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Abstract

An explicit and complete construction of the SU(3) A1 associated quantum groupoid is presented in this

work, inspired by the approach taken by Trinchero[1] for the SU(2) Al graphs. New creation and annihilation

operators were defined in order to consider the 3 different types of back-tracks which appear due to the specific

structure of SU(3). The C⋆ bialgebra and the realization of a Temperley-Lieb algebra is studied thoroughly.

Finally, it is shown that the construction of the quantum groupoids associated to the A1 SU(N) graphs are easily

obtained for any value of N using the results of this work. The generalization for higher levels Al graphs are still

an unsolved challenge, but now we count with enough tools, some insight about how to attack this problem, and

the first steps towards solving it.
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I. INTRODUCTION

The existence and explicit construction of the quantum groupoids associated to a SU(N) ADE

graphs, is an interesting and complex mathematical problem that has been addressed for several years,

using many different points of view [1–10]. The applications and different connections of this struc-

tures occupy an important part of the Mathematical Physics literature, specially in Integrable Systems

and Conformal Field Theory [11, 12].

However, when we look at the SU(3) family of graphs there is only one attempt [6] to explicitly

construct the entire structure. In that work, the quantum groupoid of the A1 graph is studied using

the language of paths over the graph and Ocneanu Cells. Despite the fact that all the structure seems

to be present in Hammaoui’s work [6], when one take a closer look, one realizes that the algebra is

not complete, basically due to the fact that there are paths which are not taken into account. In the

language we use in this work and in Hammaoui’s work [6] this space is the free vector space spanned

by the set of graduated endomorphisms of paths on the A1 graph. The consequence is crucial because

the product so defined, even thought it is closed and consistent (in the sense of homomorphism) with

the co-product and the remaining bi-algebra operations, is non-associative.

For higher level and exceptional graphs the only known method to recover the information of these

quantum groupoids uses the Modular Splitting Method [5] which allows to recover the corresponding

matricial representation.

For the SU(2) case a general, very elegant and explicit definition of the operations of the associated

quantum groupoids has been constructed by Trinchero [1]. Using the path language in Trinchero’s

work [1] it is shown that for any simple ADE bioriented graph it is possible to construct the quantum

groupoids directly from the properties of the space of paths without having to use Ocneanu cells. The

key ingredient is the decomposition of the space of paths as a direct sum of subspaces which are:

either the subspace of essential paths with n steps or orthogonal subspaces constructed by recurrent

applications of the corresponding creation operators C
†
i (Ui = C

†
i Ci) on subspaces of essential paths

of shorter length. This decomposition and the corresponding orthogonal projectors, are sufficient to

define all the operations of the quantum groupoids for any ADE graph and any afine ADE graph.

In this work we present a complete construction of the quantum groupoid defined over the free

vector space of graded endomorphisms of paths over the simply laced graph A1 of SU(3). The con-

struction imitates Trinchero’s development [1], introducing several important differences specific of

SU(3) that we think are critical for the understanding of the higher levels. The important differences

with SU(2) appear because the SU(3) bialgebra is constructed over two oriented graphs, one for each
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of the two SU(3) fundamental generators. This implies that SU(3) requires three types of operators

acting on 3 different types of back-tracks or spurious sections of a path, instead of just one operator as

in SU(2). One of these new operators considers triangular sections of two contiguous edges, generated

by the repeated action of two generators σ (σ̄ in the conjugate graph), which will be replaced by an

edge generated by σ̄ (σ in the conjugate graph)[13] et al., and the other two operators that will act

on back-tracks of type SU(2) composed of an edge in each direction generated by the action of the

generators in the form σσ̄ (or σ̄σ ).

As far as we know, at the moment this is the only explicit case of the complete construction of

the weak Hopf algebra (associated to SU(3)) available in the literature. Moreover, if we look at the

A1 graphs of SU(N) for some N, one finds that the process to construct the corresponding quantum

groupoids is exactly the same as for SU(3) but requiring more operators, given that there are more

generators and therefore, more types of back-tracks. Geometrically, this is actually presented in such

a way that it only remains to prove a reduced (but complex) number of properties to obtain the C⋆

bialgebra for any level, including exceptional cases.

The paper is organized as follows. In section II, the SU(3) A1 associated graph is thoroughly

described. Then, in section III, the corresponding Jones operators Ui are defined from the construction

of the corresponding creation and annihilation operators, and it is proven that these are the elements

of a Temperley-Lieb Algebra. Next, in section IV, a C⋆ bialgebra is constructed by using the graded

endomorphisms over the space of paths of A1 and in section V we generalize this construction to the

A1 graph of any SU(N). Finally, in section VI, some ideas about the higher levels Al graphs of SU(3)

are discussed.

II. THE SU(3) A1 GRAPH

In general, the family of SU(N) Al graphs are the Weyl alcoves truncated at some level l, and

are characterized by its Coxeter number κ = N + l. The vertices of the graphs denote irreducible

representations (irreps) of the quantum sub-groups SU(N)l at roots of unity q = ei π
κ [12], [14], [15].

The Weyl alcoves of SU(3) are two dimensional, simply laced, oriented graphs, with a structure

of triangular mesh. The vertices (the irreducible representations of SU(3)l) can be labelled using

triangular coordinates

{λ = (λ1,λ2) = λ1Λ1 +λ2Λ2 s.t.0 ≤ λ1 +λ2 ≤ l, λ1,2 ∈N}, (1)
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where Λ1 and Λ2 are the fundamental weights of the SU(3) Lie group, λ1 and λ2 are the corre-

sponding Dynkin labels, and the rule 0 ≤ λ1 + λ2 ≤ l gives the appropriate truncation at level l to

obtain irreducible representations of SU(3)l. With this labelling the vertex (0,0) is the unit represen-

tation related to the ”vacuum state”, (1,0) is the fundamental representation (generator) of SU(3)l and

(0,1) its conjugate representation (also a generator)[16]. This means that SU(3)l is associated with

two oriented graphs (which are isomorphic but with opposite orientation), one generated by the fun-

damental representation (1,0) and one generated by the conjugate fundamental representation. The

cardinality of Al is dAl
=

(l+1)(l+2)
2

.

The quantum dimension of a given vertex λ = (λ1,λ2) is given by the q-analog of the classical

formula for dimensions of irreps of SU(3), real numbers being replaced by quantum numbers:[16]

qdim(λ ) = (1/[2]q)([λ1+1]q[λ2+1]q[λ1 +λ2 +2]q), (2)

where q = exp(iπ/l) is a root of unity and [n]q =
qn−q−n

q−q−1 [16]. The quantum dimension [2]q is special

because appears as the deformation parameter in the Temperley- Lieb algebra, and it is denoted by β .

With this definition the vertices of the graphs can be also labelled using the quantum dimensions.

Grouped by levels, the first dimensions will be {{[1]q},{[3]q, [3]q},{[6]q, [8]q, [6]q} . . .} that we will

denote with the short notation {{1},{3, 3̄},{6,8, 6̄} . . .} where the bar was added to identify the con-

jugate representation.

For the specific case of SU(3)A1, the graphs have two levels with quantum dimensions {{[1]q},{[3]q, [3]q}}
and the vertices of the graphs are denoted using {{1},{3, 3̄}}. Notice that for l = 1 we have

[1]q = [3]q = 1 and then the actual dimension appearing on the vertices is the real number 1. The

graphs is Z3 symmetric under rotations of 120◦ as expected.

In order to make our discussion clearer and more precise we will differentiate the two associated

oriented graphs. We denote
−→
A 1 as the graph generated by the fundamental representation (1,0) and

←−
A 1 as the graph generated by the conjugate fundamental representation (0,1). The graph A1 will have

both the edges of
−→
A1 and

←−
A1.

III. REALIZING THE SU(3) TEMPERLEY-LIEB ALGEBRA IN TERMS OF PATHS

Considering the graphs
−→
A 1 and

←−
A 1, an elementary path will be a sequence of vertices (v0, ...,vn)

such that each pair of consecutive vertices have an edge connecting them either in
−→
A1 or in

←−
A1.
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Figure 1. The A1 SU(3) graph generated by the fundamental representation (1,0) with the vertices labeled by

the short notation for quantum dimensions.

The number n will be called the number of steps in the path. Let’s define an inner product such

that each pair of different elementary paths are orthogonal and then, define a free-vector space P with

that inner product, where an arbitrary path is a formal linear combination of elementary paths. It is

natural to decompose this space of paths into orthogonal subspaces Pn which contain all the paths

with n steps. From now on, an edge which belongs to
−→
A1 will be called a “forward step”, while an

edge which belongs to
←−
A1 will be called a “backward step”. The length of a path will be the ordered

pair (x,y) such that x is the number of forward steps in the path and y is the number of backward steps.

Furthermore, we can define orthogonal subspaces Pi, j containing all the paths of length (i, j).

Here we present how to define the Jones operators Ui : Pn→Pn (the i stands for the ith step of

the path in which it is applied), such that these constitute a realization of the SU(3) Temperley-Lieb

algebra. This is equivalent to ask that the U ′i s satisfy

U2
i = βUi, (3)

UiUi+1Ui−U i =Ui+1UiUi+1−Ui+1, (4)

UiU j =U jUi for |i− j|> 1, (5)

(Ui−Ui+2Ui+1Ui +Ui+1)(Ui+1Ui+2Ui+1−Ui+1) = 0 (6)

Notice that, in these expressions, we must consider the number of steps of the path on which we are

acting. For example, if we are verifying these expressions for 3-step paths, we should only consider

operators U0 and U1.

A. Creation and annihilation operators in SU(3)

In the A1 graph, we have three elementary paths of length (0,0), three elementary paths of length

(1,0), and three elementary paths of length (0,1). We define the sub space of essential paths E
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bay saying that the previous set of paths constitute an orthonormal basis of E with the same inner

product as P . The reason behind this is that there are no shorter ways to join any two vertices of

the graphs under consideration. The shortest way to join any vertex with itself is a path with zero

steps. The shortest way to join two different vertices is always an edge, which is either a path of

length (1,0) or (0,1). Similarly, En will be the subspace of essential paths with n steps. Also, we

will denote the subspace of essential paths of a given length (i, j) as Ei, j. We will see in what follows

that this definitions coincides with the original definition of essential path, i.e. the set of paths that are

annihilated by all the Jones operators, provided that a good definitions of these last ones is available.

In this sense this definition can also be read as an ansatz.

We define creation operators such that every possible path with 2 steps can be created from the

essential paths. One way to do this is the following. Let’s define 3 types of creation operators for

n≥ 0

T
†

i : Pn+1→Pn+2, (7)

B
†
i : Pn→Pn+2, (8)

F
†
i : Pn→Pn+2, (9)

where it can be seen that T † cannot be applied over a path with zero steps.

Over a path η = (v0,v1, ...,vn) with the right number of steps, each of these operators will act in

the following ways:

T
†

i (η) = ∑
j

tvi jvi+1
(v0...vi, j,vi+1...vn), (10)

F
†
i (η) = ∑

j

f vi jvi
(v0...vi, j,vi,vi+1, ...vn), (11)

B
†
i (η) = ∑

j

bvi jvi
(v0...vi, j,vi,vi+1, ...vn), (12)

where t i jk, f i jk, and bi jk are complex numbers. These constants are fixed in a way in which the T †’s

add triangle-like paths of length (0,2) or (2,0), while the rest of the operators add loops of length

(1,1). The F†’s operators add loops which start with a forward step, and the B†’s operators add loops

which start with a backward step. Using the rule:

(C†
i, jη,η

′) = (η,Ci, jη ′), (13)

we can find the associated annihilation operators. Notice that we use Ci, j to denote the operators

previously defined. The i stands for the type of operator, that is i = 0,1,2 corresponds to T , F and
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B respectively. Similarly, the j stands for the step in which the operator is applied. The annihilation

operators are then:

Ti(η) = tvivi+1vi+2
(v0,v1, ...,vi,vi+2, ..vn), (14)

Fi(η) = fvivi+1vi+2
(v0,v1, ...,vi,vi+3, ..vn), (15)

Bi(η) = bvivi+1vi+2
(v0,v1, ...,vi,vi+3, ..vn). (16)

The T ’s replace triangle-like parts of the path for an edge. In the same way, the rest of the operators

erase loops of length (1,1).

These operators have some similarities with the creation and annihilation operators of quantum

mechanics. In fact, the elementary paths behave as number states and the essential paths as the corre-

sponding vacuum states.

B. The Temperley-Lieb algebra

Now, inspired by the resemblance with quantum mechanics, we can define the Jones operators

Ui : Pn→Pn which will have a similar form to the number operators. Let’s define:

Ui = T
†

i Ti +B
†
i Bi +F

†
i Fi. (17)

If we require that these operators lead us to a Temperley-Lieb algebra, then, we immediately notice

that

β = |tv2v1v0
|2 = |tv0v1v2

|2 = | fv0v1v0
|2 = |bv1v0v1

|2, (18)

for any path η = (v0,v1,v2) of length (2,0). We can see this by evaluating equation (3) in elementary

paths of length (1,1), (2,0), and (0,2). This implies for this particular case that

Ui(η) = βη for i < n−2. (19)

Therefore, the equations (4) and (5) are automatically satisfied. Equation (6) can only be satisfied

if β is 0, 1, or
√

2. Notice that, if we choose β =
√

2, then equation (18) is in agreement with the

computation of triangular cells presented in Conquereaux [8] et al. and Evans [17] et al. This also

happens in the A1 graph associated with SU(2), which is two vertices joined by an edge. The only

possible paths include sequences of 2-length loops, and nothing more. Therefore, the number operator

is proportional to the identity when acting on paths of length greater than or equal to 2.
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IV. THE BIALGEBRA

Now, knowing that we can realize a Temperley-Lieb algebra structure for A1 of SU(3), we want

to construct the associated weak ⋆ Bialgebra, inspired by the approach taken in Trinchero’s work [1],

modified in a way that it takes into account the 3 different kind of back-tracks which we have in A1

of SU(3). The proofs are made in such a way that if we manage to define correctly the previously

mentioned operators for any Al graph, together with the corresponding decomposition of the space of

paths, the construction of the weak ⋆ Bialgebra will be similar for higher levels. [18]

We must first define the vector space of graded endomorphisms of paths over A1 as

Endgr(P) =
∞
⊕

i+ j=0

(Pi, j×Pi, j). (20)

Similarly, we must also define the vector space of graded endomorphisms of essential paths over

A1 as

A ≡ Endgr(E ) =
l
⊕

i+ j=0

(Ei, j×Ei, j), (21)

where l is the maximum number of steps of an essential path, which is actually 1 for A1. These

graded endomorphisms of essential paths constitute a weak ⋆ bialgebra if we equip them with the

right operations.

To start, let ⋆ denote the concatenation product of paths. If η = (v0, ...,vn) and η ′ = (ω0, ....,ωm),

then

η ⋆η ′ = δvnω0
(v0, ...,vn,ω1, ....,ωm). (22)

We can easily extend this definition to endomorphisms over paths (or essential paths) as follows:

(η⊗ρ)⋆ (η ′⊗ρ ′) = (η ⋆η ′)⊗ (ρ ⋆ρ ′). (23)

We will also need to define an involution, called “the star”. Let η = (v0, ...,vn), then η⋆ =

(vn, ....,v0). Notice that η⋆ is the path obtained from η by “time inversion”.

Extending this definition we can see what is the star of a graded endomorphism (η⊗ρ):

(η⊗ρ)⋆ = η⋆⊗ρ⋆. (24)

While we have only used elementary paths for our definitions, these can be extended to any path.

Just bear in mind that the concatenation product is linear and the star satisfies these two properties:

(η +ρ)⋆ = η⋆+ρ⋆ ∀ρ ,η ∈P, (25)

(αη)⋆ = αη⋆ ∀η ∈P and ∀α ∈ C. (26)
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A. The Projector

For the construction of our weak ⋆ bialgebra we need an associative product and a coassociative

coproduct which are compatible. One way to achieve these construction is through the computation

of the Ocneanu cells, as mentioned in the Introduction (I), nevertheless we choose to follow the ideas

presented by Trinchero [1] because they are more likely generalizable to higher levels, as we will see

in section V. We start them by defining a certain projector map P : Endgr(P)→ A . However, to

define P, we should first look at how to decompose any Pn into a direct sum of subspaces which can

be described completely in terms of the essential paths and the creation operators acting on them. For

this case (A1), it is easy to identify that:

P0 = E0, P1 = E1, (27)

P2 = T
†

0 (E1)
⊕

F
†
0 (E0)

⊕

B
†
0(E0). (28)

The first two equations are evident from the definition of essential paths. The third equation comes

from the fact that the 2-step paths are either 2-step loops or 2 edges of a triangle. Now, notice that the

form of the decomposition of P2 (28) suggests us the following ansatz:

Pn = T
†

0 (Pn−1)
⊕

F
†
0 (Pn−2)

⊕

B
†
0(Pn−2). (29)

To prove that this decomposition is always possible, we will use induction. So, for now, let us

assume that for any k < n the decomposition given by equation (29) holds. It is left for us to prove

that the proposed decomposition of Pn has the adequate dimension and that the subspaces involved

are orthogonal to each other. By noticing that:

Ci, jC
†
k, j = βδik, (30)

we can conclude that T
†

0 (Pn−1), F
†
0 (Pn−2), and B

†
0(Pn−2) are indeed mutually orthogonal sub-

spaces. On the other hand, the dimension of Pk is always 3 ·2k, which is the number of ways in which

we can choose an elementary path with k steps. There are 3 choices for the first vertex, two choices

for the next vertex, and so on. Suppose that we choose 2 paths η and ρ from an orthogonal basis of

Pn−1. Then, we can see that

(T †
0 η,T †

0 ρ) = (T0T
†

0 η,ρ) = β (η,ρ) = 0. (31)

Similarly, we can choose any two orthogonal paths λ and ξ ∈Pn−2 to see that

(F†
0 λ ,F†

0 ξ ) = 0, (32)

(B†
0λ ,B†

0ξ ) = 0. (33)
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Therefore, if {ηi} is an orthogonal basis of Pn−1, then the list {T †
0 (ηi)} is a list of mutually orthogonal

paths, which also spans the vector space T
†

0 (Pn−1). We can see this by using the linearity of T
†

0 :

T
†

0

(

∑
i

αiηi

)

= ∑
i

αiT
†(ηi). (34)

As a result, {T †
0 (ηi)} is an orthogonal basis for T

†
0 (Pn−1). Likewise, orthogonal bases for

F
†
0 (Pn−2) and B

†
0(Pn−2) can be found by simply applying the operators F

†
0 and B

†
0 over the el-

ements of an orthogonal basis for Pn−2 respectively. As a consequence, Pn−1 and T
†

0 (Pn−1)

have the same dimension and this is also true for F
†
0 (Pn−2) and B

†
0(Pn−2). The dimension of

T
†

0 (Pn−1)
⊕

F†(Pn−2)
⊕

B†(Pn−2) is then

3 ·2n−1 +3 ·2n−2 +3 ·2n−2 = 3 ·2n, (35)

which is actually the dimension of Pn. As this decomposition has the right dimension and all the

subspaces are orthogonal to each other, we conclude that (29) holds. �

One useful result we get from this decomposition is

(C†
in,0

...C†
i1,0

ξ ,C†
jm,0

...C†
j1,0

ω) = β nδnmδin jm....δi1 j1δξ ,ω

=C( j0
1, ..., j0

m; i0n, ..., i
0
1).

(36)

So, now that we have the decomposition, we are ready to define the projector P : Endgr(P)→A as:

P(C†
in,0

...C†
i1,0

ξ ⊗C
†
jm,0

...C†
j1,0

ω)

= ∑
ρ∈E

(C j1,0...C jm,0C
†
in,0

...C†
i1,0

ξ ,ρ)ρ⊗ω

= β nδnmδin jm....δi1 j1ξ ⊗ω.

(37)

The sum above requires that ρ has the same length as ω and ξ . Notice that, any path is a linear

combination of terms of the form C
†
in,0

...C†
i1,0

ξ , which are orthogonal. As all our operators are linear,

we only need to make the proofs in the rest of the work for those terms.

B. The Product

Using the projector of the last section, we can define a bilinear form (·) : A ×A →A , which will

be called “the product” of A

(η⊗η ′) · (ρ⊗ρ ′) = P(η ⋆ρ⊗η ′ ⋆ρ ′) ∀η, η ′ ρ and ρ ′ ∈ E (38)
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Table I. Multiplication table for the elements of the algebra. For simplicity, it is assumed that before evaluating

these expressions, one must take the (mod 3) of each index.

· zi⊗ z j xi⊗ x j yi⊗ y j

zl⊗ zm δliδm j(zl⊗ zm) δliδm j(xi⊗ x j) δ(l+2)iδ(m+2) j(yi⊗ y j)

xl⊗ xm δl(i+2)δm( j+2)(xl ⊗ xm) δl(i+2)δm( j+2)(yi+1⊗ y j+1) δliδm j(zi⊗ z j)

yl⊗ ym δliδm j(yl⊗ ym) δliδm j(zi+1⊗ z j+1) δ(l+2)iδ(m+2) j(xl+1⊗ xm+1)

The identity element associated with this product is simply:

1= ∑
v,u∈E0

v⊗u (39)

To write the corresponding multiplication table we should do the following. We label the vertices

(1), (3), and (3) as z0, z1, and z2 respectively. Now, we label the elementary paths of length (1,0),

which are (13), (33), and (31) as x0, x1, and x2 respectively. Finally, the elementary paths of length

(0,1) which are (31), (33) and (13) are labeled as y0, y1, and y2 respectively. Notice that these paths

constitute an orthogonal basis of E and therefore, we can write any graded endomorphism in A in

terms of these paths.

Notice that, in Hammaoui’s work [6] it is defined a very similar product for this case, using the

Ocneanu cells method. However, according to the multiplication table presented in that work,

(xi⊗ x j) · (yk⊗ yl) = (yi⊗ y j) · (xk⊗ xl) = 0. (40)

But, in fact, this leads to a non-associative product, because then we would have

[(xi⊗ x j) · (yi⊗ y j)] · (yi+2⊗ y j+2) = 0, (41)

but

(xi⊗ x j) · [(yi⊗ y j) · (yi+2⊗ y j+2)] = yi+2⊗ y j+2. (42)

Instead, the definition of the product given in Table I is compatible with the ⋆ and associative. This

means that, for a = ξ1⊗ξ ′1, b = ξ2⊗ξ ′2, and c = ξ3⊗ξ ′3, then

(a ·b)⋆ = (b)⋆ · (a)⋆, (43)

(a ·b) · c = a · (b · c). (44)
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In order to prove the anti-homomorphism property of the involution with the product (43) an inter-

mediate result is needed:

P((η⊗η ′)⋆) = (P(η⊗η ′))⋆ ∀ η,η ′ ∈Pn. (45)

It is easy to see that (45) is trivially satisfied if P(η ⊗η ′) = 0. In case it does not vanish take η =

C
†
in,0

...C†
i1,0

ξa and η ′ = C
†
in,0

...C†
i1,0

ξa, and remembering that (η⋆,η ′⋆) = η,η ′ you can immediately

notice that

P(η⊗η ′) = ∑
ξc∈E

(η,C†
in,0

...C†
i1,0

ξc)ξc⊗ξb

= ∑
ξc∈E

(η⋆,(C†
in,0

...C†
i1,0

ξc)⋆)ξc⊗ξb.
(46)

Now, we can use that in this sum the only term which survives is the one for which ξc = ξb, if any.

Thus

P(η⊗η ′) = ∑
ξc∈E

(η⋆,η ′⋆)ξc⊗ξb. (47)

If we take the star for the last equation, equation (45) follows �. Proving equation (43) is done by

making straightforward calculations and using the property (45).

Now, the associativity is a bit harder to prove. To do so, we must first prove the following result:

∀ξ ,ξ ′ ∈ E and ∀η,η ′ ∈P then

P((ξ ⊗ξ ′)⋆P(η⊗η ′)) = P((ξ ⊗ξ ′)⋆ (η⊗η ′)), (48)

P(P(η⊗η ′)⋆ (ξ ⊗ξ ′)) = P((η⊗η ′)⋆ (ξ ⊗ξ ′)), (49)

First, we can notice that both of these equations are trivially satisfied if P(η⊗η ′) = 0.

Supposing that this does not happen, we can start by looking at the left-hand side of equation (48)

and considering paths η =C
†
in
...C†

i1
ξa and η ′ =C

†
in
...C†

i1
ξb. In that case,

P(η⊗η ′) = β nξa⊗ξb,

and the lhs of equation (48) is

P((ξ ⊗ξ ′)⋆P(η⊗η ′)) = β nP((ξ ⊗ξ ′)⋆ (ξa⊗ξb)).

On the other hand, the rhs of equation (48) is

P((ξ ⊗ξ ′)⋆ (η⊗η ′)) = P(ξ ⋆C
†
in,0

...C†
i1,0

ξa⊗ξ ′ ⋆C
†
in,0

...C†
i1,0

ξb)

= P(C†
in,l

...C†
i1,l

(ξ ⋆ξa)⊗C
†
in,l

...C†
i1,l

(ξ ′ ⋆ξb))

= β nP((ξ ⋆ξa)⊗ (ξ ′ ⋆ξb)),

(50)
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which comes from three facts. First, that

ρ ⋆C
†
in,0

...C†
i1,0

ρ ′ =C
†
in,l

...C†
i1,l

(ρ ⋆ρ ′),

for ρ and ρ ′ ∈P and l being the number of steps of ρ . The second and third facts are the definition of

the projector and the inner product of the space of paths. Thus, both sides of equation (48) are equal,

in general �. The proof for the equation (49) is quite similar. As a direct consequence of relations

(48) and (49), the associativity follows: let a = ξ1⊗ξ ′1, b = ξ2⊗ξ ′2, and c = ξ3⊗ξ ′3, then

(a ·b) · c = P(P(a⋆b)⋆ c)

= P(a⋆b⋆ c)

= P(a⋆P(b⋆ c))

= a · (b · c) �.

(51)

C. The Co-product

The coproduct ∆ is a linear map ∆ : A →A ×A , which we will define as:

∆(ξ ⊗ξ ′) = ∑
ξa∈E

#ξa=#ξ

ξ ⊗ξa ⊠ξa⊗ξ ′, (52)

where the sum runs over a complete orthonormal basis of E and #ξ denotes the length of ξ . Next,

by straightforward calculations, it can be proved that this coproduct is compatible with the star

∆(a⋆) = ∆(a)⋆. (53)

In addition, the coproduct is co-associative:

(∆⊗ Id)∆(ξ ⊗ω) = (∆⊗ Id) ∑
ρ∈E

ξ ⊗ρ ⊠ρ⊗ω

= ∑
ρ,ρ ′∈E

ξ ⊗ρ ′⊠ρ ′⊗ρ ⊠ρ⊗ω

= (Id⊗∆)

(

∑
ρ ′∈E

ξ ⊗ρ ′⊠ρ ′⊗ω

)

= (Id⊗∆)∆(ξ ⊗ω) �.

(54)
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Another interesting property is that

∆P = P⊗2∆P , (55)

where P⊗2 stands for two copies of the projector, and

∆P(χ⊗χ ′) = ∑
η∈P

χ ⊗η ⊠η⊗χ ′. (56)

Here the sum runs over a complete orthonormal basis of P. To prove this, notice that equation

(55) is trivially satisfied if P(η⊗η ′) = 0. So, let’s suppose that this does not happen and have a look

at the lhs of equation (55). If η =C
†
in,0

...C†
i1,0

ξa and η ′ =C
†
in,0

...C†
i1,0

ξb, then P(η⊗η ′) = β nξa⊗ξb.

As a consequence it follows that

∆P(η⊗η ′) = ∆[β nξa⊗ξb] = β n∆(ξa⊗ξb)

= β n ∑
ξc∈E

#ξc=#ξa

ξa⊗ξc ⊠ξc⊗ξb. (57)

In the same way, the rhs of equation (55) is:

P⊗2∆P(η⊗η ′) = P⊗2 ∑
ρ∈P

η⊗ρ ⊠ρ⊗η ′

= ∑
ρ∈P

P(η⊗ρ)⊠P(ρ⊗η ′)

= β n ∑
ξc∈E

#ξa=#ξc

ξa⊗ξc ⊠ξc⊗ξb,

(58)

where we must notice that the only ρ’s surviving the sum are of the form ρ = β−n/2C
†
in,0

...C†
i1,0

ξc with

ξc ∈ E . Therefore, equation (55) holds, in general �.

Next, we can also prove the following property:

P⊗2(∆P(ξa⊗ξb)⋆∆P(ξc⊗ξd)) =

P⊗2[P⊗2∆P(ξa⊗ξb)⋆P⊗2∆P(ξc⊗ξd)].
(59)

To see that this is actually true, we first realize that, for any (ρ⊗η) ∈ A :

∆P(ρ⊗η) = P⊗2∆P(ρ⊗η) = P⊗2∆(ρ⊗η), (60)

where we have used equation (55). Then, equation (59) holds trivially � .
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Using equations (55) and (59), the compatibility with the product follows

∆((ξ ⊗ξ ′) · (ρ⊗ρ ′)) = ∆[P((ξ ⊗ξ ′)⋆ (ρ⊗ρ ′))]

= P⊗2∆P((ξ ⊗ξ ′)⋆ (ρ⊗ρ ′))

= P⊗2[∆P(ξ ⊗ξ ′)⋆∆P(ρ⊗ρ ′)]

= P⊗2[P⊗2∆P(ξ ⊗ξ ′)⋆P⊗2∆P(ρ⊗ρ ′)]

= P⊗2[∆(P(ξ ⊗ξ ′))⋆∆(P(ρ⊗ρ ′))]

= ∆(ξ ⊗ξ ′) ·∆(ρ⊗ρ ′) �.

(61)

D. The unit and the co-unit

The unit is a map σ : C→A defined as:

σ(c) = c1 ∀c ∈ C. (62)

This unit map is trivially compatible with the product previously defined. On the other hand, the counit

ε is a map ε : A → C and, in this case, is defined as:

ε(ξ ⊗ξ ′) = (ξ ,ξ ′). (63)

Given the definition of the inner product, it follows that for every a ∈ A

ε(aa⋆)≥ 0. (64)

It is also straightforward that

(ε⊗ Id)∆ = Id = (Id⊗ ε)∆. (65)

Another interesting property is that, for every η,η ′ ∈ P:

ε(P(η⊗η ′)) = ε(η⊗η ′). (66)

This equation is trivially satisfied when P(η⊗η ′) = 0, because both sides vanish. When P(η ⊗η ′)

does not vanish, we have

ε(P(η⊗η ′)) = β n(ξa,ξb) = ε(η⊗η ′), (67)

where η =C
†
in,0

...C†
i1,0

ξa and η ′ =C
†
in,0

...C†
i1,0

ξb �.
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Finally, the co-unit is also compatible with the product previously defined:

ε(ab) = ε(a11)ε(12b) ∀a,b ∈A , (68)

where the Sweedler convention is used. So, using the definition of the identity element of the product

(39), then

∆(1) = ∑
v,u,ρ∈ε0

u⊗ρ ⊠ρ⊗ v

= ∑
ρ∈ε0

(

∑
u∈ε0

u⊗ρ ⊠ ∑
v∈ε0

ρ⊗ v

)

= 11 ⊠12.

(69)

To show that equation (68) is true we start by computing the lhs

ε(ξ ⊗ω ·ξ ′⊗ω ′) = ε(P(ξ ⋆ξ ′⊗ω ⋆ω ′))

= (ξ ⋆ξ ′,ω ⋆ω ′),
(70)

while the rhs is

ε(ξ ⊗ω ·11)ε(12 ·ξ ′⊗ω ′)

= ∑
u,v,ρ∈E0

ε(ξ ⊗ω · v⊗u)ε(u⊗ρ ·ξ ′⊗ω ′)

= ∑
u,v,ρ∈E0

δr(ξ )vδr(ω)u(ξ ,ω)δl(ξ ′)uδl(ω ′)ρ(ξ
′,ω ′)

= δr(ξ )l(ξ ′)δr(ω)l(ω ′)(ξ ,ω)(ξ ′,ω ′)

= (ξ ⋆ξ ′,ω ⋆ω ′).

(71)

where r(η) and l(η) denote the last and the first vertices of η , respectively. Therefore, equation (68)

holds �.

E. The Antipode

The antipode is a map S : A →A defined by:

S(ξ ,ω) = ω⋆⊗ξ ⋆. (72)

This definition is motivated by the ansatz of Trinchero [1]. Using equations (72) and (24) it is fairly

easy to prove that the antipode is compatible with the star:

S[(S(a⋆))⋆] = a. (73)
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It is also straightforward to prove that the antipode is compatible with the coproduct

∆(S(a)) = S⊗S(∆op(a)), (74)

where

∆op(ξ ⊗ω) = ∑
ρ∈ε

ρ⊗ω ⊠ξ ⊗ρ . (75)

If the projector does not vanish consider η, η ′, ρ , ρ ′ ∈ E such that η ⋆ρ = β−n/2C
†
in,0

...C†
i1,0

ξa and

η ′ ⋆ρ ′ = β−n/2C
†
in,0

...C†
i1,0

ξb, so that P(η ⋆ρ⊗η ′ ⋆ρ ′) = ξa⊗ξb.

Then, by straightforward calculations

S(η⊗η ′ ·ρ⊗ρ ′) = S(P(η ⋆ρ⊗η ′ ⋆ρ ′))

= S(ξa⊗ξb)

= ξ ⋆
b ⊗ξ ⋆

a .

(76)

On the other hand, by equation (43) and the definition of the antipode

S(ρ⊗ρ ′) ·S(η⊗η ′) = (ρ ′⋆⊗ρ⋆) · (η ′⋆⊗η⋆)

=
[

(η ′⊗η) · (ρ ′⊗ρ)
]⋆

= ξ ⋆
b ⊗ξ ⋆

a .

(77)

Therefore, it follows that the antipode is also compatible with the product

S(ab) = S(b)S(a). (78)

Another property for the antipode is

∑
ξ ′,ω ′∈E

S(ξ⊗ξ ′) · (ξ ′⊗ω ′)⊠ω ′⊗ω

= ∑
u,v,v′∈E0

u⊗ v⊠ (ξ ⊗ω) · (v⊗ v′).
(79)

In order to prove this property, we start by computing the rhs of equation (79)

∑
u,v,v′∈E0

u⊗ v⊠ (ξ ⊗ω) · (v⊗ v′)

= ∑
u,v,v′∈E0

u⊗ v⊠ (ξ ⊗ω)δr(ξ ),vδr(ω),v′

= ∑
u∈E0

u⊗ r(ξ )⊠ (ξ ⊗ω).

(80)
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In the same way, the lhs of eqaution (79) is

∑
ξ ′,ω ′∈E

S(ξ ⊗ξ ′) · (ξ ′⊗ω ′)⊠ω ′⊗ω

= ∑
ξ ′,ω ′∈E

(ξ ′⋆⊗ξ ⋆) · (ξ ′⊗ω ′)⊠ω ′⊗ω

= ∑
ξ ′,ω ′∈E

P(ξ ′⋆ ⋆ξ ′⊗ξ ⋆ ⋆ω ′)⊠ω ′⊗ω.

(81)

At this point, notice that if ω ′ 6= ξ then P(ξ ′⋆ ⋆ξ ′⊗ξ ⋆ ⋆ω ′) vanishes. The path ξ has 1 step at most,

so (ξ ′⋆ ⋆ξ ′) is a 2-step loop or a vertex. Therefore, ξ ⋆ ⋆ω ′ should also be a 2-step loop with the same

length or a vertex, otherwise, the projector would vanish. In any of these cases, it follows that

∑
ξ ′,ω ′∈E

S(ξ ⊗ξ ′) · (ξ ′⊗ω ′)⊠ω ′⊗ω

= ∑
ξ ′∈E

P(ξ ′⋆ ⋆ξ ′⊗ξ ⋆ ⋆ξ )⊠ξ ⊗ω

= ∑
u∈E

u⊗ r(ξ )⊠ξ ⊗ω,

(82)

where it is necessary to notice that there are exactly three possible choices for ξ ′ which have the

same length of ξ (and therefore, which contribute to the sum), each of which have a different starting

vertex. That is why we have changed the sum over ξ ′ by a sum over the starting vertex u of ξ ′. As a

consequence, equation (79) holds �.

V. ABOUT THE SU(N) A1 GRAPHS

So far, in all the proofs provided in this work, for the construction of the quantum groupoid asso-

ciated to A1 of SU(3), the only assumptions we have made are that essential paths are paths with 1

or 0 steps and that the length is an ordered pair indicating the number of times that each generator is

applied to obtain the corresponding path. Moreover, the key ingredient in our construction is that we

can actually achieve the decomposition of any Pn in terms of essential paths and creation operators.

As a consequence, our previous results hold if we manage to find the decomposition and if we properly

define the length of a path (in terms of the number of generators) and the associated essential paths for

the graph under study, regardless of its topology.

To show how to obtain the decomposition of any A1 SU(N) graph, we are going to explicitly show

one more complex example, which is, the decomposition for Pn of the A1 SU(4) graph. The three

associated graphs (one for each generator of SU(4)) are shown below.
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1 2

34

Figure 2. The A1 SU(4) graph. SU(4) has 3 fundamental generators which will be called σ1, its conjugate σ1

and σ2 (σ 2 = σ2). In this diagram σ1 is represented with black oriented segments and σ2 with blue segments

[19].

This is a complete graph, which means that every pair of vertices is connected by an edge. In

addition, note that each edge belongs to two different triangle-like paths which connects the same two

vertices in the same order. Also, from each vertex we can find 3 different 2-step loops which start at

that vertex. Each one of these paths correspond to a way in which two of the generators of the irreps of

SU(4) are applied. In fact, there are 9 ways to choose the pair of generators. Three of them correspond

to the 2-step loops, which are σ1σ 1, σ1σ1, and σ2σ2. Notice that the rightmost generator is applied

first and then we apply the other generator. We can define one operator for each of these back-tracks,

which are clearly different given that they are associated to a different combination of the generators.

So, let’s call them L
†
0,i, L

†
1,i and L

†
2,i.

With the triangle-like paths, we have 6 associated combinations. However, as there are only two

associated triangles for each oriented edge, we can summarize these combinations into 2 operators as

follows.

T
†

0,i→























σ1σ1 when applied over an edge in σ2

σ2σ 1 when applied over an edge in σ1

σ2σ1 when applied over an edge in σ 1

(83)

T
†

1,i→























σ 1σ 1 when applied over an edge in σ2

σ 1σ2 when applied over an edge in σ1

σ1σ2 when applied over an edge in σ 1.

(84)

It follows that the decomposition for P2 of the A1 SU(4) graph is then
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P2 =
2
⊕

i=0

L
†
i,0(E0)

1
⊕

j=0

T
†
j,0(E1). (85)

And recursively, it can be shown that

Pn =
2
⊕

i=0

L
†
i,0(Pn−2)

1
⊕

j=0

T
†
j,0(Pn−1). (86)

As can be seen, we do not actually need to know how are the generators of the graph to construct

the operators for an arbitrary SU(N), given that the A1 graphs are always complete. This is because at

each vertex we must have N−1 different oriented edges going out of that vertex. Also, we must have

N− 2 different triangles associated to each oriented edge. Therefore, we will have N− 1 loop-like

operators and N−2 triangle-like operators. It follows that the decomposition for P2 of the A1 SU(N)

graph is

P2 =
N−1
⊕

i=0

L
†
i,0(E0)

N−2
⊕

j=0

T
†
j,0(E1), (87)

and recursively, it can be shown that

Pn =
N−1
⊕

i=0

L
†
i,0(Pn−2)

N−2
⊕

j=0

T
†
j,0(Pn−1). (88)

We can show equation (88) in the same way as we did for the A1 SU(3) graph using induction.

First, we notice that the number of elementary paths with n steps in a complete graph with N vertices

is N(N−1)n. Also, by constructing the corresponding annihilation operators it is easy to see that

Ci, jC
†
k, j = βδi,k (89)

where we have used the notation Ci, j to denote the corresponding operators. As in SU(3) the i stands

for the type of operator and the j stands for the step in which it is applied. In the same way, β will be

a constant associated to each graph.

Using equation (89) we can see that the subspaces in the direct sum of equation (88) are indeed

orthogonal. In addition, notice that the dimension of Pn−1 is N(N−1)n−1 and the dimension of Pn−2

is N(N−1)n−2. Therefore, the dimension of the decomposition we propose is

N(N−1)n−1(N−2)+N(N−1)n−2(N−1) = N(N−1)n. (90)

Thus, by induction, the decomposition of Pn holds for arbitrary n �.
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Now, in order for us to define the space of graded endomorphisms (and therefore the whole bialge-

bra) for any SU(N), the length of an arbitrary path will be given by a (N−1)-tuple where each entry

corresponds to the number of edges of the path associated to each generator of the graph.

5

1

2 3

4

Figure 3. The A1 SU(5) graph. SU(5) has 4 fundamental generators, one corresponding to the black oriented

segments (and its conjugate), and one corresponding to the blue oriented segments (and its conjugate) [19].

As an example, the table II summarizes the corresponding product associated with the A1 SU(4)

graph.

The notation we have used to construct the table is the following. For reference, see figure (2). The

vertices have been labeled as z0, z1, z2 and z3 in counter-clockwise order, starting from (1). Then, the

edges associated to σ1 have been labeled as x
(1)
i in counter clockwise order starting from (12). The

edges associated to σ 1 were labeled as y
(1)
i and finally, the edges associated with σ2 were labeled as

x
(2)
i , both in counter clockwise order starting from (21) and (13), respectively.

Note that, in general, the product in any SU(N) A1 graph can be summarized as follows. Suppose

that (v0v1v2) and (v′0v′1v′2) are two triangle-like paths of the same type, then

(v0v1⊗ v′0v′1) · (v1v2⊗ v′1v′2) = v0v2⊗ v′0v′2. (91)

On the other hand, if v0v1v0 and v′0v′1v′0 are two-step loops of the same type, then

(v0v1⊗ v′0v′1) · (v1v0⊗ v′1v′0) = v0⊗ v′0. (92)

Multiplication by a vertex is trivial

(v0⊗ v′0) · (v1⊗ v′1) = δv0v1
δv′0v′1

(v0⊗ v′0), (93)

(v0⊗ v′0) · (v1v2⊗ v′1v′2) = δv0v1
δv′0v′1

(v1v2⊗ v′1v′2), (94)

(v0v1⊗ v′0v′1) · (v2⊗ v′2) = δv1v2
δv′1v′2

(v0v1⊗ v′0v′1), (95)

The rest of products not listed here are zero or are products of non-graded endomorphisms and there-

fore, not relevant for this work.
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Table II. Multiplication table for the elements of the algebra associated to A1 of SU(4). For simplicity, it is

assumed that before evaluating these expressions, one must take the (mod 4) of each index.

· zi⊗ z j x
(1)
i ⊗ x

(1)
j x

(2)
i ⊗ x

(2)
j y

(1)
i ⊗ y

(1)
j

zl⊗ zm δliδm j(zl ⊗ zm) δliδm j(x
(1)
i ⊗ x

(1)
j ) δliδm j(x

(2)
i ⊗ x

(2)
j ) δ(l+3)iδ(m+3) j(y

(1)
i ⊗ y

(1)
j )

x
(1)
l ⊗ x

(1)
m δ(l+1)iδ(m+1) j(x

(1)
l ⊗ x

(1)
m ) δ(l+1)iδ(m+1) j(x

(2)
l ⊗ x

(2)
m ) δ(l+1)iδ(m+1) j(y

(1)
l+3⊗ y

(1)
m+3) δliδm j(zl⊗ zm)

x
(2)
l ⊗ x

(2)
m δ(l+2)iδ(m+2) j(x

(2)
l ⊗ x

(2)
m ) δ(l+2)iδ(m+2) j(y

(1)
l+3⊗ y

(1)
m+3) δ(l+2)iδ(m+2) j(zl ⊗ zm) δ(l+1)iδ(m+1) j(x

(1)
l ⊗ x

(1)
m )

y
(1)
l ⊗ y

(1)
m δliδm j(y

(1)
l ⊗ y

(1)
m ) δliδm j(zl+1⊗ zm+1) δliδm j(x

(1)
l+1⊗ x

(1)
m+1) δ(l+3)iδ(m+3) j(x

(2)
i ⊗ x

(2)
j )

VI. ABOUT HIGHER LEVEL Al GRAPHS AND FINAL DISCUSSION

In this work, the SU(N) A1 associated quantum groupoid has been successfully constructed by

finding the decomposition of each Pn for any N. Given that the operators defined act on path sections

with 2 steps or less (which also appear in the rest of the Al SU(3) graphs), and given that almost all

the proofs in this work can be done without supposing a particular graph, it seems natural to extend

this construction to other levels.

However, when working with Al graphs with l > 1, some new 2-step paths arise, which are neither

2-step loops nor 2 sides of a triangle. Some of them are straight lines, for example, in the SU(3) A2

graph, there are paths like (136). There are also paths which are two sides of a parallelogram, as (138)

and (138) (see figure 4). The set of creation operators previously defined do not account for paths like

(138), especially because it is unclear whether they are essential or not.

1 3 6

8

6

3

Figure 4. The SU(3) A2 graph generated by the fundamental representation (1,0) with the vertices labeled by

quantum dimensions.

Since the shortest paths connecting 1 and 8 are (138) and (13̄8), these are essential given our

previous definitions. Nonetheless, if this is the case, there would be essential paths with 3 steps such
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as (13̄86). In A2, the maximum number of steps of an essential path is 2, thus, there is a contradiction.

In addition, the number of essential paths do not match with the one predicted by the references.

Moreover, after some trial an error, both the decomposition of the subspaces of paths Pn, and the

realization of the Temperley-Lieb algebra seem to be unreachable.

So, it seems that a piece of information is missing for the higher levels. Given that each type

of 2-step path has its own pair of associated operators, it would be natural to define some operators

which deal with these problematic paths. Furthermore, this situation is similar to the one presented in

quantum mechanics, when our set of operators is not a CSCO and there are degenerate states. In other

words, there should be only one essential path of length (1,1) which connects 1 and 8 and the set of

operators we need to define should allow us to identify it. However, each operator seems to be related

to a combination of two generators, and we do not have more generators on SU(3).

On the other hand, notice that the SU(3) A2 graph can be realized as a truncation of the SU(6) A1

graph (see the changes from figure 5 to figure 6).

1

2 3

4

56

Figure 5. The A1 SU(6) graph. SU(6) has 5 fundamental generators, one corresponding to the black oriented

segments (and its conjugate), one corresponding to the blue oriented segments (and its conjugate) and one

corresponding to the red segments (which is its own conjugate) [19].

This lead us to think that the paths like (138) in the SU(3) A2 graph are actually produced by

applying the triangle operators of SU(6) to edges like (18) which is not an edge belonging to the

SU(3) A2 graph. If that is the case, we do not need more operators because we can obtain a natural

decomposition of each Pn for the SU(3) A2 graph by taking the decomposition of each Pn of the

SU(6) A1 graph and neglecting the paths which are not part of the SU(3) A2 graph.

However, this decomposition seems to hide the essential paths of the SU(3) A2 graph, which make

the construction of the C⋆ bialgebra harder. But, as mentioned before, it suggests us that the triangle

operators of SU(6) are actually the responsible for the paths like (138) and (13̄8) in the SU(3) A2
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graph. Also, it suggests us that the decomposition of each Pn is possible and therefore, that the C⋆

bialgebra associated to SU(3) A2 graph can actually be constructed.

1

3 6

8
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Figure 6. This is the graph obtained after truncating figure (5). The process of truncation required to remove

some edges and to invert some of the remaining ones. The number of different generators is also reduced and

we have relabeled the vertices to match the A1 SU(3) graph.

Moreover, we can manipulate that natural decomposition to get another one in which the essential

paths are not hidden anymore. We just need to realize how to define the creation operators associated

to the SU(3) A2 graph in terms of the creation operators acting over paths on the SU(6) A1 graph, and

a rule to distinguish essential paths from non-essential paths. Some progress has already been made

towards this direction, and the generalization to all the SU(N) Al graphs is on its way.

Once we find the decomposition for any level, we will be able to reproduce the construction of

the C⋆ bialgebra in general. This is not an easy task, but there are good chances to finally find the

generalization for the Al SU(N) associated quantum groupoids.
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