. Fix K1,K2, . . . ,Km ∈ Kn0 . Then∣∣∣(λ1K1 + λ2K2 + · · ·+ λmKm)
♣
∣∣∣ =

m∑
i1,i2,...,in=1

V ♣(Ki1 ,Ki2 , . . . ,Kin) · λi1λi2 · · ·λin ,

where the coefficients are given by

V ♣(K1,K2, . . . ,Kn) = |Bn2 | ·
∫
Sn−1

hK1(θ)hK2(θ) · · ·hKn(θ)dσ(θ). (5.2)

The proof is immediate from formula (5.1). Moreover, the new ♣-mixed volumes satisfy a reverse (elliptic)
Alexandrov-Fenchel type inequality:
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Proposition 49. For every K1,K2, . . . ,Kn ∈ Kn0 we have

V ♣(K1,K2,K3, . . . ,Kn)2 ≤ V ♣ (K1,K1,K3, . . .Kn) · V ♣ (K2,K2,K3, . . . ,Kn) ,

as well as

V ♣(K1,K2, . . . ,Kn) ≤

(
n∏
i=1

∣∣∣K♣i ∣∣∣
) 1

n

.

Proof. Apply Hölder’s inequality to formula (5.2).

These results and their proofs are very closely related to the dual Brunn–Minkowski theory which was
developed by Lutwak in [6].

Next we would like to compare the ♣-mixed volume V ♣(K1,K2, . . . ,Kn) with the classical mixed volume
V (K1,K2, . . . ,Kn). Since

∣∣T♣∣∣ ≥ |T | for every T ∈ Kn0 , one may conjecture that V ♣(K1,K2, . . . ,Kn) ≥
V (K1,K2, . . . ,Kn). This is not true however, as the next example shows:

Example 50. Let {e1, e2} be the standard basis of . Define K = [−e1, e1] and T = [−e2, e2]. Then
|λK + µT | = 4λµ which implies that V (K,T ) = 2.

On the other hand by Formula (5.2) we have

V ♣(K,T ) =
∣∣B2

2

∣∣ · ∫
S1

hK(θ)hT (θ)dσ(θ) = π · 1

2π

∫ 2π

0

|cos θ| |sin θ|dθ = 1,

so V (K,T ) > V ♣(K,T ).

However, in one case we can compare the ♣-mixed volume with the classical one. Recall that for K ∈ Kn0
and 0 ≤ i ≤ n the i’th quermassintegral of K is defined by

Wi(K) = V

K,K, . . . ,K︸ ︷︷ ︸
n−i times

, Bn2 , B
n
2 , . . . , B

n
2︸ ︷︷ ︸

i times

 .

Kubota’s formula then states that

Wn−i(K) =
|Bn2 |∣∣Bi2∣∣ ·

∫
G(n,i)

|ProjE K|dµ(E),

where G(n, i) is the set of all i-dimensional linear subspaces of Rn, and µ is the Haar probability measure
on G(n, i).

We define the ♣-quermassintegrals in the obvious way as W♣i (K) = V ♣(K, . . . ,K︸ ︷︷ ︸
n−i

, Bn2 , . . . , B
n
2︸ ︷︷ ︸

i

). We then

have a Kubota–type formula:

Theorem 51. For every K ∈ Kn0 and every 0 ≤ i ≤ n we have

W♣n−i(K) =
|Bn2 |∣∣Bi2∣∣ ·

∫
G(n,i)

∣∣∣(ProjE K)
♣
∣∣∣dµ(E),

where µ is the Haar probability measure on G(n, i) and the flower map ♣ on the right hand side is taken
inside the subspace E.

19



Proof. If T ⊆ Rm then integrating in polar coordinates we have |T | = |Bm2 | ·
∫
Sm−1 rT (θ)mdσm(θ), where σm

denotes the Haar probability measure on Sm−1. Therefore∫
G(n,i)

∣∣∣(ProjE K)
♣
∣∣∣dµ(E) =

∫
G(n,i)

∣∣K♣ ∩ E∣∣dµ(E) =
∣∣Bi2∣∣ ∫

G(n,i)

∫
SE

rK♣(θ)idσE(θ)dµ(E)

=
∣∣Bi2∣∣ ∫

Sn−1

rK♣(θ)idσn(θ) =
∣∣Bi2∣∣ ∫

Sn−1

hK(θ)idσn(θ)

=

∣∣Bi2∣∣
|Bn2 |

W♣n−i(K).

And as a corollary we obtain:

Corollary 52. For every K ∈ Kn0 and 0 ≤ i ≤ n we have W♣i (K) ≥Wi(K).

Proof. We have

Wn−i(K) =
|Bn2 |∣∣Bi2∣∣ ·

∫
G(n,i)

|ProjE K|dµ(E) ≤ |B
n
2 |∣∣Bi2∣∣ ·

∫
G(n,i)

∣∣∣(ProjE K)
♣
∣∣∣dµ(E) = W♣n−i(K).

It is well known that Wn−1(K) is (up to normalization) the mean width of K. Hence from formula (5.2)
we immediately have W♣n−1(K) = Wn−1(K). The Alexandrov-Fenchel inequality and its flower version from
Proposition 49 then imply that(

|K|
|Bn2 |

) 1
n

≤
(
W1(K)

|Bn2 |

) 1
n−1

≤ · · · ≤
(
Wn−2(K)

|Bn2 |

) 1
2

≤ Wn−1(K)

|Bn2 |

=
W♣n−1(K)

|Bn2 |
≤

(
W♣n−2(K)

|Bn2 |

) 1
2

≤ · · · ≤

(
W♣1 (K)

|Bn2 |

) 1
n−1

≤

(∣∣K♣∣∣
|Bn2 |

) 1
n

which gives another proof of the relation W♣i (K) ≥Wi(K).

We conclude this paper with a remark regarding the distance of flowers and reciprocal bodies to the Euclidean
ball. We restrict ourselves to bodies which are compact and contain 0 at their interior. The geometric distance
between such bodies K and T is

d(K,T ) = inf

{
b

a
: aK ⊆ T ⊆ bK

}
.

Recall that a body K is centrally symmetric if K = −K.

Proposition 53. 1. If a flower A is centrally symmetric and convex, then d (A,Bn2 ) ≤ 2.

2. If K ∈ Rn is centrally symmetric, then d(K,Bn2 ) ≤ 2.

Proof. To prove the first assertion, write A = K♣ and let R = maxx∈K |x|. Since K ⊆ R · Bn2 we have
A ⊆ R ·Bn2 .

On the other hand, fix x ∈ K with |x| = R and note that Bx = [0, x]♣ ⊆ K♣ = A. Since K is centrally
symmetric we also have −x ∈ K, so B−x ⊆ A. Hence

R

2
·Bn2 ⊆ conv (Bx ∪B−x) ⊆ A,
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so d (A,Bn2 ) ≤ 2.

For the second assertion, fix a centrally symmetric reciprocal body K and define T = K ′. Then K = T ′ =(
T♣
)◦

. Since T is a reciprocal body T♣ is convex, so d
(
T♣, Bn2

)
= d(K◦, Bn2 ) ≤ 2. Since polarity preserves

the geometric distance we also have d (K,Bn2 ) ≤ 2.

Note that these results are false if K is not centrally symmetric. For example, we already saw in Proposition
34 that if B is any ball with 0 ∈ B then B is a flower. But if 0 is close to ∂B then d (B,Bn2 ) can be made
arbitrarily large.
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