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1. Introduction

This paper concerns the study of the behaviour in time of some quantum

states describing the predissociation process of a molecular systems in the

Born Oppenheimer approximation. Recall that in this context, the predis-

sociation is connected with a resonant state of the system coming from an

internal conversion from an excited state towards a dissociative state when

the Born-Oppenheimer parameter h is small. We refer to a recent paper by

the same authors [BrMa] and references therein for more details.

Here we consider the critical case where the reference energy E = 0 corre-

sponds to a crossing of the confining electronic energy curve and the disso-

ciative one. We suppose that the system has only one such crossing point.

Despite the absence of tunnelling for E, resonances exist [FMW1]. They are

of the form ρ(h) = λ(h) +O(h
4
3 ) where λ(h) is an eigenvalue (embedded in

the continuous spectrum) near 0 of the decoupled operator, and their widths

satisfy Im ρ(h) = O(h
5
3 ) as h ∼ 0 (actually, under some assumption of non

degeneracy of the coupling operator, one also know that Imρ(h) < 0: see

[FMW1, FMW2]). Therefore, an attention must be paid to the dynamics of

certain states having an energy close to that of the resonance.

As in the case studied in [BrMa], the initial state φ is the normalized eigen-

vector associated with a simple eigenvalue λ(h) of the decoupled operator.

Then, we show that for h small enough, g a cut-off function supported near

λ(h), and t ∈ R+, the survival probability satisfies,

(1.1) Aφ = (e−itHg(H)φ, φ) = e−itρ(h)b(φ, h) + r(t, φ, h),

where b(φ, h) = 1 + O(h
1
3 ) and r(t, φ, h) = h

2
3O(〈ht〉−∞) (here we use the

notation 〈s〉 := (1+s2)
1
2 ). We actually prove this result in a situation where

the inter-level coupling is a general first-order differential operator. In the

physical model the coupling operator is a vector-field (see [FMW2]), and

we then expect a higher order estimate on the long time part of Aφ i.e.

r(t, φ, h) = h
4
3O(〈ht〉−∞). This fact will be proved in a forthcoming paper

[BrMa3].
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In contrast with previous papers on similar estimates (see, e.g., [CGH, CoSo,

Her, Hu2, JeNe]), here we also focus on the precise behaviour of the remain-

der term r(t, φ, h). We prove,

r(t, φ, h) = αh
2
3 e−itλ(h)F (ht) +O(h〈ht〉−∞),

where α behaves like a constant, and F is an explicit analytic function on R+

(depending on g) that satisfies F (0) 6= 0, F (λ) = O(〈λ〉−∞) (see Theorem

2.1 for the precise statement).

In view of (1.1), it turns out that the critical time tc, within which the

contribution of the exponential part of Aφ is preponderant with respect to

the remainder term, satisfies,

tc ≥
2

3

| ln(h)|
|Im ρ|

.

(Recall that Imρ(h) = O(h
5
3 ).) This means that for time t ≤ tc the strong

resonance effects persist, while they disappear for larger times. (Note that

for the physical model, we have Im ρ(h) = O(h
7
3 ) [FMW2], and we can

expect that tc ≥ 4
3
| ln(h)|
|Im ρ| .)

Concerning the proof, in addition to the techniques introduced in [FMW1]

we also use some special kinds of semiclassical function spaces that permit

us to considerably facilitate the estimates on the remainder term r(t, φ, h).

Let us describe the content of the paper. In section 2 we give the assumptions

and the main result. The strategy of the proof involving the distortion

theory will be described in section 3. Section 4 and 5 are devoted to obtain

convenient estimates on the resolvent operators. In the section 6, 7, 8 and

9 we prove estimates on the remainder term in the r.h.s of (1.1). The

coefficient b(h) is studied in section 9.

2. Assumptions and main result

We consider the semiclassical 2× 2-matrix Schrödinger operator,

H =

(
P1 hW
hW ∗ P2

)
; Pj = h2D2

x + Vj(x)

where, as in [FMW1, FMW2], we assume,
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Assumption (A1) V1(x), V2(x) are real-analytic on R and extend to holo-

morphic functions in the complex domain,

Γ = {x ∈ C; |Imx| < ε0〈Rex〉} ; 〈Rex〉 := (1 + |Rex|2)
1
2 ,

where ε0 > 0 is a constant.

Assumption (A2)For j = 1, 2, Vj admits limits as Rex → ±∞ in Γ, and

they satisfy,

lim
Re x→−∞

x∈Γ

V1(x) > 0 ; lim
Re x→−∞

x∈Γ

V2(x) > 0 ;

lim
Re x→+∞

x∈Γ

V1(x) > 0 ; lim
Re x→+∞

x∈Γ

V2(x) < 0.

Assumption (A3) One has,

V ′1(x∗) =: −τ0 < 0, V ′1(0) =: τ1 > 0, V ′2(0) =: −τ2 < 0,

and there exists a negative number x∗ < 0 such that,

• V1 > 0 and V2 > 0 on (−∞, x∗);
• V1 < 0 < V2 on (x∗, 0);

• V2 < 0 < V1 on (0,+∞).

Assumption (A4) W (x, hDx) is a first order differential operator

W (x, hDx) = a0(x) + ia1(x)hDx,

where a0(x) and a1(x) are analytic and bounded in Γ, and real for real x.

x*
0

x

V (x)

V (x)1

2

Figure 1. The two potentials
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In this situation, we know from [FMW1] that the resonances of H that are

inside Dh(C0) := [−C0h
2/3, C0h

2/3]− i[0, C0h] (C0 > 0 arbitrary) are of the

form,

(2.1) ρk(h) = ek(h) +O(h
4
3 ) ; Im ρk(h) = O(h

5
3 ),

with k ∈ N and

ek(h) :=
−2A(0) + (2k + 1)πh

2A′(0)
; A(E) :=

∫ x1(E)

x∗1(E)

√
E − V1(t) dt,

where x∗1(E) (respectively x1(E)) is the unique solution of V1(x) = E close

to x∗ (respectively close to 0). In addition, at each such ek(h) inside

[−C0h
2
3 , C0h

2
3 ], corresponds a unique resonance ρk(h) of H that satisfies

(2.2). On the other hand, it is also well known (see, e.g., [HeRo]) that

at each such ek(h) inside [−C0h
2
3 , C0h

2
3 ], corresponds a unique eigenvalue

Ek(h) of P1, such that,

(2.2) Ek(h) = ek(h) +O(h2),

From now on, we fix such an eigenvalue, that is, we choose once for all an

application,

h 7→ λ0(h) ∈ Sp(P1) ∩ [−C0h
2
3 , C0h

2
3 ],

to which corresponds a unique application,

h 7→ ρ0(h) ∈ Res(H) ∩ Dh(C0),

such that,

ρ0(h)− λ0(h) = O(h
4
3 ).

We also denote by ϕ0 the real-valued normalized eigenfunction of P1 asso-

ciated with λ0 (so that Wϕ0 and W ∗ϕ0 are real-valued, too), and we set,

φ := (ϕ0, 0) ∈ L2(R)⊕ L2(R).

In particular, there exists some complex number c0 = c0(h) ∼ 1 such that,

for x ≤ 0,

ϕ0 = c0h
− 1

6u−1,L(λ0).

(Actually, by computing the L2-norm of u−1,L(λ0) on IL, one can see that

c2
0 = 2

π

∫ 0
x∗

dx√
λ0−V1(x)

+O(h
1
3 ).)

We also fix some cutoff function g0 ∈ C∞0 ((−δ1, δ1); [0, 1]) such that g = 1

on [−δ0, δ0] with 0 < δ0 < δ1 <
π
A′(0) , so that, if we set,

(2.3) g(λ) := g0

(
λ− λ0

h

)
,
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then, for h small enough, λ0 is the only eigenvalue of P1 contained in the

support of g.

We are interested in the survival amplitude associated with g(H)
1
2φ,

Aφ := 〈e−itHg(H)φ, φ〉.

In order to state our result, we define,

(2.4) F (λ) := −2i

∫
γ0

e−iλzg0(Rez)

z2
dz,

where γ0 is the oriented complex path,

γ0 := (−∞,−δ0] ∪ {δ0e
iα ; α ∈ [π, 2π]} ∪ [δ0,+∞).

In particular, let us observe that F is analytic, and that F (0) 6= 0 (indeed,

one can compute F (0) = 4iαδ−1
1 with α ≥ 1). In addition, by integration

by parts, we also see that F (λ) = O(|λ|−∞) as λ→ ±∞.

In the sequel, we denote by Ai and Bi the standard Airy functions, and for

any function f = f(s) we set f̌(s) := f(−s)

Our main result is,

Theorem 2.1. Under assumptions (A1)-(A4), one has,

(2.5) Aφ = e−itρ0b(h) + h
2
3 q0(t, h) +O(h〈ht〉−∞)

uniformly for h > 0 small enough and t ∈ R, with,

(2.6) b(h) = 1 +O(h1/3);

(2.7) q0(t, h) = 4a0(0)2c2
0e
−itλ0

[
A0(λ0h

− 2
3 )
]2
F (ht),

where F is defined in (2.4), and A0 is the function,

A0(s) := τ
− 1

6
1 τ

− 1
6

2 (τ1 + τ2)−
1
3 Ǎi

((
τ1 + τ2

τ1τ2

) 2
3

s

)
.

3. Preliminaries

As in [BrMa, Section 5], we have,

(3.1) Aφ = e−itρ0b(φ, h) + r(t, φ, h),

where b(φ, h) is the residue at ρ0 of the meromorphic function

z 7→ −〈Rθ(z)φθ, φ−θ〉,
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where, Rθ(z) := Uθ(Hθ − z)−1U−1
θ is the distorted resolvent of H, and

φθ = (ϕθ0, 0) := Uθφ is the analytic distortion of φ, where Uθ is the analytic

distorsion given by,

Uθφ(x) = φ(x+ iθν(x)),

with ν ∈ C∞(R;R), ν = 0 on (−∞, x∞] for some x∞ > 0, ν(x) = x for x

large enough (see [FMW1, Section 3]).

Further, r(t, φ, h) is given by,

(3.2)

r(t, φ, h) :=
1

2iπ

∫
γ−

e−itzg(Re z) (〈Rθ(z)φθ, φ−θ〉 − 〈R−θ(z)φ−θ, φθ〉) dz,

where γ− is a complex contour parametrized by Re z, that coincides with R
away from {g = 1}, is included in {Im z < 0} when Re z is inside {g = 1},
and is chosen in such a way that it stays below ρ0 and at a distance ∼ h

from it.

Then, setting v = (v1, v2) := Rθ(z)ϕθ, and denoting by P θj , Wθ, W
∗
θ the

various distorted operators, we have,{
(P θ1 − z)v1 + hWθv2 = ϕθ0;

(P θ2 − z)v2 + hW ∗θ v1 = 0,

and thus, for z ∈ γ−,

(3.3)


v1 =

1

λ0 − z
ϕθ0 − h(P θ1 − z)−1Wθv2;

(1−Mθ(z))v2 =
−h

λ0 − z
(P θ2 − z)−1W ∗θ ϕ

θ
0,

with,

(3.4) Mθ(z) := h2(P θ2 − z)−1W ∗θ (P θ1 − z)−1Wθ.

In the next sections, we will prove that, for h small enough, we have ‖Mθ(z)‖ <
1 (see (5.3)). Assuming for a while this result, we conclude from (3.3) that

we have,

(3.5)
v1 =

1

λ0 − z
ϕθ0 +

h2

λ0 − z
∑
`≥0

(P θ1 − z)−1WθMθ(z)
`(P θ2 − z)−1W ∗θ ϕ

θ
0;

(1−Mθ(z))v2 =
∑
`≥0

−h
λ0 − z

Mθ(z)
`(P θ2 − z)−1W ∗θ ϕ

θ
0,
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As a consequence, since 〈Rθ(z)φθ, φ−θ〉 = 〈v1, ϕ
−θ
0 〉, and 〈ϕθ0, ϕ

−θ
0 〉 = ‖ϕ0‖2 =

1, we obtain,

(3.6)

〈Rθ(z)φθ, φ−θ〉

=
1

λ0 − z
+

h2

(λ0 − z)2

∑
`≥0

〈Mθ(z)
`(P θ2 − z)−1W ∗θ ϕ

θ
0,W

∗
−θϕ

−θ
0 〉.

Inserting into (3.2), we finally obtain,

(3.7) r(t, φ, h) =
h2

2iπ

∑
`≥0

∫
γ−

e−itzg(Re z)

(λ0 − z)2
T`(z)dz,

with

(3.8)
T`(z) := 〈Mθ(z)

`(P θ2 − z)−1W ∗θ ϕ
θ
0,W

∗
−θϕ

−θ
0 〉

− 〈M−θ(z)`(P−θ2 − z)−1W ∗−θϕ
−θ
0 ,W ∗θ ϕ

θ
0〉.

Therefore,

(3.9) r(t, φ, h) = r0(t, φ, h) + r1(t, φ, h) + r2(t, φ, h)

with,

(3.10)

r0(t, φ, h) :=
h2

2iπ

∫
γ−

e−itzg(Re z)

(λ0 − z)2
T0(z)dz

r1(t, φ, h) :=
h2

2iπ

∫
γ−

e−itzg(Re z)

(λ0 − z)2
T1(z)dz

r2(t, φ, h) :=
h2

2iπ

∑
`≥2

∫
γ−

e−itzg(Re z)

(λ0 − z)2
T`(z)dz,

and, by an additional change of contour of integration (that brings γ− onto

R), we also obtain,

r0(t, φ, h)

=
h2

2iπ
lim
ε→0+

∫
R

e−itzg(z)

(λ0 + iε− z)2
〈[(P2 − z − i0)−1 − (P2 − z + i0)−1]W ∗ϕ0,W

∗ϕ0〉dz,

that is, by Stone’s formula,

(3.11)

r0(t, φ, h) = h2〈e−itP2g(P2)(P2 − λ0 − i0)−1W ∗ϕ0, (P2 − λ0 + i0)−1W ∗ϕ0〉.

The next sections are devoted to the estimates on ‖M±θ(z)‖ and on r0(t, φ, h),

r1(t, φ, h) and r2(t, φ, h).

4. Fundamental solutions

For z ∈ Dh(C0) and j = 1, 2, let u±j,L(z) = u±j,L(z, x) be the global WKB

solutions to (Pj − z)u = 0 on IL := (−∞, 0] given, e.g., in [FMW1] (in
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particular, u−j,L(z) decays exponentially in x at −∞, while u+
j,L(z) grows

exponentially). Let also u±j,R(z) = u±j,R(z, x) be the global WKB solutions

to (Pj − z)u = 0 on a complex neighborhood of IR := [0,+∞), such that

u−j,R(z) decays exponentially in x at infinity on IθR := {x + iθν(x) ; x ≥ 0}
(θ > 0 fixed small enough).

In particular, we see in that u+
2,R(z) decays exponentially in x at infinity on

I−θR = IθR.

We set,

(4.1)

Kj,L(z)[v](x) :=
u+
j,L(z, x)

h2W[u+
j,L(z), u−j,L(z)]

∫ x

−∞
u−j,L(z, t)v(t) dt

+
u−j,L(z, x)

h2W[u+
j,L(z), u−j,L(z)]

∫ 0

x
u+
j,L(z, t)v(t) dt,

where v is in the space C0
b (IL) of bounded continuous functions on IL;

(4.2)

K+
j,R(z)[v](x) :=

u−j,R(z, x)

h2W[u−j,R(z), u+
j,R(z)]

∫ x

0
u+
j,R(z, t)v(t) dt

+
u+
j,R(z, x)

h2W[u−j,R(z), u+
j,R(z)]

∫ +∞

x
u−j,R(z, t)v(t) dt,

where v is in the space C0
b (I+

R ) of bounded continuous functions on I+
R := IθR,

and the integrals run over I+
R (see [FMW1, Section 3.2]);

(4.3)

K−j,R(z)[v](x) :=
u+
j,R(z, x)

h2W[u+
j,R(z), u−j,R(z)]

∫ x

0
u−j,R(z, t)v(t) dt

+
u−j,R(z, x)

h2W[u+
j,R(z), u−j,R(z)]

∫ +∞

x
u+
j,R(z, t)v(t) dt,

where v is in the space C0
b (I−R ) of bounded continuous functions on I−R :=

I−θR , and the integrals run over I−R .

Then, as in [FMW1, Section 3], we see that we have,

(Pj − z)Kj,L(z) = 1 on C0
b (IL);

(Pj − z)K±j,R(z) = 1 on C0
b (I±R ).

In the sequel, we will need the following result:
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Proposition 4.1.

(4.4) ‖K2,L‖L(L2(IL)) + ‖K±1,R‖L(L2(I±R )) = O(h−
2
3 );

(4.5) ‖K1,L‖L(L2(IL)) + ‖K±2,R‖L(L2(I±R )) = O(h−
7
6 )

Proof. The proofs on IL and on I±R are very similar, so we just give the one

on IL. Since W[u+
j,L(z), u−j,L(z)] ∼ h−

2
3 (j = 1, 2), by (4.1) and the Schur

Lemma (see, e,g,, [Ma2]), it is enough to estimate,

h−
4
3 sup
x∈IL

∫
jL

|Uj,L(t, x)|dt

with

Uj,L(t, x) := u+
j,L(x)u−j,L(t)1t≤x + u−j,L(x)u+

j,L(t)1x≤t.

When x ≤ x∗ − δ with δ > 0 fixed arbitrarily small, we know (see, e.g.,

[FMW1]) that U1,L(t, x) = O(h
1
3 e−c|x−t|/h) for some constant c > 0. Hence,

h−
4
3 sup
x≤x∗−δ

∫
IL

|U1,L(t, x)|dt = O(1).

When x∗−δ ≤ x ≤ 0, then
∫ x∗−2δ
−∞ |U1,L(t, x)|dt is exponentially small, while,

for t ∈ [x∗ − 2δ, 0], we have,

U1,L(t, x) = O(h
1
6 |t|−

1
4 |t− x∗|−

1
4 ).

We deduce,

h−
4
3 sup
x∗−δ≤x≤0

∫
IL

|U1,L(t, x)|dt = O(h−
7
6 ),

and thus,

(4.6) ‖K1,L‖L(L2(IL)) = O(h−
7
6 ).

Concerning K2,L, the same estimate U2,L(t, x) = O(h
1
3 e−c|x−t|/h) is valid for

x ≤ −δ (δ > 0 arbitrarily small, c = c(δ) > 0). Therefore,

h−
4
3 sup
x≤−δ

∫
IL

|U2,L(t, x)|dt = O(1).

Now, if x ∈ [−δ,−Ch
2
3 ] (with a constant C > 0 sufficiently large), we can

write,

h−
4
3

∫
IL

|U2,L(t, x)|dt =h−
4
3

∫ −2δ

−∞
|U2,L(t, x)|dt+ h−

4
3

∫ −Ch 2
3

−2δ
|U2,L(t, x)|dt

+ h−
4
3

∫ 0

−Ch
2
3

|U2,L(t, x)|dt,
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where the first term of the right hand side is exponentially small, while the

last term is O(h−
2
3 ). The middle term can be estimated by,

h−
4
3

∫ −Ch 2
3

−2δ
|U2,L(t, x)|dt = O(h−

4
3

+ 1
6 )

∫ −Ch 2
3

−2δ

e−|t
3/2−x3/2|/h

|t|
1
4

dt,

and first dividing the integral into
∫ x
−2δ +

∫ −Ch 2
3

x , then making the change

of variable t 7→ −(ht)
2
3 , we obtain,

h−
4
3

∫ −Ch 2
3

−2δ
|U2,L(t, x)|dt =O(h−

4
3

+ 1
6

+ 2
3
− 1

6 )e−|x|
3
2 /h

∫ |x| 32 /h
C

3
2

et√
t
dt

+O(h−
2
3 )e|x|

3
2 /h

∫ (2δ)
3
2 /h

|x|
3
2 /h

e−t√
t
dt,

and thus,

h−
4
3

∫ −Ch 2
3

−2δ
|U2,L(t, x)|dt = O(h−

2
3 ).

Finally, if x ∈ [−Ch
2
3 , 0], the same argument (but this time without dividing

the integral
∫ −Ch 2

3

−2δ ) directly gives h−
4
3

∫ −Ch 2
3

−2δ |U2,L(t, x)|dt = O(h−
2
3 ), and

the estimate on ‖K2,L‖L(L2(IL)) follows. Similar arguments (but with x∗

substituted by some large enough value of x) also apply on I±R , and complete

the proof of the proposition. �

5. Resolvents

We consider the space S of functions ϕ ∈ C∞(R) that are analytic on

[x∞,+∞) and admit a holomorphic extension (still denoted by ϕ) near

Γδ := {x ∈ C ; Re x ≥ x∞, |Im x| ≤ δRe x} for some δ > 0, and that

are exponentially small at infinity both on R− and on Γδ.

In particular, for all ϕ ∈ S, we have K+
1,R(z)[ϕ] = K−1,R(z)[ϕ] =: K1,R(z)[ϕ]

on R+ ∪ Γδ.

For z ∈ Dh(C0)∩{±Im z > 0} and j = 1, 2, we denote by R±j (z) = (Pj−z)−1

the resolvent of Pj in z, referred to as the incoming (respectively out-going)

resolvent of Pj in z.

Then, for ϕ ∈ S, the next Proposition will show that R±j (z)ϕ extend ana-

lytically to z ∈ Dh(C0) (z /∈ Sp(P1) in the case j = 1), and we use the same

notations for their extensions. Obviously, in the case j = 1, one also has

R+
1 (z)ϕ = R−1 (z)ϕ for z ∈ Dh(C0)\Sp(P1).
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Finally, for ϕ ∈ S, we denote by ϕL its restriction to IL and by ϕR its

restriction to R+ ∪ Γδ.

Proposition 5.1. (i) For all ϕ ∈ S, z ∈ Dh(C0)\Sp(P1), and x ≤ 0, one

has,

R1(z)ϕ(x) = K1,L(z)[ϕL](x) + αL(z)[ϕ]u−1,L(z, x),

with,

αL(z)[ϕ] = αL,L(z)[ϕL] + αL,R(z)[ϕR],

αL,L(z)[ϕL] :=
h−2W(u+

1,L(z), u−1,R(z))

W(u−1,R(z), u−1,L(z))W(u+
1,L(z), u−1,L(z))

∫ 0

−∞
u−1,L(z, t)ϕL(t)dt

αL,R(z)[ϕR] :=
h−2

W(u−1,R(z), u−1,L(z))

∫ +∞

0
u−1,R(z, t)ϕR(t)dt.

(ii) For all ϕ ∈ S, z ∈ Dh(C0)\Sp(P1), and x ∈ R+ ∪ Γδ, one has,

R1(z)ϕ(x) = K1,R(z)[ϕR](x) + αR(z)[ϕ]u−1,R(z, x),

with,

αR(z)[ϕ] = αR,L(z)[ϕL] + αR,R(z)[ϕR],

αR,L(z)[ϕL] :=
h−2

W(u−1,R(z), u−1,L(z))

∫ 0

−∞
u−1,L(z, t)ϕL(t)dt

αR,R(z)[ϕR] :=
h−2W(u−1,L(z), u+

1,R(z))

W(u−1,R(z), u−1,L(z))W(u−1,R(z), u+
1,R(z))

∫ +∞

0
u−1,R(z, t)ϕR(t)dt.

(iii) For all ϕ ∈ S, z ∈ Dh(C0), and x ≤ 0, one has,

R±2 (z)ϕ(x) = K2,L(z)[ϕL](x) + β±L (z)[ϕ]u−2,L(z, x),

with,

β±L (z)[ϕ] = β±L,L(z)[ϕL] + β±L,R(z)[ϕR],

β±L,L(z)[ϕL] :=
h−2W(u+

2,L(z), u∓2,R(z))

W(u∓2,R(z), u−2,L(z))W(u+
2,L(z), u−2,L(z))

∫ 0

−∞
u−2,L(z, t)ϕL(t)dt

β±L,R(z)[ϕR] :=
h−2

W(u∓2,R(z), u−2,L(z))

∫
I±R

u∓2,R(z, t)ϕR(t)dt.

(iv) For all ϕ ∈ S, z ∈ Dh(C0), and x ∈ I±R , one has,

R±2 (z)ϕ(x) = K±2,R(z)[ϕR](x) + β±R (z)[ϕ]u∓2,R(z, x),
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with,

β±R (z)[ϕ] = β±R,L(z)[ϕL] + β±R,R(z)[ϕR],

β±R,L(z)[ϕL] :=
h−2

W(u∓2,R(z), u−2,L(z))

∫ 0

−∞
u−2,L(z, t)ϕL(t)dt

β±R,R(z)[ϕR] :=
h−2W(u−2,L(z), u±2,R(z))

W(u∓2,R(z), u−2,L(z))W(u∓2,R(z), u±2,R(z))

∫
I±R

u∓2,R(z, t)ϕR(t)dt.

Remark 5.2. In particular, by [FMW1, Appendix], for z ∈ γ− we have,

αL,L(z)[ϕL] =

(
π

4
h−

4
3 tan

A(z)

h
+O(h−1)

)∫ 0

−∞
u−1,L(z, t)ϕL(t)dt;

αL,R(z)[ϕR] =

(
π

4
h−

4
3

(
cos
A(z)

h

)−1

+O(h−1)

)∫ +∞

0
u−1,R(z, t)ϕR(t)dt;

αR,L(z)[ϕL] =

(
π

4
h−

4
3

(
cos
A(z)

h

)−1

+O(h−1)

)∫ 0

−∞
u−1,L(z, t)ϕL(t)dt;

αR,R(z)[ϕL] =

(
π

4
h−

4
3 tan

A(z)

h
+O(h−1)

)∫ +∞

0
u−1,R(z, t)ϕR(t)dt;

β±L,L(z)[ϕL] =
(
±iπ

4
h−

4
3 +O(h−1)

)∫ 0

−∞
u−2,L(z, t)ϕL(t)dt;

β+
L,R(z)[ϕR] =

(
π√
2
ei
π
4 h−

4
3 +O(h−1)

)∫
I+
R

u−2,R(z, t)ϕR(t)dt;

β−L,R(z)[ϕR] = −
(

π

2
√

2
ei
π
4 h−

4
3 +O(h−1)

)∫
I−R

u+
2,R(z, t)ϕR(t)dt;

β+
R,L(z)[ϕL] =

(
π√
2
ei
π
4 h−

4
3 +O(h−1)

)∫ 0

−∞
u−2,L(z, t)ϕL(t)dt;

β−R,L(z)[ϕL] = −
(

π

2
√

2
ei
π
4 h−

4
3 +O(h−1)

)∫ 0

−∞
u−2,L(z, t)ϕL(t)dt;

β+
R,R(z)[ϕR] =

(
πh−

4
3 +O(h−1)

)∫
I+
R

u−2,R(z, t)ϕR(t)dt;

β−R,R(z)[ϕR] = −
(π

4
h−

4
3 +O(h−1)

)∫
I−R

u+
2,R(z, t)ϕR(t)dt,

with,

A(z) :=

∫ x1(z)

x∗1(z)

√
z − V1(t) dt,

where x∗1(z) (respectively x1(z)) is the unique solution of V1(x) = z close to

x∗ (respectively close to 0).

Proof. We only prove (i)-(ii), since (iii)-(iv) follow along the same lines. We

set,

ψ := R1(z)ϕ ; ψ1,L := K1,L(z)ϕ ; ψ1,R := K1,R(z)ϕ.
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Then by construction we have,

(P1 − z)(ψ − ψ1,L) = (P1 − z)(ψ − ψ1,R) = 0;

ψ − ψ1,L ∈ L2(IL) ; ψ − ψ1,R ∈ L2(I±R ).

Therefore, there exist two complex numbers αL = αL(z) and αR = αR(z)

such that,

ψ − ψ1,L = αLu
−
1,L ; ψ − ψ1,R = αRu

−
1,R.

In order to compute αL and αR, we write that ψ must be C1 at 0. We find

the system, {
αLu

−
1,L(0)− αRu−1,R(0) = ψ1,R(0)− ψ1,L(0);

αL[u−1,L]′(0)− αR[u−1,R]′(0) = ψ′1,R(0)− ψ′1,L(0),

and, using that,

ψ1,L(0) =
u+

1.L(0)

h2W(u+
1,L, u

−
1,L)

∫ 0

−∞
u−1,L(t)ϕ(t)dt;

ψ′1,L(0) =
[u+

1.L]′(0)

h2W(u+
1,L, u

−
1,L)

∫ 0

−∞
u−1,L(t)ϕ(t)dt;

ψ1,R(0) =
u+

1.R(0)

h2W(u−1,R, u
+
1,R)

∫ +∞

0
u−1,R(t)ϕ(t)dt;

ψ′1,R(0) =
[u+

1.R]′(0)

h2W(u−1,R, u
+
1,R)

∫ +∞

0
u−1,R(t)ϕ(t)dt,

the result follows by straightforward computations. �

As a consequence of the previous proposition, we have,

Corollary 5.3. For z ∈ γ−, one has,

(5.1) ‖R±2 (z)‖L(L2(IL∪I±R )) = O(h−1−1/6);

(5.2) ‖h2R±2 (z)W ∗R1(z)W‖L(L2(IL∪I±R )) = O(h1/6).

Remark 5.4. In particular, the operators M±θ introduced in (3.4) also

satisfy,

(5.3) ‖M±θ(z)‖L(L2(R)) = O(h1/6).

Proof. We first observe that, by construction (see, e.g., [FMW1]), we have,

‖u−2,L‖L2(IL) = O(h
1
3 ) ; ‖u∓2,R‖L2(I±R ) = O(h

1
6 ).
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Using Remark 5.2, we deduce that, for z ∈ γ− and S = L,R, we have,

|β±S,L(z)[ϕL]| = O(h−1)‖ϕL‖L2(IL)

|β±S,R(z)[ϕR]| = O(h−
7
6 )‖ϕR‖L2(I±R ).

Therefore,

(5.4) ‖β±L (z)[ϕ]u−2,L‖L2(IL) + ‖β±R (z)[ϕ]u∓2,R‖L2(I±R ) = O(h−1)‖ϕ‖L2(IL∪I±R ).

Moreover, by Proposition 4.1, we also have,

‖K2,L(z)[ϕL]‖L2(IL) + ‖K±2,R(z)[ϕR]‖L2(I±R ) = O(h−
7
6 )‖ϕR‖L2(I±R ).

Then, (5.1) follows from Proposition 5.1 (iii)-(iv).

Concerning (5.2), in order to simplify the notations we write the detailed

proof with W = W ∗ = 1, and then we explain how to deduce the result for

the actual W , W ∗. We set,

K±0 (z) := h2R±2 (z)R1(z),

and we first observe that, for z ∈ γ−, we have ‖R1(z)‖ = O(h−1), so that,

by (5.1), a mere estimate with the product of the norms gives ‖K±0 (z)‖ =

O(h−
1
6 ). The improvement into O(h

1
6 ) will actually follow from the fact

that R2(z) is better on IL, while R1(z) is better on I±R .

Using Proposition 5.1 (and dropping the parameter z), we have,

• On IL,

(5.5)

K±0 ϕ =h2K2,LK1,LϕL + h2αL[ϕ]K2,Lu
−
1,L + h2β±L,L[K1,LϕL]u−2,L

+ h2αL[ϕ]β±L,L[u−1,L]u−2,L + h2β±L,R[K1,RϕR]u−2,L

+ h2αR[ϕ]β±L,R[u−1,R]u−2,L;

• On I±R ,

(5.6)

K±0 ϕ =h2K2,RK1,RϕR + h2αR[ϕ]K2,Ru
−
1,R + h2β±R,L[K1,LϕL]u∓2,R

+ h2αL[ϕ]β±R,L[u−1,L]u∓2,R + h2β±R,R[K1,RϕR]u∓2,R

+ h2αR[ϕ]β±R,R[u−1,R]u∓2,R.

Since the studies on IL and on I±R are similar, we detail the proof for IL

only. In view of (5.5), we have six terms to examine. We first show,

Lemma 5.5. One has,

(5.7) ‖h2αL[ϕ]β±L,L[u−1,L]u−2,L‖L2(IL) = O(h
1
2 )‖ϕ‖L2(IL∪I±R );

(5.8) ‖h2αR[ϕ]β±L,R[u−1,R]u−2,L‖L2(IL) = O(h
1
2 )‖ϕ‖L2(IL∪I±R ).
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Proof. Since ‖u−1,L‖L2(IL) and ‖u∓2,R‖L2(I±R ) are of size∼ h
1
6 , while ‖u−1,R‖L2(I±R )

and ‖u−2,L‖L2(IL) are of size ∼ h
1
3 , by Cauchy-Schwarz inequality we see on

Remark 5.2 that we have,

‖h2αL[ϕ]u−2,L‖L2(IL) + ‖h2αR[ϕ]u−2,L‖L2(IL) = O(h
7
6 )‖ϕ‖L2(IL∪I±R ),

and it remains to estimate
∣∣∣β±L,L[u−1,L]

∣∣∣ and
∣∣∣β±L,R[u−1,R]

∣∣∣. Both can be upper

bounded by,

Ch−
4
3

∫ Ch
2
3

0
dt+ Ch−

4
3

∫ δ

Ch
2
3

h
1
3

√
t
e−ct

3/2/hdt+ Ch−
4
3

∫ +∞

δ
h

1
3 e−ct/h,

(with C > 0 large enough constant, and c, δ > 0 small enough constants),

and thus are O(h−
2
3 ), and the result follows. �

Lemma 5.6.

‖h2αL[ϕ]K2,Lu
−
1,L‖L2(IL) = O(h

1
3 )‖ϕ‖L2(IL∪I±R ).

Proof. Using again Remark 5.2, we have,

‖h2αL[ϕ]K2,Lu
−
1,L‖L2(IL) = O(h

5
6 )‖ϕ‖L2(IL∪I±R )‖K2,Lu

−
1,L‖L2(IL),

and it remains to estimate ‖K2,Lu
−
1,L‖L2(IL). Applying Proposition 4.1, we

obtain,

‖K2,Lu
−
1,L‖L2(IL) = O(h−

2
3 )‖u−1,L‖L2(IL) = O(h−

1
2 ),

and the result follows. �

Lemma 5.7.

‖h2β±L,L[K1,LϕL]u−2,L‖L2(IL) + ‖h2β±L,R[K1,RϕR]u−2,L‖L2(IL)

= O(h
1
6 )‖ϕ‖L2(IL∪I±R ).

Proof. Since ‖u−2,L‖L2(IL) = O(h
1
3 ), it is enough to prove that β±L,L[K1,LϕL]

and β±L,R[K1,RϕR] are O(h−
13
6 )‖ϕ‖L2(IL∪I±R ). By Remark 5.2 and Proposi-

tion 4.1, we have,

β±L,L[K1,LϕL] = O(h−1)‖K1,LϕL‖L2(IL) = O(h−1− 7
6 )‖ϕL‖L2(IL),

β±L,R[K1,RϕR] = O(h−
7
6 )‖K1,RϕR‖L2(I±R ) = O(h−

7
6
− 2

3 )‖ϕR‖L2(I±R ),

and the result follows. �

Lemma 5.8.

‖h2K2,LK1,L‖L(L2(IL)) = O(h
1
6 ).
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Proof. It is an immediate consequence of Proposition 4.1. �

Using (5.5), we conclude from Lemmas 5.5-5.8 that we have,

‖K±0 ϕ‖L2(IL) = O(h
1
6 )‖ϕ‖L2(IL∪I±R ).

Analogous arguments lead to the same estimate on I±R , and thus, we have

proved,

‖K±0 ‖L(L2(IL∪I±R )) = O(h
1
6 ).

Concerning the result for ‖h2R±2 (z)W ∗R1(z)W‖, we first observe that the

previous proof works without changes for ‖h2R±2 (z)fR1(z)g‖ if f, g are

bounded multiplication operators, and also for ‖h2R±2 (z)fhDxR1(z)g‖ be-

cause the estimates on h[u±1,L]′ and h[u±1,R]′ are the same as (and at some

places even better than) those on u±1,L and u±1,R.

Then, (5.2) can easily be deduced by writing,

R1(z)hDx = (I +R1(z)(I + z − V1))hDx(1− h2∆)−1

(and the analogous formula for R±2 (z)), and by using (5.1) and the fact that

‖hDx(1− h2∆)−1‖ = O(1). �

6. Function spaces

In order to estimate in a systematic way the various integrals that are in-

volved in the expressions of r0(t, φ, h), r1(t, φ, h) and r2(t, φ, h), we introduce

several function spaces that, in some way, are related to the behavior (both

semiclassical and at infinity in x) of the global WKB solutions of the scalar

problems.

We set,

m0(x) = m0(x;h) := min(h−1/6, |x|−1/4);

m∗(x) = m∗(x;h) := min(h−1/6, |x− x∗|−1/4).

We define the space F1(IL) as the space of h-dependent smooth functions

u = u(x;h) on IL for which, for any δ > 0 small enough and for any k ≥ 0,

there exists a constant c = ck,δ > 0 such that,

• On (−∞, x∗ − δ], (hDx)ku(x;h) = O(e−c|x|/h);

• On [x∗ − δ, x∗], (hDx)ku(x;h) = O(m∗(x)e−c|x−x
∗|3/2/h);

• On [x∗, x∗ + δ], (hDx)ku(x;h) = O(m∗(x));
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• On [x∗ + δ,−δ], (hDx)ku(x;h) = O(1);

• On [−δ, 0], (hDx)ku(x;h) = O(m0(x)).

We also define the space F2(IL) as the space of h-dependent smooth func-

tions u = u(x;h) on IL for which, for any δ > 0 small enough and for any

k ≥ 0, there exists a constant c = ck,δ > 0 such that,

• On (−∞,−δ], (hDx)ku(x;h) = O(e−c|x|/h);

• On [−δ, 0], (hDx)ku(x;h) = O(m0(x)e−c|x|
3/2/h).

Analogously, we define the space F1(I±R ) as the space of h-dependent smooth

functions u = u(x;h) on I±R for which, for any δ > 0 and for any k ≥ 0,

there exists a constant c = ck,δ > 0 such that,

• On [0, δ], (hDx)ku(x;h) = O(m0(x)e−c|x|
3/2/h);

• On [δ,+∞), (hDx)ku(x;h) = O(e−c|x|/h).

Finally, we define the space F2(I±R ) as the space of h-dependent smooth

functions u = u(x;h) on I±R for which, for any δ > 0 and for any k ≥ 0,

there exist two constants c = ck,δ > 0 and C = Ck,δ > 0 such that,

• On [0, δ], (hDx)ku(x;h) = O(m0(x));

• On I±R ∩ {δ ≤ Re x ≤ C}, (hDx)ku(x;h) = O(1);

• On I±R ∩ {Re x ≥ C}, (hDx)ku(x;h) = O(e−c|x|/h).

For j, k ∈ {1, 2}, we also denote by Fj(IL)∩Fk(I±R ) the space of h-dependent

functions ϕ defined on IL ∪ I±R (not necessarily smooth at 0), such that

ϕL ∈ Fj(IL) and ϕR ∈ Fk(I±R ). Of course, if such a function ϕ is smooth at

0, then, for any ` ≥ 0, one also has (hDx)`ϕ ∈ Fj(IL) ∩ Fk(I±R ).

In particular, for any z ∈ Dh(C0), we can see,

(6.1)
u−1,L(z) ∈ h1/6F1(IL) ; u−1,R(z) ∈ h1/6F1(I±R );

u−2,L(z) ∈ h1/6F2(IL) ; u∓2,R(z) ∈ h1/6F2(I±R ),

and also, since ϕ0 ∼ h−1/6u−1,L(λ0) on R−, and ϕ0 ∼ h−1/6u−1,R(λ0) on I±R ,

(6.2) ϕ0 ∈ F1(IL) ∩ F1(I±R ) ∩ C∞,

where C∞ stands for C∞(IL ∪ I±R ), and just means that ϕ0 is smooth at 0,

too.

We have (dropping the z-dependence),
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Proposition 6.1. The following inclusions hold:

K1,L (F1(IL)) ⊂ h−1F1(IL) ; K1,L (F2(IL)) ⊂ h−2/3F1(IL);

K2,L (F1(IL)) ⊂ h−2/3F1(IL) ; K2,L (F2(IL)) ⊂ h−2/3F2(IL),

and,

K1,R

(
F1(I±R )

)
⊂ h−2/3F1(I±R ) ; K1,R

(
F2(I±R )

)
⊂ h−2/3F2(I±R );

K±2,R
(
F1(I±R )

)
⊂ h−2/3F2(I±R ) ; K±2,R

(
F2(I±R )

)
⊂ h−1F2(I±R ).

Proof. See Appendix 1. �

Remark 6.2. As an immediate consequence of the definitions of Fj(IL) and

Fj(I±R ) (j = 1, 2), we have

• If v ∈ F1(IL), then ‖v‖L2(IL) = O(1);

• If v ∈ F2(IL), then ‖v‖L2(IL) = O(h
1
6 );

• If v ∈ F1(I±R ), then ‖v‖L2(I±R ) = O(h
1
6 );

• If v ∈ F2(I±R ), then ‖v‖L2(I±R ) = O(1),

uniformly as h→ 0+.

Proposition 6.3. For z ∈ γ−, one has,

|αL,L(z)|+ |αR,L(z)| = O(h−7/6) on F1(IL);

|β±L,L(z)|+ |β±R,L(z)| = O(h−5/6) on F1(IL);

|αL,L(z)|+ |αR,L(z)| = O(h−5/6) on F2(IL);

|β±L,L(z)|+ |β±R,L(z)| = O(h−5/6) on F2(IL);

|αL,R(z)|+ |αR,R(z)| = O(h−5/6) on F1(I±R );

|β±L,R(z)|+ |β±R,R(z)| = O(h−5/6) on F1(I±R );

|αL,R(z)|+ |αR,R(z)| = O(h−5/6) on F2(I±R );

|β±L,R(z)|+ |β±R,R(z)| = O(h−7/6) on F2(I±R ).

Proof. We use Remark 5.2. Since u−1,L ∈ h
1
6F1(IL), for ϕ ∈ F1(IL) we have,

|αL,L(z)[ϕ]|+ |αR,R(z)[v]| = O(h−
4
3 )‖u−1,L‖L2(IL)‖ϕ‖L2(IL) = O(h−

4
3

+ 1
6 ).

Since u−2,L is exponentially concentrated at x = 0, we also have,

|β±L,R(z)[ϕ]|+ |β±R,R(z)[ϕ]| = O(h−
4
3 )

∫ δ

0

h
1
6 e−ct

3/2/h

√
t

dt+O(e−c/h),
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with δ > 0 arbitrarily small, and c = c(δ) > 0. Hence, after the change of

variable t 7→ h
2
3 t, we find,

|β±L,R(z)[ϕ[|+ |β±R,R(z)[ϕ]| = O(h−
5
6 ).

The other estimates follow along the same lines. �

Proposition 6.4.

R±2 (z)
(
F1(IL) ∩ F1(I±R )

)
⊂ h−2/3

(
F1(IL) ∩ F2(I±R )

)
.

Proof. Let ϕ ∈ F1(IL) ∩ F1(I±R ). By Proposition 5.1(iii), om IL we have,

R±2 (z)ϕ ∈ K2,L(z) (F1(IL)) + β±L (z)[ϕ]h
1
6F2(IL),

and therefore, using Propositions 6.1 and Remark 5.2,

R±2 (z)ϕ ∈ h−
2
3F1(IL) + h−

5
6

+ 1
6F2(IL) ⊂ h−

2
3F1(IL).

In the same way, by Proposition 5.1(iv), om I±R we have,

R±2 (z)ϕ ∈ K±2,R(z)
(
F1(I±R )

)
+ β±R (z)[ϕ]h

1
6F2(I±R ),

and thus,

R±2 (z)ϕ ∈ h−
2
3F2(I±R ) + h−

5
6

+ 1
6F2(I±R ) = h−

2
3F2(I±R ).

�

As an immediate consequence of this proposition, if we set,

(6.3) H±0 := F1(IL) ∩ F2(I±R ),

we have,

Corollary 6.5.

R±2 (z)W ∗ϕ0 ∈ h−2/3H±0 ∩ C
∞.

Finally, setting

M±(z) := h2R±2 (z)W ∗R1(z)W,

we have,

Proposition 6.6.

M±(z)
(
H±0 ∩ C

∞) ⊂ h1/3H±0 ∩ C
∞.

In particular, for any ` ≥ 1,

M±(z)`R±2 (z)W ∗ϕ0 ∈ h(`−2)/3H±0 .
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Proof. By the same procedure as in the proof of Proposition 6.4, we see,

(6.4) R1(z)
(
H±0
)
⊂ h−1F1(IL) ∩

[
h−

2
3F2(I±R ) + h−1F1(I±R )

]
,

and also,

R±2 (z)
(
F1(IL) ∩ h

1
3F2(I±R )

)
⊂ h−

2
3H±0 .

Since, with our definitions, we have,

h−1F1(IL)∩
[
h−

2
3F2(I±R ) + h−1F1(I±R )

]
=
[
h−1F1(IL) ∩ h−

2
3F2(I±R )

]
+
[
h−1F1(IL) ∩ h−1F1(I±R )

]
,

we deduce,

R±2 (z)W ∗R1(z)
(
H±0
)
⊂ h−

5
3H±0 + h−1R±2 (z)

(
F1(IL) ∩ F1(I±R )

)
,

that is, by Proposition 6.4,

R±2 (z)W ∗R1(z)
(
H±0
)
⊂ h−

5
3H±0 .

Since in addition W (H±0 ∩C∞) ⊂ H±0 ∩C∞, and R1(z), R±2 (z) preserve the

regularity at 0, the result follows. �

7. Estimates on r2(t, φ, h)

We first show,

Lemma 7.1. For any u ∈ H±0 , one has,

(7.1) 〈u,W ∗ϕ0〉L2(IL) = O(1);

(7.2) 〈u,W ∗ϕ0〉L2(I±R ) = O(h1/3).

Proof. Since W ∗ϕ0 ∈ F1(IL)∩F1(I±R ), the first estimate is immediate, while

for the second one, thanks to the exponantial localization near 0 of ϕ0

∣∣∣I±R ,

we can write,

〈u,W ∗ϕ0〉L2(I±R ) = O(1)

∫ δ

0

e−ct
3/2/h

√
t

dt+O(e−c/h),

(with δ > 0 sufficiently small and c = c(δ) > 0), and the result follows. �

Then, we have,

Proposition 7.2. One has,

r2(t, φ, h) = O(h〈ht〉−∞).
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Proof. We must prove that, for any k ≥ 0, we have r2(t, φ, h) = O(h〈ht〉−k).
By Corollary 5.3, we already know that there exists a constant C > 0 such

that |T`(z)| ≤ C`h−1+(`−1)/6 uniformly with respect to h small enough.

Therefore, for any L0 ≥ 1,

r2(t, φ, h) =
h2

2iπ

L0∑
`=2

∫
γ−

e−itzg(Re z)

(λ0 − z)2
T`(z)dz +O(h(L0−1)/6).

In particular,

r2(t, φ, h) =
h2

2iπ

6∑
`=2

∫
γ−

e−itzg(Re z)

(λ0 − z)2
T`(z)dz +O(h).

Moreover, using Proposition 6.6 and Lemma 7.1, for any ` ∈ {2, . . . , 6}, we

have,

T`(z) = O(h(`−2)/3),

and thus,

h2

2iπ

6∑
`=2

∫
γ−

e−itzg(Re z)

(λ0 − z)2
T`(z)dz = O(h).

so that the result for k = 0 follows. The result for k ≥ 1 is obtained by

using that e−itz = (1+ht)−k(1+ ih∂z)
k(e−itz) and by making k integrations

by parts. Each derivative h∂z that falls on g(Re z)(λ0− z)−2, doesn’t make

us lose anything in the estimate. If instead it falls down on T`(z), we need

the following,

Lemma 7.3. For any k, ` ≥ 1, one has,

(7.3) hk∂kzT`(z) = O(h
`−2

3 ).

Moreover, for any k, ` ≥ 1, there exists a constant Ck such that, for all ` ≥ 1,

(7.4) ‖hk∂kz
(
M±(z)`

)
‖ ≤ C`kh

`
6 .

Proof. Going back to the construction of the functions u±j,L(z, x) and u±j,R(z, x)

(see [FMW1, Appendix]), we start by observing that they all are of the form

(∂xξ(x, z))
−1/2fz(h

−2/3ξ(x, z)), where x 7→ ξ(x, z) is a global analytic change

of variable that depends analytically on z, and fz is solution to a Volterra

problem of the type,

(7.5) fz = F +Kzfz,

with z 7→ Kz holomorphic, and the norm of Kz (and of all its holomorphic

derivatives with respect to z) is small as h tends to 0 (here, Kz acts on a

space continuous functions with some specific growth at infinity depending
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on the choice of F ). In addition, the function F appearing in (7.5) is always

taken in the set {Ai,Bi, Ǎi, B̌i}. It results that z 7→ fz is holomorphic, too,

and that, for all k, `, ∂kz ∂
`
xfz growths at most as

∑`
m=0 |F (`)| at infinity.

Then, considering the function uz(x) := fz(h
−2/3ξ(x, z)), we deduce,

∂kzuz(x) = O(h−2k/3
∑̀
m=0

|F (`)(h−2/3ξ(x))|).

Now, because of the behavior at infinity of the Airy functions, and of the

possible choices of the function F , we see that,

∑̀
m=0

|F (`)(t)|) = O(〈t〉`/2F0(t)),

where F0 reflects the behavior of F at infinity, that is, F0(t) = 〈t〉−1/4e±
2
3
|t|

3
2

if F has an exponential behavior, and F0(t) = 〈t〉−1/4 if F oscillates at

infinity. Therefore, we obtain,

∑̀
m=0

|F (`)(h−2/3ξ(x))| = O(h−k/3)F0(h−2/3ξ(x)),

and thus,

(7.6) ∂kzuz(x) = O(h−k)F0(h−2/3ξ(x))).

In particular, for j = 1, 2, S ∈ {L,R}, and any k ≥ 0, the function hk∂kzu
±
j,S

has the same behavior (both semiclassical and at infinity) as the function

u±j,S itself.

As a consequence, considering the operator hk∂kz (M±(z))`, we see that it is

a sum of `k products of ` factors, each one of them being of the same type

as M±(z), and (7.4) follows.

For the same reasons, we also have,

hk∂kz (M±(z))`
(
H±0
)
⊂ h`/3H±0 ,

and

hk∂kzR
±
2 (z)W ∗ϕ0 ∈ H±0 ,

so that (7.3) follows, too. �

Using Lemma 7.3 and making integrations by parts in the expression of r2

given in (3.10), Proposition 7.2 follows. �
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8. Estimates on r1(t, φ, h)

Concerning r1(t, φ, h), the same arguments of the previous section can be

applied, but they lead to an estimate in O(h2/3〈ht〉−∞) only. Let us prove

that actually, we have,

Proposition 8.1. One has,

r1(t, φ, h) = O(h〈ht〉−∞).

Proof. In view of Proposition 6.6 and Lemma 7.1, we can write,

T1(z) = 〈(M+(z)R+
2 (z)−M−(z)R−2 (z))W ∗ϕ0,W

∗ϕ0〉L2(IL) +O(1),

that is, by Proposition 5.1,

(8.1)
T1(z) =h2〈(K2,L +B+

L )W ∗R1WR+
2 W

∗ϕ0,W
∗ϕ0〉L2(IL)

− h2〈(K2,L +B−L )W ∗R1WR−2 W
∗ϕ0,W

∗ϕ0〉L2(IL) +O(1),

where we have omited the dependence in z of the various operators, and

where we have set,

(8.2) B±Lϕ := β±L (ϕ)u−2,L.

Let us first prove,

Lemma 8.2. For all z ∈ γ−, one has,

R1(z)WR±2 (z)W ∗ϕ0

∈ h−5/3F1(IL) ∩
(
h−4/3F2(I±R ) + h−5/3F1(I±R )

)
.

Proof. By Proposition 6.4, we already know that ψ± := WR±2 (z)W ∗ϕ0 is in

h−
2
3H±0 . Then, the result directly follows from (6.4). �

We deduce from the previous lemma and from Lemma ?? that we have,

β±L (W ∗R1ψ±) = O(h−15/6),

and thus,

B±LW
∗R1ψ± ∈ h−7/3F2(IL).

As a consequence, by an elementary computation we obtain (using also

(6.2)),

h2〈B±LW
∗R1ψ±,W

∗ϕ0〉L2(IL) = O(h2− 7
3 )

∫ δ

0

e−cx
3/2/h

√
x

dx+O(e−δ
′/h),
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(where δ, δ′ and c are positive constants), and thus,

(8.3) h2〈B±LW
∗R1ψ±,W

∗ϕ0〉L2(IL) = O(1).

Therefore, going back to (8.1), we deduce,

T1(z) =h2〈K2,LW
∗R1WR+

2 W
∗ϕ0,W

∗ϕ0〉L2(IL)

− h2〈K2,LW
∗R1WR−2 W

∗ϕ0,W
∗ϕ0〉L2(IL) +O(1),

that is,

(8.4)
T1(z) =h2〈K2,LW

∗(K1,L +AL)WR+
2 W

∗ϕ0,W
∗ϕ0〉L2(IL)

− h2〈K2,LW
∗(K1,L +AL)WR−2 W

∗ϕ0,W
∗ϕ0〉L2(IL) +O(1),

where this time we have set,

AL := ALL +ALR,

with

ALL(ϕ) := αLL(ϕL)u−1,L ; ALR(ϕ) := αLR(ϕR)u−1,L.

In particular, setting,

B±Rϕ := β±R (ϕ)u∓2,R,

we can rewrite (8.4) as,

T1(z) =h2〈K2,LW
∗(K1,L +ALL)W (K2,L +B+

L )W ∗ϕ0,W
∗ϕ0〉L2(IL)

− h2〈K2,LW
∗(K1,L +ALL)W (K2,L +B−L )W ∗ϕ0,W

∗ϕ0〉L2(IL)

+ h2〈K2,LW
∗ALRW (K2,R +B+

R)W ∗ϕ0,W
∗ϕ0〉L2(IL)

− h2〈K2,LW
∗ALRW (K2,R +B−R)W ∗ϕ0,W

∗ϕ0〉L2(IL) +O(1),

that is, after having eliminated the terms that cancel,

(8.5)
T1(z) =h2〈K2,LW

∗(K1,L +ALL)W (B+
L −B

−
L )W ∗ϕ0,W

∗ϕ0〉L2(IL)

+ h2〈K2,LW
∗ALRW (B+

R −B
−
R)W ∗ϕ0,W

∗ϕ0〉L2(IL) +O(1).

Using again Lemma ?? and (6.1), we find,

(8.6) WB±LW
∗ϕ0 ∈ h−2/3F2(IL) ; WB±RW

∗ϕ0 ∈ h−2/3F2(I±R ),

and thus also,

W ∗ALLWB±LW
∗ϕ0 ∈ h−4/3F1(IL);

W ∗ALRWB±RW
∗ϕ0 ∈ h−4/3F1(IL).

Therefore, by Proposition 6.1,

K2,LW
∗ALLWB±LW

∗ϕ0 ∈ h−2F1(IL);

K2,LW
∗ALRWB±RW

∗ϕ0 ∈ h−2F1(IL).

As a consequence, we obtain (with S = L,R),

h2〈K2,LW
∗ALSWB±SW

∗ϕ0,W
∗ϕ0〉L2(IL) = O(1),
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and (8.5) reduces to,

(8.7) T1(z) = h2〈K2,LW
∗K1,LW (B+

L −B
−
L )W ∗ϕ0,W

∗ϕ0〉L2(IL) +O(1).

Using (8.6) and, once more, Proposition 6.1, we obtain,

K2,LWK1,LW
∗B±LW

∗ϕ0 ∈ K2,L

(
h−4/3F1(IL)

)
⊂ h−2F1(IL),

so that the same computations finally give us,

(8.8) T1(z) = O(1).

Hence, r1(t, ϕ, h) = O(h) and Proposition 8.1 follows by the same arguments

as in the previous section. �

9. Estimates on r0(t, φ, h)

By definition we have,

T0(z) =〈(R+
2 (z)−R−2 (z))W ∗ϕ0,W

∗ϕ0〉L2(IL)

+ 〈R+
2 (z)W ∗ϕ0,W

∗ϕ0〉L2(I+
R ) − 〈R

−
2 (z)W ∗ϕ0,W

∗ϕ0〉L2(I−R ),

and thus, by Proposition 5.1,

(9.1) T0(z) = T0,1(z) + T0,2(z) + T0,3(z)

with (using the same notations (8.2) as in the previous section),

(9.2)
T0,1(z) =〈(B+

L (z)−B−L (z))W ∗ϕ0,W
∗ϕ0〉L2(IL);

T0,2(z) =〈B+
R(z)W ∗ϕ0,W

∗ϕ0〉L2(I+
R ) − 〈B

−
R(z)W ∗ϕ0,W

∗ϕ0〉L2(I−R );

T0,3(z) =〈K+
2,R(z)W ∗ϕ0,W

∗ϕ0〉L2(I+
R ) − 〈K

−
2,R(z)W ∗ϕ0,W

∗ϕ0〉L2(I−R ).

We first show,

Proposition 9.1. Setting ρ := h−
2
3 z and µ0 := h−

2
3λ0, one has,

〈u−2,L(z),W ∗ϕ0〉L2(IL) = 4a0(0)c0h
1
2A−(ρ) +O(h

5
6 );

〈u−2,R(z),W ∗ϕ0〉L2(I+
R ) =

√
2a0(0)c0h

1
2 ei

π
4
(
A+(ρ)− iB+(ρ)

)
+O(h

5
6 );

〈u+
2,R(z),W ∗ϕ0〉L2(I−R ) = 2

√
2a0(0)c0h

1
2 ei

π
4
(
A+(ρ) + iB+(ρ)

)
+O(h

5
6 ),

with,

A±(ρ) := τ
− 1

6
1 τ

− 1
6

2

∫
R±

Ǎi

(
τ

1
3

2 (y +
ρ

τ2

)
Ai

(
τ

1
3

1 (y − µ0

τ1

)
dy;

B+(ρ) := τ
− 1

6
1 τ

− 1
6

2

∫ +∞

0
B̌i

(
τ

1
3

2 (y +
ρ

τ2

)
Ai

(
τ

1
3

1 (y − µ0

τ1

)
dy.

Moreover, the same formulas hold if W ∗ϕ0 is substituted by W ∗ϕ0.
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Proof. The proof is similar to that of [FMW1, Proposition 5.3]. In prac-

tical, we cut the integral on IL into
∫ −λh 2

3

−∞ +
∫ 0

−λh
2
3
, and that on I+

R into∫ λh 2
3

0 +
∫ 0

I+
R∩{Rex≥λh

2
3 }

, where λ = C ln |h|, with C > 0 a large enough con-

stant. Then, we use the exponential decay of u−2,L(z) away from 0 on R−,

and that of W ∗ϕ0 away from 0 on I+
R , in order to estimate the integrals

on (−∞,−λh
2
3 ] and on I+

R ∩ {Rex ≥ λh
2
3 }, and finally, near 0 we replace

u−2,L(z), u−2,R(z) and ϕ0 by their approximations in terms of Airy functions

(see [FMW1, Appendix 2],

(9.3)

u−2,L(z, x) = 2(ξ′2)−
1
2 Ǎi (h−

2
3 ξ2) +O(h);

u−2,R(z, x) =
1√
2
ei
π
4 (ξ′2)−

1
2

(
Ǎi (h−

2
3 ξ2)− iB̌i (h−

2
3 ξ2)

)
+O(h);

u+
2,R(z, x) =

√
2ei

π
4 (ξ′2)−

1
2

(
Ǎi (h−

2
3 ξ2) + iB̌i (h−

2
3 ξ2)

)
+O(h);

ϕ0(x) = 2c0h
− 1

6 (ξ′1)−
1
2 Ai (h−

2
3 ξ1) +O(h),

where ξ1 = ξ1(x) and ξ2(z, x) satisfy (see [FMW1, Section7]),

(9.4)

h−
2
3 ξ1(h

2
3 y) = τ

1
3

1

(
y − µ0

τ1

)
+O(h

2
3 );

h−
2
3 ξ2(z, h

2
3 y) = τ

1
3

2

(
y +

ρ

τ1

)
+O(h

2
3 ).

�

Then, we prove,

Proposition 9.2. Still with ρ := h−
2
3 z, one has,

(9.5) T0,1(z) = 8iπh−
1
3 c2

0a0(0)2
[
A+(ρ) +A−(ρ)

]
A−(ρ) +O(1);

(9.6) T0,2(z) = 4iπh−
1
3 c2

0a0(0)2
[
2A+(ρ)A−(ρ) +A+(ρ)2 −B+(ρ)2

]
+O(1);

(9.7) T0,3(z) = 4iπh−
1
3 c2

0a0(0)2
[
A+(ρ)2 +B+(ρ)2

]
+O(1).

Proof. Setting,

(9.8) ϕ1 := W ∗ϕ0,

by definition we have,

T0,1 =
[
β+
L,L(ϕ1)− β−L,L(ϕ1) + β+

L,R(ϕ1)− β−L,R(ϕ1)
]
〈u−2,L, ϕ1〉.
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Then, using Remark 5.2 and proceeding as in the proof of Proposition 9.1,

we see,

β+
L,L(ϕ1)− β−L,L(ϕ1) = i

π

2
h−

4
3 (1 +O(h

1
3 ))

∫ 0

−∞
u−2,L(z, t)ϕ1(t)dt

= 2iπa0(0)c0A
−(ρ)h−

5
6 +O(h−

1
2 );

β+
L,R(ϕ1) =

π√
2
a0(0)c0e

iπ
4 h−

5
6

2√
2
ei
π
4 (A+(ρ)− iB+(ρ)) +O(h−

1
2 )

= iπa0(0)c0(A+(ρ)− iB+(ρ))h−
5
6 +O(h−

1
2 );

β−L,R(ϕ1) = −iπa0(0)c0(A+(ρ) + iB+(ρ))h−
5
6 +O(h−

1
2 ).

Hence,

β+
L,L(ϕ1)− β−L,L(ϕ1)+β+

L,R(ϕ1)− β−L,R(ϕ1)

= 2iπa0(0)c0(A−(ρ) +A+(ρ))h−
5
6 +O(h−

1
2 ),

which, together with Proposition 9.1, gives (9.5).

In the same way, we have,

β+
R,L(ϕ1) =

4π√
2
ei
π
4 a0(0)c0A

−(ρ)h−
5
6 +O(h−

1
2 );

β+
R,R(ϕ1) =

2π√
2
ei
π
4 a0(0)c0

(
A+(ρ)− iB+(ρ)

)
h−

5
6 +O(h−

1
2 );

β−R,L(ϕ1) = − 2π√
2
ei
π
4 a0(0)c0A

−(ρ)h−
5
6 +O(h−

1
2 );

β−R,R(ϕ1) = − π√
2
ei
π
4 a0(0)c0

(
A+(ρ) + iB+(ρ)

)
h−

5
6 +O(h−

1
2 ).,

and thus, by Proposition 9.1,

〈B+
Rϕ1, ϕ1〉L2(I+

R ) = 2iπa0(0)2c2
0

(
2A−(ρ) +A+(ρ)− iB+(ρ)

)
×
(
A+(ρ)− iB+(ρ)

)
h−

1
3 +O(1);

〈B−Rϕ1, ϕ1〉L2(I−R ) = −2iπa0(0)2c2
0

(
2A−(ρ) +A+(ρ) + iB+(ρ)

)
×
(
A+(ρ) + iB+(ρ)

)
h−

1
3 +O(1).

Then, (9.6) follows by a straightforward computation.

Finally, concerning T0,3, using the exponential decay of ϕ1 on I±R away from

0, for any δ > 0 small enough we can write,

T0,3 = 〈K+
2,Rϕ1 −K−2,Rϕ1, ϕ1〉L2(0,δ) +O(e−c/h),
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with c = c(δ) > 0 constant. Now, we see on (4.2)-(4.3) that, for x ∈ [0, δ],

we have (dropping the dependance in z),

K+
2,Rϕ1(x)−K−2,Rϕ1(x)

=
1

h2W[u−2,R, u
+
2,R]

∫ x

0

(
u−2,R(x)u+

2,R(t) + u−2,R(t), u+
2,R(x)

)
ϕ1(t)dt

+
1

h2W[u−2,R, u
+
2,R]

∫ δ

x

(
u−2,R(t)u+

2,R(x) + u−2,R(x), u+
2,R(t)

)
ϕ1(t)dt

+O(e−c
′/h),

with c′ = c′(δ) > 0 constant, and therefore,

K+
2,Rϕ1(x)−K−2,Rϕ1(x)

=
1

h2W[u−2,R, u
+
2,R]

∫ δ

0

(
u−2,R(x)u+

2,R(t) + u−2,R(t), u+
2,R(x)

)
ϕ1(t)dt

+O(e−c
′/h).

Using also that W[u−2,R, u
+
2,R] = 2

πh
− 2

3 + O(h−
1
3 ) (see [FMW1, Appendix

A.2], and the fact that ϕ1(x) is real for x real, we conclude,

T0,3 =
(
πh−

4
3 +O(h−1)

)
〈u−2,R, ϕ1〉I+

R
〈u+

2,R, ϕ1〉I−R +O(e−c
′′/h),

(still with c′′ > 0 constant). Hence, (9.7) follows by using Proposition

9.1. �

We conclude from the previous proposition and (9.1) that we have,

(9.9) T0(z) = 8iπh−
1
3 c2

0a0(0)2f(h−
2
3 z) +O(1),

with,

f(ρ) :=
(
A−(ρ) +A+(ρ)

)2
.

Then, writing,

f(h−
2
3 z) = f(h−

2
3λ0) +O(h−

2
3 ) (z − λ0),

and going back to (3.10), we obtain,

r0(t, φ, h) = 4h2− 1
3 c2

0a0(0)2f(h−
2
3λ0)

∫
γ−

e−itzg(Rez)

(λ0 − z)2
dz +O(h),

and then, by arguments similar to those of Section 7,

(9.10)

r0(t, φ, h) = 4h2− 1
3 c2

0a0(0)2f(h−
2
3λ0)

∫
γ−

e−itzg(Rez)

(λ0 − z)2
dz +O(h〈ht〉−∞).
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Finally, using (2.3) and making the change of variable z 7→ λ0 +hz, we find,

r0(t, φ, h) = 4h
2
3 c2

0a0(0)2e−itλ0f(h−
2
3λ0)

∫
γ0

e−ithzg0(Rez)

z2
dz+O(h〈ht〉−∞),

and (2.7) is proved with,

(9.11) A0(s) = τ
− 1

6
1 τ

− 1
6

2

∫ +∞

−∞
Ǎi

(
τ

1
3

2 (y +
s

τ2

)
Ai

(
τ

1
3

1 (y − s

τ1

)
dy.

The fact that one also has,

(9.12) A0(s) = τ
− 1

6
1 τ

− 1
6

2 (τ1 + τ2)−
1
3 Ǎi

((
τ1 + τ2

τ1τ2

) 2
3

s

)
is proved in Appendix 2. �

10. Estimate on b(φ, h)

Let Ψ0 ∈ L2(IL ∪ I+
R be the resonant state associated with ρ0, that is the

solution to HΨ0 = ρ0Ψ0 normalized in such a way that,

(10.1) 〈Ψθ
0,Ψ

−θ
0 〉 = 1,

where Ψ±θ0 := U±θΨ0. Then, by definition of b(φ, h), we have,

b(φ, h) = 〈φθ,Ψ−θ0 〉〈Ψ
θ
0, φ−θ〉.

According to [FMW1, Remark 7.1], we have,

Ψ0 =

(
C1u

−
1,L �z=ρ0 +O(h

2
3 )

O(h
1
3 )

)
on IL;

Ψ0 =

(
(−1)kC1u

−
1,R �z=ρ0 +O(h

2
3 )

O(h
1
3 )

)
on I+

R ,

where the integer k ≥ 0 is such that sin A(ρ0)
h = (−1)k + O(h

2
3 ), and the

coefficient C1 = C1(h) is such that (10.1) is verified. We also have,

φ =

(
c0u
−
1,L �z=λ0

0

)
on IL;

φ =

(
(−1)kc0u

−
1,R �z=λ0

0

)
on I+

R .

Moreover, ρ0 − λ0 = O(h
4
3 ) (see [FMW1, Section2]), and thus, since ∂zu

−
1,L

is O(h−1) locally uniformly in x (and exponentially decays at infinity), we

get,

Ψ0 =

(
C1u

−
1,L �z=λ0

0

)
+O(h

1
3 ) on IL;

Ψ0 =

(
(−1)kC1u

−
1,R �z=λ0

0

)
+O(h

1
3 ) on I+

R .
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As a consequence, we necessarily have C1 = ±c0(1 + O(h
1
3 )), and (2.6)

follows. �

11. Appendix 1: proof of Proposition 6.1

We only consider the case of IL (the one of I±R being similar).

Let v ∈ F1(IL). We have,

(11.1)

K1,Lv(x) = O(h−
4
3 )

∫
IL

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt

We fix δ > 0 arbitrarily small, and we first suppose that x ≤ x∗ − δ. In the

integral of (11.1), we decompose IL into three parts:

IL = (−∞, x∗ − δ

2
] ∪ [x∗ − δ

2
,−δ] ∪ [−δ, 0].

• On (−∞, x∗− δ
2 ]: There, we have u−1,L(x)u+

1,L(t)1x<t+u
−
1,L(t)u+

1,L(x)1x>t =

O(h
1
3 e−c0|x−t|/h) and v(t) = O(e−c1|t|/h), with c0, c1 > 0 constants. Using

that |x− t|+ |t| ≥ 1
2(|x|+ |t|), we obtain,

h−
4
3

∫ x∗− δ
2

−∞

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt = O(h−1e−c2|x|/h),

with c2 := 1
2 min(c0, c1).

• On (x∗− δ
2 ,−δ]: There, we have u−1,L(x)u+

1,L(t)1x<t+u−1,L(t)u+
1,L(x)1x>t =

u−1,L(x)u+
1,L(t) = O(h

1
3 e−c0|x|/hm∗(t)) and v(t) = O(m∗(t)), with c0 > 0

constant, and we obtain,

h−
4
3

∫ −δ
x∗− δ

2

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt = O(h−1e−c0|x|/h).

• On (−δ, 0]: There, we have u−1,L(x)u+
1,L(t)1x<t + u−1,L(t)u+

1,L(x)1x>t =

u−1,L(x)u+
1,L(t) = O(h

1
3 e−c0|x|/hm0(t)) and v(t) = O(m0(t)), with c0 > 0

constant, and we obtain,

h−
4
3

∫ 0

−δ

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt = O(h−1e−c0|x|/2h).

Thus, on (−∞, x∗ − δ], we have,

K1,Lv(x) = O(e−c3|x|/h),

with c3 > 0 constant.
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Suppose now that x∗ − δ ≤ x ≤ x∗. This time we divide IL into,

IL = (−∞, x∗ − 2δ] ∪ [x∗ − 2δ, x∗] ∪ [x∗,−δ] ∪ [−δ, 0].

•On (−∞, x∗−2δ]: There, we have u−1,L(x)u+
1,L(t)1x<t+u

−
1,L(t)u+

1,L(x)1x>t =

u−1,L(t)u+
1,L(x) = O(e−c0/hm∗(x)) and v(t) = O(e−c1|t|/h), with c0, c1 > 0

constants, and we obtain,

h−
4
3

∫ x∗−2δ

−∞

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt = O(m∗(x)e−c0/2h).

• On [x∗−2δ, x∗]: There, we have u−1,L(x)u+
1,L(t)1x<t+u−1,L(t)u+

1,L(x)1x>t =

O(h
1
3m∗(x)m∗(t)e

−c0
∣∣∣(x∗−x)

3
2−(x∗−t)

3
2

∣∣∣/h
and v(t) = O(m∗(t)e

−c1(x∗−t)
3
2 /h),

with c0, c1 > 0 constants, and making the change of variable t 7→ x∗− t, and

using the notation x̃ := x∗ − x, we obtain,

h−
4
3

∫ x∗

x∗−2δ

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt

= O(h−1m∗(x))

∫ 2δ

0

e
−
(
c0|t

3
2−x̃

3
2 |+c1t

3
2

)
/h

√
t

dt.

Thus, using the fact that |t
3
2 − x̃

3
2 |+ t

3
2 ≥ 1

2(x̃
3
2 + t

3
2 ), this gives us,

h−
4
3

∫ x∗

x∗−2δ

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt

= O(h−1m∗(x)e−c2x̃
3
2 )

∫ 2δ

0

e−c2t
3
2 /h

√
t

dt = O(h−
2
3m∗(x)e−c2x̃

3
2 ),

with c2 = 1
2 min(c0, c1).

• On [x∗,−δ]: There, we have u−1,L(x)u+
1,L(t)1x<t + u−1,L(t)u+

1,L(x)1x>t =

u−1,L(x)u+
1,L(t) = O(h

1
3m∗(x)m∗(t)e

−c0(x∗−x)
3
2 /h and v(t) = O(m∗(t)), with

c0 > 0 constant, and we obtain,

h−
4
3

∫ −δ
x∗

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt

= O(h−1m∗(x)e−c0(x∗−x)
3
2 /h).

• On [−δ, 0]: There, we have u−1,L(x)u+
1,L(t)1x<t + u−1,L(t)u+

1,L(x)1x>t =

u−1,L(x)u+
1,L(t) = O(h

1
3m∗(x)m0(t)e−c0(x∗−x)

3
2 /h and v(t) = O(m0(t)), with

c0 > 0 constant, and we obtain,

h−
4
3

∫ 0

−δ

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt

= O(h−1m∗(x)e−c0(x∗−x)
3
2 /h).
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Thus, on (x∗ − δ, x∗], we have,

K1,Lv(x) = O(h−1m∗(x)e−c3(x∗−x)
3
2 /h),

with c3 > 0 constant.

Then we consider the case x∗ ≤ x ≤ −δ. We divide IL into,

IL = (−∞, x∗ − δ] ∪ [x∗ − δ, x∗] ∪ [x∗, 0].

Arguing as before, we find,

h−
4
3

∫ x∗−δ

−∞

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt

= O(m∗(x)e−c0/h)

h−
4
3

∫ x∗

x∗−δ

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt

= O(m∗(x)h−
2
3 )

h−
4
3

∫ 0

x∗

(
u−1,L(x)u+

1,L(t)1x<t + u−1,L(t)u+
1,L(x)1x>t

)
v(t)dt

= O(m∗(x)h−1),

and thus, on [x∗,−δ], we have,

K1,Lv(x) = O(h−1m∗(x)).

Finally, in the case −δ ≤ x ≤ 0, dividingagain IL into,

IL = (−∞, x∗ − δ] ∪ [x∗ − δ, x∗] ∪ [x∗, 0],

we find in the same way,

K1,Lv(x) = O(h−1m0(x)).

We also see that the same estimates hold for the derivatives (hDx)kK1,Lv(x),

and thus we have proved,

K1,L (F1(IL)) ⊂ h−1F1(IL).

Concerning K1,L (F2(IL)), that is, if v ∈ F2(IL), the same decompositions

as before give exponentially small terms only, multiplied by m∗(x)m0(x),

except those for t close to 0. For these last ones, the previous arguments

permit us to estimate them by,

O(h−1)m∗(x)m0(x)α(x)

∫ δ

0

e−t
3
2 /h

√
t
dt = O(h−

2
3 )m∗(x)m0(x)α(x),
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where we have used the notation α(x) := e−c(x
∗−x)

3
2 /h) (with c > 0 constant)

when x ≤ x∗, and α(x) := 1 when x ≥ x∗. This proves that,

K1,L (F2(IL)) ⊂ h−2/3F1(IL).

The estimate on K2,L (F1(IL)) follows essentially in the same way, except for

the behaviour near x = x∗. Take v ∈ F1(IL), and first consider K2,L(v)(x)

for x∗ − δ ≤ x ≤ x∗. One has,

K2,L(v)(x) =O(h−1)

∫ x∗

x∗−δ
e−c0(|t−x|+|t−x∗|

3
2 )/hm∗(t)dt

+O(h−1)

∫ x∗+δ

x∗
e−c0|t−x|/hm∗(t)dt+O(e−c0/h),

with c0 > 0. Making the change of variable t 7→ x∗ − t, and setting x̃ :=

x∗ − x, we obtain,

K2,L(v)(x) =O(h−1)

∫ δ

0
e−c0(|x̃−t|+t

3
2 )/ht−

1
4dt

+O(h−1)

∫ 0

−δ
e−c0(x̃−t)/h|t|−

1
4dt+O(e−c0/h),

and thus, using that
∣∣∣t 3

2 − x̃
3
2

∣∣∣ ≤ 1
2 |x̃− t| for t, x̃ ∈ [0, δ], δ small enough, we

deduce,

K2,L(v)(x) =O(h−1)e−c0x̃
3
2 /h

∫ δ

0
e−c0|x̃−t|/2ht−

1
4dt

+O(h−1)

∫ δ

0
e−c0(x̃+t)/ht−

1
4dt+O(e−c0/h),

Making the change of variable t 7→ ht, this gives us,

K2,L(v)(x) =O(h−
1
4 )e−c0x̃

3
2 /h

∫ δ/h

0
e−c0(h−1x̃−t)/2t−

1
4dt

+O(h−
1
4 )

∫ δ/h

0
e−c0(h−1x̃+t)t−

1
4dt+O(e−c0/h),

and, cutting the first integral into
∫ 1

0 +
∫ x̃/h

1 +
∫ δ/h
x̃/h in the case x̃ ≥ h, and

into
∫ 1

0 +
∫ δ/h

1 in the case 0 ≤ x̃ ≤ h, we obtain,

K2,L(v)(x) = O(h−
1
4 )e−c0x̃

3
2 /h +O(h−

1
4 )e−c0x̃/h

and therefore (since 0 ≤ x̃
3
2 ≤ x̃), for x∗ − δ ≤ x ≤ x∗,

(11.2) K2,L(v)(x) = O(h−
1
4 )e−c0x̃

3
2 /h = O(h−

1
4 )e−c0(x∗−x)

3
2 /h.

When x∗ ≤ x ≤ x∗ + δ, the same computations lead to

(11.3) K2,L(v)(x) = O(h−
1
4 ).
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Then, when x∗ + δ ≤ x ≤ −δ, we can write,

K2,L(v)(x) = O(h−1)e−|x|
3
2 /h

∫ δ

0
et

3
2 /ht−

1
2dt+O(1),

and the change of variable t 7→ (ht)
2
3 gives us,

(11.4) K2,L(v)(x) = O(h−
2
3 )e−|x|

3
2 /h

∫ δ
3
2 /h

0

et

t
2
3

dt+O(1) = O(h−
2
3 ).

Finally, for −δ ≤ x ≤ 0, the same kind of computations lead to,

(11.5) K2,L(v)(x) = O(h−
2
3 )m0(x).

Since in addition h−
1
4 ≤ h−

2
3m∗(x) on [x∗− δ, x∗+ δ], the required result on

K2,L (F1(IL)) follows from (11.2)-(11.5)

The estimate on K2,L (F2(IL)) follows along the same lines, together with

the results on I±R .

12. Appendix 2: proof of (9.12)

For any tempered function f = f(x) on R, we denote by f̂ its Fourier

transform defined by,

f̂(ξ) :=

∫ +∞

−∞
e−ixξf(x)dx,

and, for α > 0 constant and x ∈ R, we set,

fα(x) := Ai (αx).

By definition we have Âi (ξ) = eiξ
3/3, and thus f̂α(ξ) = α−1eiα

−3ξ3/3.

Then, we see on (9.11) that we have,

A0(s) = g(x) := τ
− 1

6
1 τ

− 1
6

2 (fα ∗ fβ)(x)

with,

α := τ
1
3

1 ; β := τ
1
3

2 ; x := −
(
τ1 + τ2

τ1τ2

)
s,

and where ∗ stands for the standard convolution of functions. As a conse-

quence, using that ˆ(fα ∗ fβ) = f̂αf̂β, we obtain,

ĝ(ξ) = τ
− 1

6
1 τ

− 1
6

2 f̂α(ξ)f̂β(ξ) = τ
− 1

6
1 τ

− 1
6

2 α−1β−1ei(α
−3+β−3)ξ3/3

= τ
− 1

6
1 τ

− 1
6

2 γα−1β−1f̂γ(ξ),

with,

γ := (α−3 + β−3)−
1
3 =

(
τ1τ2

τ1 + τ2

) 1
3

.
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Hence,

g = τ
− 1

6
1 τ

− 1
6

2 γα−1β−1fγ = τ
− 1

6
1 τ

− 1
6

2 (τ1 + τ2)−
1
3 fγ ,

and (9.12) follows.
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