
ar
X

iv
:1

81
2.

08
71

5v
2 

 [
m

at
h.

R
A

] 
 4

 J
ul

 2
02

3

DIFFERENTIAL IDENTITIES AND POLYNOMIAL GROWTH OF THE

CODIMENSIONS

CARLA RIZZO, RAFAEL BEZERRA DOS SANTOS, AND ANA CRISTINA VIEIRA

Abstract. Let A be an associative algebra over a field F of characteristic zero and let L be a Lie algebra
over F . If L acts on A by derivations, then such an action determines an action of its universal enveloping
algebra U(L) and in this case we refer to A as algebra with derivations or L-algebra.

Here we give a characterization of the ideal of differential identities of finite dimensional L-algebras A in
case the corresponding sequence of differential codimensions cLn(A), n ≥ 1, is polynomially bounded. As a
consequence, we also characterize L-algebras with multiplicities of the differential cocharacter bounded by
a constant.

1. Introduction

This paper deals with differential identities of algebras over a field F of characteristic zero. More precisely,
if A is an associative algebra over F and L is a Lie algebra acting on A by derivations, then this action
can be naturally extended to an action of the universal enveloping algebra U(L) of L and in this case we
say that A is an algebra with derivations or an L-algebra. Then a differential identity of the L-algebra A is
a polynomial in non-commuting variables xd = d(x), d ∈ U(L), vanishing in A. Such identities have been
studied in later years (see for example [4, 10, 14, 19, 21]) and they are a natural generalization of polynomial
identities of algebras.

It is well-known that in the ordinary case the polynomial identities satisfied by a given associative algebra
A can be measured through its sequence of codimensions cn(A), n ≥ 1, i.e., where cn(A) is the dimension of
the space Pn of multilinear polynomials in n variables modulo the polynomial identities Id(A) of A. Such a
sequence was introduced by Regev in [18] and, in characteristic zero, gives an actual quantitative measure
of the identities satisfied by a given algebra. The most important feature of the sequence of codimensions
proved in [18] is that if A is an associative algebra satisfying a non trivial polynomial identity (also called
PI-algebra), then cn(A) is exponentially bounded. Later Kemer in [13] showed that such codimensions are
either polynomially bounded or grow exponentially (no intermediate growth is allowed). In the late nineties

Giambruno and Zaicev (see [5, 6]) proved that if A is PI-algebra then the limit exp(A) := limn→∞
n
√

cn(A)
exists and is always a non-negative integer called the exponent of A.

One of the main advantages of the exponent is to have an integral scale allowing us classify the PI-algebras
according to their exponent. Much effort has been put into the study PI-algebras with “slow” codimension
growth. It is well known that exp(A) ≤ 1 if and only if cn(A) is polynomially bounded. Various descriptions
of such algebras were given (see for example [7, 12, 13]). Similar results were also proved in the setting of
varieties of graded algebras and algebras with involution (see for example [2, 3, 15, 22]).

Inspired by the above results it is natural to expect that similar conclusions hold for varieties of L-
algebras. In fact, in analogy with the ordinary case, one defines the sequence of differential codimensions
cLn(A), n ≥ 1, of an L-algebra A and the growth of the L-variety V = varL(A), i.e., variety of algebras with
derivations, is the growth of the sequence cLn(V) = cLn(A), n = 1, 2, . . . . In case A is a finite dimensional

L-algebra, Gordienko in [9] proved that the limit expL(A) := limn→∞
n
√

cLn(A) exists and is a non-negative
integer called L-exponent of A. As a consequence, it follows that the differential codimensions of a finite
dimensional algebra are either polynomially bounded or grow exponentially.

Our purpose here is to characterize L-varieties V having polynomial growth and we reach our goal in the
setting of varieties generated by finite dimensional L-algebras A. In this frame we prove that expL(A) ≤ 1
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if and only if exp(A) ≤ 1. As a consequence, we get that cLn(A) is polynomially bounded if and only if cn(A)
is polynomially bounded. Notice that this result was known before only in case L is a finite dimensional
semisimple Lie algebra (see [10, Theorem 15]).

Similarly to the ordinary case, another two useful invariants can be attached to an algebra with derivations
A: the sequence of differential cocharacter χL

n(A), n ≥ 1, where χL
n(A) is the character of the Sn-module

of multilinear differential polynomials in n variables modulo the differential identities IdL(A) of A, and the
differential colength sequence lLn (A), n ≥ 1, where lLn (A) is the sum of the corresponding multiplicities of
χL
n(A).
It is well-known that, in case A is a finite dimensional L-algebra, the multiplicities of the differential

cocharacter are polynomially bounded (see [9]). Thus it seems interesting also to characterize the differential
cocharacter sequence when stronger conditions hold for the multiplicities. In this perspective, motivated by
the results for ordinary algebras [16], for graded algebras [1, 17] and for algebras with involution [20, 23],
we characterize the differential identities when the corresponding multiplicities are bounded by a constant.
In particular we prove that the multiplicities in χL

n(A) are bounded by a constant if and only if differential
codimensions of A grow polynomially, and, consequently, we get another characterization of L-varieties of
polynomial growth. Also as a direct consequence of this results we have that cLn(A) is polynomially bounded
if and only if lLn (A) is bounded by a constant.

We give also two others characterizations of L-varieties V of polynomial growth: the first one in terms of
the structure of an algebra generating V and the second one in terms of the shape of the diagrams of the
irreducible Sn-characters appearing with non-zero multiplicity in the nth differential cocharacter of V .

2. Preliminaries

Throughout this paper F will denote a field of characteristic zero and L a Lie algebra over F . Let A be
an associative algebra over F . Recall that a derivation of A is a linear map δ : A→ A such that

δ(ab) = δ(a)b + aδ(b), for all a, b ∈ A.

In particular, an inner derivation induced by a ∈ A is the derivation ada : A → A of A defined by ada(b) =
[a, b] = ab− ba, for all b ∈ A. The set of all derivations of A is a Lie algebra denoted by Der(A), and the set
ad(A) of all inner derivations of A is a Lie subalgebra of Der(A).

If L acts on A by derivations, then by the Poincaré-Birkhoff-Witt Theorem, the L-action on A can be
naturally extended to an U(L)-action, where U(L) is the universal enveloping algebra of L. In this way A
becomes a left U(L)-module and we call it algebra with derivations or L-algebra.

Given a basis B = {hi : i ∈ I} of U(L), we let F 〈X |L〉 be the free associative algebra over F with free

formal generators xhi

j , i ∈ I, j ∈ N. For all h =
∑

i∈I αihi ∈ U(L), where only a finite number of αi ∈ F are

non-zero, we set xh :=
∑

i∈I αix
hi . We let U(L) act on F 〈X |L〉 by setting

γ(x
hi1

j1
x
hi2

j2
. . . x

hin

jn
) = x

γhi1

j1
x
hi2

j2
. . . x

hin

jn
+ · · ·+ x

hi1

j1
x
hi2

j2
. . . x

γhin

jn
,

where γ ∈ L and x
hi1

j1
x
hi2

j2
. . . x

hin

jn
∈ F 〈X |L〉. In this way F 〈X |L〉 has a structure of L-algebra. We write

xi := x1i , 1 ∈ U(L), and we set X = {x1, x2, . . . }. Then the algebra F 〈X |L〉 is called the free associative
algebra with derivations on the countable set X over F and its elements are called differential polynomials.

Let now A be an L-algebra. A polynomial f(x1, . . . , xn) ∈ F 〈X |L〉 is a differential identity of A, or an
L-identity of A, if f(a1, . . . , an) = 0 for all ai ∈ A, and, in this case, we write f ≡ 0. We denote by

IdL(A) = {f ∈ F 〈X |L〉 : f ≡ 0 on A},

the TL-ideal of differential identities of A, i.e., it is an ideal of F 〈X |L〉 invariant under the U(L)-action. In

characteristic zero IdL(A) is completely determined by its multilinear polynomials and for every n ≥ 1 we
denote by

PL
n = span{x

hi1

σ(1) . . . x
hin

σ(n) : σ ∈ Sn, hi ∈ B}

the space of multilinear differential polynomials of degree n. Notice that in case A is a finite dimensional
L-algebra, U(L) acts on A as a suitable finite dimensional subalgbera of the endomorphism algebra of A,
then we may assume that PL

n is finite dimensional and similarly to the ordinary case we can define the
following invariants.
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Let us consider the space

PL
n (A) =

PL
n

PL
n ∩ IdL(A)

, n ≥ 1.

Then its dimension cLn(A) = dimF P
L
n (A) is called the nth differential codimension of A. Moreover recall

that the symmetric group Sn acts on the left on the space PL
n as follows: for σ ∈ Sn, σ(x

h
i ) = xhσ(i). Since

PL
n ∩ IdL(A) is stable under this Sn-action, then PL

n (A) is a left Sn-module and its character, denoted by
χL
n(A), is called the nth differential cocharacter of A. Since F is of characteristic zero, we can write

χL
n(A) =

∑

λ⊢n

mλχλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to λ andmλ ≥ 0 is the corresponding
multiplicity.

Another numerical sequence that can be attached to a L-algebraA is the sequence of differential colengths.
If χL

n(A) =
∑

λ⊢nmλχλ is the nth differential cocharacter of A, then the nth differential colength of A is
defined as

lLn (A) =
∑

λ⊢n

mλ.

Notice that the theory of differential identities generalizes the ordinary theory of polynomial identities.
In fact, any algebra A can be regarded as L-algebra by letting L act on A trivially, i.e., L acts on A as the
trivial Lie algebra and U(L) ∼= F . Moreover, since U(L) is an algebra with unit, we can identify in a natural

way Pn with a subspace of PL
n . Hence Pn ⊆ PL

n and Pn∩Id(A) = Pn∩IdL(A). If we consider the Sn-modulo

Pn(A) =
Pn

Pn ∩ Id(A)
, n ≥ 1, then its dimension cn(A) = dimF Pn(A) is the nth (ordinary) codimension of

A and its character χ(A) is the nth (ordinary) cocharacter of A. Since charF = 0, by complete reducibility
we can write

χn(A) =
∑

λ⊢n

m̄λχλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to λ and m̄λ ≥ 0 is the corresponding
multiplicity. As a consequence we have the following relations.

Remark 1. For all n ≥ 1,

1. cn(A) ≤ cLn(A);

2. m̄λ ≤ mλ, for any λ ⊢ n.

Recall that if A is an L-algebra, then the variety of algebras with derivations generated by A is denoted
by varL(A) and is called L-variety. The growth of V = varL(A) is the growth of the sequence cLn(V) = cLn(A),
n ≥ 1, then we say that the L-variety V has polynomial growth if cLn(V) is polynomially bounded. In what
follow we shall characterize L-variety of polynomial growth.

We conclude this section by recalling a basic result concerning the sequence of cocharacters which can be
easily proved.

Remark 2. Let A and B be two L-algebras such that

χL
n(A) =

∑

λ⊢n

mλχλ and χL
n(B) =

∑

λ⊢n

m′
λχλ.

Then the direct sum A⊕B is also an L-algebra where the L-action is induced by the L-action by derivations
defined on A and B. Moreover, if

χL
n(A⊕B) =

∑

λ⊢n

m̃λχλ

is the decomposition of the nth differential cocharacter of A⊕B, then m̃λ ≤ mλ +m′
λ, for all λ ⊢ n.
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3. Finite dimensional L-algebras and varieties of polynomial growth

In this section we shall characterize finite dimensional algebras with derivations generating varieties of
polynomial growth.

We start by recalling some results on the structure of finite dimensional algebras with derivations.
Let L be a Lie algebra over F and A an L-algebra over F . An ideal (subalgebra) I of A is an L-ideal

(subalgebra) if it is an ideal (subalgebra) such that IL ⊆ I, where IL denotes the set of all h(a), for all a ∈ I
and h ∈ U(L). The algebra A is L-simple if A2 6= {0} and A has no non-trivial L-ideals.

Let A be a finite dimensional L-algebra over F . By Wedderburn-Malcev Theorem for associative algebras
(see [8, Theorem 3.4.3]), we can write A as a direct sum of vector spaces

A = Ass + J,

where Ass is a maximal semisimple subalgebra of A and J = J(A) is the Jacobson radical of A. Notice that
J is always an L-ideal of A (see [11, Theorem 4.2]), but it may not exist an L-invariant Wedderburn-Malcev
decomposition, i.e., it may happen that AL

ss * Ass, for every maximal semisimple subalgebra Ass of A.
However, we remark that the Wedderburn-Malcev decomposition always exists in case L is a semisimple Lie
algebra (see [10, Theorem 4]). In what follows we give an example of an L-algebra that has no L-invariant
Wedderburn-Malcev decomposition.

Example 3. Let UT δ
2 be the L-algebra of 2 × 2 upper triangular matrices where L acts on it as the 1-

dimensional Lie algebra spanned by the inner derivation δ = ade12 . Suppose that UT δ
2 = Ass + J for some

maximal semisimple subalgebra Ass of UT δ
2 such that AL

ss ⊆ Ass. Since δ = ade12 , J = spanF {e12} and
AL

ss ⊆ Ass, it follows that [Ass, J ] ⊆ Ass. On the other hand , since J is an ideal of UT δ
2 , [Ass, J ] ⊆ J .

Thus it follows that [Ass, J ] ⊆ Ass ∩ J = {0}. But since J = spanF {e12}, we have that [J, J ] = {0}. This
says that the center of UT δ

2 contains J , that is no true. Therefore AL
ss * Ass, for all maximal semisimple

subalgebra Ass of UT δ
2 . Thus UT δ

2 has no L-invariant Wedderburn-Malcev decomposition.

In [9], Gordienko proved that if A is a finite dimensional L-algebra, then the sequence of differential

codimensions cLn(A) is exponentially bounded. Moreover, the author proved that the limit lim
n→∞

n

√

cLn(A)

exists and is a non-negative integer. In this case, this limit is called the L-exponent of A and is denoted by
expL(A). In particular, we have the following.

Theorem 4. [9, Theorems 1 and 3] Let A be a finite dimensional algebra over a field of characteristic zero.
If L is a Lie algebra acting on A by derivations, then there exist constants C1, C2, r1, r2, C1 > 0, and a
positive integer d such that

C1n
r1dn ≤ cLn(A) ≤ C2n

r2dn, for all n ∈ N.

Hence, expL(A) = d. Moreover, If J = J(A) is the Jacobson radical of A and A/J = A1 ⊕ · · · ⊕Am, then

d = max{dim(Ai1 ⊕Ai2 ⊕ · · · ⊕Aik) : A
L
i1
A+AL

i2
A+ · · ·A+AL

ik
6= {0}},

where ir 6= is, 1 ≤ r, s ≤ n, A+ = A + F · 1 and Ai is a subalgebra of A (not necessary L-invariant) such
that π(Ai) = Ai, for all 1 ≤ i ≤ m, where π : A→ A/J is the natural projection.

As a consequence we have the following.

Corollary 5. If A is a finite dimensional L-algebra, the sequence cLn(A), n ≥ 1, either is polynomially
bounded or growth exponentially.

Lemma 6. Let A be a finite dimensional L-algebra over an algebraically closed field F of characteristic zero
such that, as ordinary algebra, A = A1 ⊕ · · · ⊕Am + J with A1

∼= . . . ∼= Am
∼= F . If there exist 1 ≤ i, k ≤ m,

i 6= k, such that AL
i A

+AL
k 6= {0}, then AiJAk 6= {0}.

Proof. We assume, as we may, that i = 1 and k = 2. Let a ∈ A+, ei ∈ Ai with e2i = ei, i = 1, 2, such
that h1(e1)ah2(e2) 6= 0, for some h1, h2 ∈ U(L). If h1, h2 ∈ spanF {1U(L)}, then we are done. So let us
suppose that h1 /∈ spanF {1U(L)} and h2 ∈ spanF {1U(L)}, the other cases will follow analogously. Without
loss generality we may suppose that h1 = γ1 . . . γr, γi ∈ L, i = 1, . . . , r, r ≥ 1, and h2 = 1U(L). We proceed
by induction on r.

4



If r = 1, then h1 = γ1 ∈ L, and since e21 = e1, we have that h1(e1)ae2 = e1h1(e1)ae2 + h1(e1)e1ae2 6= 0.
Thus if e1h1(e1)ae2 6= 0, we are done since h1(e1)a ∈ J . If h1(e1)e1ae2 6= 0, then a ∈ J and we are done. So
let r > 1. Hence by definition of derivation and the idempotence of e1 we have that

h1(e1) = h1(e1)e1 + e1h1(e1) +
∑

I,K

hI(e1)hK(e1),

where I = {i1, . . . , ip} and K = {k1, . . . , kt} are two disjoint subsets of {1, . . . , r} such that i1 < · · · < ip,
p < r, and k1 < · · · < kt, t < r, respectively, hI = γi1 · · · γip and hK = γk1

· · · γkt
. Since h1(e1)ae2 6= 0, then

h1(e1)e1ae2 + e1h1(e1)ae2 +
∑

I,K

hI(e1)hK(e1)ae2 6= 0.

If e1h1(e1)ae2 6= 0 or h1(e1)e1ae2 6= 0, then we are done. So let us assume that there exist I and K such
that hI(e1)hK(e2)ae2 6= 0. Then it follows that hK(e2)ae2 6= 0 and by inductive hypothesis the proof is
complete.

�

If we denote by exp(A) = lim
n→∞

n
√

cn(A) the ordinary exponent of A, then

exp(A) = max{dim(Ai1 ⊕ · · · ⊕Aik) : Ai1JAi2J . . . JAik 6= {0}},

where J = J(A) is the Jacobson radical of A and A = A1 ⊕ · · · ⊕ Am + J is the Wedderburn-Malcev
decomposition of A as ordinary algebra (see [8, Chapter 6]). Thus as an immediate consequence of Lemma
6 and Theorem 4 we have the following.

Theorem 7. Let L be a Lie algebra over a field F of characteristic zero and A be a finite dimensional
L-algebra over F . Then the following conditions are equivalent:

1. cLn(A) is polynomially bounded;

2. expL(A) ≤ 1;

3. cn(A) is polynomially bounded;

4. exp(A) ≤ 1.

As in the ordinary case, we have the following remark (see [8, Lemma 7.2.1]).

Remark 8. If A and B are L-algebras, then A⊕B has an induced structure of L-algebra and cLn(A⊕B) ≤
cLn(A) + cLn(B). As a consequence, expL(A⊕B) = max{expL(A), expL(B)}.

Recall that if A and B are two L-algebras, then we say that A is TL-equivalent to B, and we write
A ∼TL

B, if IdL(A) = IdL(B). Notice that given an L-algebra A, A is TL-equivalent to B if and only if
varL(A) = varL(B).

Lemma 9. Let F be a field of characteristic zero, F̄ the algebraic closure of F and A a finite dimensional L-
algebra over F̄ , where L is a Lie algebra over F̄ acting on A by derivations. Suppose that dimF̄ A/J(A) ≤ 1.
Then A ∼TL

B for some finite dimensional L-algebra B over F with dimF B/J(B) ≤ 1.

Proof. Since dimF̄ A/J(A) ≤ 1, it follows that either A ∼= F̄ + J(A) or A = J(A) is a nilpotent algebra.
Now we take an arbitrary basis {v1, . . . , vp} of J(A) over F̄ and we let B be the L-algebra over F generated
by B = {1F̄ , v1, . . . , vp} or B = {v1, . . . , vp} according as A ∼= F̄ + J(A) or A = J(A), respectively.

Since A is finite dimensional over F̄ and J(A) is a nilpotent L-ideal of A, B is finite dimensional over
F . Therefore B is a finite dimensional L-algebra and dimF B/J(B) = dimF̄ A/J(A) ≤ 1. Now notice that,

as F -algebras, IdL(A) ⊆ IdL(B). On the other hand, if f is a multilinear differential identity of B then f

vanishes on B. But B is a basis of A over F̄ . Hence IdL(B) ⊆ IdL(A) and A ∼TL
B. �

Next theorem gives a characterization of L-varieties of polynomial growth in terms of the structure of the
generating algebra.

Theorem 10. Let L be a Lie algebra over a field F of characteristic zero and A be a finite dimensional
L-algebra over F . Then cLn(A), n ≥ 1, is polynomially bounded if and only if A ∼TL

B1 ⊕ · · · ⊕ Bm, where
B1, . . . , Bm are finite dimensional L-algebras over F such that dimBi/J(Bi) ≤ 1 for all 1 ≤ i ≤ m.
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Proof. Suppose first that A ∼TL
B where B = B1⊕· · ·⊕Bm, with B1, . . . , Bm finite dimensional L-algebras

over F such that dimBi/J(Bi) ≤ 1, for all 1 ≤ i ≤ m. Then, by Theorem 4, cLn(Bi) is polynomially bounded,
for all 1 ≤ i ≤ m, and cLn(A) = cLn(B) ≤ cLn(B1) + · · ·+ cLn(Bm). Thus cLn(A) is polynomially bounded.

Conversely, suppose that cLn(A) is polynomially bounded. Assume first that F is algebraically closed. Let
A = Ass + J where Ass is a semisimple subalgebra and J = J(A) is the Jacobson radical of A. By Theorem
4, it follows that Ass = A1⊕· · ·⊕Al with A1

∼= · · · ∼= Al
∼= F and AL

i A
+AL

k = {0}, for all 1 ≤ i, k ≤ l, i 6= k.
Set B1 = A1 + J, . . . , Bl = Al + J . Since AL

i ⊆ Ai + J for all 1 ≤ i ≤ l, and J is an L-ideal of A, Bi is an
L-subalgebra of A, for all 1 ≤ i ≤ l. We claim that

IdL(A) = IdL(B1) ∩ · · · ∩ IdL(Bl) ∩ IdL(J).

Clearly IdL(A) ⊆ IdL(B1) ∩ · · · ∩ IdL(Bl) ∩ IdL(J). Now let f ∈ IdL(B1) ∩ · · · ∩ IdL(Bl) ∩ IdL(J) and
suppose that f is not a differential identity of A. We may clearly assume that f is multilinear. Moreover,
by choosing a basis of A as the union of a basis of Ass and a basis of J , it is enough to evaluate f on this
basis. Let u1, . . . , ut be elements of this basis such that f(u1, . . . , ut) 6= 0. Since f ∈ IdL(J), at least one
element, say us, does not belong to J . Then us ∈ Br, for some r. Recalling that AL

i A
L
k ⊆ AL

i A
+AL

k = {0},
for all i 6= k, we must have that u1, . . . , ut ∈ Ar ∪J . Thus u1, . . . , ut ∈ Ar + J = Br and this contradicts the
fact that f is a differential identity of Br. This prove the claim. The proof is completed by noticing that
IdL(B1 ⊕ · · · ⊕Bl ⊕ J) = IdL(B1) ∩ · · · ∩ IdL(Bl) ∩ IdL(J) and dimBi/J(Bi) = 1, for all 1 ≤ i ≤ l.

In case F is arbitrary, we consider the algebra Ā = A ⊗F F̄ , where F̄ is the algebraic closure of F and
Ā = A ⊗F F̄ is endowed with the induced L-action (a ⊗ α)γ = aγ ⊗ α, for γ ∈ L, a ∈ A and α ∈ F̄ .
Clearly, over F , varL(A) = varL(Ā). Moreover, the differential codimensions of A over F coincide with the
differential codimensions of Ā over F̄ . Thus, by hypothesis, it follows that the differential codimensions of Ā
are polynomially bounded. But then, by the first part of the proof, Ā ∼TL

B1 ⊕ · · · ⊕Bm where B1, . . . , Bm

are finite dimensional L-algebras over F̄ such that dimF̄ Bi/J(Bi) ≤ 1, for all 1 ≤ i ≤ m. By Lemma 9 there
exist finite dimensional L-algebras C1, . . . , Cm over F such that, for all i, Ci ∼TL

Bi and dimF Ci/J(Ci) ≤ 1.

It follows that IdL(A) = IdL(Ā) = IdL(B1 ⊕ · · · ⊕Bm) = IdL(C1 ⊕ · · · ⊕ Cm) and we are done. �

4. Differential cocharacter of varieties of polynomial growth

In this section we give other characterizations of L-varieties V of polynomial growth through the behaviour
of their sequences of cocharacters.

Theorem 11. Let L be a Lie algebra over a field F of characteristic zero and let A be a finite dimensional
L-algebra over F . Then cLn(A), n ≥ 1, is polynomially bounded if and only if there exists a constant q such
that

χL
n(A) =

∑

λ⊢n
|λ|−λ1<q

mλχλ

and J(A)q = {0}.

Proof. Notice that the decomposition of χL
n(A) into irreducible characters does not change under extensions

of the base field. This fact can be proved following word by word the proof for the ordinary case (see for
example [8, Theorem 4.1.9]). Also if F̄ is the algebraic closure of F and J(A)q = {0}, then J(A⊗F F̄ )

q = {0}.
Therefore we may assume, without loss of generality, that F is an algebraically closed field.

Suppose cLn(A), n ≥ 1, is polynomially bounded and let λ be a partition of n such that |λ| − λ1 ≥ q and

mλ 6= 0. Then there exist f ∈ PL
n and a tableau Tλ such that eTλ

f /∈ IdL(A). Let λ′ = (λ′1, . . . , λ
′
t) be the

conjugate partition of λ. Then eTλ
f is a linear combination of polynomials each alternating on t disjoint

sets of λ′1, . . . , λ
′
t variables, respectively. We shall reach a contradiction by proving that these polynomials g

vanish in A.
Let A = A1 ⊕ · · · ⊕Am + J , where A1, . . . , Am are simple algebras and J = J(A) is the Jacobson radical,

then by Theorem 4, dimAi = 1 and AL
i A

+AL
k = {0} for all 1 ≤ i, k ≤ m, i 6= k. In order to get a non-zero

value of g we must replace at most one variable with elements of a single component, say, Ai, and the
others variables with elements of J . Since dimAi = 1, we can substitute at most one element of Ai in each
alternating set. Thus we can substitute at most λ1 elements from Ai. It follows that to get a non-zero value,
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we must substitute at least |λ| − λ1 elements from J , but |λ| − λ1 ≥ q, and we reach a contradiction since
Jq = {0}.

Suppose now that χL
n(A) =

∑

λ⊢n
|λ|−λ1<q

mλχλ. Since |λ| − λ1 < q, then λ1 > n− q and by the hook formula

dλ = degχλ =
n!

(n− q)!
≤ nq. Thus by [9, Theorem 5], it follows that

cLn(A) =
∑

λ⊢n
|λ|−λ1<q

mλdλ ≤ nq
∑

λ⊢n
|λ|−λ1<q

mλ ≤ Cnq′

for some constant C, q′, and the claim is proved. �

Next we shall give us a characterization of finite dimensional L-algebras with multiplicities of the nth
differential cocharacter bounded by a constant.

We start by proving the following result.

Lemma 12. Let A be a finite dimensional L-algebra over an algebraically closed field such that dimF A/J(A) ≤
1. Then there exists a constant C such that in χL

n(A) =
∑

λ⊢nmλχλ

mλ ≤ C,

for all n ≥ 1.

Proof. Let A = Ass + J where Ass is a semisimple subalgebra and J = J(A) is the Jacobson radical of A.
Since dimF A/J(A) ≤ 1, it follows that either Ass

∼= F or A = J(A) is a nilpotent algebra. Clearly if A is a
nilpotent algebra, we have nothing to prove. So let assume that Ass

∼= F .
Let now d = dimF A and {a1, . . . , ad} be a basis of A where a1 ∈ Ass and a2, . . . , ad ∈ J . If q is the

smallest positive integer such that Jq = {0}, we shall prove that mλ ≤ dqdq for all λ ⊢ n.
Notice that since dimF A/J(A) ≤ 1, by Theorem 4, cLn(A) is polynomially bounded. Then, by Theorem

11, we get that mλ 6= 0 if and only if h(λ) ≤ q, where h(λ) is the height of the partition λ ⊢ n, i.e., the
number of the rows of λ.

So let λ ⊢ n be a partition such that h(λ) ≤ q. Consider the Young tableau Tλ of shape λ and the
corresponding minimal essential idempotent eTλ

. Then it is well-known that

eTλ
=

∑

σ∈RTλ

τ∈CTλ

(sgn τ)στ

where RTλ
and CTλ

are the subgroups of row and column permutations of Tλ, respectively.
For all 1 ≤ j ≤ q, let Xj be the set of variables whose indices lies in the ith row of Tλ. Thus, for any

f ∈ PL
n , the polynomial eTλ

f is symmetric in each set X1, . . . , Xq and its variables are partitioned into the
disjoint union of q subsets X1 ∪ · · · ∪Xq. Notice that Xj may be empty if h(λ) < j < q.

Notice that for any ρ ∈ Sn, ρeTλ
6= 0. Then it follows that, if eTλ

f 6= 0, where f is a multilinear differential
polynomial, then eTλ

f and ρeTλ
f generate the same irreducible Sn-module.

Let f1, . . . , fm be a multilinear differential polynomial generating in PL
n (A) different isomorphic irreducible

Sn-modules corresponding to the same partition. By the above, one can choose ρ1, . . . , ρm ∈ Sn and a
decomposition X = X1 ∪ · · · ∪Xq such that ρ1f1, . . . , ρmfm are simultaneously symmetric on Xj , 1 ≤ j ≤ q.
Thus without loss of generality, we may assume that f1, . . . , fm satisfy this condition.

Now assume by contradiction that m = mλ > C = dqdq and prove that A satisfies a differential identity
of the type

(1) f = β1f1 + · · ·+ βmfm,

where β1, . . . , βm ∈ F are not all zero. Then we shall reach a contradiction since this will say that f1, . . . , fm
are linearly dependent modulo IdL(A).

Since f is multilinear, in order to verify that f ≡ 0, it is sufficient to verify that f has only zero value on
elements of a basis of A. First let us define substitutions of special kind. Consider the non-negative integers
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αj
1, . . . , α

j
d such that, for all 1 ≤ j ≤ q,

d
∑

i=1

αj
i = |Xj |.

We say that an evaluation ϕ has type

(αj
1, . . . , α

j
d)

for 1 ≤ j ≤ q, if we replace the variables from X in the following way: for fixed j, 1 ≤ j ≤ q, we evaluate
the first αj

1 variables from Xj by elements a1, the next αj
2 in a2, and so on up to the last αj

d variables from
Xj in ad.

In order to get a non-zero value of f in (1), any substitution should satisfy the following condition

d
∑

i=2

αj
i ≤ q − 1

for all 1 ≤ j ≤ q, since Jq = {0}. Moreover, by definition we have also the following restriction

αj
1 = |Xj | −

d
∑

i=2

αj
i

for all 1 ≤ j ≤ q. Then for any 1 ≤ j ≤ q, the number of distinct d-tuples (αj
1, . . . , α

j
d) is less than q

d. Thus

it follows that the total number N of distinct type of special substitutions is less than qdq.
Let us consider all these N distinct special substitutions ϕ1, . . . , ϕN and construct the matrix (bij), where,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ N ,

ϕj(fi) = bij .

This matrix has m rows and N columns of elements of A. Since m > dqdq > dN , the rows of (bij) are
linearly dependent. Thus there exist β1, . . . βm ∈ F not all zero such that

m
∑

i=1

βibij = 0

for all 1 ≤ j ≤ N , i.e., the polynomial f =
∑m

i=1 βifi is zero under all special substitution ϕ1, . . . , ϕN .

Therefore it is enough to show that this implies that f ∈ IdL(A).

To this end, let ψ be any substitution by elements of the basis {a1, . . . , ad}. Let lj1 be the number of

variables in Xj mapped by ψ in a1; let l
j
2 the number of variables in Xj mapped by ψ in a2, and so on. Since f

is simultaneously symmetric on X1, . . . , Xq, we get that, for all ρ ∈ Sn such that ρ(X1) = X1, . . . ρ(Xq) = Xq,

ψ(f) = ψ(ρf) = (ψρ)f.

In particular, we can choose ρ ∈ Sn such that ψρ is the special substitution of the type (lj1, . . . , l
j
d). By the

above, ψ(f) = (ψρ)f = 0 and f ∈ IdL(A), a contradiction. This complete the proof. �

In case A is a finite dimensional associative algebra we have the following result (see [8, Sections 7.2 and
7.4]).

Theorem 13. Let A be a finite dimensional algebra over F . Then the following conditions are equivalent:

1. cn(A) is polynomially bounded;

2. There exists a constant C such that in χn(A) =
∑

λ⊢n m̄λχλ

m̄λ ≤ C,

for all n ≥ 1;

3. there exists a constant k such that ln(A) =
∑

λ⊢n m̄λ ≤ k, for all n ≥ 1.

We are now in the position to prove the following result.
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Theorem 14. Let L be a Lie algebra over a field F of characteristic zero, A be a finite dimensional L-algebra
over F and χL

n(A) =
∑

λ⊢nmλχλ be its nth differential cocharacter. Then cLn(A) is polynomially bounded if
and only if there exists a constant C such that, for all λ ⊢ n, the inequality

mλ ≤ C

holds.

Proof. Since the decomposition of χL
n(A) into irreducible characters do not change by extending the base

field, we may assume that F is algebraically closed. Suppose now that cLn(A), n ≥ 1, is polynomially
bounded, then the proof follows by Theorem 10, Remark 2 and Lemma 12.

Conversely, let χL
n(A) =

∑

λ⊢nmλχλ be the nth differential cocharacter of A and assume that there exists
a constant C such that, for all λ ⊢ n, the inequality mλ ≤ C holds. Then if χn(A) =

∑

λ⊢n m̄λχλ is the nth
(ordinary) cocharater of A, by Remark 1 we have that m̄λ ≤ C for all λ ⊢ n. Thus by Theorems 7 and 13
we are done. �

As an important consequence, we shall prove the following corollary that relates the growth of the differ-
ential codimension sequence of a finite dimensional L-algebra A with its differential colength.

Corollary 15. Let L be a Lie algebra over a field F of characteristic zero and let A be a finite dimensional
L-algebra over F . Then cLn(A), n ≥ 1, is polynomially bounded if and only if lLn (A) ≤ k, for some constant
k and for all n ≥ 1.

Proof. Assume first that cLn(A), n ≥ 1, is polynomially bounded. By the previous theorem all non-zero
multiplicities mλ in

χL
n(A) =

∑

λ⊢n

mλχλ

are bounded by a constant C. On the other hand, by Theorem 11, n− λ1 ≤ q as soon as mλ 6= 0, where q
is such that J(A)q = {0}. Since the number of partition n− λ1 ≤ q is less than q2, we get

lLn (A) =
∑

λ⊢n

mλ ≤ C · q2 = const.

Conversely, suppose that lLn (A) is bounded by a constant. If χn(A) =
∑

λ⊢n m̄λχλ is the nth (ordinary)
cocharacter of A, then as a consequence of Remark 1 and Theorem 13 we have that ln(A) =

∑

λ⊢n m̄λ is
bounded by a constant. Thus by theorems 7 and 13, cLn(A) must be polynomially bounded. �

We now collect the results obtained in the following theorem which gives a complete characterization of
the L-variety generated by a finite dimensional algebras with derivations of polynomial growth.

Theorem 16. Let L be a Lie algebra over a field F of characteristic zero and let A be a finite dimensional
L-algebra over F . Then the following conditions are equivalent:

1. cLn(A) ≤ αnt, for some constant α, t, for all n ≥ 1;

2. expL(A) ≤ 1;

3. cn(A) ≤ αnt, for some constant α, t, for all n ≥ 1;

4. exp(A) ≤ 1;

5. A ∼TL
B1⊕· · ·⊕Bm, with B1, . . . , Bm finite dimensional L-algebras over F such that dimBi/J(Bi) ≤

1 for all 1 ≤ i ≤ m;

6. There exists a constant q such that

χL
n(A) =

∑

λ⊢n
|λ|−λ1<q

mλχλ

and J(A)q = 0;

7. There exists a constant C such that in χL
n(A) =

∑

λ⊢nmλχλ

mλ ≤ C

for all n ≥ 1;
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8. there exists a constant k such that lLn (A) =
∑

λ⊢nmλ ≤ k for all n ≥ 1.
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Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida
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